On the fuzzification of Lagrange's theorem in $ (\alpha, \beta) $-Pythagorean fuzzy environment
An (α,β)-Pythagorean fuzzy environment is an efficient tool for handling vagueness. In this paper, the notion of relative subgroup of a group is introduced. Using this concept, the (α,β)-Pythagorean fuzzy order of elements of groups in (α,β)-Pythagorean fuzzy subgroups is defined and examined variou...
Saved in:
Published in | AIMS mathematics Vol. 6; no. 9; pp. 9290 - 9308 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
AIMS Press
01.01.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 2473-6988 2473-6988 |
DOI | 10.3934/math.2021540 |
Cover
Loading…
Abstract | An (α,β)-Pythagorean fuzzy environment is an efficient tool for handling vagueness. In this paper, the notion of relative subgroup of a group is introduced. Using this concept, the (α,β)-Pythagorean fuzzy order of elements of groups in (α,β)-Pythagorean fuzzy subgroups is defined and examined various algebraic properties of it. A relation between (α,β)-Pythagorean fuzzy order of an element of a group in (α,β)-Pythagorean fuzzy subgroups and order of the group is established. The extension principle for (α,β)-Pythagorean fuzzy sets is introduced. The concept of (α,β)-Pythagorean fuzzy normalizer and (α,β)-Pythagorean fuzzy centralizer of (α,β)-Pythagorean fuzzy subgroups are developed. Further, (α,β)-Pythagorean fuzzy quotient group of an (α,β)-Pythagorean fuzzy subgroup is defined. Finally, an (α,β)-Pythagorean fuzzy version of Lagrange's theorem is proved. |
---|---|
AbstractList | An (α,β)-Pythagorean fuzzy environment is an efficient tool for handling vagueness. In this paper, the notion of relative subgroup of a group is introduced. Using this concept, the (α,β)-Pythagorean fuzzy order of elements of groups in (α,β)-Pythagorean fuzzy subgroups is defined and examined various algebraic properties of it. A relation between (α,β)-Pythagorean fuzzy order of an element of a group in (α,β)-Pythagorean fuzzy subgroups and order of the group is established. The extension principle for (α,β)-Pythagorean fuzzy sets is introduced. The concept of (α,β)-Pythagorean fuzzy normalizer and (α,β)-Pythagorean fuzzy centralizer of (α,β)-Pythagorean fuzzy subgroups are developed. Further, (α,β)-Pythagorean fuzzy quotient group of an (α,β)-Pythagorean fuzzy subgroup is defined. Finally, an (α,β)-Pythagorean fuzzy version of Lagrange's theorem is proved. |
Author | Ghorai, Ganesh Bhunia, Supriya Xin, Qin |
Author_xml | – sequence: 1 givenname: Supriya surname: Bhunia fullname: Bhunia, Supriya – sequence: 2 givenname: Ganesh surname: Ghorai fullname: Ghorai, Ganesh – sequence: 3 givenname: Qin surname: Xin fullname: Xin, Qin |
BookMark | eNptkE1LAzEQhoNUsNbe_AE5FFTo1uwmu9kcpfgFhXrQWyHMZpM2pU1KNgrtr3f7IYh4mmHmnYfhuUQd551G6DolIyoou19DXIwykqU5I2eomzFOk0KUZedXf4H6TbMkpE1lLOOsi-TU4bjQ2HzudtZYBdF6h73BE5gHcHN90-z3Pug1tg4P8O0MVpsFDPGs0hHu8CB528YFzNsEuANmi7X7ssG7tXbxCp0bWDW6f6o99PH0-D5-SSbT59fxwyRRlJcxqY0BIqCgFFIhaFGVwEpD8poaXecsTw0rFGcFNaKqmOY040SJnNYFFEoQQXvo9citPSzlJtg1hK30YOVh4MNcQohWrbTklHPOKJSCAasJFUVJMlWxmqbCpJy3rOzIUsE3TdBGKhsPYmIAu5IpkXvjcm9cnoy3R8M_Rz9P_Bv_Bp1Zg04 |
CitedBy_id | crossref_primary_10_3233_JIFS_212027 crossref_primary_10_37394_23206_2024_23_65 crossref_primary_10_1109_ACCESS_2022_3145376 crossref_primary_10_1155_2021_5253346 |
Cites_doi | 10.1016/0020-0255(87)90006-5 10.1016/0022-247X(81)90164-5 10.1016/0020-0255(92)90107-J 10.1002/int.21790 10.1016/0165-0114(94)90237-2 10.1016/0022-247X(88)90224-7 10.1016/S0019-9958(65)90241-X 10.1016/0165-0114(82)90057-4 10.3934/math.2021058 10.1109/IFSA-NAFIPS.2013.6608375 10.1002/int.21738 10.1080/0025570X.2001.11953045 10.1016/0022-247X(71)90199-5 10.1016/0165-0114(93)90201-R 10.1016/0165-0114(90)90025-2 10.1016/j.asoc.2019.03.043 10.1016/0020-0255(86)90039-3 10.1016/S0165-0114(98)00411-4 10.1016/0020-0255(86)90028-9 10.1016/0022-247X(79)90182-3 10.1016/S0165-0114(86)80034-3 10.1016/0165-0114(94)90175-9 10.1016/0020-0255(84)90050-1 10.1016/0165-0114(90)90032-2 |
ContentType | Journal Article |
CorporateAuthor | Faculty of Science and Technology, University of the Faroe Islands, Vestarabryggja 15, FO 100 Torshavn, Faroe Islands Department of Applied Mathematics with Oceanology and Computer Programming, Vidyasagar University, Midnapore 721102, India |
CorporateAuthor_xml | – name: Faculty of Science and Technology, University of the Faroe Islands, Vestarabryggja 15, FO 100 Torshavn, Faroe Islands – name: Department of Applied Mathematics with Oceanology and Computer Programming, Vidyasagar University, Midnapore 721102, India |
DBID | AAYXX CITATION DOA |
DOI | 10.3934/math.2021540 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2473-6988 |
EndPage | 9308 |
ExternalDocumentID | oai_doaj_org_article_7377743a894a4d0396802cb4d319f177 10_3934_math_2021540 |
GroupedDBID | AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV CITATION EBS FRJ GROUPED_DOAJ IAO ITC M~E OK1 RAN |
ID | FETCH-LOGICAL-c378t-dffa09a633a19936b8a48f05d3fed5451f46c7463f9bb4e73270c953d6a6c9093 |
IEDL.DBID | DOA |
ISSN | 2473-6988 |
IngestDate | Wed Aug 27 01:23:55 EDT 2025 Thu Apr 24 23:07:04 EDT 2025 Tue Jul 01 03:56:49 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c378t-dffa09a633a19936b8a48f05d3fed5451f46c7463f9bb4e73270c953d6a6c9093 |
OpenAccessLink | https://doaj.org/article/7377743a894a4d0396802cb4d319f177 |
PageCount | 19 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_7377743a894a4d0396802cb4d319f177 crossref_citationtrail_10_3934_math_2021540 crossref_primary_10_3934_math_2021540 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-01 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | AIMS mathematics |
PublicationYear | 2021 |
Publisher | AIMS Press |
Publisher_xml | – name: AIMS Press |
References | key-10.3934/math.2021540-6 key-10.3934/math.2021540-7 key-10.3934/math.2021540-4 key-10.3934/math.2021540-5 key-10.3934/math.2021540-2 key-10.3934/math.2021540-3 key-10.3934/math.2021540-1 key-10.3934/math.2021540-10 key-10.3934/math.2021540-32 key-10.3934/math.2021540-31 key-10.3934/math.2021540-30 key-10.3934/math.2021540-14 key-10.3934/math.2021540-13 key-10.3934/math.2021540-12 key-10.3934/math.2021540-11 key-10.3934/math.2021540-33 key-10.3934/math.2021540-18 key-10.3934/math.2021540-17 key-10.3934/math.2021540-16 key-10.3934/math.2021540-15 key-10.3934/math.2021540-19 key-10.3934/math.2021540-21 key-10.3934/math.2021540-20 key-10.3934/math.2021540-25 key-10.3934/math.2021540-24 key-10.3934/math.2021540-23 key-10.3934/math.2021540-22 key-10.3934/math.2021540-29 key-10.3934/math.2021540-28 key-10.3934/math.2021540-8 key-10.3934/math.2021540-27 key-10.3934/math.2021540-9 key-10.3934/math.2021540-26 |
References_xml | – ident: key-10.3934/math.2021540-18 doi: 10.1016/0020-0255(87)90006-5 – ident: key-10.3934/math.2021540-7 doi: 10.1016/0022-247X(81)90164-5 – ident: key-10.3934/math.2021540-8 doi: 10.1016/0020-0255(92)90107-J – ident: key-10.3934/math.2021540-31 doi: 10.1002/int.21790 – ident: key-10.3934/math.2021540-14 doi: 10.1016/0165-0114(94)90237-2 – ident: key-10.3934/math.2021540-9 doi: 10.1016/0022-247X(88)90224-7 – ident: key-10.3934/math.2021540-33 – ident: key-10.3934/math.2021540-3 doi: 10.1016/S0019-9958(65)90241-X – ident: key-10.3934/math.2021540-29 – ident: key-10.3934/math.2021540-6 doi: 10.1016/0165-0114(82)90057-4 – ident: key-10.3934/math.2021540-23 – ident: key-10.3934/math.2021540-21 – ident: key-10.3934/math.2021540-28 doi: 10.3934/math.2021058 – ident: key-10.3934/math.2021540-27 doi: 10.1109/IFSA-NAFIPS.2013.6608375 – ident: key-10.3934/math.2021540-30 doi: 10.1002/int.21738 – ident: key-10.3934/math.2021540-2 doi: 10.1080/0025570X.2001.11953045 – ident: key-10.3934/math.2021540-4 doi: 10.1016/0022-247X(71)90199-5 – ident: key-10.3934/math.2021540-12 doi: 10.1016/0165-0114(93)90201-R – ident: key-10.3934/math.2021540-11 doi: 10.1016/0165-0114(90)90025-2 – ident: key-10.3934/math.2021540-32 doi: 10.1016/j.asoc.2019.03.043 – ident: key-10.3934/math.2021540-16 doi: 10.1016/0020-0255(86)90039-3 – ident: key-10.3934/math.2021540-19 doi: 10.1016/S0165-0114(98)00411-4 – ident: key-10.3934/math.2021540-17 doi: 10.1016/0020-0255(86)90028-9 – ident: key-10.3934/math.2021540-5 doi: 10.1016/0022-247X(79)90182-3 – ident: key-10.3934/math.2021540-25 doi: 10.1016/S0165-0114(86)80034-3 – ident: key-10.3934/math.2021540-13 doi: 10.1016/0165-0114(94)90175-9 – ident: key-10.3934/math.2021540-15 doi: 10.1016/0020-0255(84)90050-1 – ident: key-10.3934/math.2021540-22 – ident: key-10.3934/math.2021540-10 doi: 10.1016/0165-0114(90)90032-2 – ident: key-10.3934/math.2021540-20 – ident: key-10.3934/math.2021540-1 – ident: key-10.3934/math.2021540-24 – ident: key-10.3934/math.2021540-26 |
SSID | ssj0002124274 |
Score | 2.1673055 |
Snippet | An (α,β)-Pythagorean fuzzy environment is an efficient tool for handling vagueness. In this paper, the notion of relative subgroup of a group is introduced.... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
StartPage | 9290 |
SubjectTerms | (α,β)-pythagorean fuzzy order (α,β)-pythagorean fuzzy quotient group (α,β)-pythagorean fuzzy subgroup lagrange's theorem β)-pythagorean fuzzy set |
Title | On the fuzzification of Lagrange's theorem in $ (\alpha, \beta) $-Pythagorean fuzzy environment |
URI | https://doaj.org/article/7377743a894a4d0396802cb4d319f177 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JSgQxEA3iSQ_iijs5KCramOlkshxVlEHcQIW5NdVZVNAeGcfDzF_ph_hNVrrboS_ixWOHSgivQupVuhZCtrxkHpCJJ62QQyK00EnuPCQAWgSV5ty7mI18eSU79-K82-42Wn3FmLCqPHAF3KHiChkKB20ECMe4kZqlNhcOz05oqTKPHG1ew5mKdzBeyAL9rSrSnRsuDpH_xX8PaOHiO0fDBjVK9Zc25WyWzNRkkB5Vm5gjE76YJ9OX40qqbwvk9rqg-EnD-2gUo3pKIGkv0At46MfEgJ03WiUjvtCngu5-fRx8fe4lN8PBIzzgKBTl1CFtZLQtkvuz07uTTlI3QkgsV3qQuBCAGZCcQ4y3k7kGoQNrOx68QwrUCkJaJSQPJs-FVzxVzJo2dxKkNczwJTJZ9Aq_TKgzqU25BeGhjYAyUFYjq2M6pLhkCCtk_weazNZVwmOziucMvYUIZBaBzGogV8j2WPq1qo7xi9xxRHksE2talwOo6azWdPaXplf_Y5E1MhX3VD2irJPJQf_dbyCtGOSb5Qn6BobJyzI |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+fuzzification+of+Lagrange%27s+theorem+in+%24+%28%5Calpha%2C+%5Cbeta%29+%24-Pythagorean+fuzzy+environment&rft.jtitle=AIMS+mathematics&rft.au=Bhunia%2C+Supriya&rft.au=Ghorai%2C+Ganesh&rft.au=Xin%2C+Qin&rft.date=2021-01-01&rft.issn=2473-6988&rft.eissn=2473-6988&rft.volume=6&rft.issue=9&rft.spage=9290&rft.epage=9308&rft_id=info:doi/10.3934%2Fmath.2021540&rft.externalDBID=n%2Fa&rft.externalDocID=10_3934_math_2021540 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon |