On the fuzzification of Lagrange's theorem in $ (\alpha, \beta) $-Pythagorean fuzzy environment

An (α,β)-Pythagorean fuzzy environment is an efficient tool for handling vagueness. In this paper, the notion of relative subgroup of a group is introduced. Using this concept, the (α,β)-Pythagorean fuzzy order of elements of groups in (α,β)-Pythagorean fuzzy subgroups is defined and examined variou...

Full description

Saved in:
Bibliographic Details
Published inAIMS mathematics Vol. 6; no. 9; pp. 9290 - 9308
Main Authors Bhunia, Supriya, Ghorai, Ganesh, Xin, Qin
Format Journal Article
LanguageEnglish
Published AIMS Press 01.01.2021
Subjects
Online AccessGet full text
ISSN2473-6988
2473-6988
DOI10.3934/math.2021540

Cover

Loading…
Abstract An (α,β)-Pythagorean fuzzy environment is an efficient tool for handling vagueness. In this paper, the notion of relative subgroup of a group is introduced. Using this concept, the (α,β)-Pythagorean fuzzy order of elements of groups in (α,β)-Pythagorean fuzzy subgroups is defined and examined various algebraic properties of it. A relation between (α,β)-Pythagorean fuzzy order of an element of a group in (α,β)-Pythagorean fuzzy subgroups and order of the group is established. The extension principle for (α,β)-Pythagorean fuzzy sets is introduced. The concept of (α,β)-Pythagorean fuzzy normalizer and (α,β)-Pythagorean fuzzy centralizer of (α,β)-Pythagorean fuzzy subgroups are developed. Further, (α,β)-Pythagorean fuzzy quotient group of an (α,β)-Pythagorean fuzzy subgroup is defined. Finally, an (α,β)-Pythagorean fuzzy version of Lagrange's theorem is proved.
AbstractList An (α,β)-Pythagorean fuzzy environment is an efficient tool for handling vagueness. In this paper, the notion of relative subgroup of a group is introduced. Using this concept, the (α,β)-Pythagorean fuzzy order of elements of groups in (α,β)-Pythagorean fuzzy subgroups is defined and examined various algebraic properties of it. A relation between (α,β)-Pythagorean fuzzy order of an element of a group in (α,β)-Pythagorean fuzzy subgroups and order of the group is established. The extension principle for (α,β)-Pythagorean fuzzy sets is introduced. The concept of (α,β)-Pythagorean fuzzy normalizer and (α,β)-Pythagorean fuzzy centralizer of (α,β)-Pythagorean fuzzy subgroups are developed. Further, (α,β)-Pythagorean fuzzy quotient group of an (α,β)-Pythagorean fuzzy subgroup is defined. Finally, an (α,β)-Pythagorean fuzzy version of Lagrange's theorem is proved.
Author Ghorai, Ganesh
Bhunia, Supriya
Xin, Qin
Author_xml – sequence: 1
  givenname: Supriya
  surname: Bhunia
  fullname: Bhunia, Supriya
– sequence: 2
  givenname: Ganesh
  surname: Ghorai
  fullname: Ghorai, Ganesh
– sequence: 3
  givenname: Qin
  surname: Xin
  fullname: Xin, Qin
BookMark eNptkE1LAzEQhoNUsNbe_AE5FFTo1uwmu9kcpfgFhXrQWyHMZpM2pU1KNgrtr3f7IYh4mmHmnYfhuUQd551G6DolIyoou19DXIwykqU5I2eomzFOk0KUZedXf4H6TbMkpE1lLOOsi-TU4bjQ2HzudtZYBdF6h73BE5gHcHN90-z3Pug1tg4P8O0MVpsFDPGs0hHu8CB528YFzNsEuANmi7X7ssG7tXbxCp0bWDW6f6o99PH0-D5-SSbT59fxwyRRlJcxqY0BIqCgFFIhaFGVwEpD8poaXecsTw0rFGcFNaKqmOY040SJnNYFFEoQQXvo9citPSzlJtg1hK30YOVh4MNcQohWrbTklHPOKJSCAasJFUVJMlWxmqbCpJy3rOzIUsE3TdBGKhsPYmIAu5IpkXvjcm9cnoy3R8M_Rz9P_Bv_Bp1Zg04
CitedBy_id crossref_primary_10_3233_JIFS_212027
crossref_primary_10_37394_23206_2024_23_65
crossref_primary_10_1109_ACCESS_2022_3145376
crossref_primary_10_1155_2021_5253346
Cites_doi 10.1016/0020-0255(87)90006-5
10.1016/0022-247X(81)90164-5
10.1016/0020-0255(92)90107-J
10.1002/int.21790
10.1016/0165-0114(94)90237-2
10.1016/0022-247X(88)90224-7
10.1016/S0019-9958(65)90241-X
10.1016/0165-0114(82)90057-4
10.3934/math.2021058
10.1109/IFSA-NAFIPS.2013.6608375
10.1002/int.21738
10.1080/0025570X.2001.11953045
10.1016/0022-247X(71)90199-5
10.1016/0165-0114(93)90201-R
10.1016/0165-0114(90)90025-2
10.1016/j.asoc.2019.03.043
10.1016/0020-0255(86)90039-3
10.1016/S0165-0114(98)00411-4
10.1016/0020-0255(86)90028-9
10.1016/0022-247X(79)90182-3
10.1016/S0165-0114(86)80034-3
10.1016/0165-0114(94)90175-9
10.1016/0020-0255(84)90050-1
10.1016/0165-0114(90)90032-2
ContentType Journal Article
CorporateAuthor Faculty of Science and Technology, University of the Faroe Islands, Vestarabryggja 15, FO 100 Torshavn, Faroe Islands
Department of Applied Mathematics with Oceanology and Computer Programming, Vidyasagar University, Midnapore 721102, India
CorporateAuthor_xml – name: Faculty of Science and Technology, University of the Faroe Islands, Vestarabryggja 15, FO 100 Torshavn, Faroe Islands
– name: Department of Applied Mathematics with Oceanology and Computer Programming, Vidyasagar University, Midnapore 721102, India
DBID AAYXX
CITATION
DOA
DOI 10.3934/math.2021540
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2473-6988
EndPage 9308
ExternalDocumentID oai_doaj_org_article_7377743a894a4d0396802cb4d319f177
10_3934_math_2021540
GroupedDBID AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
CITATION
EBS
FRJ
GROUPED_DOAJ
IAO
ITC
M~E
OK1
RAN
ID FETCH-LOGICAL-c378t-dffa09a633a19936b8a48f05d3fed5451f46c7463f9bb4e73270c953d6a6c9093
IEDL.DBID DOA
ISSN 2473-6988
IngestDate Wed Aug 27 01:23:55 EDT 2025
Thu Apr 24 23:07:04 EDT 2025
Tue Jul 01 03:56:49 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c378t-dffa09a633a19936b8a48f05d3fed5451f46c7463f9bb4e73270c953d6a6c9093
OpenAccessLink https://doaj.org/article/7377743a894a4d0396802cb4d319f177
PageCount 19
ParticipantIDs doaj_primary_oai_doaj_org_article_7377743a894a4d0396802cb4d319f177
crossref_citationtrail_10_3934_math_2021540
crossref_primary_10_3934_math_2021540
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationTitle AIMS mathematics
PublicationYear 2021
Publisher AIMS Press
Publisher_xml – name: AIMS Press
References key-10.3934/math.2021540-6
key-10.3934/math.2021540-7
key-10.3934/math.2021540-4
key-10.3934/math.2021540-5
key-10.3934/math.2021540-2
key-10.3934/math.2021540-3
key-10.3934/math.2021540-1
key-10.3934/math.2021540-10
key-10.3934/math.2021540-32
key-10.3934/math.2021540-31
key-10.3934/math.2021540-30
key-10.3934/math.2021540-14
key-10.3934/math.2021540-13
key-10.3934/math.2021540-12
key-10.3934/math.2021540-11
key-10.3934/math.2021540-33
key-10.3934/math.2021540-18
key-10.3934/math.2021540-17
key-10.3934/math.2021540-16
key-10.3934/math.2021540-15
key-10.3934/math.2021540-19
key-10.3934/math.2021540-21
key-10.3934/math.2021540-20
key-10.3934/math.2021540-25
key-10.3934/math.2021540-24
key-10.3934/math.2021540-23
key-10.3934/math.2021540-22
key-10.3934/math.2021540-29
key-10.3934/math.2021540-28
key-10.3934/math.2021540-8
key-10.3934/math.2021540-27
key-10.3934/math.2021540-9
key-10.3934/math.2021540-26
References_xml – ident: key-10.3934/math.2021540-18
  doi: 10.1016/0020-0255(87)90006-5
– ident: key-10.3934/math.2021540-7
  doi: 10.1016/0022-247X(81)90164-5
– ident: key-10.3934/math.2021540-8
  doi: 10.1016/0020-0255(92)90107-J
– ident: key-10.3934/math.2021540-31
  doi: 10.1002/int.21790
– ident: key-10.3934/math.2021540-14
  doi: 10.1016/0165-0114(94)90237-2
– ident: key-10.3934/math.2021540-9
  doi: 10.1016/0022-247X(88)90224-7
– ident: key-10.3934/math.2021540-33
– ident: key-10.3934/math.2021540-3
  doi: 10.1016/S0019-9958(65)90241-X
– ident: key-10.3934/math.2021540-29
– ident: key-10.3934/math.2021540-6
  doi: 10.1016/0165-0114(82)90057-4
– ident: key-10.3934/math.2021540-23
– ident: key-10.3934/math.2021540-21
– ident: key-10.3934/math.2021540-28
  doi: 10.3934/math.2021058
– ident: key-10.3934/math.2021540-27
  doi: 10.1109/IFSA-NAFIPS.2013.6608375
– ident: key-10.3934/math.2021540-30
  doi: 10.1002/int.21738
– ident: key-10.3934/math.2021540-2
  doi: 10.1080/0025570X.2001.11953045
– ident: key-10.3934/math.2021540-4
  doi: 10.1016/0022-247X(71)90199-5
– ident: key-10.3934/math.2021540-12
  doi: 10.1016/0165-0114(93)90201-R
– ident: key-10.3934/math.2021540-11
  doi: 10.1016/0165-0114(90)90025-2
– ident: key-10.3934/math.2021540-32
  doi: 10.1016/j.asoc.2019.03.043
– ident: key-10.3934/math.2021540-16
  doi: 10.1016/0020-0255(86)90039-3
– ident: key-10.3934/math.2021540-19
  doi: 10.1016/S0165-0114(98)00411-4
– ident: key-10.3934/math.2021540-17
  doi: 10.1016/0020-0255(86)90028-9
– ident: key-10.3934/math.2021540-5
  doi: 10.1016/0022-247X(79)90182-3
– ident: key-10.3934/math.2021540-25
  doi: 10.1016/S0165-0114(86)80034-3
– ident: key-10.3934/math.2021540-13
  doi: 10.1016/0165-0114(94)90175-9
– ident: key-10.3934/math.2021540-15
  doi: 10.1016/0020-0255(84)90050-1
– ident: key-10.3934/math.2021540-22
– ident: key-10.3934/math.2021540-10
  doi: 10.1016/0165-0114(90)90032-2
– ident: key-10.3934/math.2021540-20
– ident: key-10.3934/math.2021540-1
– ident: key-10.3934/math.2021540-24
– ident: key-10.3934/math.2021540-26
SSID ssj0002124274
Score 2.1673055
Snippet An (α,β)-Pythagorean fuzzy environment is an efficient tool for handling vagueness. In this paper, the notion of relative subgroup of a group is introduced....
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 9290
SubjectTerms (α,β)-pythagorean fuzzy order
(α,β)-pythagorean fuzzy quotient group
(α,β)-pythagorean fuzzy subgroup
lagrange's theorem
β)-pythagorean fuzzy set
Title On the fuzzification of Lagrange's theorem in $ (\alpha, \beta) $-Pythagorean fuzzy environment
URI https://doaj.org/article/7377743a894a4d0396802cb4d319f177
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JSgQxEA3iSQ_iijs5KCramOlkshxVlEHcQIW5NdVZVNAeGcfDzF_ph_hNVrrboS_ixWOHSgivQupVuhZCtrxkHpCJJ62QQyK00EnuPCQAWgSV5ty7mI18eSU79-K82-42Wn3FmLCqPHAF3KHiChkKB20ECMe4kZqlNhcOz05oqTKPHG1ew5mKdzBeyAL9rSrSnRsuDpH_xX8PaOHiO0fDBjVK9Zc25WyWzNRkkB5Vm5gjE76YJ9OX40qqbwvk9rqg-EnD-2gUo3pKIGkv0At46MfEgJ03WiUjvtCngu5-fRx8fe4lN8PBIzzgKBTl1CFtZLQtkvuz07uTTlI3QkgsV3qQuBCAGZCcQ4y3k7kGoQNrOx68QwrUCkJaJSQPJs-FVzxVzJo2dxKkNczwJTJZ9Aq_TKgzqU25BeGhjYAyUFYjq2M6pLhkCCtk_weazNZVwmOziucMvYUIZBaBzGogV8j2WPq1qo7xi9xxRHksE2talwOo6azWdPaXplf_Y5E1MhX3VD2irJPJQf_dbyCtGOSb5Qn6BobJyzI
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+fuzzification+of+Lagrange%27s+theorem+in+%24+%28%5Calpha%2C+%5Cbeta%29+%24-Pythagorean+fuzzy+environment&rft.jtitle=AIMS+mathematics&rft.au=Bhunia%2C+Supriya&rft.au=Ghorai%2C+Ganesh&rft.au=Xin%2C+Qin&rft.date=2021-01-01&rft.issn=2473-6988&rft.eissn=2473-6988&rft.volume=6&rft.issue=9&rft.spage=9290&rft.epage=9308&rft_id=info:doi/10.3934%2Fmath.2021540&rft.externalDBID=n%2Fa&rft.externalDocID=10_3934_math_2021540
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon