Chebyshev fifth-kind series approximation for generalized space fractional partial differential equations
In this paper, we propose a numerical scheme to solve generalized space fractional partial differential equations (GFPDEs). The proposed scheme uses Shifted Chebyshev fifth-kind polynomials with the spectral collocation approach. Besides, the proposed GFPDEs represent a great generalization of signi...
Saved in:
Published in | AIMS mathematics Vol. 7; no. 5; pp. 7759 - 7780 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
AIMS Press
01.01.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 2473-6988 2473-6988 |
DOI | 10.3934/math.2022436 |
Cover
Abstract | In this paper, we propose a numerical scheme to solve generalized space fractional partial differential equations (GFPDEs). The proposed scheme uses Shifted Chebyshev fifth-kind polynomials with the spectral collocation approach. Besides, the proposed GFPDEs represent a great generalization of significant types of fractional partial differential equations (FPDEs) and their applications, which contain many previous reports as a special case. The fractional differential derivatives are expressed in terms of the Caputo sense. Moreover, the Chebyshev collocation method together with the finite difference method is used to reduce these types of differential equations to a system of differential equations which can be solved numerically. In addition, the classical fourth-order Runge-Kutta method is also used to treat the differential system with the collocation method which obtains a great accuracy. Numerical approximations performed by the proposed method are presented and compared with the results obtained by other numerical methods. The introduced numerical experiments are fractional-order mathematical physics models, as advection-dispersion equation (FADE) and diffusion equation (FDE). The results reveal that our method is a simple, easy to implement and effective numerical method. |
---|---|
AbstractList | In this paper, we propose a numerical scheme to solve generalized space fractional partial differential equations (GFPDEs). The proposed scheme uses Shifted Chebyshev fifth-kind polynomials with the spectral collocation approach. Besides, the proposed GFPDEs represent a great generalization of significant types of fractional partial differential equations (FPDEs) and their applications, which contain many previous reports as a special case. The fractional differential derivatives are expressed in terms of the Caputo sense. Moreover, the Chebyshev collocation method together with the finite difference method is used to reduce these types of differential equations to a system of differential equations which can be solved numerically. In addition, the classical fourth-order Runge-Kutta method is also used to treat the differential system with the collocation method which obtains a great accuracy. Numerical approximations performed by the proposed method are presented and compared with the results obtained by other numerical methods. The introduced numerical experiments are fractional-order mathematical physics models, as advection-dispersion equation (FADE) and diffusion equation (FDE). The results reveal that our method is a simple, easy to implement and effective numerical method. |
Author | Abd El Salam, Mohamed A. Mohamed, Mohamed S. Ali, Khalid K. |
Author_xml | – sequence: 1 givenname: Khalid K. surname: Ali fullname: Ali, Khalid K. – sequence: 2 givenname: Mohamed A. surname: Abd El Salam fullname: Abd El Salam, Mohamed A. – sequence: 3 givenname: Mohamed S. surname: Mohamed fullname: Mohamed, Mohamed S. |
BookMark | eNptUMtOwzAQtBBIlNIbH5APIODYm9g-ooqXhMQFzpZjr1uXkAQ7IMrXkz6QEOK0r5nR7JyQw7ZrkZCzgl5wxeHy1QzLC0YZA14dkAkDwfNKSXn4qz8ms5RWlFJWMGACJiTMl1iv0xI_Mh_8sMxfQuuyhDFgykzfx-4zjMqhazPfxWyBLUbThC8cQb2xmPlo7OZsmqw3cQhjdcF7jNhuB3x739LTKTnypkk429cpeb65fprf5Q-Pt_fzq4fcciGH3HnhqXI1BfTgJHMCwdTcoFTKU6AKS8CC-RK4k6YEkGCEUJVTVlIQik_J_U7XdWal-zjaj2vdmaC3iy4u9ManbVAXoqwNVUUpKwZQ0dqDclBY7pHZMcpRi-20bOxSiui1DcP2nSGa0OiC6k32epO93mc_ks7_kH5M_Av_BoDTiiI |
CitedBy_id | crossref_primary_10_3390_axioms11120743 crossref_primary_10_3390_fractalfract7090652 crossref_primary_10_1016_j_aej_2024_11_097 crossref_primary_10_3390_sym15061151 crossref_primary_10_1080_27690911_2023_2187388 crossref_primary_10_1186_s13660_024_03205_2 |
Cites_doi | 10.1216/RMJ-2017-47-2-571 10.1016/j.chaos.2019.109405 10.1142/S1793524518501097 10.1016/j.chaos.2015.01.010 10.1016/j.cnsns.2018.04.019 10.1186/s13662-021-03507-5 10.1016/j.cnsns.2017.03.012 10.1007/s40314-017-0488-z 10.3390/mca17020140 10.1080/10652460701510949 10.1186/s13662-021-03244-9 10.4208/cicp.020709.221209a 10.1080/00207160.2021.1940977 10.1016/j.cam.2020.113157 10.1016/j.jksus.2015.05.002 10.1515/ijnsns-2018-0118 10.1007/s40819-018-0517-7 10.1016/j.chaos.2020.110174 10.1186/s13662-020-02951-z 10.1007/s40314-013-0091-x 10.1016/j.apnum.2021.05.010 10.1140/epjp/i2018-11885-3 10.1002/num.22756 10.3389/fphy.2019.00081 10.1016/j.jmaa.2011.03.001 10.1016/j.camwa.2010.12.034 10.1186/s13662-020-03085-y 10.1155/2013/562140 10.1016/j.jde.2004.10.028 10.1016/j.cnsns.2010.09.007 10.1016/j.camwa.2009.08.039 10.1007/s40995-018-0480-5 |
ContentType | Journal Article |
CorporateAuthor | Department of Mathematics, Faculty of Science, Al Azhar University, Nasr City 11884, Cairo, Egypt Department of Mathematics, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia |
CorporateAuthor_xml | – name: Department of Mathematics, Faculty of Science, Al Azhar University, Nasr City 11884, Cairo, Egypt – name: Department of Mathematics, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia |
DBID | AAYXX CITATION DOA |
DOI | 10.3934/math.2022436 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2473-6988 |
EndPage | 7780 |
ExternalDocumentID | oai_doaj_org_article_175ba09158624460bf49d41c3fe2c202 10_3934_math_2022436 |
GroupedDBID | AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV CITATION EBS FRJ GROUPED_DOAJ IAO ITC M~E OK1 RAN |
ID | FETCH-LOGICAL-c378t-df7f09db04ef4d82d7e4ab3ae899f0409e54e12f543d8a54484a7796d9c804793 |
IEDL.DBID | DOA |
ISSN | 2473-6988 |
IngestDate | Wed Aug 27 01:30:25 EDT 2025 Thu Apr 24 23:12:01 EDT 2025 Tue Jul 01 03:56:53 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c378t-df7f09db04ef4d82d7e4ab3ae899f0409e54e12f543d8a54484a7796d9c804793 |
OpenAccessLink | https://doaj.org/article/175ba09158624460bf49d41c3fe2c202 |
PageCount | 22 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_175ba09158624460bf49d41c3fe2c202 crossref_citationtrail_10_3934_math_2022436 crossref_primary_10_3934_math_2022436 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-01-01 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | AIMS mathematics |
PublicationYear | 2022 |
Publisher | AIMS Press |
Publisher_xml | – name: AIMS Press |
References | key-10.3934/math.2022436-17 key-10.3934/math.2022436-16 key-10.3934/math.2022436-19 key-10.3934/math.2022436-18 key-10.3934/math.2022436-31 key-10.3934/math.2022436-30 key-10.3934/math.2022436-1 key-10.3934/math.2022436-11 key-10.3934/math.2022436-33 key-10.3934/math.2022436-2 key-10.3934/math.2022436-10 key-10.3934/math.2022436-32 key-10.3934/math.2022436-13 key-10.3934/math.2022436-12 key-10.3934/math.2022436-15 key-10.3934/math.2022436-14 key-10.3934/math.2022436-7 key-10.3934/math.2022436-8 key-10.3934/math.2022436-9 key-10.3934/math.2022436-3 key-10.3934/math.2022436-4 key-10.3934/math.2022436-5 key-10.3934/math.2022436-6 key-10.3934/math.2022436-28 key-10.3934/math.2022436-27 key-10.3934/math.2022436-29 key-10.3934/math.2022436-20 key-10.3934/math.2022436-22 key-10.3934/math.2022436-21 key-10.3934/math.2022436-24 key-10.3934/math.2022436-23 key-10.3934/math.2022436-26 key-10.3934/math.2022436-25 |
References_xml | – ident: key-10.3934/math.2022436-18 doi: 10.1216/RMJ-2017-47-2-571 – ident: key-10.3934/math.2022436-24 doi: 10.1016/j.chaos.2019.109405 – ident: key-10.3934/math.2022436-26 doi: 10.1142/S1793524518501097 – ident: key-10.3934/math.2022436-27 doi: 10.1016/j.chaos.2015.01.010 – ident: key-10.3934/math.2022436-3 doi: 10.1016/j.cnsns.2018.04.019 – ident: key-10.3934/math.2022436-10 doi: 10.1186/s13662-021-03507-5 – ident: key-10.3934/math.2022436-6 doi: 10.1016/j.cnsns.2017.03.012 – ident: key-10.3934/math.2022436-16 doi: 10.1007/s40314-017-0488-z – ident: key-10.3934/math.2022436-4 doi: 10.3390/mca17020140 – ident: key-10.3934/math.2022436-15 doi: 10.1080/10652460701510949 – ident: key-10.3934/math.2022436-13 doi: 10.1186/s13662-021-03244-9 – ident: key-10.3934/math.2022436-21 doi: 10.4208/cicp.020709.221209a – ident: key-10.3934/math.2022436-11 doi: 10.1080/00207160.2021.1940977 – ident: key-10.3934/math.2022436-8 doi: 10.1016/j.cam.2020.113157 – ident: key-10.3934/math.2022436-28 doi: 10.1016/j.jksus.2015.05.002 – ident: key-10.3934/math.2022436-14 doi: 10.1515/ijnsns-2018-0118 – ident: key-10.3934/math.2022436-32 doi: 10.1007/s40819-018-0517-7 – ident: key-10.3934/math.2022436-7 doi: 10.1016/j.chaos.2020.110174 – ident: key-10.3934/math.2022436-25 doi: 10.1186/s13662-020-02951-z – ident: key-10.3934/math.2022436-31 doi: 10.1007/s40314-013-0091-x – ident: key-10.3934/math.2022436-12 doi: 10.1016/j.apnum.2021.05.010 – ident: key-10.3934/math.2022436-22 doi: 10.1140/epjp/i2018-11885-3 – ident: key-10.3934/math.2022436-9 doi: 10.1002/num.22756 – ident: key-10.3934/math.2022436-2 doi: 10.3389/fphy.2019.00081 – ident: key-10.3934/math.2022436-23 – ident: key-10.3934/math.2022436-17 doi: 10.1016/j.jmaa.2011.03.001 – ident: key-10.3934/math.2022436-19 doi: 10.1016/j.camwa.2010.12.034 – ident: key-10.3934/math.2022436-30 doi: 10.1186/s13662-020-03085-y – ident: key-10.3934/math.2022436-5 doi: 10.1155/2013/562140 – ident: key-10.3934/math.2022436-20 doi: 10.1016/j.jde.2004.10.028 – ident: key-10.3934/math.2022436-29 doi: 10.1016/j.cnsns.2010.09.007 – ident: key-10.3934/math.2022436-1 doi: 10.1016/j.camwa.2009.08.039 – ident: key-10.3934/math.2022436-33 doi: 10.1007/s40995-018-0480-5 |
SSID | ssj0002124274 |
Score | 2.217362 |
Snippet | In this paper, we propose a numerical scheme to solve generalized space fractional partial differential equations (GFPDEs). The proposed scheme uses Shifted... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
StartPage | 7759 |
SubjectTerms | caputo fractional derivatives chebyshev fifth-kind collocation method finite difference method generalized space fractional partial differential equations |
Title | Chebyshev fifth-kind series approximation for generalized space fractional partial differential equations |
URI | https://doaj.org/article/175ba09158624460bf49d41c3fe2c202 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kJz2IT6wv9qAnCU2zk9dRi6UI9WSht7CPWRuUWttUxF_vbDatvYgXySFsGJLN7GPm2935hrErDOkSNACjLFEBCB0HCo0IbIzUgcgg6HorZviYDEbwMI7HG6m-3JkwTw_sFdch86YkGbXYRTJAEioLuYGuFhYjHXkayTAPN8CUm4NpQgbCW_6ku8gFdMj_c3sPZLFqNuYfG7RB1V_blP4e222cQX7rK7HPtnB6wHaGaybVxSErexN0S8j4wW1pq0nwQiCau36DC14Tgn-WPvqQk_vJnz2LdPmFJERwGLmd-9AF-s7M_S3dV0lR6gK-e7LvxREb9e-feoOgSY8QaJFmVWBsasPcqBDQgskikyJIJSQShLI0NnOMAbuRjUGYTMaEw0CmaZ6YXGeOWF4cs9b0bYonjEdad1UohM1MBirRKpVU0kajBGuUbbOblcIK3XCHuxQWrwVhCKfewqm3aNTbZtdr6ZnnzPhF7s7pfi3jmK7rB9T-RdP-xV_tf_ofLzlj265OfmnlnLWq-RIvyNmo1GXdr74BbgfUYA |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chebyshev+fifth-kind+series+approximation+for+generalized+space+fractional+partial+differential+equations&rft.jtitle=AIMS+mathematics&rft.au=Khalid+K.+Ali&rft.au=Mohamed+A.+Abd+El+Salam&rft.au=Mohamed+S.+Mohamed&rft.date=2022-01-01&rft.pub=AIMS+Press&rft.eissn=2473-6988&rft.volume=7&rft.issue=5&rft.spage=7759&rft.epage=7780&rft_id=info:doi/10.3934%2Fmath.2022436&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_175ba09158624460bf49d41c3fe2c202 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon |