Chebyshev fifth-kind series approximation for generalized space fractional partial differential equations

In this paper, we propose a numerical scheme to solve generalized space fractional partial differential equations (GFPDEs). The proposed scheme uses Shifted Chebyshev fifth-kind polynomials with the spectral collocation approach. Besides, the proposed GFPDEs represent a great generalization of signi...

Full description

Saved in:
Bibliographic Details
Published inAIMS mathematics Vol. 7; no. 5; pp. 7759 - 7780
Main Authors Ali, Khalid K., Abd El Salam, Mohamed A., Mohamed, Mohamed S.
Format Journal Article
LanguageEnglish
Published AIMS Press 01.01.2022
Subjects
Online AccessGet full text
ISSN2473-6988
2473-6988
DOI10.3934/math.2022436

Cover

Abstract In this paper, we propose a numerical scheme to solve generalized space fractional partial differential equations (GFPDEs). The proposed scheme uses Shifted Chebyshev fifth-kind polynomials with the spectral collocation approach. Besides, the proposed GFPDEs represent a great generalization of significant types of fractional partial differential equations (FPDEs) and their applications, which contain many previous reports as a special case. The fractional differential derivatives are expressed in terms of the Caputo sense. Moreover, the Chebyshev collocation method together with the finite difference method is used to reduce these types of differential equations to a system of differential equations which can be solved numerically. In addition, the classical fourth-order Runge-Kutta method is also used to treat the differential system with the collocation method which obtains a great accuracy. Numerical approximations performed by the proposed method are presented and compared with the results obtained by other numerical methods. The introduced numerical experiments are fractional-order mathematical physics models, as advection-dispersion equation (FADE) and diffusion equation (FDE). The results reveal that our method is a simple, easy to implement and effective numerical method.
AbstractList In this paper, we propose a numerical scheme to solve generalized space fractional partial differential equations (GFPDEs). The proposed scheme uses Shifted Chebyshev fifth-kind polynomials with the spectral collocation approach. Besides, the proposed GFPDEs represent a great generalization of significant types of fractional partial differential equations (FPDEs) and their applications, which contain many previous reports as a special case. The fractional differential derivatives are expressed in terms of the Caputo sense. Moreover, the Chebyshev collocation method together with the finite difference method is used to reduce these types of differential equations to a system of differential equations which can be solved numerically. In addition, the classical fourth-order Runge-Kutta method is also used to treat the differential system with the collocation method which obtains a great accuracy. Numerical approximations performed by the proposed method are presented and compared with the results obtained by other numerical methods. The introduced numerical experiments are fractional-order mathematical physics models, as advection-dispersion equation (FADE) and diffusion equation (FDE). The results reveal that our method is a simple, easy to implement and effective numerical method.
Author Abd El Salam, Mohamed A.
Mohamed, Mohamed S.
Ali, Khalid K.
Author_xml – sequence: 1
  givenname: Khalid K.
  surname: Ali
  fullname: Ali, Khalid K.
– sequence: 2
  givenname: Mohamed A.
  surname: Abd El Salam
  fullname: Abd El Salam, Mohamed A.
– sequence: 3
  givenname: Mohamed S.
  surname: Mohamed
  fullname: Mohamed, Mohamed S.
BookMark eNptUMtOwzAQtBBIlNIbH5APIODYm9g-ooqXhMQFzpZjr1uXkAQ7IMrXkz6QEOK0r5nR7JyQw7ZrkZCzgl5wxeHy1QzLC0YZA14dkAkDwfNKSXn4qz8ms5RWlFJWMGACJiTMl1iv0xI_Mh_8sMxfQuuyhDFgykzfx-4zjMqhazPfxWyBLUbThC8cQb2xmPlo7OZsmqw3cQhjdcF7jNhuB3x739LTKTnypkk429cpeb65fprf5Q-Pt_fzq4fcciGH3HnhqXI1BfTgJHMCwdTcoFTKU6AKS8CC-RK4k6YEkGCEUJVTVlIQik_J_U7XdWal-zjaj2vdmaC3iy4u9ManbVAXoqwNVUUpKwZQ0dqDclBY7pHZMcpRi-20bOxSiui1DcP2nSGa0OiC6k32epO93mc_ks7_kH5M_Av_BoDTiiI
CitedBy_id crossref_primary_10_3390_axioms11120743
crossref_primary_10_3390_fractalfract7090652
crossref_primary_10_1016_j_aej_2024_11_097
crossref_primary_10_3390_sym15061151
crossref_primary_10_1080_27690911_2023_2187388
crossref_primary_10_1186_s13660_024_03205_2
Cites_doi 10.1216/RMJ-2017-47-2-571
10.1016/j.chaos.2019.109405
10.1142/S1793524518501097
10.1016/j.chaos.2015.01.010
10.1016/j.cnsns.2018.04.019
10.1186/s13662-021-03507-5
10.1016/j.cnsns.2017.03.012
10.1007/s40314-017-0488-z
10.3390/mca17020140
10.1080/10652460701510949
10.1186/s13662-021-03244-9
10.4208/cicp.020709.221209a
10.1080/00207160.2021.1940977
10.1016/j.cam.2020.113157
10.1016/j.jksus.2015.05.002
10.1515/ijnsns-2018-0118
10.1007/s40819-018-0517-7
10.1016/j.chaos.2020.110174
10.1186/s13662-020-02951-z
10.1007/s40314-013-0091-x
10.1016/j.apnum.2021.05.010
10.1140/epjp/i2018-11885-3
10.1002/num.22756
10.3389/fphy.2019.00081
10.1016/j.jmaa.2011.03.001
10.1016/j.camwa.2010.12.034
10.1186/s13662-020-03085-y
10.1155/2013/562140
10.1016/j.jde.2004.10.028
10.1016/j.cnsns.2010.09.007
10.1016/j.camwa.2009.08.039
10.1007/s40995-018-0480-5
ContentType Journal Article
CorporateAuthor Department of Mathematics, Faculty of Science, Al Azhar University, Nasr City 11884, Cairo, Egypt
Department of Mathematics, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
CorporateAuthor_xml – name: Department of Mathematics, Faculty of Science, Al Azhar University, Nasr City 11884, Cairo, Egypt
– name: Department of Mathematics, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
DBID AAYXX
CITATION
DOA
DOI 10.3934/math.2022436
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2473-6988
EndPage 7780
ExternalDocumentID oai_doaj_org_article_175ba09158624460bf49d41c3fe2c202
10_3934_math_2022436
GroupedDBID AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
CITATION
EBS
FRJ
GROUPED_DOAJ
IAO
ITC
M~E
OK1
RAN
ID FETCH-LOGICAL-c378t-df7f09db04ef4d82d7e4ab3ae899f0409e54e12f543d8a54484a7796d9c804793
IEDL.DBID DOA
ISSN 2473-6988
IngestDate Wed Aug 27 01:30:25 EDT 2025
Thu Apr 24 23:12:01 EDT 2025
Tue Jul 01 03:56:53 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c378t-df7f09db04ef4d82d7e4ab3ae899f0409e54e12f543d8a54484a7796d9c804793
OpenAccessLink https://doaj.org/article/175ba09158624460bf49d41c3fe2c202
PageCount 22
ParticipantIDs doaj_primary_oai_doaj_org_article_175ba09158624460bf49d41c3fe2c202
crossref_citationtrail_10_3934_math_2022436
crossref_primary_10_3934_math_2022436
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-01
  day: 01
PublicationDecade 2020
PublicationTitle AIMS mathematics
PublicationYear 2022
Publisher AIMS Press
Publisher_xml – name: AIMS Press
References key-10.3934/math.2022436-17
key-10.3934/math.2022436-16
key-10.3934/math.2022436-19
key-10.3934/math.2022436-18
key-10.3934/math.2022436-31
key-10.3934/math.2022436-30
key-10.3934/math.2022436-1
key-10.3934/math.2022436-11
key-10.3934/math.2022436-33
key-10.3934/math.2022436-2
key-10.3934/math.2022436-10
key-10.3934/math.2022436-32
key-10.3934/math.2022436-13
key-10.3934/math.2022436-12
key-10.3934/math.2022436-15
key-10.3934/math.2022436-14
key-10.3934/math.2022436-7
key-10.3934/math.2022436-8
key-10.3934/math.2022436-9
key-10.3934/math.2022436-3
key-10.3934/math.2022436-4
key-10.3934/math.2022436-5
key-10.3934/math.2022436-6
key-10.3934/math.2022436-28
key-10.3934/math.2022436-27
key-10.3934/math.2022436-29
key-10.3934/math.2022436-20
key-10.3934/math.2022436-22
key-10.3934/math.2022436-21
key-10.3934/math.2022436-24
key-10.3934/math.2022436-23
key-10.3934/math.2022436-26
key-10.3934/math.2022436-25
References_xml – ident: key-10.3934/math.2022436-18
  doi: 10.1216/RMJ-2017-47-2-571
– ident: key-10.3934/math.2022436-24
  doi: 10.1016/j.chaos.2019.109405
– ident: key-10.3934/math.2022436-26
  doi: 10.1142/S1793524518501097
– ident: key-10.3934/math.2022436-27
  doi: 10.1016/j.chaos.2015.01.010
– ident: key-10.3934/math.2022436-3
  doi: 10.1016/j.cnsns.2018.04.019
– ident: key-10.3934/math.2022436-10
  doi: 10.1186/s13662-021-03507-5
– ident: key-10.3934/math.2022436-6
  doi: 10.1016/j.cnsns.2017.03.012
– ident: key-10.3934/math.2022436-16
  doi: 10.1007/s40314-017-0488-z
– ident: key-10.3934/math.2022436-4
  doi: 10.3390/mca17020140
– ident: key-10.3934/math.2022436-15
  doi: 10.1080/10652460701510949
– ident: key-10.3934/math.2022436-13
  doi: 10.1186/s13662-021-03244-9
– ident: key-10.3934/math.2022436-21
  doi: 10.4208/cicp.020709.221209a
– ident: key-10.3934/math.2022436-11
  doi: 10.1080/00207160.2021.1940977
– ident: key-10.3934/math.2022436-8
  doi: 10.1016/j.cam.2020.113157
– ident: key-10.3934/math.2022436-28
  doi: 10.1016/j.jksus.2015.05.002
– ident: key-10.3934/math.2022436-14
  doi: 10.1515/ijnsns-2018-0118
– ident: key-10.3934/math.2022436-32
  doi: 10.1007/s40819-018-0517-7
– ident: key-10.3934/math.2022436-7
  doi: 10.1016/j.chaos.2020.110174
– ident: key-10.3934/math.2022436-25
  doi: 10.1186/s13662-020-02951-z
– ident: key-10.3934/math.2022436-31
  doi: 10.1007/s40314-013-0091-x
– ident: key-10.3934/math.2022436-12
  doi: 10.1016/j.apnum.2021.05.010
– ident: key-10.3934/math.2022436-22
  doi: 10.1140/epjp/i2018-11885-3
– ident: key-10.3934/math.2022436-9
  doi: 10.1002/num.22756
– ident: key-10.3934/math.2022436-2
  doi: 10.3389/fphy.2019.00081
– ident: key-10.3934/math.2022436-23
– ident: key-10.3934/math.2022436-17
  doi: 10.1016/j.jmaa.2011.03.001
– ident: key-10.3934/math.2022436-19
  doi: 10.1016/j.camwa.2010.12.034
– ident: key-10.3934/math.2022436-30
  doi: 10.1186/s13662-020-03085-y
– ident: key-10.3934/math.2022436-5
  doi: 10.1155/2013/562140
– ident: key-10.3934/math.2022436-20
  doi: 10.1016/j.jde.2004.10.028
– ident: key-10.3934/math.2022436-29
  doi: 10.1016/j.cnsns.2010.09.007
– ident: key-10.3934/math.2022436-1
  doi: 10.1016/j.camwa.2009.08.039
– ident: key-10.3934/math.2022436-33
  doi: 10.1007/s40995-018-0480-5
SSID ssj0002124274
Score 2.217362
Snippet In this paper, we propose a numerical scheme to solve generalized space fractional partial differential equations (GFPDEs). The proposed scheme uses Shifted...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 7759
SubjectTerms caputo fractional derivatives
chebyshev fifth-kind
collocation method
finite difference method
generalized space fractional partial differential equations
Title Chebyshev fifth-kind series approximation for generalized space fractional partial differential equations
URI https://doaj.org/article/175ba09158624460bf49d41c3fe2c202
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kJz2IT6wv9qAnCU2zk9dRi6UI9WSht7CPWRuUWttUxF_vbDatvYgXySFsGJLN7GPm2935hrErDOkSNACjLFEBCB0HCo0IbIzUgcgg6HorZviYDEbwMI7HG6m-3JkwTw_sFdch86YkGbXYRTJAEioLuYGuFhYjHXkayTAPN8CUm4NpQgbCW_6ku8gFdMj_c3sPZLFqNuYfG7RB1V_blP4e222cQX7rK7HPtnB6wHaGaybVxSErexN0S8j4wW1pq0nwQiCau36DC14Tgn-WPvqQk_vJnz2LdPmFJERwGLmd-9AF-s7M_S3dV0lR6gK-e7LvxREb9e-feoOgSY8QaJFmVWBsasPcqBDQgskikyJIJSQShLI0NnOMAbuRjUGYTMaEw0CmaZ6YXGeOWF4cs9b0bYonjEdad1UohM1MBirRKpVU0kajBGuUbbOblcIK3XCHuxQWrwVhCKfewqm3aNTbZtdr6ZnnzPhF7s7pfi3jmK7rB9T-RdP-xV_tf_ofLzlj265OfmnlnLWq-RIvyNmo1GXdr74BbgfUYA
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chebyshev+fifth-kind+series+approximation+for+generalized+space+fractional+partial+differential+equations&rft.jtitle=AIMS+mathematics&rft.au=Khalid+K.+Ali&rft.au=Mohamed+A.+Abd+El+Salam&rft.au=Mohamed+S.+Mohamed&rft.date=2022-01-01&rft.pub=AIMS+Press&rft.eissn=2473-6988&rft.volume=7&rft.issue=5&rft.spage=7759&rft.epage=7780&rft_id=info:doi/10.3934%2Fmath.2022436&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_175ba09158624460bf49d41c3fe2c202
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon