A posteriori error estimates of spectral method for the fractional optimal control problems with non-homogeneous initial conditions
In this paper we consider an optimal control problem governed by a space-time fractional diffusion equation with non-homogeneous initial conditions. A spectral method is proposed to discretize the problem in both time and space directions. The contribution of the paper is threefold: (1) A discussion...
Saved in:
Published in | AIMS mathematics Vol. 6; no. 11; pp. 12028 - 12050 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
AIMS Press
01.01.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 2473-6988 2473-6988 |
DOI | 10.3934/math.2021697 |
Cover
Abstract | In this paper we consider an optimal control problem governed by a space-time fractional diffusion equation with non-homogeneous initial conditions. A spectral method is proposed to discretize the problem in both time and space directions. The contribution of the paper is threefold: (1) A discussion and better understanding of the initial conditions for fractional differential equations with Riemann-Liouville and Caputo derivatives are presented. (2) A posteriori error estimates are obtained for both the state and the control approximations. (3) Numerical experiments are performed to verify that the obtained a posteriori error estimates are reliable. |
---|---|
AbstractList | In this paper we consider an optimal control problem governed by a space-time fractional diffusion equation with non-homogeneous initial conditions. A spectral method is proposed to discretize the problem in both time and space directions. The contribution of the paper is threefold: (1) A discussion and better understanding of the initial conditions for fractional differential equations with Riemann-Liouville and Caputo derivatives are presented. (2) A posteriori error estimates are obtained for both the state and the control approximations. (3) Numerical experiments are performed to verify that the obtained a posteriori error estimates are reliable. |
Author | Xu, Chuanju Ye, Xingyang |
Author_xml | – sequence: 1 givenname: Xingyang surname: Ye fullname: Ye, Xingyang – sequence: 2 givenname: Chuanju surname: Xu fullname: Xu, Chuanju |
BookMark | eNptkctOwzAQRS1UJErpjg_wBxDwI49mWVU8KlViA-vIsSeNqyQT2UaINT-OQyuEECuPxsdHM76XZDbgAIRcc3YrS5ne9Sq0t4IJnpfFGZmLtJBJXq5Ws1_1BVl6f2AsUiIVRTonn2s6og_gLDpLwTl0FHyw0QaeYkP9CDo41dEeQouGNhEILdDGKR0sDvEGx4nvqMYhOOzo6LDuoPf03YaWxjGTFnvcwwD45qkdbLBH2tjJ4K_IeaM6D8vTuSCvD_cvm6dk9_y43ax3iZbFKiQGICtBs1Uu01LkTEkupa6ZNsKkmcoNV5BldZmqnHEBuq5VI2oORWaEiF25INuj16A6VKOLQ7uPCpWtvhvo9pVyweoOKmiKTBmdGW1MarKmVkrndc5jJaQoyui6Obq0Q-8dND8-zqopj2rKozrlEXHxB9c2qGn7-Le2-__RF00Vlj4 |
CitedBy_id | crossref_primary_10_1007_s11425_022_2094_x crossref_primary_10_1016_j_camwa_2024_09_004 crossref_primary_10_3934_math_20231486 |
Cites_doi | 10.1016/j.camwa.2011.04.044 10.1007/978-3-642-14574-2_8 10.1137/19M1267581 10.1051/cocv/2019005 10.1137/15M1014991 10.1007/s10915-015-0125-1 10.1177/1077546317705557 10.1007/978-3-540-85268-1 10.1186/1029-242X-2015-1 10.1186/s13662-014-0331-4 10.1007/978-3-319-01601-6_33 10.1016/j.cam.2020.113233 10.1177/1077546315573916 10.1007/s10957-018-1418-y 10.1016/j.cam.2011.02.004 10.1007/s10957-017-1163-7 10.1007/s10915-018-0703-0 10.1137/18M1219989 10.1016/j.apnum.2019.04.003 10.1002/num.22429 10.1093/imanum/drx005 10.4208/cicp.020709.221209a 10.1007/978-3-642-65024-6 10.4208/nmtma.2013.1207nm 10.1007/s11071-017-4038-4 10.1016/j.camwa.2010.10.030 10.1090/S0025-5718-1990-1035939-1 10.1007/978-3-540-30726-6 10.1016/j.amc.2021.126270 |
ContentType | Journal Article |
CorporateAuthor | School of Mathematical Sciences and Fujian Provincial Key Laboratory of Mathematical Modeling and High Performance Scientific Computing, Xiamen University, 361005 Xiamen, China School of Science, Jimei University, 361021 Xiamen, China |
CorporateAuthor_xml | – name: School of Science, Jimei University, 361021 Xiamen, China – name: School of Mathematical Sciences and Fujian Provincial Key Laboratory of Mathematical Modeling and High Performance Scientific Computing, Xiamen University, 361005 Xiamen, China |
DBID | AAYXX CITATION DOA |
DOI | 10.3934/math.2021697 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2473-6988 |
EndPage | 12050 |
ExternalDocumentID | oai_doaj_org_article_ef75adc5dcdd4d5fbaac6b615fb23279 10_3934_math_2021697 |
GroupedDBID | AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV CITATION EBS FRJ GROUPED_DOAJ IAO ITC M~E OK1 RAN |
ID | FETCH-LOGICAL-c378t-dee59ec086349260a3133cb0cd2d45a6d1ae55b94a6012ecbbaf2b1e75d2294a3 |
IEDL.DBID | DOA |
ISSN | 2473-6988 |
IngestDate | Wed Aug 27 01:26:31 EDT 2025 Tue Jul 01 03:56:50 EDT 2025 Thu Apr 24 23:07:04 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c378t-dee59ec086349260a3133cb0cd2d45a6d1ae55b94a6012ecbbaf2b1e75d2294a3 |
OpenAccessLink | https://doaj.org/article/ef75adc5dcdd4d5fbaac6b615fb23279 |
PageCount | 23 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ef75adc5dcdd4d5fbaac6b615fb23279 crossref_primary_10_3934_math_2021697 crossref_citationtrail_10_3934_math_2021697 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-01 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | AIMS mathematics |
PublicationYear | 2021 |
Publisher | AIMS Press |
Publisher_xml | – name: AIMS Press |
References | key-10.3934/math.2021697-3 key-10.3934/math.2021697-4 key-10.3934/math.2021697-1 key-10.3934/math.2021697-31 key-10.3934/math.2021697-2 key-10.3934/math.2021697-30 key-10.3934/math.2021697-11 key-10.3934/math.2021697-33 key-10.3934/math.2021697-10 key-10.3934/math.2021697-32 key-10.3934/math.2021697-13 key-10.3934/math.2021697-12 key-10.3934/math.2021697-15 key-10.3934/math.2021697-14 key-10.3934/math.2021697-17 key-10.3934/math.2021697-16 key-10.3934/math.2021697-19 key-10.3934/math.2021697-18 key-10.3934/math.2021697-9 key-10.3934/math.2021697-7 key-10.3934/math.2021697-8 key-10.3934/math.2021697-5 key-10.3934/math.2021697-6 key-10.3934/math.2021697-20 key-10.3934/math.2021697-22 key-10.3934/math.2021697-21 key-10.3934/math.2021697-24 key-10.3934/math.2021697-23 key-10.3934/math.2021697-26 key-10.3934/math.2021697-25 key-10.3934/math.2021697-28 key-10.3934/math.2021697-27 key-10.3934/math.2021697-29 |
References_xml | – ident: key-10.3934/math.2021697-5 doi: 10.1016/j.camwa.2011.04.044 – ident: key-10.3934/math.2021697-3 doi: 10.1007/978-3-642-14574-2_8 – ident: key-10.3934/math.2021697-11 doi: 10.1137/19M1267581 – ident: key-10.3934/math.2021697-24 doi: 10.1051/cocv/2019005 – ident: key-10.3934/math.2021697-6 doi: 10.1137/15M1014991 – ident: key-10.3934/math.2021697-2 – ident: key-10.3934/math.2021697-18 doi: 10.1007/s10915-015-0125-1 – ident: key-10.3934/math.2021697-19 doi: 10.1177/1077546317705557 – ident: key-10.3934/math.2021697-33 doi: 10.1007/978-3-540-85268-1 – ident: key-10.3934/math.2021697-27 doi: 10.1186/1029-242X-2015-1 – ident: key-10.3934/math.2021697-17 – ident: key-10.3934/math.2021697-21 doi: 10.1186/s13662-014-0331-4 – ident: key-10.3934/math.2021697-20 doi: 10.1007/978-3-319-01601-6_33 – ident: key-10.3934/math.2021697-25 doi: 10.1016/j.cam.2020.113233 – ident: key-10.3934/math.2021697-22 doi: 10.1177/1077546315573916 – ident: key-10.3934/math.2021697-15 doi: 10.1007/s10957-018-1418-y – ident: key-10.3934/math.2021697-30 doi: 10.1016/j.cam.2011.02.004 – ident: key-10.3934/math.2021697-13 doi: 10.1007/s10957-017-1163-7 – ident: key-10.3934/math.2021697-8 doi: 10.1007/s10915-018-0703-0 – ident: key-10.3934/math.2021697-9 doi: 10.1137/18M1219989 – ident: key-10.3934/math.2021697-10 doi: 10.1016/j.apnum.2019.04.003 – ident: key-10.3934/math.2021697-26 doi: 10.1002/num.22429 – ident: key-10.3934/math.2021697-1 – ident: key-10.3934/math.2021697-7 doi: 10.1093/imanum/drx005 – ident: key-10.3934/math.2021697-28 doi: 10.4208/cicp.020709.221209a – ident: key-10.3934/math.2021697-29 doi: 10.1007/978-3-642-65024-6 – ident: key-10.3934/math.2021697-12 – ident: key-10.3934/math.2021697-16 doi: 10.4208/nmtma.2013.1207nm – ident: key-10.3934/math.2021697-23 doi: 10.1007/s11071-017-4038-4 – ident: key-10.3934/math.2021697-4 doi: 10.1016/j.camwa.2010.10.030 – ident: key-10.3934/math.2021697-31 doi: 10.1090/S0025-5718-1990-1035939-1 – ident: key-10.3934/math.2021697-32 doi: 10.1007/978-3-540-30726-6 – ident: key-10.3934/math.2021697-14 doi: 10.1016/j.amc.2021.126270 |
SSID | ssj0002124274 |
Score | 2.159972 |
Snippet | In this paper we consider an optimal control problem governed by a space-time fractional diffusion equation with non-homogeneous initial conditions. A spectral... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
StartPage | 12028 |
SubjectTerms | a posteriori error fractional optimal control problem initial conditions spectral method |
Title | A posteriori error estimates of spectral method for the fractional optimal control problems with non-homogeneous initial conditions |
URI | https://doaj.org/article/ef75adc5dcdd4d5fbaac6b615fb23279 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI4QJzggnmK8lAOcULU2Tfo4DsQ0IY0Tk3ar8nDEpI1O3fYL-OPYTZl2QVy4pm4auVb8ObE_M3avS-GN8kmUFIWOpAURaUkMtOi8E5sIgJSqkcdv2WgiX6dqutPqi3LCAj1wUFwffK60s8pZ56RT3mhtM4N-2BsEA3lbuheX8U4wRXswbsgS462Q6Z6Wqewj_qO7B5FkxO-044N2qPpbnzI8ZkcdGOSDsIgTtgefp-xwvGVSXZ2xrwFfUh1GM6ubGYemqRtOxBgLwoi89rwtlWxwltALmiMI5fg-900oWcAn9ZLk57xLS-ddE5kVp0NYjvF_9FEvarQkqDcrPqN0oiDtQj7XOZsMX96fR1HXOCGyaV6sIwegSrAYrRD3YBbrFCNRa2LrhJNKZy7RoJQppcZwTIA1RnthEsiVEwJH0wu2jx-HS8ZzbxOlCxQCYgxFeBPH3npUrgXphe6xxx9VVrZjFafmFvMKowtSfEWKrzrF99jDVnoZ2DR-kXuiv7KVIQ7sdgAto-oso_rLMq7-Y5JrdkBrCocuN2x_3WzgFmHI2ty1FvcNeQjjOQ |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+posteriori+error+estimates+of+spectral+method+for+the+fractional+optimal+control+problems+with+non-homogeneous+initial+conditions&rft.jtitle=AIMS+mathematics&rft.au=Xingyang+Ye&rft.au=Chuanju+Xu&rft.date=2021-01-01&rft.pub=AIMS+Press&rft.eissn=2473-6988&rft.volume=6&rft.issue=11&rft.spage=12028&rft.epage=12050&rft_id=info:doi/10.3934%2Fmath.2021697&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_ef75adc5dcdd4d5fbaac6b615fb23279 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon |