A posteriori error estimates of spectral method for the fractional optimal control problems with non-homogeneous initial conditions

In this paper we consider an optimal control problem governed by a space-time fractional diffusion equation with non-homogeneous initial conditions. A spectral method is proposed to discretize the problem in both time and space directions. The contribution of the paper is threefold: (1) A discussion...

Full description

Saved in:
Bibliographic Details
Published inAIMS mathematics Vol. 6; no. 11; pp. 12028 - 12050
Main Authors Ye, Xingyang, Xu, Chuanju
Format Journal Article
LanguageEnglish
Published AIMS Press 01.01.2021
Subjects
Online AccessGet full text
ISSN2473-6988
2473-6988
DOI10.3934/math.2021697

Cover

Abstract In this paper we consider an optimal control problem governed by a space-time fractional diffusion equation with non-homogeneous initial conditions. A spectral method is proposed to discretize the problem in both time and space directions. The contribution of the paper is threefold: (1) A discussion and better understanding of the initial conditions for fractional differential equations with Riemann-Liouville and Caputo derivatives are presented. (2) A posteriori error estimates are obtained for both the state and the control approximations. (3) Numerical experiments are performed to verify that the obtained a posteriori error estimates are reliable.
AbstractList In this paper we consider an optimal control problem governed by a space-time fractional diffusion equation with non-homogeneous initial conditions. A spectral method is proposed to discretize the problem in both time and space directions. The contribution of the paper is threefold: (1) A discussion and better understanding of the initial conditions for fractional differential equations with Riemann-Liouville and Caputo derivatives are presented. (2) A posteriori error estimates are obtained for both the state and the control approximations. (3) Numerical experiments are performed to verify that the obtained a posteriori error estimates are reliable.
Author Xu, Chuanju
Ye, Xingyang
Author_xml – sequence: 1
  givenname: Xingyang
  surname: Ye
  fullname: Ye, Xingyang
– sequence: 2
  givenname: Chuanju
  surname: Xu
  fullname: Xu, Chuanju
BookMark eNptkctOwzAQRS1UJErpjg_wBxDwI49mWVU8KlViA-vIsSeNqyQT2UaINT-OQyuEECuPxsdHM76XZDbgAIRcc3YrS5ne9Sq0t4IJnpfFGZmLtJBJXq5Ws1_1BVl6f2AsUiIVRTonn2s6og_gLDpLwTl0FHyw0QaeYkP9CDo41dEeQouGNhEILdDGKR0sDvEGx4nvqMYhOOzo6LDuoPf03YaWxjGTFnvcwwD45qkdbLBH2tjJ4K_IeaM6D8vTuSCvD_cvm6dk9_y43ax3iZbFKiQGICtBs1Uu01LkTEkupa6ZNsKkmcoNV5BldZmqnHEBuq5VI2oORWaEiF25INuj16A6VKOLQ7uPCpWtvhvo9pVyweoOKmiKTBmdGW1MarKmVkrndc5jJaQoyui6Obq0Q-8dND8-zqopj2rKozrlEXHxB9c2qGn7-Le2-__RF00Vlj4
CitedBy_id crossref_primary_10_1007_s11425_022_2094_x
crossref_primary_10_1016_j_camwa_2024_09_004
crossref_primary_10_3934_math_20231486
Cites_doi 10.1016/j.camwa.2011.04.044
10.1007/978-3-642-14574-2_8
10.1137/19M1267581
10.1051/cocv/2019005
10.1137/15M1014991
10.1007/s10915-015-0125-1
10.1177/1077546317705557
10.1007/978-3-540-85268-1
10.1186/1029-242X-2015-1
10.1186/s13662-014-0331-4
10.1007/978-3-319-01601-6_33
10.1016/j.cam.2020.113233
10.1177/1077546315573916
10.1007/s10957-018-1418-y
10.1016/j.cam.2011.02.004
10.1007/s10957-017-1163-7
10.1007/s10915-018-0703-0
10.1137/18M1219989
10.1016/j.apnum.2019.04.003
10.1002/num.22429
10.1093/imanum/drx005
10.4208/cicp.020709.221209a
10.1007/978-3-642-65024-6
10.4208/nmtma.2013.1207nm
10.1007/s11071-017-4038-4
10.1016/j.camwa.2010.10.030
10.1090/S0025-5718-1990-1035939-1
10.1007/978-3-540-30726-6
10.1016/j.amc.2021.126270
ContentType Journal Article
CorporateAuthor School of Mathematical Sciences and Fujian Provincial Key Laboratory of Mathematical Modeling and High Performance Scientific Computing, Xiamen University, 361005 Xiamen, China
School of Science, Jimei University, 361021 Xiamen, China
CorporateAuthor_xml – name: School of Science, Jimei University, 361021 Xiamen, China
– name: School of Mathematical Sciences and Fujian Provincial Key Laboratory of Mathematical Modeling and High Performance Scientific Computing, Xiamen University, 361005 Xiamen, China
DBID AAYXX
CITATION
DOA
DOI 10.3934/math.2021697
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2473-6988
EndPage 12050
ExternalDocumentID oai_doaj_org_article_ef75adc5dcdd4d5fbaac6b615fb23279
10_3934_math_2021697
GroupedDBID AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
CITATION
EBS
FRJ
GROUPED_DOAJ
IAO
ITC
M~E
OK1
RAN
ID FETCH-LOGICAL-c378t-dee59ec086349260a3133cb0cd2d45a6d1ae55b94a6012ecbbaf2b1e75d2294a3
IEDL.DBID DOA
ISSN 2473-6988
IngestDate Wed Aug 27 01:26:31 EDT 2025
Tue Jul 01 03:56:50 EDT 2025
Thu Apr 24 23:07:04 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c378t-dee59ec086349260a3133cb0cd2d45a6d1ae55b94a6012ecbbaf2b1e75d2294a3
OpenAccessLink https://doaj.org/article/ef75adc5dcdd4d5fbaac6b615fb23279
PageCount 23
ParticipantIDs doaj_primary_oai_doaj_org_article_ef75adc5dcdd4d5fbaac6b615fb23279
crossref_primary_10_3934_math_2021697
crossref_citationtrail_10_3934_math_2021697
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationTitle AIMS mathematics
PublicationYear 2021
Publisher AIMS Press
Publisher_xml – name: AIMS Press
References key-10.3934/math.2021697-3
key-10.3934/math.2021697-4
key-10.3934/math.2021697-1
key-10.3934/math.2021697-31
key-10.3934/math.2021697-2
key-10.3934/math.2021697-30
key-10.3934/math.2021697-11
key-10.3934/math.2021697-33
key-10.3934/math.2021697-10
key-10.3934/math.2021697-32
key-10.3934/math.2021697-13
key-10.3934/math.2021697-12
key-10.3934/math.2021697-15
key-10.3934/math.2021697-14
key-10.3934/math.2021697-17
key-10.3934/math.2021697-16
key-10.3934/math.2021697-19
key-10.3934/math.2021697-18
key-10.3934/math.2021697-9
key-10.3934/math.2021697-7
key-10.3934/math.2021697-8
key-10.3934/math.2021697-5
key-10.3934/math.2021697-6
key-10.3934/math.2021697-20
key-10.3934/math.2021697-22
key-10.3934/math.2021697-21
key-10.3934/math.2021697-24
key-10.3934/math.2021697-23
key-10.3934/math.2021697-26
key-10.3934/math.2021697-25
key-10.3934/math.2021697-28
key-10.3934/math.2021697-27
key-10.3934/math.2021697-29
References_xml – ident: key-10.3934/math.2021697-5
  doi: 10.1016/j.camwa.2011.04.044
– ident: key-10.3934/math.2021697-3
  doi: 10.1007/978-3-642-14574-2_8
– ident: key-10.3934/math.2021697-11
  doi: 10.1137/19M1267581
– ident: key-10.3934/math.2021697-24
  doi: 10.1051/cocv/2019005
– ident: key-10.3934/math.2021697-6
  doi: 10.1137/15M1014991
– ident: key-10.3934/math.2021697-2
– ident: key-10.3934/math.2021697-18
  doi: 10.1007/s10915-015-0125-1
– ident: key-10.3934/math.2021697-19
  doi: 10.1177/1077546317705557
– ident: key-10.3934/math.2021697-33
  doi: 10.1007/978-3-540-85268-1
– ident: key-10.3934/math.2021697-27
  doi: 10.1186/1029-242X-2015-1
– ident: key-10.3934/math.2021697-17
– ident: key-10.3934/math.2021697-21
  doi: 10.1186/s13662-014-0331-4
– ident: key-10.3934/math.2021697-20
  doi: 10.1007/978-3-319-01601-6_33
– ident: key-10.3934/math.2021697-25
  doi: 10.1016/j.cam.2020.113233
– ident: key-10.3934/math.2021697-22
  doi: 10.1177/1077546315573916
– ident: key-10.3934/math.2021697-15
  doi: 10.1007/s10957-018-1418-y
– ident: key-10.3934/math.2021697-30
  doi: 10.1016/j.cam.2011.02.004
– ident: key-10.3934/math.2021697-13
  doi: 10.1007/s10957-017-1163-7
– ident: key-10.3934/math.2021697-8
  doi: 10.1007/s10915-018-0703-0
– ident: key-10.3934/math.2021697-9
  doi: 10.1137/18M1219989
– ident: key-10.3934/math.2021697-10
  doi: 10.1016/j.apnum.2019.04.003
– ident: key-10.3934/math.2021697-26
  doi: 10.1002/num.22429
– ident: key-10.3934/math.2021697-1
– ident: key-10.3934/math.2021697-7
  doi: 10.1093/imanum/drx005
– ident: key-10.3934/math.2021697-28
  doi: 10.4208/cicp.020709.221209a
– ident: key-10.3934/math.2021697-29
  doi: 10.1007/978-3-642-65024-6
– ident: key-10.3934/math.2021697-12
– ident: key-10.3934/math.2021697-16
  doi: 10.4208/nmtma.2013.1207nm
– ident: key-10.3934/math.2021697-23
  doi: 10.1007/s11071-017-4038-4
– ident: key-10.3934/math.2021697-4
  doi: 10.1016/j.camwa.2010.10.030
– ident: key-10.3934/math.2021697-31
  doi: 10.1090/S0025-5718-1990-1035939-1
– ident: key-10.3934/math.2021697-32
  doi: 10.1007/978-3-540-30726-6
– ident: key-10.3934/math.2021697-14
  doi: 10.1016/j.amc.2021.126270
SSID ssj0002124274
Score 2.159972
Snippet In this paper we consider an optimal control problem governed by a space-time fractional diffusion equation with non-homogeneous initial conditions. A spectral...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 12028
SubjectTerms a posteriori error
fractional optimal control problem
initial conditions
spectral method
Title A posteriori error estimates of spectral method for the fractional optimal control problems with non-homogeneous initial conditions
URI https://doaj.org/article/ef75adc5dcdd4d5fbaac6b615fb23279
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI4QJzggnmK8lAOcULU2Tfo4DsQ0IY0Tk3ar8nDEpI1O3fYL-OPYTZl2QVy4pm4auVb8ObE_M3avS-GN8kmUFIWOpAURaUkMtOi8E5sIgJSqkcdv2WgiX6dqutPqi3LCAj1wUFwffK60s8pZ56RT3mhtM4N-2BsEA3lbuheX8U4wRXswbsgS462Q6Z6Wqewj_qO7B5FkxO-044N2qPpbnzI8ZkcdGOSDsIgTtgefp-xwvGVSXZ2xrwFfUh1GM6ubGYemqRtOxBgLwoi89rwtlWxwltALmiMI5fg-900oWcAn9ZLk57xLS-ddE5kVp0NYjvF_9FEvarQkqDcrPqN0oiDtQj7XOZsMX96fR1HXOCGyaV6sIwegSrAYrRD3YBbrFCNRa2LrhJNKZy7RoJQppcZwTIA1RnthEsiVEwJH0wu2jx-HS8ZzbxOlCxQCYgxFeBPH3npUrgXphe6xxx9VVrZjFafmFvMKowtSfEWKrzrF99jDVnoZ2DR-kXuiv7KVIQ7sdgAto-oso_rLMq7-Y5JrdkBrCocuN2x_3WzgFmHI2ty1FvcNeQjjOQ
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+posteriori+error+estimates+of+spectral+method+for+the+fractional+optimal+control+problems+with+non-homogeneous+initial+conditions&rft.jtitle=AIMS+mathematics&rft.au=Xingyang+Ye&rft.au=Chuanju+Xu&rft.date=2021-01-01&rft.pub=AIMS+Press&rft.eissn=2473-6988&rft.volume=6&rft.issue=11&rft.spage=12028&rft.epage=12050&rft_id=info:doi/10.3934%2Fmath.2021697&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_ef75adc5dcdd4d5fbaac6b615fb23279
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon