Curcumin-loaded carrageenan nanoparticles: Fabrication, characterization, and assessment of the effects on osteoblasts mineralization
The use of Curcumin (CR) as a bioactive molecule to prevent and treat inflammation- related diseases is widespread. However, the high hydrophobicity hinders the in vivo bioavailability of CR, reducing its therapeutic index. In the present study, we described the use of nanoparticles (NPs) made of ka...
Saved in:
Published in | Colloids and surfaces, B, Biointerfaces Vol. 217; p. 112622 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
01.09.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 0927-7765 1873-4367 1873-4367 |
DOI | 10.1016/j.colsurfb.2022.112622 |
Cover
Abstract | The use of Curcumin (CR) as a bioactive molecule to prevent and treat inflammation- related diseases is widespread. However, the high hydrophobicity hinders the in vivo bioavailability of CR, reducing its therapeutic index. In the present study, we described the use of nanoparticles (NPs) made of kappa-carrageenan (κ-Carr), a sulphated polysaccharide, as cost-effective, biodegradable and biocompatible CR carriers. CR-loaded κ-Carr nanoparticles (CR@Carr NPs) were prepared by mixing a κ-Carr aqueous solution with a CR ethanolic solution. The final suspension was centrifuged and re-suspended in phosphate buffer solution. The NPs' size was tuned by changing the concentration of the polysaccharide. CR@CarrNPs displayed high CR incorporation efficiency (~80 wt%) and a double-exponential curve of CR release at physiological conditions (37 °C and pH 7.4) with a cumulative drug release of 32 wt% after 24 h for the smaller NP. Our results also showed that CR@CarrNPs were not cytotoxic to osteoblasts at concentrations up to 1 μM. Confocal microscopy images revealed the internalization of CR by the cells guided by the NPs. Cells treated with CR@CarrNPs exhibited higher activity of alkaline phosphatase and higher expression of the main osteogenic genes (Sp7, Col1 and Runx2), and mineralized the extracellular matrix in a higher extent compared to the cells cultivated in absence of the NPs. We posited that these effects were related to the NP-driven internalization of CR by osteoblasts. Our study sheds light on the possible use of CR@CarrNPs as efficient and safe therapeutic tools for the treatment of bone-related diseases.The use of Curcumin (CR) as a bioactive molecule to prevent and treat inflammation- related diseases is widespread. However, the high hydrophobicity hinders the in vivo bioavailability of CR, reducing its therapeutic index. In the present study, we described the use of nanoparticles (NPs) made of kappa-carrageenan (κ-Carr), a sulphated polysaccharide, as cost-effective, biodegradable and biocompatible CR carriers. CR-loaded κ-Carr nanoparticles (CR@Carr NPs) were prepared by mixing a κ-Carr aqueous solution with a CR ethanolic solution. The final suspension was centrifuged and re-suspended in phosphate buffer solution. The NPs' size was tuned by changing the concentration of the polysaccharide. CR@CarrNPs displayed high CR incorporation efficiency (~80 wt%) and a double-exponential curve of CR release at physiological conditions (37 °C and pH 7.4) with a cumulative drug release of 32 wt% after 24 h for the smaller NP. Our results also showed that CR@CarrNPs were not cytotoxic to osteoblasts at concentrations up to 1 μM. Confocal microscopy images revealed the internalization of CR by the cells guided by the NPs. Cells treated with CR@CarrNPs exhibited higher activity of alkaline phosphatase and higher expression of the main osteogenic genes (Sp7, Col1 and Runx2), and mineralized the extracellular matrix in a higher extent compared to the cells cultivated in absence of the NPs. We posited that these effects were related to the NP-driven internalization of CR by osteoblasts. Our study sheds light on the possible use of CR@CarrNPs as efficient and safe therapeutic tools for the treatment of bone-related diseases. |
---|---|
AbstractList | The use of Curcumin (CR) as a bioactive molecule to prevent and treat inflammation- related diseases is widespread. However, the high hydrophobicity hinders the in vivo bioavailability of CR, reducing its therapeutic index. In the present study, we described the use of nanoparticles (NPs) made of kappa-carrageenan (κ-Carr), a sulphated polysaccharide, as cost-effective, biodegradable and biocompatible CR carriers. CR-loaded κ-Carr nanoparticles (CR@Carr NPs) were prepared by mixing a κ-Carr aqueous solution with a CR ethanolic solution. The final suspension was centrifuged and re-suspended in phosphate buffer solution. The NPs' size was tuned by changing the concentration of the polysaccharide. CR@CarrNPs displayed high CR incorporation efficiency (~80 wt%) and a double-exponential curve of CR release at physiological conditions (37 °C and pH 7.4) with a cumulative drug release of 32 wt% after 24 h for the smaller NP. Our results also showed that CR@CarrNPs were not cytotoxic to osteoblasts at concentrations up to 1 μM. Confocal microscopy images revealed the internalization of CR by the cells guided by the NPs. Cells treated with CR@CarrNPs exhibited higher activity of alkaline phosphatase and higher expression of the main osteogenic genes (Sp7, Col1 and Runx2), and mineralized the extracellular matrix in a higher extent compared to the cells cultivated in absence of the NPs. We posited that these effects were related to the NP-driven internalization of CR by osteoblasts. Our study sheds light on the possible use of CR@CarrNPs as efficient and safe therapeutic tools for the treatment of bone-related diseases.The use of Curcumin (CR) as a bioactive molecule to prevent and treat inflammation- related diseases is widespread. However, the high hydrophobicity hinders the in vivo bioavailability of CR, reducing its therapeutic index. In the present study, we described the use of nanoparticles (NPs) made of kappa-carrageenan (κ-Carr), a sulphated polysaccharide, as cost-effective, biodegradable and biocompatible CR carriers. CR-loaded κ-Carr nanoparticles (CR@Carr NPs) were prepared by mixing a κ-Carr aqueous solution with a CR ethanolic solution. The final suspension was centrifuged and re-suspended in phosphate buffer solution. The NPs' size was tuned by changing the concentration of the polysaccharide. CR@CarrNPs displayed high CR incorporation efficiency (~80 wt%) and a double-exponential curve of CR release at physiological conditions (37 °C and pH 7.4) with a cumulative drug release of 32 wt% after 24 h for the smaller NP. Our results also showed that CR@CarrNPs were not cytotoxic to osteoblasts at concentrations up to 1 μM. Confocal microscopy images revealed the internalization of CR by the cells guided by the NPs. Cells treated with CR@CarrNPs exhibited higher activity of alkaline phosphatase and higher expression of the main osteogenic genes (Sp7, Col1 and Runx2), and mineralized the extracellular matrix in a higher extent compared to the cells cultivated in absence of the NPs. We posited that these effects were related to the NP-driven internalization of CR by osteoblasts. Our study sheds light on the possible use of CR@CarrNPs as efficient and safe therapeutic tools for the treatment of bone-related diseases. The use of Curcumin (CR) as a bioactive molecule to prevent and treat inflammation- related diseases is widespread. However, the high hydrophobicity hinders the in vivo bioavailability of CR, reducing its therapeutic index. In the present study, we described the use of nanoparticles (NPs) made of kappa-carrageenan (κ-Carr), a sulphated polysaccharide, as cost-effective, biodegradable and biocompatible CR carriers. CR-loaded κ-Carr nanoparticles (CR@Carr NPs) were prepared by mixing a κ-Carr aqueous solution with a CR ethanolic solution. The final suspension was centrifuged and re-suspended in phosphate buffer solution. The NPs’ size was tuned by changing the concentration of the polysaccharide. CR@CarrNPs displayed high CR incorporation efficiency (~80 wt%) and a double-exponential curve of CR release at physiological conditions (37 °C and pH 7.4) with a cumulative drug release of 32 wt% after 24 h for the smaller NP. Our results also showed that CR@CarrNPs were not cytotoxic to osteoblasts at concentrations up to 1 μM. Confocal microscopy images revealed the internalization of CR by the cells guided by the NPs. Cells treated with CR@CarrNPs exhibited higher activity of alkaline phosphatase and higher expression of the main osteogenic genes (Sp7, Col1 and Runx2), and mineralized the extracellular matrix in a higher extent compared to the cells cultivated in absence of the NPs. We posited that these effects were related to the NP-driven internalization of CR by osteoblasts. Our study sheds light on the possible use of CR@CarrNPs as efficient and safe therapeutic tools for the treatment of bone-related diseases. |
ArticleNumber | 112622 |
Author | Cruz, Marcos Antônio Eufrásio Nogueira, Lucas Fabrício Bahia Tovani, Camila Bussola Ramos, Ana Paula Beloti, Márcio Mateus Bottini, Massimo Lopes, Helena Bacha Ciancaglini, Pietro |
Author_xml | – sequence: 1 givenname: Lucas Fabrício Bahia surname: Nogueira fullname: Nogueira, Lucas Fabrício Bahia – sequence: 2 givenname: Marcos Antônio Eufrásio surname: Cruz fullname: Cruz, Marcos Antônio Eufrásio – sequence: 3 givenname: Camila Bussola surname: Tovani fullname: Tovani, Camila Bussola – sequence: 4 givenname: Helena Bacha surname: Lopes fullname: Lopes, Helena Bacha – sequence: 5 givenname: Márcio Mateus surname: Beloti fullname: Beloti, Márcio Mateus – sequence: 6 givenname: Pietro surname: Ciancaglini fullname: Ciancaglini, Pietro – sequence: 7 givenname: Massimo surname: Bottini fullname: Bottini, Massimo – sequence: 8 givenname: Ana Paula surname: Ramos fullname: Ramos, Ana Paula |
BookMark | eNqFkbGOEzEQhi10SOQOXgG5pGBzHu_G9iIaFHEc0kk0UFuz3jHnyLGD7S2g571JSGhorrBGHv3fjEbfNbtKORFjr0GsQYC63a1djnUpflpLIeUaQCopn7EVGN13Q6_0FVuJUepOa7V5wa5r3Qkh5AB6xX5vl-KWfUhdzDjTzB2Wgt-JEiZ-fPmApQUXqb7jdziV4LCFnN5y94gFXaMSfl06mGaOtVKte0qNZ8_bI3HynlyrPCeea6M8RazH73EjFYwX-CV77jFWenWpN-zb3cev2_vu4cunz9sPD53rtWnd7Cbs9QTTDPNmBhonHLQioVHJEefRT5MB9KhGoXqDYiOlAuoNCD8aIaG_YW_Ocw8l_1ioNrsP1VGMmCgv1UoNRg6DkPrpqDJgoB_EKfr-HHUl11rIWxfa37tawRAtCHsSZXf2nyh7EmXPoo64-g8_lLDH8vMp8A9qoqEv |
CitedBy_id | crossref_primary_10_1021_acs_biomac_2c01313 crossref_primary_10_1016_j_ijbiomac_2024_134841 crossref_primary_10_3390_ijms24043188 crossref_primary_10_1007_s11274_023_03787_x crossref_primary_10_3389_fphar_2025_1509045 crossref_primary_10_3390_polym16172536 crossref_primary_10_1021_acsapm_3c00093 crossref_primary_10_3390_jfb13040250 crossref_primary_10_1021_acsami_4c04522 crossref_primary_10_1039_D3TB02665E crossref_primary_10_1016_j_inoche_2024_112763 crossref_primary_10_1016_j_heliyon_2024_e32566 crossref_primary_10_1016_j_ijbiomac_2023_127893 |
Cites_doi | 10.1039/C8TB02045K 10.1002/jps.24116 10.1002/ijc.20160 10.1371/journal.pone.0230228 10.1016/j.lfs.2017.12.008 10.1007/s13233-015-3006-4 10.1016/j.msec.2017.03.166 10.1016/j.cellbi.2007.06.002 10.1007/s10856-019-6351-6 10.1016/j.cplett.2011.11.049 10.1016/j.carbpol.2014.11.063 10.1021/bm300518e 10.1039/C4RA07300B 10.1007/s00223-012-9672-8 10.1007/s41048-018-0079-6 10.1039/C6RA18984A 10.1016/j.jconrel.2016.06.017 10.1016/0022-1759(83)90303-4 10.1007/s12551-017-0315-1 10.1016/S0142-9612(01)00118-1 10.3109/03639045.2013.838579 10.1016/j.actbio.2018.10.023 10.1016/j.carbpol.2016.12.049 10.1002/jcp.30131 10.1002/cbin.10459 10.1016/j.carbpol.2012.03.010 10.1016/j.abb.2019.01.014 10.1007/s10616-015-9844-2 10.1016/j.msec.2019.110038 10.1016/j.mtchem.2018.03.005 10.1016/j.msec.2018.12.143 10.1021/acs.biomac.7b00150 10.1016/j.jallcom.2016.09.234 10.1002/term.1683 10.1016/j.bbrc.2020.01.136 10.1021/acs.chemrev.5b00346 10.1002/jbm.b.33339 10.1016/j.ajoms.2020.12.001 10.1016/j.ijbiomac.2018.12.030 10.1016/j.actbio.2008.07.023 10.1016/j.carbpol.2018.06.086 10.1016/j.colsurfb.2012.02.040 10.1002/jbmr.5650070613 10.2174/1381612820666140212193011 10.1002/adhm.201200317 10.1016/j.ab.2004.02.002 10.1002/smll.201401943 10.1002/jcp.25073 10.1016/j.carbpol.2015.08.051 10.1002/jbm.b.34069 10.1016/j.carbpol.2011.01.005 10.1016/j.msec.2015.08.021 10.1002/app.48004 10.1016/j.surfcoat.2018.11.071 10.1002/ijc.30224 10.1016/j.msec.2018.11.035 |
ContentType | Journal Article |
Copyright | Copyright © 2022 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: Copyright © 2022 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION 7X8 7S9 L.6 |
DOI | 10.1016/j.colsurfb.2022.112622 |
DatabaseName | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Anatomy & Physiology Chemistry |
EISSN | 1873-4367 |
ExternalDocumentID | 10_1016_j_colsurfb_2022_112622 |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABXZ AAEDT AAEDW AAEPC AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARLI AATTM AAXKI AAXUO AAYWO AAYXX ABFNM ABGSF ABMAC ABNEU ABNUV ABUDA ABWVN ABXDB ABXRA ACDAQ ACFVG ACGFS ACNCT ACNNM ACRLP ACRPL ADBBV ADECG ADEWK ADEZE ADMUD ADNMO ADUVX AEBSH AEHWI AEIPS AEKER AEZYN AFJKZ AFRZQ AFTJW AFXIZ AFZHZ AGCQF AGHFR AGQPQ AGRDE AGRNS AGUBO AGYEJ AHHHB AHPOS AI. AIEXJ AIIUN AIKHN AITUG AIVDX AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC BNPGV CITATION CS3 EBS EFJIC EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-2 G-Q GBLVA HLY HVGLF HZ~ IHE J1W KOM LX7 M24 M41 MAGPM MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCB SCE SDF SDG SDP SES SEW SMS SPC SSG SSH SSK SSM SSQ SSU SSZ T5K VH1 WH7 WUQ ~02 ~G- 7X8 EFKBS EFLBG 7S9 L.6 |
ID | FETCH-LOGICAL-c378t-dcba37b1bd1d5d1e9ba476e07a629ad9fbb81afa690638a052261e3810f980213 |
ISSN | 0927-7765 1873-4367 |
IngestDate | Fri Sep 05 07:11:06 EDT 2025 Fri Sep 05 06:58:53 EDT 2025 Tue Jul 01 03:27:17 EDT 2025 Thu Apr 24 23:07:43 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c378t-dcba37b1bd1d5d1e9ba476e07a629ad9fbb81afa690638a052261e3810f980213 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2681813407 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2718244027 proquest_miscellaneous_2681813407 crossref_citationtrail_10_1016_j_colsurfb_2022_112622 crossref_primary_10_1016_j_colsurfb_2022_112622 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-09-00 20220901 |
PublicationDateYYYYMMDD | 2022-09-01 |
PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-00 |
PublicationDecade | 2020 |
PublicationTitle | Colloids and surfaces, B, Biointerfaces |
PublicationYear | 2022 |
References | Abriata (10.1016/j.colsurfb.2022.112622_bib45) 2019; 96 Selvakumaran (10.1016/j.colsurfb.2022.112622_bib12) 2016; 135 Rodrigues (10.1016/j.colsurfb.2022.112622_bib23) 2012; 89 Cruz (10.1016/j.colsurfb.2022.112622_bib28) 2019; 7 Mosmann (10.1016/j.colsurfb.2022.112622_bib30) 1983; 65 Nakamura (10.1016/j.colsurfb.2022.112622_bib59) 2020; 524 Amin (10.1016/j.colsurfb.2022.112622_bib10) 2021; 33 Ramos (10.1016/j.colsurfb.2022.112622_bib26) 2012; 95 Nogueira (10.1016/j.colsurfb.2022.112622_bib25) 2019; 136 Shpaisman (10.1016/j.colsurfb.2022.112622_bib2) 2012; 13 Anitha (10.1016/j.colsurfb.2022.112622_bib42) 2011; 84 Simão (10.1016/j.colsurfb.2022.112622_bib34) 2007 Quarles (10.1016/j.colsurfb.2022.112622_bib51) 2009; 7 Shi (10.1016/j.colsurfb.2022.112622_bib32) 2009 10.1016/j.colsurfb.2022.112622_bib44 10.1016/j.colsurfb.2022.112622_bib43 Campani (10.1016/j.colsurfb.2022.112622_bib27) 2020; 31 Cao (10.1016/j.colsurfb.2022.112622_bib38) 2014; 103 Bose (10.1016/j.colsurfb.2022.112622_bib5) 2018; 8 Millán (10.1016/j.colsurfb.2022.112622_bib60) 2013; 93 Gao (10.1016/j.colsurfb.2022.112622_bib1) 2014; 40 Abuna (10.1016/j.colsurfb.2022.112622_bib36) 2021; 236 Feng (10.1016/j.colsurfb.2022.112622_bib18) 2017; 693 Ramires (10.1016/j.colsurfb.2022.112622_bib52) 2002; 23 Nogueira (10.1016/j.colsurfb.2022.112622_bib24) 2016; 58 Motevalli (10.1016/j.colsurfb.2022.112622_bib11) 2019; 5 Popa (10.1016/j.colsurfb.2022.112622_bib19) 2015; 9 Bobryshev (10.1016/j.colsurfb.2022.112622_bib56) 2014; 20 de Faria (10.1016/j.colsurfb.2022.112622_bib53) 2018; 106 Zancanela (10.1016/j.colsurfb.2022.112622_bib62) 2016; 27 Millán (10.1016/j.colsurfb.2022.112622_bib57) 2013; 93 Nicoliche (10.1016/j.colsurfb.2022.112622_bib9) 2020; 15 Odot (10.1016/j.colsurfb.2022.112622_bib7) 2004; 111 Kassab (10.1016/j.colsurfb.2022.112622_bib17) 2019; 123 Lowry (10.1016/j.colsurfb.2022.112622_bib50) 2016; 3 Luiz (10.1016/j.colsurfb.2022.112622_bib46) 2019; 105 Nourmohammadi (10.1016/j.colsurfb.2022.112622_bib16) 2017; 76 Gregory (10.1016/j.colsurfb.2022.112622_bib35) 2004 Sathuvan (10.1016/j.colsurfb.2022.112622_bib3) 2017; 160 Grenha (10.1016/j.colsurfb.2022.112622_bib22) 2009; 92 González Ocampo (10.1016/j.colsurfb.2022.112622_bib15) 2019; 83 Goonoo (10.1016/j.colsurfb.2022.112622_bib21) 2017; 18 Singh (10.1016/j.colsurfb.2022.112622_bib48) 2014; 4 Abuna (10.1016/j.colsurfb.2022.112622_bib37) 2016; 231 Son (10.1016/j.colsurfb.2022.112622_bib4) 2018; 193 Yegappan (10.1016/j.colsurfb.2022.112622_bib14) 2018; 198 Songkroh (10.1016/j.colsurfb.2022.112622_bib8) 2015; 23 Tovani (10.1016/j.colsurfb.2022.112622_bib29) 2019; 358 Tovani (10.1016/j.colsurfb.2022.112622_bib33) 2016 Pabisch (10.1016/j.colsurfb.2022.112622_bib40) 2012; 521 Liu (10.1016/j.colsurfb.2022.112622_bib13) 2015; 121 de Faria (10.1016/j.colsurfb.2022.112622_bib31) 2016 Bhattacharjee (10.1016/j.colsurfb.2022.112622_bib49) 2016; 235 Andrade (10.1016/j.colsurfb.2022.112622_bib58) 2019; 663 Souza (10.1016/j.colsurfb.2022.112622_bib41) 2016; 733 Rezaii (10.1016/j.colsurfb.2022.112622_bib55) 2019; 98 Mirzaei (10.1016/j.colsurfb.2022.112622_bib6) 2016; 139 Mihaila (10.1016/j.colsurfb.2022.112622_bib47) 2013; 2 Kamaly (10.1016/j.colsurfb.2022.112622_bib39) 2016; 116 Li (10.1016/j.colsurfb.2022.112622_bib20) 2015; 103 Motevalli (10.1016/j.colsurfb.2022.112622_bib54) 2019; 5 Bolean (10.1016/j.colsurfb.2022.112622_bib61) 2017; 9 |
References_xml | – volume: 7 start-page: 823 year: 2019 ident: 10.1016/j.colsurfb.2022.112622_bib28 article-title: Synthesis of Sr–morin complex and its in vitro response: decrease in osteoclast differentiation while sustaining osteoblast mineralization ability publication-title: J. Mater. Chem. B doi: 10.1039/C8TB02045K – volume: 103 start-page: 3205 year: 2014 ident: 10.1016/j.colsurfb.2022.112622_bib38 article-title: Dual drug release from core–shell nanoparticles with distinct release profiles publication-title: J. Pharm. Sci. doi: 10.1002/jps.24116 – volume: 111 start-page: 381 year: 2004 ident: 10.1016/j.colsurfb.2022.112622_bib7 article-title: In vitro andin vivo anti-tumoral effect of curcumin against melanoma cells publication-title: Int. J. Cancer doi: 10.1002/ijc.20160 – volume: 15 year: 2020 ident: 10.1016/j.colsurfb.2022.112622_bib9 article-title: Evaluation of the articular cartilage in the knees of rats with induced arthritis treated with curcumin publication-title: PLOS ONE doi: 10.1371/journal.pone.0230228 – volume: 193 start-page: 34 year: 2018 ident: 10.1016/j.colsurfb.2022.112622_bib4 article-title: Curcumin induces osteoblast differentiation through mild-endoplasmic reticulum stress-mediated such as BMP2 on osteoblast cells publication-title: Life Sci. doi: 10.1016/j.lfs.2017.12.008 – volume: 23 start-page: 53 year: 2015 ident: 10.1016/j.colsurfb.2022.112622_bib8 article-title: Injectable in situ forming chitosan-based hydrogels for curcumin delivery publication-title: Macromol. Res. doi: 10.1007/s13233-015-3006-4 – volume: 76 start-page: 951 year: 2017 ident: 10.1016/j.colsurfb.2022.112622_bib16 article-title: Silk fibroin/kappa-carrageenan composite scaffolds with enhanced biomimetic mineralization for bone regeneration applications publication-title: Mater. Sci. Eng. C. doi: 10.1016/j.msec.2017.03.166 – year: 2007 ident: 10.1016/j.colsurfb.2022.112622_bib34 article-title: Culture of osteogenic cells from human alveolar bone: a useful source of alkaline phosphatase publication-title: Cell Biol. Int. doi: 10.1016/j.cellbi.2007.06.002 – volume: 31 start-page: 18 year: 2020 ident: 10.1016/j.colsurfb.2022.112622_bib27 article-title: Skin permeation and thermodynamic features of curcumin-loaded liposomes publication-title: J. Mater. Sci. Mater. Med. doi: 10.1007/s10856-019-6351-6 – volume: 521 start-page: 91 year: 2012 ident: 10.1016/j.colsurfb.2022.112622_bib40 article-title: Effect of interparticle interactions on size determination of zirconia and silica based systems – a comparison of SAXS, DLS, BET, XRD and TEM publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2011.11.049 – volume: 121 start-page: 27 year: 2015 ident: 10.1016/j.colsurfb.2022.112622_bib13 article-title: Review for carrageenan-based pharmaceutical biomaterials: favourable physical features versus adverse biological effects publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2014.11.063 – volume: 13 start-page: 2279 year: 2012 ident: 10.1016/j.colsurfb.2022.112622_bib2 article-title: One-step synthesis of biodegradable curcumin-derived hydrogels as potential soft tissue fillers after breast cancer surgery publication-title: Biomacromolecules doi: 10.1021/bm300518e – volume: 4 start-page: 60334 year: 2014 ident: 10.1016/j.colsurfb.2022.112622_bib48 article-title: From micron to nano-curcumin by sophorolipid co-processing: highly enhanced bioavailability, fluorescence, and anti-cancer efficacy publication-title: RSC Adv. doi: 10.1039/C4RA07300B – volume: 93 start-page: 299 year: 2013 ident: 10.1016/j.colsurfb.2022.112622_bib57 article-title: The role of phosphatases in the initiation of skeletal mineralization publication-title: Calcif. Tissue Int. doi: 10.1007/s00223-012-9672-8 – volume: 5 start-page: 19 year: 2019 ident: 10.1016/j.colsurfb.2022.112622_bib11 article-title: Co-encapsulation of curcumin and doxorubicin in albumin nanoparticles blocks the adaptive treatment tolerance of cancer cells publication-title: Biophys. Rep. doi: 10.1007/s41048-018-0079-6 – year: 2016 ident: 10.1016/j.colsurfb.2022.112622_bib33 article-title: Bio-inspired synthesis of hybrid tube-like structures based on CaCO3 and type I-collagen publication-title: RSC Adv. doi: 10.1039/C6RA18984A – volume: 733 year: 2016 ident: 10.1016/j.colsurfb.2022.112622_bib41 article-title: A comparison of TEM and DLS methods to characterize size distribution of ceramic nanoparticles publication-title: J. Phys.: Conf. Ser. – volume: 235 start-page: 337 year: 2016 ident: 10.1016/j.colsurfb.2022.112622_bib49 article-title: DLS and zeta potential – what they are and what they are not publication-title: J. Control. Release doi: 10.1016/j.jconrel.2016.06.017 – volume: 65 start-page: 55 year: 1983 ident: 10.1016/j.colsurfb.2022.112622_bib30 article-title: Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays publication-title: J. Immunol. Methods doi: 10.1016/0022-1759(83)90303-4 – volume: 9 start-page: 747 year: 2017 ident: 10.1016/j.colsurfb.2022.112622_bib61 article-title: Biophysical aspects of biomineralization publication-title: Biophys. Rev. doi: 10.1007/s12551-017-0315-1 – volume: 27 start-page: 62 year: 2016 ident: 10.1016/j.colsurfb.2022.112622_bib62 article-title: Multi and single walled carbon nanotubes: effects on cell responses and biomineralization of osteoblasts cultures publication-title: J. Mater. Sci.: Mater. Med. – volume: 23 start-page: 397 year: 2002 ident: 10.1016/j.colsurfb.2022.112622_bib52 article-title: Three-dimensional reconstruction of confocal laser microscopy images to study the behaviour of osteoblastic cells grown on biomaterials publication-title: Biomaterials doi: 10.1016/S0142-9612(01)00118-1 – volume: 92 start-page: 1265 year: 2009 ident: 10.1016/j.colsurfb.2022.112622_bib22 article-title: Development of new chitosan/carrageenan nanoparticles for drug delivery applications publication-title: J. Biomed. Mater. Res. Part A – volume: 40 start-page: 1557 year: 2014 ident: 10.1016/j.colsurfb.2022.112622_bib1 article-title: Preparation and characterization of curcumin thermosensitive hydrogels for intratumoral injection treatment publication-title: Drug Dev. Ind. Pharm. doi: 10.3109/03639045.2013.838579 – volume: 83 start-page: 425 year: 2019 ident: 10.1016/j.colsurfb.2022.112622_bib15 article-title: Osteoblast responses to injectable bone substitutes of kappa-carrageenan and nano hydroxyapatite publication-title: Acta Biomater. doi: 10.1016/j.actbio.2018.10.023 – volume: 93 start-page: 299 year: 2013 ident: 10.1016/j.colsurfb.2022.112622_bib60 article-title: The role of phosphatases in the initiation of skeletal mineralization publication-title: Calcif. Tissue Int. doi: 10.1007/s00223-012-9672-8 – volume: 160 start-page: 184 year: 2017 ident: 10.1016/j.colsurfb.2022.112622_bib3 article-title: κ-Carrageenan: an effective drug carrier to deliver curcumin in cancer cells and to induce apoptosis publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2016.12.049 – volume: 236 start-page: 3906 year: 2021 ident: 10.1016/j.colsurfb.2022.112622_bib36 article-title: Osteoporosis and osteoblasts cocultured with adipocytes inhibit osteoblast differentiation by downregulating histone acetylation publication-title: J. Cell. Physiol. doi: 10.1002/jcp.30131 – ident: 10.1016/j.colsurfb.2022.112622_bib43 doi: 10.1002/cbin.10459 – volume: 89 start-page: 282 year: 2012 ident: 10.1016/j.colsurfb.2022.112622_bib23 article-title: Chitosan/carrageenan nanoparticles: effect of cross-linking with tripolyphosphate and charge ratios publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2012.03.010 – volume: 663 start-page: 192 year: 2019 ident: 10.1016/j.colsurfb.2022.112622_bib58 article-title: Is alkaline phosphatase biomimeticaly immobilized on titanium able to propagate the biomineralization process publication-title: Arch. Biochem. Biophys. doi: 10.1016/j.abb.2019.01.014 – year: 2016 ident: 10.1016/j.colsurfb.2022.112622_bib31 article-title: Estrogen and phenol red free medium for osteoblast culture: study of the mineralization ability publication-title: Cytotechnology doi: 10.1007/s10616-015-9844-2 – volume: 105 year: 2019 ident: 10.1016/j.colsurfb.2022.112622_bib46 article-title: In vitro evaluation of folate-modified PLGA nanoparticles containing paclitaxel for ovarian cancer therapy publication-title: Mater. Sci. Eng. C. doi: 10.1016/j.msec.2019.110038 – volume: 8 start-page: 110 year: 2018 ident: 10.1016/j.colsurfb.2022.112622_bib5 article-title: Effects of PCL, PEG and PLGA polymers on curcumin release from calcium phosphate matrix for in vitro and in vivo bone regeneration publication-title: Mater. Today Chem. doi: 10.1016/j.mtchem.2018.03.005 – volume: 98 start-page: 347 year: 2019 ident: 10.1016/j.colsurfb.2022.112622_bib55 article-title: Curcumin nanoparticles incorporated collagen-chitosan scaffold promotes cutaneous wound healing through regulation of TGF-β1/Smad7 gene expression publication-title: Mater. Sci. Eng.: C. doi: 10.1016/j.msec.2018.12.143 – volume: 18 start-page: 1563 year: 2017 ident: 10.1016/j.colsurfb.2022.112622_bib21 article-title: κ-Carrageenan enhances the biomineralization and osteogenic differentiation of electrospun polyhydroxybutyrate and polyhydroxybutyrate valerate fibers publication-title: Biomacromolecules doi: 10.1021/acs.biomac.7b00150 – volume: 693 start-page: 482 year: 2017 ident: 10.1016/j.colsurfb.2022.112622_bib18 article-title: A novel composite of collagen-hydroxyapatite/kappa-carrageenan publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2016.09.234 – volume: 9 start-page: 550 year: 2015 ident: 10.1016/j.colsurfb.2022.112622_bib19 article-title: Chondrogenic potential of injectable k-carrageenan hydrogel with encapsulated adipose stem cells for cartilage tissue-engineering applications publication-title: J. Tissue Eng. Regen. Med. doi: 10.1002/term.1683 – volume: 524 start-page: 702 year: 2020 ident: 10.1016/j.colsurfb.2022.112622_bib59 article-title: Tissue-nonspecific alkaline phosphatase promotes the osteogenic differentiation of osteoprogenitor cells publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2020.01.136 – volume: 5 start-page: 19 year: 2019 ident: 10.1016/j.colsurfb.2022.112622_bib54 article-title: Co-encapsulation of curcumin and doxorubicin in albumin nanoparticles blocks the adaptive treatment tolerance of cancer cells publication-title: Biophys. Rep. doi: 10.1007/s41048-018-0079-6 – volume: 116 start-page: 2602 year: 2016 ident: 10.1016/j.colsurfb.2022.112622_bib39 article-title: Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00346 – volume: 103 start-page: 1498 year: 2015 ident: 10.1016/j.colsurfb.2022.112622_bib20 article-title: Iota-carrageenan/chitosan/gelatin scaffold for the osteogenic differentiation of adipose-derived MSCs in vitro publication-title: J. Biomed. Mater. Res. - Part B Appl. Biomater. doi: 10.1002/jbm.b.33339 – volume: 33 start-page: 260 year: 2021 ident: 10.1016/j.colsurfb.2022.112622_bib10 article-title: Biological impact of curcumin on the healing of tempromandibular joint in experimentally induced arthritis publication-title: J. Oral. Maxillofac. Surg. Med. Pathol. doi: 10.1016/j.ajoms.2020.12.001 – volume: 123 start-page: 1248 year: 2019 ident: 10.1016/j.colsurfb.2022.112622_bib17 article-title: Improved mechanical properties of k-carrageenan-based nanocomposite films reinforced with cellulose nanocrystals publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2018.12.030 – year: 2009 ident: 10.1016/j.colsurfb.2022.112622_bib32 article-title: Size effect of hydroxyapatite nanoparticles on proliferation and apoptosis of osteoblast-like cells publication-title: Acta Biomater. doi: 10.1016/j.actbio.2008.07.023 – volume: 198 start-page: 385 year: 2018 ident: 10.1016/j.colsurfb.2022.112622_bib14 article-title: Carrageenan based hydrogels for drug delivery, tissue engineering and wound healing publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2018.06.086 – volume: 3 start-page: 953 year: 2016 ident: 10.1016/j.colsurfb.2022.112622_bib50 article-title: Guidance to improve the scientific value of zeta-potential measurements in nanoEHS publication-title: Environ. Sci.: Nano – volume: 95 start-page: 178 year: 2012 ident: 10.1016/j.colsurfb.2022.112622_bib26 article-title: Influence of the type of phospholipid head and of the conformation of the polyelectrolyte on the growth of calcium carbonate thin films on LB/LbL matrices publication-title: Colloids Surf. B, Biointerfaces doi: 10.1016/j.colsurfb.2012.02.040 – volume: 7 start-page: 683 year: 2009 ident: 10.1016/j.colsurfb.2022.112622_bib51 article-title: Distinct proliferative and differentiated stages of murine MC3T3-E1 cells in culture: an in vitro model of osteoblast development publication-title: J. Bone Miner. Res. doi: 10.1002/jbmr.5650070613 – volume: 20 start-page: 5821 year: 2014 ident: 10.1016/j.colsurfb.2022.112622_bib56 article-title: Role of bone-type tissue-nonspecific alkaline phosphatase and PHOSPO1 in vascular calcification publication-title: Curr. Pharm. Des. doi: 10.2174/1381612820666140212193011 – volume: 2 start-page: 895 year: 2013 ident: 10.1016/j.colsurfb.2022.112622_bib47 article-title: Photocrosslinkable Kappa -carrageenan hydrogels for tissue engineering applications publication-title: Adv. Healthc. Mater. doi: 10.1002/adhm.201200317 – year: 2004 ident: 10.1016/j.colsurfb.2022.112622_bib35 article-title: An Alizarin red-based assay of mineralization by adherent cells in culture: comparison with cetylpyridinium chloride extraction publication-title: Anal. Biochem. doi: 10.1016/j.ab.2004.02.002 – ident: 10.1016/j.colsurfb.2022.112622_bib44 doi: 10.1002/smll.201401943 – volume: 231 start-page: 204 year: 2016 ident: 10.1016/j.colsurfb.2022.112622_bib37 article-title: Participation of TNF-α in inhibitory effects of adipocytes on osteoblast differentiation publication-title: J. Cell. Physiol. doi: 10.1002/jcp.25073 – volume: 135 start-page: 207 year: 2016 ident: 10.1016/j.colsurfb.2022.112622_bib12 article-title: Evaluation of kappa carrageenan as potential carrier for floating drug delivery system: effect of pore forming agents publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2015.08.051 – volume: 106 start-page: 2524 year: 2018 ident: 10.1016/j.colsurfb.2022.112622_bib53 article-title: Different compact hybrid Langmuir-Blodgett-film coatings modify biomineralization and the ability of osteoblasts to grow publication-title: J. Biomed. Mater. Res. Part B: Appl. Biomater. doi: 10.1002/jbm.b.34069 – volume: 84 start-page: 1158 year: 2011 ident: 10.1016/j.colsurfb.2022.112622_bib42 article-title: Preparation, characterization, in vitro drug release and biological studies of curcumin loaded dextran sulphate–chitosan nanoparticles publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2011.01.005 – volume: 58 start-page: 1 year: 2016 ident: 10.1016/j.colsurfb.2022.112622_bib24 article-title: Formation of carrageenan-CaCO 3 bioactive membranes publication-title: Mater. Sci. Eng.: C. doi: 10.1016/j.msec.2015.08.021 – volume: 136 start-page: 48004 year: 2019 ident: 10.1016/j.colsurfb.2022.112622_bib25 article-title: Organic–inorganic collagen/iota‐carrageenan/hydroxyapatite hybrid membranes are bioactive materials for bone regeneration publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.48004 – volume: 358 start-page: 858 year: 2019 ident: 10.1016/j.colsurfb.2022.112622_bib29 article-title: Collagen-supported CaCO3 cylindrical particles enhance Ti bioactivity publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2018.11.071 – volume: 139 start-page: 1683 year: 2016 ident: 10.1016/j.colsurfb.2022.112622_bib6 article-title: Curcumin: a new candidate for melanoma therapy? publication-title: Int. J. Cancer doi: 10.1002/ijc.30224 – volume: 96 start-page: 347 year: 2019 ident: 10.1016/j.colsurfb.2022.112622_bib45 article-title: Development, characterization and biological in vitro assays of paclitaxel-loaded PCL polymeric nanoparticles publication-title: Mater. Sci. Eng. C. doi: 10.1016/j.msec.2018.11.035 |
SSID | ssj0002417 |
Score | 2.4519906 |
Snippet | The use of Curcumin (CR) as a bioactive molecule to prevent and treat inflammation- related diseases is widespread. However, the high hydrophobicity hinders... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 112622 |
SubjectTerms | alkaline phosphatase aqueous solutions bioactive compounds bioavailability biodegradability bone formation confocal microscopy cost effectiveness curcumin cytotoxicity drugs extracellular matrix hydrophobicity kappa carrageenan mineralization osteoblasts phosphates therapeutics |
Title | Curcumin-loaded carrageenan nanoparticles: Fabrication, characterization, and assessment of the effects on osteoblasts mineralization |
URI | https://www.proquest.com/docview/2681813407 https://www.proquest.com/docview/2718244027 |
Volume | 217 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELZCOQAHBCmoLQ8ZCXFJN-wr6w23JrSqUMWplXpb-bViq2RdbbJIzYEb_5YfwdjeZ6gK5RArcdZey_OtPTP7zRih97AnMhFS5sgJC5xQTEMnjiVxhB-xiE1SGTNDkP0anV6EXy4nl4PBrw5rqVyzMd_cGlfyP1KFOpCrjpK9h2SbTqECvoN8oQQJQ_lPMp6XBS-XWe4sFBWgOXJaFLA-yBweWviAPdyhvZ1QVlQOOj2vvMnUvGnqTOLWJlVnTR9oKB-gWQImFAOFG34uM5OwumreVXK1M0JlwmZ_XpVFSqvFaGaKTOkcFba28UVrD1Jmzjwanelz2MxwzVv8zzxToxn9lrWcoqLcVHFGXK10_gN94SzM4cLjMrXNvJVlmFkX-nd7dNVorv05VNP9QTJNh2fq2g7QbMLwN4XZ6fpDwJSuCV-NY9MnYDPYEyjqNd63AaLVKq3Dpmw09B8biPVlXAEoFnp-2FjfYtw26Gfs3tpJG35jTZ27Sup-Et1PYvt5gB76hBhSwfhHS0gCXcoE99fj78Sz3z6evirV1ySMenT-DD2t7Bp8ZAH3HA1kPkS7Rzldq-UN_oAN09i8whmiR_P6lMEhetJJiLmLfm4hGncQjXuI_oQ7eD7E22g-xIA93GIZqxQDlnGFZaxy3MEy7mP5Bbo4OT6fnzrVQSEOD0i8dgRnNCDMY8ITE-HJKaMhiaRLaORPqZimjMUeTalOyh3E1NU2hyd1brt0GoOSG7xEO7nK5R7CYM2AzUKk8AIR8phQKtKAcRoRHrqMpftoUs95wqss-vowl0Vyt8z30cem3bXNI_PXFu9qkSYgE_0ej-ZSlavEj0DL9oLQJXdcAzonaO6uTw7ufedX6HH7YL1GO-uilG9A9V6ztwaxvwHDGeF3 |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Curcumin-loaded+carrageenan+nanoparticles%3A+Fabrication%2C+characterization%2C+and+assessment+of+the+effects+on+osteoblasts+mineralization&rft.jtitle=Colloids+and+surfaces%2C+B%2C+Biointerfaces&rft.au=Nogueira%2C+Lucas+Fabr%C3%ADcio+Bahia&rft.au=Cruz%2C+Marcos+Ant%C3%B4nio+Eufr%C3%A1sio&rft.au=Tovani%2C+Camila+Bussola&rft.au=Lopes%2C+Helena+Bacha&rft.date=2022-09-01&rft.issn=0927-7765&rft.volume=217&rft.spage=112622&rft_id=info:doi/10.1016%2Fj.colsurfb.2022.112622&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_colsurfb_2022_112622 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0927-7765&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0927-7765&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0927-7765&client=summon |