Curcumin-loaded carrageenan nanoparticles: Fabrication, characterization, and assessment of the effects on osteoblasts mineralization

The use of Curcumin (CR) as a bioactive molecule to prevent and treat inflammation- related diseases is widespread. However, the high hydrophobicity hinders the in vivo bioavailability of CR, reducing its therapeutic index. In the present study, we described the use of nanoparticles (NPs) made of ka...

Full description

Saved in:
Bibliographic Details
Published inColloids and surfaces, B, Biointerfaces Vol. 217; p. 112622
Main Authors Nogueira, Lucas Fabrício Bahia, Cruz, Marcos Antônio Eufrásio, Tovani, Camila Bussola, Lopes, Helena Bacha, Beloti, Márcio Mateus, Ciancaglini, Pietro, Bottini, Massimo, Ramos, Ana Paula
Format Journal Article
LanguageEnglish
Published 01.09.2022
Subjects
Online AccessGet full text
ISSN0927-7765
1873-4367
1873-4367
DOI10.1016/j.colsurfb.2022.112622

Cover

Abstract The use of Curcumin (CR) as a bioactive molecule to prevent and treat inflammation- related diseases is widespread. However, the high hydrophobicity hinders the in vivo bioavailability of CR, reducing its therapeutic index. In the present study, we described the use of nanoparticles (NPs) made of kappa-carrageenan (κ-Carr), a sulphated polysaccharide, as cost-effective, biodegradable and biocompatible CR carriers. CR-loaded κ-Carr nanoparticles (CR@Carr NPs) were prepared by mixing a κ-Carr aqueous solution with a CR ethanolic solution. The final suspension was centrifuged and re-suspended in phosphate buffer solution. The NPs' size was tuned by changing the concentration of the polysaccharide. CR@CarrNPs displayed high CR incorporation efficiency (~80 wt%) and a double-exponential curve of CR release at physiological conditions (37 °C and pH 7.4) with a cumulative drug release of 32 wt% after 24 h for the smaller NP. Our results also showed that CR@CarrNPs were not cytotoxic to osteoblasts at concentrations up to 1 μM. Confocal microscopy images revealed the internalization of CR by the cells guided by the NPs. Cells treated with CR@CarrNPs exhibited higher activity of alkaline phosphatase and higher expression of the main osteogenic genes (Sp7, Col1 and Runx2), and mineralized the extracellular matrix in a higher extent compared to the cells cultivated in absence of the NPs. We posited that these effects were related to the NP-driven internalization of CR by osteoblasts. Our study sheds light on the possible use of CR@CarrNPs as efficient and safe therapeutic tools for the treatment of bone-related diseases.The use of Curcumin (CR) as a bioactive molecule to prevent and treat inflammation- related diseases is widespread. However, the high hydrophobicity hinders the in vivo bioavailability of CR, reducing its therapeutic index. In the present study, we described the use of nanoparticles (NPs) made of kappa-carrageenan (κ-Carr), a sulphated polysaccharide, as cost-effective, biodegradable and biocompatible CR carriers. CR-loaded κ-Carr nanoparticles (CR@Carr NPs) were prepared by mixing a κ-Carr aqueous solution with a CR ethanolic solution. The final suspension was centrifuged and re-suspended in phosphate buffer solution. The NPs' size was tuned by changing the concentration of the polysaccharide. CR@CarrNPs displayed high CR incorporation efficiency (~80 wt%) and a double-exponential curve of CR release at physiological conditions (37 °C and pH 7.4) with a cumulative drug release of 32 wt% after 24 h for the smaller NP. Our results also showed that CR@CarrNPs were not cytotoxic to osteoblasts at concentrations up to 1 μM. Confocal microscopy images revealed the internalization of CR by the cells guided by the NPs. Cells treated with CR@CarrNPs exhibited higher activity of alkaline phosphatase and higher expression of the main osteogenic genes (Sp7, Col1 and Runx2), and mineralized the extracellular matrix in a higher extent compared to the cells cultivated in absence of the NPs. We posited that these effects were related to the NP-driven internalization of CR by osteoblasts. Our study sheds light on the possible use of CR@CarrNPs as efficient and safe therapeutic tools for the treatment of bone-related diseases.
AbstractList The use of Curcumin (CR) as a bioactive molecule to prevent and treat inflammation- related diseases is widespread. However, the high hydrophobicity hinders the in vivo bioavailability of CR, reducing its therapeutic index. In the present study, we described the use of nanoparticles (NPs) made of kappa-carrageenan (κ-Carr), a sulphated polysaccharide, as cost-effective, biodegradable and biocompatible CR carriers. CR-loaded κ-Carr nanoparticles (CR@Carr NPs) were prepared by mixing a κ-Carr aqueous solution with a CR ethanolic solution. The final suspension was centrifuged and re-suspended in phosphate buffer solution. The NPs' size was tuned by changing the concentration of the polysaccharide. CR@CarrNPs displayed high CR incorporation efficiency (~80 wt%) and a double-exponential curve of CR release at physiological conditions (37 °C and pH 7.4) with a cumulative drug release of 32 wt% after 24 h for the smaller NP. Our results also showed that CR@CarrNPs were not cytotoxic to osteoblasts at concentrations up to 1 μM. Confocal microscopy images revealed the internalization of CR by the cells guided by the NPs. Cells treated with CR@CarrNPs exhibited higher activity of alkaline phosphatase and higher expression of the main osteogenic genes (Sp7, Col1 and Runx2), and mineralized the extracellular matrix in a higher extent compared to the cells cultivated in absence of the NPs. We posited that these effects were related to the NP-driven internalization of CR by osteoblasts. Our study sheds light on the possible use of CR@CarrNPs as efficient and safe therapeutic tools for the treatment of bone-related diseases.The use of Curcumin (CR) as a bioactive molecule to prevent and treat inflammation- related diseases is widespread. However, the high hydrophobicity hinders the in vivo bioavailability of CR, reducing its therapeutic index. In the present study, we described the use of nanoparticles (NPs) made of kappa-carrageenan (κ-Carr), a sulphated polysaccharide, as cost-effective, biodegradable and biocompatible CR carriers. CR-loaded κ-Carr nanoparticles (CR@Carr NPs) were prepared by mixing a κ-Carr aqueous solution with a CR ethanolic solution. The final suspension was centrifuged and re-suspended in phosphate buffer solution. The NPs' size was tuned by changing the concentration of the polysaccharide. CR@CarrNPs displayed high CR incorporation efficiency (~80 wt%) and a double-exponential curve of CR release at physiological conditions (37 °C and pH 7.4) with a cumulative drug release of 32 wt% after 24 h for the smaller NP. Our results also showed that CR@CarrNPs were not cytotoxic to osteoblasts at concentrations up to 1 μM. Confocal microscopy images revealed the internalization of CR by the cells guided by the NPs. Cells treated with CR@CarrNPs exhibited higher activity of alkaline phosphatase and higher expression of the main osteogenic genes (Sp7, Col1 and Runx2), and mineralized the extracellular matrix in a higher extent compared to the cells cultivated in absence of the NPs. We posited that these effects were related to the NP-driven internalization of CR by osteoblasts. Our study sheds light on the possible use of CR@CarrNPs as efficient and safe therapeutic tools for the treatment of bone-related diseases.
The use of Curcumin (CR) as a bioactive molecule to prevent and treat inflammation- related diseases is widespread. However, the high hydrophobicity hinders the in vivo bioavailability of CR, reducing its therapeutic index. In the present study, we described the use of nanoparticles (NPs) made of kappa-carrageenan (κ-Carr), a sulphated polysaccharide, as cost-effective, biodegradable and biocompatible CR carriers. CR-loaded κ-Carr nanoparticles (CR@Carr NPs) were prepared by mixing a κ-Carr aqueous solution with a CR ethanolic solution. The final suspension was centrifuged and re-suspended in phosphate buffer solution. The NPs’ size was tuned by changing the concentration of the polysaccharide. CR@CarrNPs displayed high CR incorporation efficiency (~80 wt%) and a double-exponential curve of CR release at physiological conditions (37 °C and pH 7.4) with a cumulative drug release of 32 wt% after 24 h for the smaller NP. Our results also showed that CR@CarrNPs were not cytotoxic to osteoblasts at concentrations up to 1 μM. Confocal microscopy images revealed the internalization of CR by the cells guided by the NPs. Cells treated with CR@CarrNPs exhibited higher activity of alkaline phosphatase and higher expression of the main osteogenic genes (Sp7, Col1 and Runx2), and mineralized the extracellular matrix in a higher extent compared to the cells cultivated in absence of the NPs. We posited that these effects were related to the NP-driven internalization of CR by osteoblasts. Our study sheds light on the possible use of CR@CarrNPs as efficient and safe therapeutic tools for the treatment of bone-related diseases.
ArticleNumber 112622
Author Cruz, Marcos Antônio Eufrásio
Nogueira, Lucas Fabrício Bahia
Tovani, Camila Bussola
Ramos, Ana Paula
Beloti, Márcio Mateus
Bottini, Massimo
Lopes, Helena Bacha
Ciancaglini, Pietro
Author_xml – sequence: 1
  givenname: Lucas Fabrício Bahia
  surname: Nogueira
  fullname: Nogueira, Lucas Fabrício Bahia
– sequence: 2
  givenname: Marcos Antônio Eufrásio
  surname: Cruz
  fullname: Cruz, Marcos Antônio Eufrásio
– sequence: 3
  givenname: Camila Bussola
  surname: Tovani
  fullname: Tovani, Camila Bussola
– sequence: 4
  givenname: Helena Bacha
  surname: Lopes
  fullname: Lopes, Helena Bacha
– sequence: 5
  givenname: Márcio Mateus
  surname: Beloti
  fullname: Beloti, Márcio Mateus
– sequence: 6
  givenname: Pietro
  surname: Ciancaglini
  fullname: Ciancaglini, Pietro
– sequence: 7
  givenname: Massimo
  surname: Bottini
  fullname: Bottini, Massimo
– sequence: 8
  givenname: Ana Paula
  surname: Ramos
  fullname: Ramos, Ana Paula
BookMark eNqFkbGOEzEQhi10SOQOXgG5pGBzHu_G9iIaFHEc0kk0UFuz3jHnyLGD7S2g571JSGhorrBGHv3fjEbfNbtKORFjr0GsQYC63a1djnUpflpLIeUaQCopn7EVGN13Q6_0FVuJUepOa7V5wa5r3Qkh5AB6xX5vl-KWfUhdzDjTzB2Wgt-JEiZ-fPmApQUXqb7jdziV4LCFnN5y94gFXaMSfl06mGaOtVKte0qNZ8_bI3HynlyrPCeea6M8RazH73EjFYwX-CV77jFWenWpN-zb3cev2_vu4cunz9sPD53rtWnd7Cbs9QTTDPNmBhonHLQioVHJEefRT5MB9KhGoXqDYiOlAuoNCD8aIaG_YW_Ocw8l_1ioNrsP1VGMmCgv1UoNRg6DkPrpqDJgoB_EKfr-HHUl11rIWxfa37tawRAtCHsSZXf2nyh7EmXPoo64-g8_lLDH8vMp8A9qoqEv
CitedBy_id crossref_primary_10_1021_acs_biomac_2c01313
crossref_primary_10_1016_j_ijbiomac_2024_134841
crossref_primary_10_3390_ijms24043188
crossref_primary_10_1007_s11274_023_03787_x
crossref_primary_10_3389_fphar_2025_1509045
crossref_primary_10_3390_polym16172536
crossref_primary_10_1021_acsapm_3c00093
crossref_primary_10_3390_jfb13040250
crossref_primary_10_1021_acsami_4c04522
crossref_primary_10_1039_D3TB02665E
crossref_primary_10_1016_j_inoche_2024_112763
crossref_primary_10_1016_j_heliyon_2024_e32566
crossref_primary_10_1016_j_ijbiomac_2023_127893
Cites_doi 10.1039/C8TB02045K
10.1002/jps.24116
10.1002/ijc.20160
10.1371/journal.pone.0230228
10.1016/j.lfs.2017.12.008
10.1007/s13233-015-3006-4
10.1016/j.msec.2017.03.166
10.1016/j.cellbi.2007.06.002
10.1007/s10856-019-6351-6
10.1016/j.cplett.2011.11.049
10.1016/j.carbpol.2014.11.063
10.1021/bm300518e
10.1039/C4RA07300B
10.1007/s00223-012-9672-8
10.1007/s41048-018-0079-6
10.1039/C6RA18984A
10.1016/j.jconrel.2016.06.017
10.1016/0022-1759(83)90303-4
10.1007/s12551-017-0315-1
10.1016/S0142-9612(01)00118-1
10.3109/03639045.2013.838579
10.1016/j.actbio.2018.10.023
10.1016/j.carbpol.2016.12.049
10.1002/jcp.30131
10.1002/cbin.10459
10.1016/j.carbpol.2012.03.010
10.1016/j.abb.2019.01.014
10.1007/s10616-015-9844-2
10.1016/j.msec.2019.110038
10.1016/j.mtchem.2018.03.005
10.1016/j.msec.2018.12.143
10.1021/acs.biomac.7b00150
10.1016/j.jallcom.2016.09.234
10.1002/term.1683
10.1016/j.bbrc.2020.01.136
10.1021/acs.chemrev.5b00346
10.1002/jbm.b.33339
10.1016/j.ajoms.2020.12.001
10.1016/j.ijbiomac.2018.12.030
10.1016/j.actbio.2008.07.023
10.1016/j.carbpol.2018.06.086
10.1016/j.colsurfb.2012.02.040
10.1002/jbmr.5650070613
10.2174/1381612820666140212193011
10.1002/adhm.201200317
10.1016/j.ab.2004.02.002
10.1002/smll.201401943
10.1002/jcp.25073
10.1016/j.carbpol.2015.08.051
10.1002/jbm.b.34069
10.1016/j.carbpol.2011.01.005
10.1016/j.msec.2015.08.021
10.1002/app.48004
10.1016/j.surfcoat.2018.11.071
10.1002/ijc.30224
10.1016/j.msec.2018.11.035
ContentType Journal Article
Copyright Copyright © 2022 Elsevier B.V. All rights reserved.
Copyright_xml – notice: Copyright © 2022 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
7X8
7S9
L.6
DOI 10.1016/j.colsurfb.2022.112622
DatabaseName CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Anatomy & Physiology
Chemistry
EISSN 1873-4367
ExternalDocumentID 10_1016_j_colsurfb_2022_112622
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABXZ
AAEDT
AAEDW
AAEPC
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AATTM
AAXKI
AAXUO
AAYWO
AAYXX
ABFNM
ABGSF
ABMAC
ABNEU
ABNUV
ABUDA
ABWVN
ABXDB
ABXRA
ACDAQ
ACFVG
ACGFS
ACNCT
ACNNM
ACRLP
ACRPL
ADBBV
ADECG
ADEWK
ADEZE
ADMUD
ADNMO
ADUVX
AEBSH
AEHWI
AEIPS
AEKER
AEZYN
AFJKZ
AFRZQ
AFTJW
AFXIZ
AFZHZ
AGCQF
AGHFR
AGQPQ
AGRDE
AGRNS
AGUBO
AGYEJ
AHHHB
AHPOS
AI.
AIEXJ
AIIUN
AIKHN
AITUG
AIVDX
AJSZI
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
BNPGV
CITATION
CS3
EBS
EFJIC
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLY
HVGLF
HZ~
IHE
J1W
KOM
LX7
M24
M41
MAGPM
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCB
SCE
SDF
SDG
SDP
SES
SEW
SMS
SPC
SSG
SSH
SSK
SSM
SSQ
SSU
SSZ
T5K
VH1
WH7
WUQ
~02
~G-
7X8
EFKBS
EFLBG
7S9
L.6
ID FETCH-LOGICAL-c378t-dcba37b1bd1d5d1e9ba476e07a629ad9fbb81afa690638a052261e3810f980213
ISSN 0927-7765
1873-4367
IngestDate Fri Sep 05 07:11:06 EDT 2025
Fri Sep 05 06:58:53 EDT 2025
Tue Jul 01 03:27:17 EDT 2025
Thu Apr 24 23:07:43 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c378t-dcba37b1bd1d5d1e9ba476e07a629ad9fbb81afa690638a052261e3810f980213
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2681813407
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2718244027
proquest_miscellaneous_2681813407
crossref_citationtrail_10_1016_j_colsurfb_2022_112622
crossref_primary_10_1016_j_colsurfb_2022_112622
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-09-00
20220901
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-00
PublicationDecade 2020
PublicationTitle Colloids and surfaces, B, Biointerfaces
PublicationYear 2022
References Abriata (10.1016/j.colsurfb.2022.112622_bib45) 2019; 96
Selvakumaran (10.1016/j.colsurfb.2022.112622_bib12) 2016; 135
Rodrigues (10.1016/j.colsurfb.2022.112622_bib23) 2012; 89
Cruz (10.1016/j.colsurfb.2022.112622_bib28) 2019; 7
Mosmann (10.1016/j.colsurfb.2022.112622_bib30) 1983; 65
Nakamura (10.1016/j.colsurfb.2022.112622_bib59) 2020; 524
Amin (10.1016/j.colsurfb.2022.112622_bib10) 2021; 33
Ramos (10.1016/j.colsurfb.2022.112622_bib26) 2012; 95
Nogueira (10.1016/j.colsurfb.2022.112622_bib25) 2019; 136
Shpaisman (10.1016/j.colsurfb.2022.112622_bib2) 2012; 13
Anitha (10.1016/j.colsurfb.2022.112622_bib42) 2011; 84
Simão (10.1016/j.colsurfb.2022.112622_bib34) 2007
Quarles (10.1016/j.colsurfb.2022.112622_bib51) 2009; 7
Shi (10.1016/j.colsurfb.2022.112622_bib32) 2009
10.1016/j.colsurfb.2022.112622_bib44
10.1016/j.colsurfb.2022.112622_bib43
Campani (10.1016/j.colsurfb.2022.112622_bib27) 2020; 31
Cao (10.1016/j.colsurfb.2022.112622_bib38) 2014; 103
Bose (10.1016/j.colsurfb.2022.112622_bib5) 2018; 8
Millán (10.1016/j.colsurfb.2022.112622_bib60) 2013; 93
Gao (10.1016/j.colsurfb.2022.112622_bib1) 2014; 40
Abuna (10.1016/j.colsurfb.2022.112622_bib36) 2021; 236
Feng (10.1016/j.colsurfb.2022.112622_bib18) 2017; 693
Ramires (10.1016/j.colsurfb.2022.112622_bib52) 2002; 23
Nogueira (10.1016/j.colsurfb.2022.112622_bib24) 2016; 58
Motevalli (10.1016/j.colsurfb.2022.112622_bib11) 2019; 5
Popa (10.1016/j.colsurfb.2022.112622_bib19) 2015; 9
Bobryshev (10.1016/j.colsurfb.2022.112622_bib56) 2014; 20
de Faria (10.1016/j.colsurfb.2022.112622_bib53) 2018; 106
Zancanela (10.1016/j.colsurfb.2022.112622_bib62) 2016; 27
Millán (10.1016/j.colsurfb.2022.112622_bib57) 2013; 93
Nicoliche (10.1016/j.colsurfb.2022.112622_bib9) 2020; 15
Odot (10.1016/j.colsurfb.2022.112622_bib7) 2004; 111
Kassab (10.1016/j.colsurfb.2022.112622_bib17) 2019; 123
Lowry (10.1016/j.colsurfb.2022.112622_bib50) 2016; 3
Luiz (10.1016/j.colsurfb.2022.112622_bib46) 2019; 105
Nourmohammadi (10.1016/j.colsurfb.2022.112622_bib16) 2017; 76
Gregory (10.1016/j.colsurfb.2022.112622_bib35) 2004
Sathuvan (10.1016/j.colsurfb.2022.112622_bib3) 2017; 160
Grenha (10.1016/j.colsurfb.2022.112622_bib22) 2009; 92
González Ocampo (10.1016/j.colsurfb.2022.112622_bib15) 2019; 83
Goonoo (10.1016/j.colsurfb.2022.112622_bib21) 2017; 18
Singh (10.1016/j.colsurfb.2022.112622_bib48) 2014; 4
Abuna (10.1016/j.colsurfb.2022.112622_bib37) 2016; 231
Son (10.1016/j.colsurfb.2022.112622_bib4) 2018; 193
Yegappan (10.1016/j.colsurfb.2022.112622_bib14) 2018; 198
Songkroh (10.1016/j.colsurfb.2022.112622_bib8) 2015; 23
Tovani (10.1016/j.colsurfb.2022.112622_bib29) 2019; 358
Tovani (10.1016/j.colsurfb.2022.112622_bib33) 2016
Pabisch (10.1016/j.colsurfb.2022.112622_bib40) 2012; 521
Liu (10.1016/j.colsurfb.2022.112622_bib13) 2015; 121
de Faria (10.1016/j.colsurfb.2022.112622_bib31) 2016
Bhattacharjee (10.1016/j.colsurfb.2022.112622_bib49) 2016; 235
Andrade (10.1016/j.colsurfb.2022.112622_bib58) 2019; 663
Souza (10.1016/j.colsurfb.2022.112622_bib41) 2016; 733
Rezaii (10.1016/j.colsurfb.2022.112622_bib55) 2019; 98
Mirzaei (10.1016/j.colsurfb.2022.112622_bib6) 2016; 139
Mihaila (10.1016/j.colsurfb.2022.112622_bib47) 2013; 2
Kamaly (10.1016/j.colsurfb.2022.112622_bib39) 2016; 116
Li (10.1016/j.colsurfb.2022.112622_bib20) 2015; 103
Motevalli (10.1016/j.colsurfb.2022.112622_bib54) 2019; 5
Bolean (10.1016/j.colsurfb.2022.112622_bib61) 2017; 9
References_xml – volume: 7
  start-page: 823
  year: 2019
  ident: 10.1016/j.colsurfb.2022.112622_bib28
  article-title: Synthesis of Sr–morin complex and its in vitro response: decrease in osteoclast differentiation while sustaining osteoblast mineralization ability
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C8TB02045K
– volume: 103
  start-page: 3205
  year: 2014
  ident: 10.1016/j.colsurfb.2022.112622_bib38
  article-title: Dual drug release from core–shell nanoparticles with distinct release profiles
  publication-title: J. Pharm. Sci.
  doi: 10.1002/jps.24116
– volume: 111
  start-page: 381
  year: 2004
  ident: 10.1016/j.colsurfb.2022.112622_bib7
  article-title: In vitro andin vivo anti-tumoral effect of curcumin against melanoma cells
  publication-title: Int. J. Cancer
  doi: 10.1002/ijc.20160
– volume: 15
  year: 2020
  ident: 10.1016/j.colsurfb.2022.112622_bib9
  article-title: Evaluation of the articular cartilage in the knees of rats with induced arthritis treated with curcumin
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0230228
– volume: 193
  start-page: 34
  year: 2018
  ident: 10.1016/j.colsurfb.2022.112622_bib4
  article-title: Curcumin induces osteoblast differentiation through mild-endoplasmic reticulum stress-mediated such as BMP2 on osteoblast cells
  publication-title: Life Sci.
  doi: 10.1016/j.lfs.2017.12.008
– volume: 23
  start-page: 53
  year: 2015
  ident: 10.1016/j.colsurfb.2022.112622_bib8
  article-title: Injectable in situ forming chitosan-based hydrogels for curcumin delivery
  publication-title: Macromol. Res.
  doi: 10.1007/s13233-015-3006-4
– volume: 76
  start-page: 951
  year: 2017
  ident: 10.1016/j.colsurfb.2022.112622_bib16
  article-title: Silk fibroin/kappa-carrageenan composite scaffolds with enhanced biomimetic mineralization for bone regeneration applications
  publication-title: Mater. Sci. Eng. C.
  doi: 10.1016/j.msec.2017.03.166
– year: 2007
  ident: 10.1016/j.colsurfb.2022.112622_bib34
  article-title: Culture of osteogenic cells from human alveolar bone: a useful source of alkaline phosphatase
  publication-title: Cell Biol. Int.
  doi: 10.1016/j.cellbi.2007.06.002
– volume: 31
  start-page: 18
  year: 2020
  ident: 10.1016/j.colsurfb.2022.112622_bib27
  article-title: Skin permeation and thermodynamic features of curcumin-loaded liposomes
  publication-title: J. Mater. Sci. Mater. Med.
  doi: 10.1007/s10856-019-6351-6
– volume: 521
  start-page: 91
  year: 2012
  ident: 10.1016/j.colsurfb.2022.112622_bib40
  article-title: Effect of interparticle interactions on size determination of zirconia and silica based systems – a comparison of SAXS, DLS, BET, XRD and TEM
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2011.11.049
– volume: 121
  start-page: 27
  year: 2015
  ident: 10.1016/j.colsurfb.2022.112622_bib13
  article-title: Review for carrageenan-based pharmaceutical biomaterials: favourable physical features versus adverse biological effects
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2014.11.063
– volume: 13
  start-page: 2279
  year: 2012
  ident: 10.1016/j.colsurfb.2022.112622_bib2
  article-title: One-step synthesis of biodegradable curcumin-derived hydrogels as potential soft tissue fillers after breast cancer surgery
  publication-title: Biomacromolecules
  doi: 10.1021/bm300518e
– volume: 4
  start-page: 60334
  year: 2014
  ident: 10.1016/j.colsurfb.2022.112622_bib48
  article-title: From micron to nano-curcumin by sophorolipid co-processing: highly enhanced bioavailability, fluorescence, and anti-cancer efficacy
  publication-title: RSC Adv.
  doi: 10.1039/C4RA07300B
– volume: 93
  start-page: 299
  year: 2013
  ident: 10.1016/j.colsurfb.2022.112622_bib57
  article-title: The role of phosphatases in the initiation of skeletal mineralization
  publication-title: Calcif. Tissue Int.
  doi: 10.1007/s00223-012-9672-8
– volume: 5
  start-page: 19
  year: 2019
  ident: 10.1016/j.colsurfb.2022.112622_bib11
  article-title: Co-encapsulation of curcumin and doxorubicin in albumin nanoparticles blocks the adaptive treatment tolerance of cancer cells
  publication-title: Biophys. Rep.
  doi: 10.1007/s41048-018-0079-6
– year: 2016
  ident: 10.1016/j.colsurfb.2022.112622_bib33
  article-title: Bio-inspired synthesis of hybrid tube-like structures based on CaCO3 and type I-collagen
  publication-title: RSC Adv.
  doi: 10.1039/C6RA18984A
– volume: 733
  year: 2016
  ident: 10.1016/j.colsurfb.2022.112622_bib41
  article-title: A comparison of TEM and DLS methods to characterize size distribution of ceramic nanoparticles
  publication-title: J. Phys.: Conf. Ser.
– volume: 235
  start-page: 337
  year: 2016
  ident: 10.1016/j.colsurfb.2022.112622_bib49
  article-title: DLS and zeta potential – what they are and what they are not
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2016.06.017
– volume: 65
  start-page: 55
  year: 1983
  ident: 10.1016/j.colsurfb.2022.112622_bib30
  article-title: Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays
  publication-title: J. Immunol. Methods
  doi: 10.1016/0022-1759(83)90303-4
– volume: 9
  start-page: 747
  year: 2017
  ident: 10.1016/j.colsurfb.2022.112622_bib61
  article-title: Biophysical aspects of biomineralization
  publication-title: Biophys. Rev.
  doi: 10.1007/s12551-017-0315-1
– volume: 27
  start-page: 62
  year: 2016
  ident: 10.1016/j.colsurfb.2022.112622_bib62
  article-title: Multi and single walled carbon nanotubes: effects on cell responses and biomineralization of osteoblasts cultures
  publication-title: J. Mater. Sci.: Mater. Med.
– volume: 23
  start-page: 397
  year: 2002
  ident: 10.1016/j.colsurfb.2022.112622_bib52
  article-title: Three-dimensional reconstruction of confocal laser microscopy images to study the behaviour of osteoblastic cells grown on biomaterials
  publication-title: Biomaterials
  doi: 10.1016/S0142-9612(01)00118-1
– volume: 92
  start-page: 1265
  year: 2009
  ident: 10.1016/j.colsurfb.2022.112622_bib22
  article-title: Development of new chitosan/carrageenan nanoparticles for drug delivery applications
  publication-title: J. Biomed. Mater. Res. Part A
– volume: 40
  start-page: 1557
  year: 2014
  ident: 10.1016/j.colsurfb.2022.112622_bib1
  article-title: Preparation and characterization of curcumin thermosensitive hydrogels for intratumoral injection treatment
  publication-title: Drug Dev. Ind. Pharm.
  doi: 10.3109/03639045.2013.838579
– volume: 83
  start-page: 425
  year: 2019
  ident: 10.1016/j.colsurfb.2022.112622_bib15
  article-title: Osteoblast responses to injectable bone substitutes of kappa-carrageenan and nano hydroxyapatite
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2018.10.023
– volume: 93
  start-page: 299
  year: 2013
  ident: 10.1016/j.colsurfb.2022.112622_bib60
  article-title: The role of phosphatases in the initiation of skeletal mineralization
  publication-title: Calcif. Tissue Int.
  doi: 10.1007/s00223-012-9672-8
– volume: 160
  start-page: 184
  year: 2017
  ident: 10.1016/j.colsurfb.2022.112622_bib3
  article-title: κ-Carrageenan: an effective drug carrier to deliver curcumin in cancer cells and to induce apoptosis
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2016.12.049
– volume: 236
  start-page: 3906
  year: 2021
  ident: 10.1016/j.colsurfb.2022.112622_bib36
  article-title: Osteoporosis and osteoblasts cocultured with adipocytes inhibit osteoblast differentiation by downregulating histone acetylation
  publication-title: J. Cell. Physiol.
  doi: 10.1002/jcp.30131
– ident: 10.1016/j.colsurfb.2022.112622_bib43
  doi: 10.1002/cbin.10459
– volume: 89
  start-page: 282
  year: 2012
  ident: 10.1016/j.colsurfb.2022.112622_bib23
  article-title: Chitosan/carrageenan nanoparticles: effect of cross-linking with tripolyphosphate and charge ratios
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2012.03.010
– volume: 663
  start-page: 192
  year: 2019
  ident: 10.1016/j.colsurfb.2022.112622_bib58
  article-title: Is alkaline phosphatase biomimeticaly immobilized on titanium able to propagate the biomineralization process
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/j.abb.2019.01.014
– year: 2016
  ident: 10.1016/j.colsurfb.2022.112622_bib31
  article-title: Estrogen and phenol red free medium for osteoblast culture: study of the mineralization ability
  publication-title: Cytotechnology
  doi: 10.1007/s10616-015-9844-2
– volume: 105
  year: 2019
  ident: 10.1016/j.colsurfb.2022.112622_bib46
  article-title: In vitro evaluation of folate-modified PLGA nanoparticles containing paclitaxel for ovarian cancer therapy
  publication-title: Mater. Sci. Eng. C.
  doi: 10.1016/j.msec.2019.110038
– volume: 8
  start-page: 110
  year: 2018
  ident: 10.1016/j.colsurfb.2022.112622_bib5
  article-title: Effects of PCL, PEG and PLGA polymers on curcumin release from calcium phosphate matrix for in vitro and in vivo bone regeneration
  publication-title: Mater. Today Chem.
  doi: 10.1016/j.mtchem.2018.03.005
– volume: 98
  start-page: 347
  year: 2019
  ident: 10.1016/j.colsurfb.2022.112622_bib55
  article-title: Curcumin nanoparticles incorporated collagen-chitosan scaffold promotes cutaneous wound healing through regulation of TGF-β1/Smad7 gene expression
  publication-title: Mater. Sci. Eng.: C.
  doi: 10.1016/j.msec.2018.12.143
– volume: 18
  start-page: 1563
  year: 2017
  ident: 10.1016/j.colsurfb.2022.112622_bib21
  article-title: κ-Carrageenan enhances the biomineralization and osteogenic differentiation of electrospun polyhydroxybutyrate and polyhydroxybutyrate valerate fibers
  publication-title: Biomacromolecules
  doi: 10.1021/acs.biomac.7b00150
– volume: 693
  start-page: 482
  year: 2017
  ident: 10.1016/j.colsurfb.2022.112622_bib18
  article-title: A novel composite of collagen-hydroxyapatite/kappa-carrageenan
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2016.09.234
– volume: 9
  start-page: 550
  year: 2015
  ident: 10.1016/j.colsurfb.2022.112622_bib19
  article-title: Chondrogenic potential of injectable k-carrageenan hydrogel with encapsulated adipose stem cells for cartilage tissue-engineering applications
  publication-title: J. Tissue Eng. Regen. Med.
  doi: 10.1002/term.1683
– volume: 524
  start-page: 702
  year: 2020
  ident: 10.1016/j.colsurfb.2022.112622_bib59
  article-title: Tissue-nonspecific alkaline phosphatase promotes the osteogenic differentiation of osteoprogenitor cells
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2020.01.136
– volume: 5
  start-page: 19
  year: 2019
  ident: 10.1016/j.colsurfb.2022.112622_bib54
  article-title: Co-encapsulation of curcumin and doxorubicin in albumin nanoparticles blocks the adaptive treatment tolerance of cancer cells
  publication-title: Biophys. Rep.
  doi: 10.1007/s41048-018-0079-6
– volume: 116
  start-page: 2602
  year: 2016
  ident: 10.1016/j.colsurfb.2022.112622_bib39
  article-title: Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.5b00346
– volume: 103
  start-page: 1498
  year: 2015
  ident: 10.1016/j.colsurfb.2022.112622_bib20
  article-title: Iota-carrageenan/chitosan/gelatin scaffold for the osteogenic differentiation of adipose-derived MSCs in vitro
  publication-title: J. Biomed. Mater. Res. - Part B Appl. Biomater.
  doi: 10.1002/jbm.b.33339
– volume: 33
  start-page: 260
  year: 2021
  ident: 10.1016/j.colsurfb.2022.112622_bib10
  article-title: Biological impact of curcumin on the healing of tempromandibular joint in experimentally induced arthritis
  publication-title: J. Oral. Maxillofac. Surg. Med. Pathol.
  doi: 10.1016/j.ajoms.2020.12.001
– volume: 123
  start-page: 1248
  year: 2019
  ident: 10.1016/j.colsurfb.2022.112622_bib17
  article-title: Improved mechanical properties of k-carrageenan-based nanocomposite films reinforced with cellulose nanocrystals
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2018.12.030
– year: 2009
  ident: 10.1016/j.colsurfb.2022.112622_bib32
  article-title: Size effect of hydroxyapatite nanoparticles on proliferation and apoptosis of osteoblast-like cells
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2008.07.023
– volume: 198
  start-page: 385
  year: 2018
  ident: 10.1016/j.colsurfb.2022.112622_bib14
  article-title: Carrageenan based hydrogels for drug delivery, tissue engineering and wound healing
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2018.06.086
– volume: 3
  start-page: 953
  year: 2016
  ident: 10.1016/j.colsurfb.2022.112622_bib50
  article-title: Guidance to improve the scientific value of zeta-potential measurements in nanoEHS
  publication-title: Environ. Sci.: Nano
– volume: 95
  start-page: 178
  year: 2012
  ident: 10.1016/j.colsurfb.2022.112622_bib26
  article-title: Influence of the type of phospholipid head and of the conformation of the polyelectrolyte on the growth of calcium carbonate thin films on LB/LbL matrices
  publication-title: Colloids Surf. B, Biointerfaces
  doi: 10.1016/j.colsurfb.2012.02.040
– volume: 7
  start-page: 683
  year: 2009
  ident: 10.1016/j.colsurfb.2022.112622_bib51
  article-title: Distinct proliferative and differentiated stages of murine MC3T3-E1 cells in culture: an in vitro model of osteoblast development
  publication-title: J. Bone Miner. Res.
  doi: 10.1002/jbmr.5650070613
– volume: 20
  start-page: 5821
  year: 2014
  ident: 10.1016/j.colsurfb.2022.112622_bib56
  article-title: Role of bone-type tissue-nonspecific alkaline phosphatase and PHOSPO1 in vascular calcification
  publication-title: Curr. Pharm. Des.
  doi: 10.2174/1381612820666140212193011
– volume: 2
  start-page: 895
  year: 2013
  ident: 10.1016/j.colsurfb.2022.112622_bib47
  article-title: Photocrosslinkable Kappa -carrageenan hydrogels for tissue engineering applications
  publication-title: Adv. Healthc. Mater.
  doi: 10.1002/adhm.201200317
– year: 2004
  ident: 10.1016/j.colsurfb.2022.112622_bib35
  article-title: An Alizarin red-based assay of mineralization by adherent cells in culture: comparison with cetylpyridinium chloride extraction
  publication-title: Anal. Biochem.
  doi: 10.1016/j.ab.2004.02.002
– ident: 10.1016/j.colsurfb.2022.112622_bib44
  doi: 10.1002/smll.201401943
– volume: 231
  start-page: 204
  year: 2016
  ident: 10.1016/j.colsurfb.2022.112622_bib37
  article-title: Participation of TNF-α in inhibitory effects of adipocytes on osteoblast differentiation
  publication-title: J. Cell. Physiol.
  doi: 10.1002/jcp.25073
– volume: 135
  start-page: 207
  year: 2016
  ident: 10.1016/j.colsurfb.2022.112622_bib12
  article-title: Evaluation of kappa carrageenan as potential carrier for floating drug delivery system: effect of pore forming agents
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2015.08.051
– volume: 106
  start-page: 2524
  year: 2018
  ident: 10.1016/j.colsurfb.2022.112622_bib53
  article-title: Different compact hybrid Langmuir-Blodgett-film coatings modify biomineralization and the ability of osteoblasts to grow
  publication-title: J. Biomed. Mater. Res. Part B: Appl. Biomater.
  doi: 10.1002/jbm.b.34069
– volume: 84
  start-page: 1158
  year: 2011
  ident: 10.1016/j.colsurfb.2022.112622_bib42
  article-title: Preparation, characterization, in vitro drug release and biological studies of curcumin loaded dextran sulphate–chitosan nanoparticles
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2011.01.005
– volume: 58
  start-page: 1
  year: 2016
  ident: 10.1016/j.colsurfb.2022.112622_bib24
  article-title: Formation of carrageenan-CaCO 3 bioactive membranes
  publication-title: Mater. Sci. Eng.: C.
  doi: 10.1016/j.msec.2015.08.021
– volume: 136
  start-page: 48004
  year: 2019
  ident: 10.1016/j.colsurfb.2022.112622_bib25
  article-title: Organic–inorganic collagen/iota‐carrageenan/hydroxyapatite hybrid membranes are bioactive materials for bone regeneration
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.48004
– volume: 358
  start-page: 858
  year: 2019
  ident: 10.1016/j.colsurfb.2022.112622_bib29
  article-title: Collagen-supported CaCO3 cylindrical particles enhance Ti bioactivity
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2018.11.071
– volume: 139
  start-page: 1683
  year: 2016
  ident: 10.1016/j.colsurfb.2022.112622_bib6
  article-title: Curcumin: a new candidate for melanoma therapy?
  publication-title: Int. J. Cancer
  doi: 10.1002/ijc.30224
– volume: 96
  start-page: 347
  year: 2019
  ident: 10.1016/j.colsurfb.2022.112622_bib45
  article-title: Development, characterization and biological in vitro assays of paclitaxel-loaded PCL polymeric nanoparticles
  publication-title: Mater. Sci. Eng. C.
  doi: 10.1016/j.msec.2018.11.035
SSID ssj0002417
Score 2.4519906
Snippet The use of Curcumin (CR) as a bioactive molecule to prevent and treat inflammation- related diseases is widespread. However, the high hydrophobicity hinders...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 112622
SubjectTerms alkaline phosphatase
aqueous solutions
bioactive compounds
bioavailability
biodegradability
bone formation
confocal microscopy
cost effectiveness
curcumin
cytotoxicity
drugs
extracellular matrix
hydrophobicity
kappa carrageenan
mineralization
osteoblasts
phosphates
therapeutics
Title Curcumin-loaded carrageenan nanoparticles: Fabrication, characterization, and assessment of the effects on osteoblasts mineralization
URI https://www.proquest.com/docview/2681813407
https://www.proquest.com/docview/2718244027
Volume 217
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELZCOQAHBCmoLQ8ZCXFJN-wr6w23JrSqUMWplXpb-bViq2RdbbJIzYEb_5YfwdjeZ6gK5RArcdZey_OtPTP7zRih97AnMhFS5sgJC5xQTEMnjiVxhB-xiE1SGTNDkP0anV6EXy4nl4PBrw5rqVyzMd_cGlfyP1KFOpCrjpK9h2SbTqECvoN8oQQJQ_lPMp6XBS-XWe4sFBWgOXJaFLA-yBweWviAPdyhvZ1QVlQOOj2vvMnUvGnqTOLWJlVnTR9oKB-gWQImFAOFG34uM5OwumreVXK1M0JlwmZ_XpVFSqvFaGaKTOkcFba28UVrD1Jmzjwanelz2MxwzVv8zzxToxn9lrWcoqLcVHFGXK10_gN94SzM4cLjMrXNvJVlmFkX-nd7dNVorv05VNP9QTJNh2fq2g7QbMLwN4XZ6fpDwJSuCV-NY9MnYDPYEyjqNd63AaLVKq3Dpmw09B8biPVlXAEoFnp-2FjfYtw26Gfs3tpJG35jTZ27Sup-Et1PYvt5gB76hBhSwfhHS0gCXcoE99fj78Sz3z6evirV1ySMenT-DD2t7Bp8ZAH3HA1kPkS7Rzldq-UN_oAN09i8whmiR_P6lMEhetJJiLmLfm4hGncQjXuI_oQ7eD7E22g-xIA93GIZqxQDlnGFZaxy3MEy7mP5Bbo4OT6fnzrVQSEOD0i8dgRnNCDMY8ITE-HJKaMhiaRLaORPqZimjMUeTalOyh3E1NU2hyd1brt0GoOSG7xEO7nK5R7CYM2AzUKk8AIR8phQKtKAcRoRHrqMpftoUs95wqss-vowl0Vyt8z30cem3bXNI_PXFu9qkSYgE_0ej-ZSlavEj0DL9oLQJXdcAzonaO6uTw7ufedX6HH7YL1GO-uilG9A9V6ztwaxvwHDGeF3
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Curcumin-loaded+carrageenan+nanoparticles%3A+Fabrication%2C+characterization%2C+and+assessment+of+the+effects+on+osteoblasts+mineralization&rft.jtitle=Colloids+and+surfaces%2C+B%2C+Biointerfaces&rft.au=Nogueira%2C+Lucas+Fabr%C3%ADcio+Bahia&rft.au=Cruz%2C+Marcos+Ant%C3%B4nio+Eufr%C3%A1sio&rft.au=Tovani%2C+Camila+Bussola&rft.au=Lopes%2C+Helena+Bacha&rft.date=2022-09-01&rft.issn=0927-7765&rft.volume=217&rft.spage=112622&rft_id=info:doi/10.1016%2Fj.colsurfb.2022.112622&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_colsurfb_2022_112622
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0927-7765&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0927-7765&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0927-7765&client=summon