Techno-economic assessment of various hydrogen production methods – A review
[Display omitted] •Hydrogen has the potential to unlock 18% of global energy demand in 2050.•96% of H2 is produced from non-renewables and remaining 4% by water electrolysis.•In biomass gasification, feedstock cost demands 20 to 40% of H2 production cost. Hydrogen is a clean fuel that could provide...
Saved in:
Published in | Bioresource technology Vol. 319; p. 124175 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.01.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•Hydrogen has the potential to unlock 18% of global energy demand in 2050.•96% of H2 is produced from non-renewables and remaining 4% by water electrolysis.•In biomass gasification, feedstock cost demands 20 to 40% of H2 production cost.
Hydrogen is a clean fuel that could provide energy incentives and reduce environmental impacts, if production platform is carefully selected and optimized. In specific, techno-economic and sensitivity analysis of the existing hydrogen production platforms and processes is need for an hour to boost the future hydrogen economical aspects. This will have greater impact on future hydrogen production project designs and developing new approaches to reduce the overall production costs to make it as cheaper fuel. The sensitivity analysis of various hydrogen production process such as pyrolysis, gasification, steam reforming of natural gas, dark fermentation, photobiolysis, water electrolysis and renewable liquid reforming were reviewed to evaluate their merits and demerits along with cost-effectiveness. On economic view point, steam reforming of natural gas is efficient, low cost and best methods for hydrogen production. A future research is required to reduce energy input and trapping carbon dioxide emission using membrane models. |
---|---|
AbstractList | Hydrogen is a clean fuel that could provide energy incentives and reduce environmental impacts, if production platform is carefully selected and optimized. In specific, techno-economic and sensitivity analysis of the existing hydrogen production platforms and processes is need for an hour to boost the future hydrogen economical aspects. This will have greater impact on future hydrogen production project designs and developing new approaches to reduce the overall production costs to make it as cheaper fuel. The sensitivity analysis of various hydrogen production process such as pyrolysis, gasification, steam reforming of natural gas, dark fermentation, photobiolysis, water electrolysis and renewable liquid reforming were reviewed to evaluate their merits and demerits along with cost-effectiveness. On economic view point, steam reforming of natural gas is efficient, low cost and best methods for hydrogen production. A future research is required to reduce energy input and trapping carbon dioxide emission using membrane models.Hydrogen is a clean fuel that could provide energy incentives and reduce environmental impacts, if production platform is carefully selected and optimized. In specific, techno-economic and sensitivity analysis of the existing hydrogen production platforms and processes is need for an hour to boost the future hydrogen economical aspects. This will have greater impact on future hydrogen production project designs and developing new approaches to reduce the overall production costs to make it as cheaper fuel. The sensitivity analysis of various hydrogen production process such as pyrolysis, gasification, steam reforming of natural gas, dark fermentation, photobiolysis, water electrolysis and renewable liquid reforming were reviewed to evaluate their merits and demerits along with cost-effectiveness. On economic view point, steam reforming of natural gas is efficient, low cost and best methods for hydrogen production. A future research is required to reduce energy input and trapping carbon dioxide emission using membrane models. [Display omitted] •Hydrogen has the potential to unlock 18% of global energy demand in 2050.•96% of H2 is produced from non-renewables and remaining 4% by water electrolysis.•In biomass gasification, feedstock cost demands 20 to 40% of H2 production cost. Hydrogen is a clean fuel that could provide energy incentives and reduce environmental impacts, if production platform is carefully selected and optimized. In specific, techno-economic and sensitivity analysis of the existing hydrogen production platforms and processes is need for an hour to boost the future hydrogen economical aspects. This will have greater impact on future hydrogen production project designs and developing new approaches to reduce the overall production costs to make it as cheaper fuel. The sensitivity analysis of various hydrogen production process such as pyrolysis, gasification, steam reforming of natural gas, dark fermentation, photobiolysis, water electrolysis and renewable liquid reforming were reviewed to evaluate their merits and demerits along with cost-effectiveness. On economic view point, steam reforming of natural gas is efficient, low cost and best methods for hydrogen production. A future research is required to reduce energy input and trapping carbon dioxide emission using membrane models. Hydrogen is a clean fuel that could provide energy incentives and reduce environmental impacts, if production platform is carefully selected and optimized. In specific, techno-economic and sensitivity analysis of the existing hydrogen production platforms and processes is need for an hour to boost the future hydrogen economical aspects. This will have greater impact on future hydrogen production project designs and developing new approaches to reduce the overall production costs to make it as cheaper fuel. The sensitivity analysis of various hydrogen production process such as pyrolysis, gasification, steam reforming of natural gas, dark fermentation, photobiolysis, water electrolysis and renewable liquid reforming were reviewed to evaluate their merits and demerits along with cost-effectiveness. On economic view point, steam reforming of natural gas is efficient, low cost and best methods for hydrogen production. A future research is required to reduce energy input and trapping carbon dioxide emission using membrane models. |
ArticleNumber | 124175 |
Author | Dai-Viet, N. Vo Kavitha, S. Yukesh Kannah, R. Rajesh Banu, J. Preethi Parthiba Karthikeyan, O. Kumar, Gopalakrishnan |
Author_xml | – sequence: 1 givenname: R. surname: Yukesh Kannah fullname: Yukesh Kannah, R. organization: Department of Civil Engineering, Anna University Regional Campus Tirunelveli, India – sequence: 2 givenname: S. surname: Kavitha fullname: Kavitha, S. organization: Department of Civil Engineering, Anna University Regional Campus Tirunelveli, India – sequence: 3 surname: Preethi fullname: Preethi organization: Department of Civil Engineering, Anna University Regional Campus Tirunelveli, India – sequence: 4 givenname: O. surname: Parthiba Karthikeyan fullname: Parthiba Karthikeyan, O. organization: Department of Engineering Technology, College of Technology, University of Houston, Houston, TX - 77204, USA – sequence: 5 givenname: Gopalakrishnan surname: Kumar fullname: Kumar, Gopalakrishnan organization: School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea – sequence: 6 givenname: N. Vo surname: Dai-Viet fullname: Dai-Viet, N. Vo organization: Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, Ho Chi Minh City 755414, Viet Nam – sequence: 7 givenname: J. surname: Rajesh Banu fullname: Rajesh Banu, J. email: rajeshces@gmail.com organization: Department of Life Sciences, Central University of Tamilnadu, Tiruvarur, India |
BookMark | eNqFkMtKAzEUhoMoWC-vIFm6mZrLTDIBF0rxBqKb7kMmObUpnUSTVOnOd_ANfRKnVDduujpw-L-fc74jtB9iAITOKBlTQsXFYtz5mArY-ZgRNixZTWWzh0a0lbxiSop9NCJKkKptWH2IjnJeEEI4lWyEnqYDF2IFNobYe4tNzpBzD6HgOMPvJvm4yni-dim-QMCvKbqVLT4G3EOZR5fx9-cXvsYJ3j18nKCDmVlmOP2dx2h6ezOd3FePz3cPk-vHynLZlsp1iiorHIHGUpDWMN4ZZSR1jAnTGcMJ5YITNXMObA214pQb6oSRjegsP0bn29rhnLcV5KJ7ny0slybAcK5mTUNV29JG7I7WtaKyJZIP0ctt1KaYc4KZtr6Yza8lGb_UlOiNcL3Qf8L1RrjeCh9w8Q9_Tb43ab0bvNqCMBgbLCadrYdgwfkEtmgX_a6KHxDSor8 |
CitedBy_id | crossref_primary_10_1016_j_enconman_2025_119500 crossref_primary_10_1016_j_enconman_2024_119221 crossref_primary_10_1007_s13205_022_03288_y crossref_primary_10_1016_j_resconrec_2024_107972 crossref_primary_10_1016_j_ijhydene_2022_05_036 crossref_primary_10_1016_j_jpowsour_2021_229589 crossref_primary_10_1134_S0040601524020010 crossref_primary_10_3390_catal14120913 crossref_primary_10_1007_s11157_023_09648_1 crossref_primary_10_1016_j_biortech_2021_125055 crossref_primary_10_1016_j_ijhydene_2023_07_045 crossref_primary_10_1016_j_ijhydene_2022_04_233 crossref_primary_10_3390_app13158711 crossref_primary_10_1016_j_enconman_2022_116629 crossref_primary_10_1016_j_susmat_2024_e00972 crossref_primary_10_3390_hydrogen5030027 crossref_primary_10_1016_j_ijhydene_2024_08_256 crossref_primary_10_1016_j_ijhydene_2023_04_074 crossref_primary_10_1021_acs_langmuir_2c02435 crossref_primary_10_1016_j_ceramint_2024_11_161 crossref_primary_10_1016_j_mtchem_2024_102450 crossref_primary_10_1007_s40974_023_00280_x crossref_primary_10_1016_j_psep_2024_07_029 crossref_primary_10_1016_j_heliyon_2024_e41428 crossref_primary_10_1016_j_ijhydene_2023_02_113 crossref_primary_10_1021_acs_energyfuels_4c02755 crossref_primary_10_1016_j_psep_2024_04_080 crossref_primary_10_3390_en17010195 crossref_primary_10_3390_su152316371 crossref_primary_10_3390_su17010146 crossref_primary_10_1016_j_applthermaleng_2025_125578 crossref_primary_10_1016_j_ijhydene_2023_06_135 crossref_primary_10_1016_j_fuel_2022_123317 crossref_primary_10_1002_bbb_2713 crossref_primary_10_1002_cssc_202400513 crossref_primary_10_3390_recycling8040061 crossref_primary_10_3390_gases3010002 crossref_primary_10_1016_j_jece_2024_115069 crossref_primary_10_1021_acs_energyfuels_2c03079 crossref_primary_10_1039_D4TA00848K crossref_primary_10_1080_01614940_2023_2275093 crossref_primary_10_1021_acsami_3c03934 crossref_primary_10_1039_D2GC04932E crossref_primary_10_1002_slct_202401237 crossref_primary_10_1039_D4CY00151F crossref_primary_10_1039_D2SE00351A crossref_primary_10_1016_j_advmem_2021_100011 crossref_primary_10_1007_s11431_024_2730_7 crossref_primary_10_1016_j_ijhydene_2024_10_407 crossref_primary_10_1016_j_ijhydene_2022_05_128 crossref_primary_10_1021_acs_energyfuels_3c04026 crossref_primary_10_1016_j_est_2023_109207 crossref_primary_10_1016_j_ijhydene_2022_10_044 crossref_primary_10_1016_j_ijhydene_2023_01_205 crossref_primary_10_1016_j_ijhydene_2023_12_058 crossref_primary_10_1016_j_jenvman_2024_120611 crossref_primary_10_1080_15567249_2023_2254764 crossref_primary_10_1016_j_ijhydene_2023_03_059 crossref_primary_10_1002_er_7606 crossref_primary_10_1016_j_jclepro_2021_128846 crossref_primary_10_1021_acs_iecr_3c04486 crossref_primary_10_3390_nano13010053 crossref_primary_10_15251_DJNB_2023_184_1461 crossref_primary_10_3390_en13246495 crossref_primary_10_1016_j_ijhydene_2023_12_186 crossref_primary_10_1016_j_biortech_2020_124573 crossref_primary_10_1016_j_jclepro_2024_143492 crossref_primary_10_1016_j_jenvman_2022_115239 crossref_primary_10_31613_ceramist_2023_26_3_07 crossref_primary_10_1007_s11356_024_34096_x crossref_primary_10_1016_j_apcatb_2022_121541 crossref_primary_10_1016_j_jclepro_2023_137991 crossref_primary_10_1016_j_rineng_2023_101456 crossref_primary_10_3390_su131911034 crossref_primary_10_1016_j_cattod_2022_10_010 crossref_primary_10_3390_app14146217 crossref_primary_10_1007_s11090_022_10282_y crossref_primary_10_1016_j_fuel_2023_128474 crossref_primary_10_1039_D2TA06913J crossref_primary_10_1002_anie_202317864 crossref_primary_10_1016_j_ijhydene_2023_11_069 crossref_primary_10_1002_ese3_1723 crossref_primary_10_1039_D2NJ05170B crossref_primary_10_3390_en15134741 crossref_primary_10_1016_j_egyai_2023_100264 crossref_primary_10_1007_s12155_023_10704_5 crossref_primary_10_3390_en15249329 crossref_primary_10_3390_nano13182609 crossref_primary_10_1039_D4TA00224E crossref_primary_10_1016_j_enpol_2023_113974 crossref_primary_10_1021_acsomega_4c01338 crossref_primary_10_1021_acsomega_2c06188 crossref_primary_10_1080_17597269_2025_2455813 crossref_primary_10_1016_j_renene_2024_121382 crossref_primary_10_1016_j_ijhydene_2023_08_157 crossref_primary_10_1177_0734242X211010364 crossref_primary_10_1039_D3EE02283H crossref_primary_10_1016_j_enconman_2025_119530 crossref_primary_10_1016_j_biortech_2021_126596 crossref_primary_10_3389_frsus_2022_943145 crossref_primary_10_1016_j_biortech_2021_125024 crossref_primary_10_1016_j_ijhydene_2023_07_133 crossref_primary_10_1016_j_enconman_2023_117875 crossref_primary_10_3390_app11041616 crossref_primary_10_1007_s11356_024_35212_7 crossref_primary_10_1016_j_biortech_2020_124304 crossref_primary_10_1016_j_spc_2022_12_021 crossref_primary_10_1016_j_apenergy_2023_120850 crossref_primary_10_1039_D1SE01870A crossref_primary_10_1063_5_0188819 crossref_primary_10_1002_ceat_202300330 crossref_primary_10_1016_j_ijhydene_2023_08_286 crossref_primary_10_1021_acs_energyfuels_2c01776 crossref_primary_10_1016_j_mtener_2024_101754 crossref_primary_10_1021_acs_energyfuels_1c02294 crossref_primary_10_3390_catal11050547 crossref_primary_10_1016_j_energy_2024_130477 crossref_primary_10_1016_j_envres_2024_119028 crossref_primary_10_1016_j_jclepro_2023_138141 crossref_primary_10_1016_j_cej_2025_159291 crossref_primary_10_1016_j_ijhydene_2022_06_137 crossref_primary_10_1002_cnma_202200422 crossref_primary_10_3390_en16093948 crossref_primary_10_1016_j_ijhydene_2024_04_208 crossref_primary_10_3390_su16198659 crossref_primary_10_1016_j_apcatb_2023_123537 crossref_primary_10_1016_j_biopha_2023_115807 crossref_primary_10_1016_j_energy_2021_121793 crossref_primary_10_1007_s42114_023_00815_0 crossref_primary_10_1016_j_tibtech_2021_12_007 crossref_primary_10_2139_ssrn_4075574 crossref_primary_10_3389_fenrg_2021_646057 crossref_primary_10_1016_j_jics_2025_101570 crossref_primary_10_1016_j_ijhydene_2022_03_199 crossref_primary_10_1016_j_ijhydene_2022_12_119 crossref_primary_10_1016_j_ijhydene_2023_11_196 crossref_primary_10_1016_j_ijhydene_2022_10_092 crossref_primary_10_1002_aenm_202201358 crossref_primary_10_1021_acs_inorgchem_4c01382 crossref_primary_10_3390_polym17060743 crossref_primary_10_1016_j_ijhydene_2021_09_142 crossref_primary_10_1016_j_rser_2021_111721 crossref_primary_10_1016_j_ijhydene_2022_07_172 crossref_primary_10_1016_j_fuel_2023_128925 crossref_primary_10_1039_D4TA02056A crossref_primary_10_1016_j_jma_2022_06_017 crossref_primary_10_1016_j_est_2023_109512 crossref_primary_10_3390_en16031141 crossref_primary_10_1039_D4SE00333K crossref_primary_10_1109_TIA_2021_3126691 crossref_primary_10_1016_j_biortech_2022_128203 crossref_primary_10_1016_j_clet_2025_100902 crossref_primary_10_1016_j_enconman_2021_114577 crossref_primary_10_1016_j_fuproc_2025_108210 crossref_primary_10_1016_j_techfore_2023_122574 crossref_primary_10_1088_1742_6596_2507_1_012012 crossref_primary_10_1016_j_energy_2023_127318 crossref_primary_10_1038_s41929_024_01248_8 crossref_primary_10_1016_j_catcom_2023_106601 crossref_primary_10_1016_j_jece_2024_113937 crossref_primary_10_1016_j_fuel_2023_129409 crossref_primary_10_3390_buildings14040945 crossref_primary_10_3390_en18030725 crossref_primary_10_1016_j_solener_2021_10_026 crossref_primary_10_1016_j_ijhydene_2023_02_074 crossref_primary_10_1155_2024_9930258 crossref_primary_10_1002_wene_527 crossref_primary_10_1016_j_enconman_2023_116983 crossref_primary_10_1016_j_scitotenv_2021_149648 crossref_primary_10_1016_j_ijhydene_2022_07_272 crossref_primary_10_1016_j_enconman_2021_114318 crossref_primary_10_1016_j_rser_2025_115544 crossref_primary_10_1016_j_seta_2022_102677 crossref_primary_10_1021_acssuschemeng_3c08236 crossref_primary_10_1016_j_jiec_2023_12_045 crossref_primary_10_1007_s13399_020_01127_9 crossref_primary_10_1016_j_xcrp_2024_102171 crossref_primary_10_1016_j_ijhydene_2023_07_204 crossref_primary_10_1002_sus2_75 crossref_primary_10_1016_j_ijhydene_2025_01_274 crossref_primary_10_1016_j_renene_2023_119243 crossref_primary_10_3390_designs8060117 crossref_primary_10_3389_fceng_2022_1072761 crossref_primary_10_1016_j_seta_2025_104202 crossref_primary_10_1134_S1023193524700290 crossref_primary_10_1016_j_biombioe_2025_107761 crossref_primary_10_1016_j_heliyon_2021_e06506 crossref_primary_10_1016_j_enconman_2023_117981 crossref_primary_10_1016_j_ijhydene_2024_05_211 crossref_primary_10_1016_j_ijhydene_2025_02_285 crossref_primary_10_1016_j_ijhydene_2023_07_300 crossref_primary_10_1016_j_rser_2021_111991 crossref_primary_10_1016_j_rser_2022_112646 crossref_primary_10_20517_energymater_2024_235 crossref_primary_10_1016_j_ijhydene_2021_11_089 crossref_primary_10_1002_smll_202302866 crossref_primary_10_1016_j_ecmx_2023_100511 crossref_primary_10_1016_j_jclepro_2022_135706 crossref_primary_10_1016_j_egyr_2024_03_008 crossref_primary_10_1016_j_ijhydene_2022_09_101 crossref_primary_10_1016_j_ijhydene_2024_03_172 crossref_primary_10_1002_bbb_2686 crossref_primary_10_1016_j_jclepro_2023_136956 crossref_primary_10_3390_su14159118 crossref_primary_10_1007_s10668_022_02234_5 crossref_primary_10_1016_j_ijhydene_2023_01_048 crossref_primary_10_3390_en17225653 crossref_primary_10_1007_s13369_022_07581_z crossref_primary_10_1016_j_ijhydene_2023_08_339 crossref_primary_10_1139_cjc_2023_0151 crossref_primary_10_1016_j_ijhydene_2023_05_288 crossref_primary_10_1021_acssuschemeng_1c04031 crossref_primary_10_1002_cctc_202400700 crossref_primary_10_1038_s43586_022_00097_8 crossref_primary_10_3390_fermentation8040165 crossref_primary_10_1002_ange_202317864 crossref_primary_10_1016_j_ijhydene_2022_11_014 crossref_primary_10_62184_in_jin010120241 crossref_primary_10_1080_15435075_2023_2244583 crossref_primary_10_2139_ssrn_4274802 crossref_primary_10_1002_ente_202201252 crossref_primary_10_1016_j_eti_2025_104165 crossref_primary_10_1016_j_ijhydene_2021_07_225 crossref_primary_10_3390_pr11071977 crossref_primary_10_1016_j_mtnano_2021_100156 crossref_primary_10_1016_j_ijhydene_2021_01_014 crossref_primary_10_3390_hydrogen3040034 crossref_primary_10_1016_j_ijhydene_2021_12_029 crossref_primary_10_1016_j_renene_2022_06_037 crossref_primary_10_1016_j_biortech_2022_128087 crossref_primary_10_1007_s12274_022_4448_6 crossref_primary_10_3390_fermentation8070325 crossref_primary_10_1039_D3NR01836A crossref_primary_10_1016_j_rechem_2025_102052 crossref_primary_10_3390_en15166064 crossref_primary_10_3390_catal15030280 crossref_primary_10_1016_j_jece_2024_112017 crossref_primary_10_1016_j_ijhydene_2022_08_209 crossref_primary_10_1016_j_ijhydene_2022_04_158 crossref_primary_10_1016_j_cej_2021_132278 crossref_primary_10_1016_j_ijhydene_2022_04_154 crossref_primary_10_1016_j_ijhydene_2022_01_189 crossref_primary_10_1021_acscatal_2c02923 crossref_primary_10_1016_j_ijhydene_2022_04_272 crossref_primary_10_1016_j_ijhydene_2021_08_055 crossref_primary_10_1016_j_ijhydene_2024_03_116 crossref_primary_10_1002_ente_202200439 crossref_primary_10_1016_j_biortech_2022_128074 crossref_primary_10_1016_j_seta_2023_103463 crossref_primary_10_1016_j_ijhydene_2022_02_094 crossref_primary_10_55930_jonas_1101384 crossref_primary_10_1016_j_biortech_2023_129221 crossref_primary_10_1016_j_fuel_2024_132624 crossref_primary_10_1016_j_scca_2023_100024 crossref_primary_10_1039_D3GC03297C crossref_primary_10_1016_j_energy_2022_123174 crossref_primary_10_1016_j_jece_2022_109076 crossref_primary_10_1016_j_ijhydene_2022_09_263 crossref_primary_10_1016_j_jgsce_2023_204918 crossref_primary_10_1016_j_enconman_2021_114523 crossref_primary_10_3390_catal12030322 crossref_primary_10_46632_rmc_3_2_7 crossref_primary_10_1016_j_solener_2022_11_001 crossref_primary_10_3390_membranes12020173 crossref_primary_10_1016_j_ijhydene_2023_05_216 crossref_primary_10_1039_D3TA04095J crossref_primary_10_1016_j_ceramint_2023_09_323 crossref_primary_10_1134_S0022476622090037 crossref_primary_10_3390_su14042189 crossref_primary_10_1016_j_ijft_2025_101154 crossref_primary_10_1016_j_enconman_2023_117262 crossref_primary_10_1016_j_ijhydene_2022_03_125 crossref_primary_10_3390_en16186542 crossref_primary_10_1016_j_enconman_2024_118514 crossref_primary_10_1002_er_8191 crossref_primary_10_1016_j_ijhydene_2023_09_111 crossref_primary_10_3390_polym15193906 crossref_primary_10_1016_j_ijhydene_2023_07_183 crossref_primary_10_1007_s10668_024_04798_w crossref_primary_10_3390_en16073017 crossref_primary_10_3390_bios12010028 crossref_primary_10_3390_su16010147 crossref_primary_10_1016_j_ijhydene_2022_04_010 crossref_primary_10_3390_en17010180 crossref_primary_10_1002_cctc_202301110 crossref_primary_10_1557_s43578_024_01475_6 crossref_primary_10_1016_j_biortech_2024_131164 crossref_primary_10_1007_s42524_022_0245_x crossref_primary_10_1051_e3sconf_202458905001 crossref_primary_10_1063_5_0183511 crossref_primary_10_3390_en14175558 crossref_primary_10_1016_j_enconman_2024_118764 crossref_primary_10_1016_j_ijhydene_2021_05_201 crossref_primary_10_1016_j_biortech_2021_126057 crossref_primary_10_1186_s13068_024_02573_7 crossref_primary_10_1039_D2CS00038E crossref_primary_10_1016_j_fuel_2023_127794 crossref_primary_10_1016_j_psep_2023_07_075 crossref_primary_10_1016_j_biortech_2022_126904 crossref_primary_10_1016_j_ijhydene_2022_06_096 crossref_primary_10_1016_j_energy_2022_125008 crossref_primary_10_3389_feart_2023_1268103 crossref_primary_10_1016_j_ijhydene_2022_04_027 crossref_primary_10_1021_acs_chemmater_1c01983 crossref_primary_10_1016_j_energy_2021_120853 crossref_primary_10_1016_j_ijhydene_2024_08_287 crossref_primary_10_1016_j_ijhydene_2023_06_271 crossref_primary_10_1039_D4YA00483C crossref_primary_10_3390_su151511501 |
Cites_doi | 10.1016/j.renene.2017.04.029 10.1016/j.ijhydene.2019.02.220 10.1039/C8SE00535D 10.3390/en11071777 10.1016/j.enconman.2016.09.087 10.1016/j.ijhydene.2014.05.035 10.1016/j.ijhydene.2011.03.066 10.1007/s12155-019-10046-1 10.1016/j.ijhydene.2018.01.113 10.1016/j.fbp.2013.09.001 10.7763/IJESD.2015.V6.617 10.1016/j.joule.2017.07.003 10.1039/C6CP05934A 10.1016/j.ijhydene.2007.04.039 10.1016/j.apcatb.2016.04.047 10.1016/j.enconman.2010.10.023 10.1016/j.copbio.2017.12.024 10.1016/j.ijhydene.2018.07.201 10.1016/j.ijhydene.2007.09.028 10.1016/j.renene.2017.04.060 10.1016/j.ijhydene.2009.10.043 10.1039/C8EE01157E 10.1016/j.biortech.2016.03.124 10.1016/j.copbio.2011.04.022 10.1016/j.ijhydene.2012.04.109 10.15376/biores.12.3.4830-4853 10.1016/j.ijhydene.2014.01.151 10.1016/j.ijhydene.2019.05.092 10.1016/j.fuproc.2005.11.003 10.3390/pr7050308 10.1016/j.ijhydene.2007.07.015 10.1016/j.enconman.2018.03.089 10.1016/j.apenergy.2015.01.045 10.1016/j.biortech.2015.11.072 10.1016/j.ijhydene.2016.08.219 10.1016/j.ijhydene.2019.04.151 10.1016/j.enconman.2019.112108 10.1016/j.egypro.2016.07.155 10.1016/j.ijhydene.2010.04.035 10.1016/j.biortech.2016.09.055 10.3389/fenrg.2017.00001 10.1016/j.ijhydene.2015.07.080 10.1016/S1872-2067(17)62949-8 10.1016/j.fuel.2014.02.077 10.1016/j.enconman.2017.05.059 10.1016/j.ijhydene.2016.07.157 10.1016/j.biortech.2012.10.125 10.3390/ijms16048266 10.1016/j.ijhydene.2019.06.044 10.1002/wene.286 10.1016/j.biortech.2018.03.016 10.1016/j.rser.2018.05.009 10.1016/j.jclepro.2016.04.055 10.1016/j.ijhydene.2009.02.067 10.1038/nchem.1634 10.1016/j.ijhydene.2016.09.047 10.1002/fuce.201700225 10.1016/j.fuproc.2008.01.011 10.3390/app6080223 10.1016/j.rser.2016.09.044 10.1016/j.ijhydene.2010.11.051 10.1016/j.ijhydene.2016.03.057 10.1016/j.ijhydene.2019.05.202 10.1016/j.pecs.2009.11.002 10.1016/j.ijhydene.2016.08.084 10.1002/bbb.1980 10.1016/S0926-860X(00)00440-3 10.1016/j.rser.2013.01.051 10.1016/j.ijhydene.2020.02.062 10.1016/j.biortech.2014.02.073 10.1016/j.egypro.2016.11.102 10.1016/j.ijhydene.2010.08.073 10.1002/ente.201600645 10.1016/j.ijhydene.2019.04.063 10.1016/j.biortech.2017.08.021 10.1016/j.jclepro.2017.12.130 10.1016/j.ijhydene.2012.05.043 10.1016/j.renene.2007.11.002 10.1016/j.jechem.2016.09.001 10.1016/j.ijhydene.2019.06.182 10.3390/en12030494 10.1016/j.ijhydene.2016.11.172 10.1016/j.biortech.2018.08.050 10.1016/j.ijhydene.2016.04.176 10.1016/j.biombioe.2013.01.013 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd Copyright © 2020 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright © 2020 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION 7X8 7S9 L.6 |
DOI | 10.1016/j.biortech.2020.124175 |
DatabaseName | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Agriculture |
EISSN | 1873-2976 |
ExternalDocumentID | 10_1016_j_biortech_2020_124175 S0960852420314498 |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AAAJQ AABNK AABVA AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AARJD AARKO AATLK AAXUO ABFNM ABFYP ABGRD ABGSF ABJNI ABLST ABMAC ABNUV ABUDA ABXDB ABYKQ ACDAQ ACGFS ACIUM ACRLP ADBBV ADEWK ADEZE ADMUD ADQTV ADUVX AEBSH AEHWI AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGEKW AGHFR AGRDE AGUBO AGYEJ AHEUO AHHHB AHIDL AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLECG BLXMC CBWCG CJTIS CS3 DOVZS DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMC HVGLF HZ~ IHE J1W JARJE KCYFY KOM LUGTX LW9 LY6 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SAB SAC SDF SDG SDP SEN SES SEW SPC SPCBC SSA SSG SSI SSJ SSR SSU SSZ T5K VH1 WUQ Y6R ~02 ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c378t-db919c6d0e5c1e7ca23ba9a71d226abaa30136309fddec4e49313a1d6a756bc3 |
IEDL.DBID | .~1 |
ISSN | 0960-8524 1873-2976 |
IngestDate | Thu Jul 10 22:22:40 EDT 2025 Fri Jul 11 09:29:37 EDT 2025 Tue Jul 01 03:18:48 EDT 2025 Thu Apr 24 23:12:08 EDT 2025 Fri Feb 23 02:49:09 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Techno-economics Steam reforming electrolysis Sensitivity analysis Hydrogen Dark fermentation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c378t-db919c6d0e5c1e7ca23ba9a71d226abaa30136309fddec4e49313a1d6a756bc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
PQID | 2449178073 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2551988156 proquest_miscellaneous_2449178073 crossref_citationtrail_10_1016_j_biortech_2020_124175 crossref_primary_10_1016_j_biortech_2020_124175 elsevier_sciencedirect_doi_10_1016_j_biortech_2020_124175 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2021 2021-01-00 20210101 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: January 2021 |
PublicationDecade | 2020 |
PublicationTitle | Bioresource technology |
PublicationYear | 2021 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Gray, Tomlinson (b0185) 2002; 31 Aslam, Ahmad, Yasin, Khan, Shahid, Hossain, Khan, Jamil, Rafiq, Bilad, Kim, Kumar (b0025) 2018; 269 Kumar, Kannah, Kumar, Sivashanmugam, Banu (b0290) 2020; 301 Bahzad, Shah, Dowell, Boot-Handford, Soltani, Ho, Fennell (b0035) 2019; 44 Ghimire, Frunzo, Pirozzi, Trably, Escudie, Lens, Esposito (b0170) 2015; 144 Song, Ozkan (b0465) 2010; 35 Cormos, Cormos (b0120) 2017; 42 Argun, Gokfiliz, Karapinar (b0015) 2017 Li, Liu, Chu, Chang, Hsu, Lin, Wu (b0310) 2012; 37 Choong, Chen, Du, Schreyer, Daniel Ong, Poh, Hong, Borgna (b0115) 2017; 19 Chandrasekhar, Lee, Lee (b0090) 2015; 16 Ren, Guo, Liu, Cao, Ding (b0405) 2011; 22 Hsu, Lin (b0215) 2016; 41 Rai, Singh (b0385) 2016; 41 Boudries (b0060) 2016; 93 Zeng, Zhang (b0520) 2010; 36 Soares, Confortin, Todero, Mayer, Mazutti (b0460) 2020 Han, Liu, Fang, Huang, Zhao, Li (b0200) 2016; 127 Lam, Leung, Lei, Lin (b0300) 2014; 92 Chandrasekhar, Venkata Mohan (b0095) 2014; 165 Carrero, Vizcaíno, Calles, García-Moreno (b0080) 2017; 26 Kumar, Shobana, Nagarajan, Lee, Lee, Lin, Chen, Chang (b0275) 2018; 50 Lee, Lee (b0305) 2008; 33 Sathyaprakasan, Kannan (b0425) 2015; 6 Kwak, Kim, Kang (b0295) 2010; 35 Arregi, Amutio, Lopez, Bilbao, Olazar (b0020) 2018; 165 Taner, Naqvi, Ozkaymak (b0475) 2019; 19 Khan, Ngo, Guo, Liu, Zhang, Guo, Chang, Nguyen, Wang (b0265) 2018; 129 Chang, Hsu, Lin, Hsiung (b0105) 2011; 36 Chi, Yu (b0110) 2018; 39 Wang, Zhang (b0500) 2017; 12 Bartels, Pate, Olson (b0050) 2010; 35 Show, Yan, Lee (b0445) 2019 Ruth (b0415) 2011 Ren, Zhao, Chen, Guo, Cao (b0400) 2016; 215 Dasgupta, Mondal, Wiltowski (b0135) 2008; 33 González, Román, Bragado, Calderón (b0180) 2008; 89 Moraes, Cozendey da Silva, Zotes, Mattos, Pizarro Borges, Farrauto, Noronha (b0345) 2019; 44 Sara, Enrico, Mauro, Andrea, Vincenzo (b0420) 2016; 101 Ramsden, Steward, Zuboy (b0390) 2009 Wang, Wang, Chen, Liu (b0505) 2014; 39 Staffell, Scamman, Velazquez Abad, Balcombe, Dodds, Ekins, Shah, Ward (b0470) 2019; 12 Han, Fang, Liu, Tang (b0190) 2016; 202 Balat, Balat (b0040) 2009; 34 Nguyen, Abdin, Holm, Mérida (b0360) 2019; 200 Schmitt, Apfelbacher, Jäger, Daschner, Stenzel, Hornung (b0430) 2019; 13 Badwal, Giddey, Munnings (b0030) 2018; 7 Kannah, Velu, Banu, Heimann, Karthikeyan (b0250) 2018 Matute, Yusta, Correas (b0335) 2019; 44 Thilakaratne, Wright, Brown (b0480) 2014; 128 Wang, Chen, Yang, Liu, Yang, Wang, Liang (b0495) 2017; 12 Hsu, Lin (b0210) 2016; 41 Mohammed, Salmiaton, Wan Azlina, Mohammad Amran, Fakhru’l-Razi, A. (b0340) 2011; 52 Chandrasekhar, Venkata Mohan (b0100) 2014; 39 Dewoolkar, Vaidya (b0140) 2017; 5 Ziazi, Mohammadi, Goudarzi (b0530) 2017 da Silva Veras, Mozer, da Costa Rubim, Messeder dos Santos, da Silva César (b0130) 2017; 42 Amos (b0010) 2004 Han, Yan, Gu, Shi, Tang, Li (b0205) 2016; 41 Thürer, Tomašević, Stevenson, Qu, Huisingh (b0485) 2018; 181 Ni, Leung, Leung, Sumathy (b0365) 2006; 87 Kuckshinrichs, Ketelaer, Koj (b0270) 2017; 5 Hydrogen Council (b0225) 2017 Basagiannis, Verykios (b0055) 2007; 32 Rothwell, Williams (b0410) 2006; 1 Xu, Wang, Solangi, Zameer, Shah (b0515) 2019; 7 Cai, de la Piscina, Gabrowska, Homs (b0075) 2013; 128 Nabgan, Tuan Abdullah, Mat, Nabgan, Gambo, Johari (b0355) 2016; 6 Nicita, Maggio, Andaloro, Squadrito (b0370) 2020; 45 Nikolaidis, Poullikkas (b0375) 2017; 67 Kavitha, Kannah, Gunasekaran, Kumar, Banu (b0260) 2020; 45 Nabgan, Abdullah, Mat, Nabgan, Jalil, Firmansyah, Triwahyono (b0350) 2017; 42 Sharma, Kaushik (b0440) 2017 Han, Hu, Li, Li, Tang (b0195) 2016; 221 Lv, Wu, Ma, Yuan (b0325) 2008; 33 Show, Lee, Tay, Lin, Chang (b0450) 2012 Liu, Lin, Man, Ren (b0320) 2019; 44 Garcia, French, Czernik, Chornet (b0165) 2000; 201 Cristóbal, Caldeira, Corrado, Sala (b0125) 2018; 259 Williams, Kornbluth, Erickson, Jenkins, Gildart (b0510) 2007 Gondal, Masood, Khan (b0175) 2018; 43 Kannah, Kavitha, Gunasekaran, Kumar, Banu, Zhen (b0235) 2020; 45 Ferrero, Santarelli (b0160) 2017; 148 Dinesh, Chauhan, Chakma (b0145) 2018; 92 Rashid, Rehman, Memon, Ur Rahman, Lee, Han (b0395) 2013; 22 Braga, Sodré, Santos, de Paula Marques, Bueno (b0065) 2016; 195 Esposito (b0155) 2017; 1 Porcu, Sollai, Marotto, Mureddu, Ferrara, Pettinau (b0380) 2019; 12 Zhang, Brown, Hu, Brown (b0525) 2013; 51 Kannah, Merrylin, Preethi, Gunasekaran, Kumar, Banu (b0245) 2019 Kumar, Oyedun, Kumar (b0285) 2019; 44 Chandrasekhar, Ahn (b0085) 2017; 244 Dou, Zhang, Song, Zhao, Jiang, He, Ruan, Chen, Xu (b0150) 2019; 3 Kalamaras, Efstathiou (b0230) 2013; 690627 Lima da Silva, Müller (b0315) 2011; 36 Touloupakis, Torzillo (b0490) 2019 Kumar, Sivagurunathan, Pugazhendhi, Thi, Zhen, Chandrasekhar, Kadier (b0280) 2017; 141 Bundhoo, Mohee (b0070) 2016 Karimi Alavijeh, Yaghmaei, Mardanpour (b0255) 2020; 13 Al Arni (b0005) 2018; 124 Shah, Valasai, Memon, Laghari, Jalbani, Strait (b0435) 2018; 11 Hydrogen Council (b0220) 2020 Simbeck (b0455) 2005 Kannah, Kavitha, Sivashanmugham, Kumar, Nguyen, Chang, Banu (b0240) 2019; 44 Mallouk (b0330) 2013; 5 Banu, Kavitha, Kannah, Bhosale, Kumar (b0045) 2020; 298 Xu (10.1016/j.biortech.2020.124175_b0515) 2019; 7 Thilakaratne (10.1016/j.biortech.2020.124175_b0480) 2014; 128 Argun (10.1016/j.biortech.2020.124175_b0015) 2017 Nabgan (10.1016/j.biortech.2020.124175_b0350) 2017; 42 Amos (10.1016/j.biortech.2020.124175_b0010) 2004 Rai (10.1016/j.biortech.2020.124175_b0385) 2016; 41 Liu (10.1016/j.biortech.2020.124175_b0320) 2019; 44 Sharma (10.1016/j.biortech.2020.124175_b0440) 2017 Hsu (10.1016/j.biortech.2020.124175_b0215) 2016; 41 Show (10.1016/j.biortech.2020.124175_b0450) 2012 Aslam (10.1016/j.biortech.2020.124175_b0025) 2018; 269 Nicita (10.1016/j.biortech.2020.124175_b0370) 2020; 45 Thürer (10.1016/j.biortech.2020.124175_b0485) 2018; 181 Balat (10.1016/j.biortech.2020.124175_b0040) 2009; 34 Kavitha (10.1016/j.biortech.2020.124175_b0260) 2020; 45 Han (10.1016/j.biortech.2020.124175_b0195) 2016; 221 Touloupakis (10.1016/j.biortech.2020.124175_b0490) 2019 Chandrasekhar (10.1016/j.biortech.2020.124175_b0100) 2014; 39 Moraes (10.1016/j.biortech.2020.124175_b0345) 2019; 44 Nabgan (10.1016/j.biortech.2020.124175_b0355) 2016; 6 Basagiannis (10.1016/j.biortech.2020.124175_b0055) 2007; 32 da Silva Veras (10.1016/j.biortech.2020.124175_b0130) 2017; 42 Hydrogen Council (10.1016/j.biortech.2020.124175_b0220) 2020 Han (10.1016/j.biortech.2020.124175_b0205) 2016; 41 Zeng (10.1016/j.biortech.2020.124175_b0520) 2010; 36 Dasgupta (10.1016/j.biortech.2020.124175_b0135) 2008; 33 Mallouk (10.1016/j.biortech.2020.124175_b0330) 2013; 5 González (10.1016/j.biortech.2020.124175_b0180) 2008; 89 Zhang (10.1016/j.biortech.2020.124175_b0525) 2013; 51 Kannah (10.1016/j.biortech.2020.124175_b0250) 2018 Han (10.1016/j.biortech.2020.124175_b0190) 2016; 202 Ren (10.1016/j.biortech.2020.124175_b0405) 2011; 22 Kumar (10.1016/j.biortech.2020.124175_b0275) 2018; 50 Choong (10.1016/j.biortech.2020.124175_b0115) 2017; 19 Ramsden (10.1016/j.biortech.2020.124175_b0390) 2009 Taner (10.1016/j.biortech.2020.124175_b0475) 2019; 19 Ren (10.1016/j.biortech.2020.124175_b0400) 2016; 215 Bahzad (10.1016/j.biortech.2020.124175_b0035) 2019; 44 Kannah (10.1016/j.biortech.2020.124175_b0240) 2019; 44 Chi (10.1016/j.biortech.2020.124175_b0110) 2018; 39 Soares (10.1016/j.biortech.2020.124175_b0460) 2020 Cristóbal (10.1016/j.biortech.2020.124175_b0125) 2018; 259 Khan (10.1016/j.biortech.2020.124175_b0265) 2018; 129 Lee (10.1016/j.biortech.2020.124175_b0305) 2008; 33 Chandrasekhar (10.1016/j.biortech.2020.124175_b0085) 2017; 244 Show (10.1016/j.biortech.2020.124175_b0445) 2019 Hydrogen Council (10.1016/j.biortech.2020.124175_b0225) 2017 Porcu (10.1016/j.biortech.2020.124175_b0380) 2019; 12 Williams (10.1016/j.biortech.2020.124175_b0510) 2007 Braga (10.1016/j.biortech.2020.124175_b0065) 2016; 195 Rothwell (10.1016/j.biortech.2020.124175_b0410) 2006; 1 Ziazi (10.1016/j.biortech.2020.124175_b0530) 2017 Badwal (10.1016/j.biortech.2020.124175_b0030) 2018; 7 Lv (10.1016/j.biortech.2020.124175_b0325) 2008; 33 Sara (10.1016/j.biortech.2020.124175_b0420) 2016; 101 Arregi (10.1016/j.biortech.2020.124175_b0020) 2018; 165 Shah (10.1016/j.biortech.2020.124175_b0435) 2018; 11 Ruth (10.1016/j.biortech.2020.124175_b0415) 2011 Song (10.1016/j.biortech.2020.124175_b0465) 2010; 35 Chandrasekhar (10.1016/j.biortech.2020.124175_b0090) 2015; 16 Dou (10.1016/j.biortech.2020.124175_b0150) 2019; 3 Kumar (10.1016/j.biortech.2020.124175_b0280) 2017; 141 Chandrasekhar (10.1016/j.biortech.2020.124175_b0095) 2014; 165 Carrero (10.1016/j.biortech.2020.124175_b0080) 2017; 26 Chang (10.1016/j.biortech.2020.124175_b0105) 2011; 36 Han (10.1016/j.biortech.2020.124175_b0200) 2016; 127 Nikolaidis (10.1016/j.biortech.2020.124175_b0375) 2017; 67 Garcia (10.1016/j.biortech.2020.124175_b0165) 2000; 201 Lam (10.1016/j.biortech.2020.124175_b0300) 2014; 92 Kalamaras (10.1016/j.biortech.2020.124175_b0230) 2013; 690627 Bartels (10.1016/j.biortech.2020.124175_b0050) 2010; 35 Cormos (10.1016/j.biortech.2020.124175_b0120) 2017; 42 Ferrero (10.1016/j.biortech.2020.124175_b0160) 2017; 148 Wang (10.1016/j.biortech.2020.124175_b0505) 2014; 39 Kannah (10.1016/j.biortech.2020.124175_b0245) 2019 Ghimire (10.1016/j.biortech.2020.124175_b0170) 2015; 144 Kumar (10.1016/j.biortech.2020.124175_b0290) 2020; 301 Sathyaprakasan (10.1016/j.biortech.2020.124175_b0425) 2015; 6 Wang (10.1016/j.biortech.2020.124175_b0495) 2017; 12 Staffell (10.1016/j.biortech.2020.124175_b0470) 2019; 12 Ni (10.1016/j.biortech.2020.124175_b0365) 2006; 87 Dewoolkar (10.1016/j.biortech.2020.124175_b0140) 2017; 5 Nguyen (10.1016/j.biortech.2020.124175_b0360) 2019; 200 Al Arni (10.1016/j.biortech.2020.124175_b0005) 2018; 124 Lima da Silva (10.1016/j.biortech.2020.124175_b0315) 2011; 36 Cai (10.1016/j.biortech.2020.124175_b0075) 2013; 128 Karimi Alavijeh (10.1016/j.biortech.2020.124175_b0255) 2020; 13 Matute (10.1016/j.biortech.2020.124175_b0335) 2019; 44 Bundhoo (10.1016/j.biortech.2020.124175_b0070) 2016 Kannah (10.1016/j.biortech.2020.124175_b0235) 2020; 45 Rashid (10.1016/j.biortech.2020.124175_b0395) 2013; 22 Boudries (10.1016/j.biortech.2020.124175_b0060) 2016; 93 Simbeck (10.1016/j.biortech.2020.124175_b0455) 2005 Li (10.1016/j.biortech.2020.124175_b0310) 2012; 37 Gondal (10.1016/j.biortech.2020.124175_b0175) 2018; 43 Dinesh (10.1016/j.biortech.2020.124175_b0145) 2018; 92 Gray (10.1016/j.biortech.2020.124175_b0185) 2002; 31 Schmitt (10.1016/j.biortech.2020.124175_b0430) 2019; 13 Kuckshinrichs (10.1016/j.biortech.2020.124175_b0270) 2017; 5 Hsu (10.1016/j.biortech.2020.124175_b0210) 2016; 41 Wang (10.1016/j.biortech.2020.124175_b0500) 2017; 12 Banu (10.1016/j.biortech.2020.124175_b0045) 2020; 298 Mohammed (10.1016/j.biortech.2020.124175_b0340) 2011; 52 Kwak (10.1016/j.biortech.2020.124175_b0295) 2010; 35 Esposito (10.1016/j.biortech.2020.124175_b0155) 2017; 1 Kumar (10.1016/j.biortech.2020.124175_b0285) 2019; 44 |
References_xml | – volume: 200 year: 2019 ident: b0360 article-title: Grid-connected hydrogen production via large-scale water electrolysis publication-title: Energy Convers. Manag. – start-page: 1 year: 2020 end-page: 88 ident: b0220 article-title: Path to Hydrogen Competitiveness A Cost Perspective – volume: 44 start-page: 19676 year: 2019 end-page: 19697 ident: b0320 article-title: Recent developments of hydrogen production from sewage sludge by biological and thermochemical process publication-title: Int. J. Hydrogen Energy – start-page: 1059 year: 2005 end-page: 1066 ident: b0455 article-title: Hydrogen costs with CO publication-title: Greenhouse Gas Control Technologies – start-page: 511 year: 2019 end-page: 525 ident: b0490 article-title: Photobiological hydrogen production publication-title: Solar Hydrogen Production Processes, Systems and Technologies – volume: 41 start-page: 21573 year: 2016 end-page: 21582 ident: b0210 article-title: Using social network analysis to examine the technological evolution of fermentative hydrogen production from biomass publication-title: Int. J. Hydrogen Energy – volume: 6 start-page: 223 year: 2016 ident: b0355 article-title: Evaluation of reaction parameters of the phenol steam reforming over Ni/Co on ZrO2 using the full factorial experimental design publication-title: Appl. Sci. – volume: 13 start-page: 463 year: 2020 end-page: 476 ident: b0255 article-title: Assessment of global potential of biohydrogen production from agricultural residues and its application in nitrogen fertilizer production publication-title: Bioenergy Res. – start-page: 117 year: 2020 ident: b0460 article-title: Dark fermentative biohydrogen production from lignocellulosic biomass: Technological challenges and future prospects – volume: 22 start-page: 571 year: 2013 end-page: 579 ident: b0395 article-title: Current status, barriers and developments in biohydrogen production by microalgae publication-title: Renew. Sustain. Energy Rev. – start-page: 1 year: 2017 end-page: 13 ident: b0530 article-title: Techno-economic assessment of utilizing wind energy for hydrogen production through electrolysis publication-title: ASME 2017 Power Conference Joint With ICOPE-17 Collocated with the ASME 2017 11 – volume: 215 start-page: 92 year: 2016 end-page: 99 ident: b0400 article-title: A review on bioconversion of lignocellulosic biomass to H2: Key challenges and new insights publication-title: Bioresour. Technol. – volume: 36 start-page: 307 year: 2010 end-page: 326 ident: b0520 article-title: Recent progress in alkaline water electrolysis for hydrogen production and applications publication-title: Prog. Energy Combust. Sci. – volume: 124 start-page: 197 year: 2018 end-page: 201 ident: b0005 article-title: Comparison of slow and fast pyrolysis for converting biomass into fuel publication-title: Renew. Energy – volume: 269 start-page: 452 year: 2018 end-page: 464 ident: b0025 article-title: Anaerobic membrane bioreactors for biohydrogen production: Recent developments, challenges and perspectives publication-title: Bioresour. Technol. – volume: 165 start-page: 372 year: 2014 end-page: 382 ident: b0095 article-title: Induced catabolic bio-electrohydrolysis of complex food waste by regulating external resistance for enhancing acidogenic biohydrogen production publication-title: Bioresour. Technol. – volume: 39 start-page: 390 year: 2018 end-page: 394 ident: b0110 article-title: Water electrolysis based on renewable energy for hydrogen production publication-title: Chinese J. Catal. – volume: 690627 year: 2013 ident: b0230 article-title: Hydrogen production technologies: current state and future developments publication-title: Conf. Papers in Sci. – volume: 67 start-page: 597 year: 2017 end-page: 611 ident: b0375 article-title: A comparative overview of hydrogen production processes publication-title: Renew. Sustain. Energy Rev. – volume: 22 start-page: 365 year: 2011 end-page: 370 ident: b0405 article-title: Biological hydrogen production by dark fermentation: Challenges and prospects towards scaled-up production publication-title: Curr. Opin. Biotechnol. – volume: 19 start-page: 19 year: 2019 end-page: 26 ident: b0475 article-title: Techno-economic analysis of a more efficient hydrogen generation system prototype: a case study of PEM electrolyzer with Cr-C coated SS304 bipolar plates publication-title: Fuel Cells – volume: 7 start-page: 308 year: 2019 ident: b0515 article-title: Off-grid solar PV power generation system in Sindh, Pakistan: a techno-economic feasibility analysis publication-title: Processes – volume: 13 start-page: 822 year: 2019 end-page: 837 ident: b0430 article-title: Thermo-chemical conversion of biomass and upgrading to biofuel: The Thermo-Catalytic Reforming process–A review. Biofuels publication-title: Bioprod. Biorefining – volume: 93 start-page: 96 year: 2016 end-page: 101 ident: b0060 article-title: Techno-economic assessment of solar hydrogen production using CPV-electrolysis systems publication-title: Energy Proc. – volume: 50 start-page: 136 year: 2018 end-page: 145 ident: b0275 article-title: Biomass based hydrogen production by dark fermentation—recent trends and opportunities for greener processes publication-title: Curr. Opin. Biotechnol. – volume: 5 start-page: 362 year: 2013 end-page: 363 ident: b0330 article-title: Water electrolysis: Divide and conquer publication-title: Nat. Chem. – volume: 11 start-page: 1777 year: 2018 ident: b0435 article-title: Techno-economic analysis of solar pv electricity supply to rural areas of Balochistan publication-title: Pakistan. Energies – volume: 51 start-page: 99 year: 2013 end-page: 108 ident: b0525 article-title: Comparative techno-economic analysis of biohydrogen production via bio-oil gasification and bio-oil reforming publication-title: Biomass Bioenergy – volume: 39 start-page: 11411 year: 2014 end-page: 11422 ident: b0100 article-title: Bio-electrohydrolysis as a pretreatment strategy to catabolize complex food waste in closed circuitry: Function of electron flux to enhance acidogenic biohydrogen production publication-title: Int. J. Hydrogen Energy – volume: 33 start-page: 303 year: 2008 end-page: 311 ident: b0135 article-title: Robust, high reactivity and enhanced capacity carbon dioxide removal agents for hydrogen production applications publication-title: Int. J. Hydrogen Energy – volume: 35 start-page: 8371 year: 2010 end-page: 8384 ident: b0050 article-title: An economic survey of hydrogen production from conventional and alternative energy sources publication-title: Int. J. Hydrogen Energy – volume: 259 start-page: 244 year: 2018 end-page: 252 ident: b0125 article-title: Techno-economic and profitability analysis of food waste biorefineries at European level publication-title: Bioresour. Technol. – volume: 181 start-page: 608 year: 2018 end-page: 617 ident: b0485 article-title: A systematic review of the literature on integrating sustainability into engineering curricula publication-title: J. Clean. Prod. – volume: 45 start-page: 11395 year: 2020 end-page: 11408 ident: b0370 article-title: Green hydrogen as feedstock: Financial analysis of a photovoltaic-powered electrolysis plant publication-title: Int. J. Hydrogen Energy – volume: 221 start-page: 318 year: 2016 end-page: 323 ident: b0195 article-title: Biohydrogen production from waste bread in a continuous stirred tank reactor: A techno-economic analysis publication-title: Bioresour. Technol. – volume: 129 start-page: 754 year: 2018 end-page: 768 ident: b0265 article-title: Biohydrogen production from anaerobic digestion and its potential as renewable energy publication-title: Renew. Energy – volume: 7 year: 2018 ident: b0030 article-title: Emerging technologies, markets and commercialization of solid-electrolytic hydrogen production publication-title: Wiley Interdiscip. Rev. Energy Environ. – start-page: 1 year: 2017 end-page: 80 ident: b0225 article-title: Hydrogen Scaling Up, A Sustainable Pathway For The Global Energy Transition – volume: 45 start-page: 5890 year: 2020 end-page: 5899 ident: b0260 article-title: Rhamnolipid induced deagglomeration of anaerobic granular biosolids for energetically feasible ultrasonic homogenization and profitable biohydrogen publication-title: Int. J. Hydrogen Energy – volume: 12 start-page: 463 year: 2019 end-page: 491 ident: b0470 article-title: The role of hydrogen and fuel cells in the global energy system publication-title: Energy Environ. Sci. – volume: 44 start-page: 10384 year: 2019 end-page: 10397 ident: b0285 article-title: A comparative analysis of hydrogen production from the thermochemical conversion of algal biomass publication-title: Int. J. Hydrogen Energy – volume: 195 start-page: 16 year: 2016 end-page: 28 ident: b0065 article-title: Steam reforming of acetone over Ni- and Co-based catalysts: Effect of the composition of reactants and catalysts on reaction pathways publication-title: Appl. Catal. B Environ. – volume: 16 start-page: 8266 year: 2015 end-page: 8293 ident: b0090 article-title: Biohydrogen production: strategies to improve process efficiency through microbial routes publication-title: Int. J. Mol. Sci. – volume: 36 start-page: 2057 year: 2011 end-page: 2075 ident: b0315 article-title: Hydrogen production by sorption enhanced steam reforming of oxygenated hydrocarbons (ethanol, glycerol, n-butanol and methanol): Thermodynamic modelling publication-title: Int. J. Hydrogen Energy – volume: 34 start-page: 3589 year: 2009 end-page: 3603 ident: b0040 article-title: Political, economic and environmental impacts of biomass-based hydrogen publication-title: Int. J. Hydrogen Energy – volume: 165 start-page: 696 year: 2018 end-page: 719 ident: b0020 article-title: Evaluation of thermochemical routes for hydrogen production from biomass: A review publication-title: Energy Convers. Manag. – volume: 52 start-page: 1555 year: 2011 end-page: 1561 ident: b0340 article-title: Air gasification of empty fruit bunch for hydrogen-rich gas production in a fluidized-bed reactor publication-title: Energy Convers. Manag. – volume: 44 start-page: 2203 year: 2019 end-page: 2215 ident: b0240 article-title: Biohydrogen production from rice straw: Effect of combinative pretreatment, modelling assessment and energy balance consideration publication-title: Int. J. Hydrogen Energy – start-page: 319 year: 2018 end-page: 342 ident: b0250 article-title: Food waste valorization by microalgae publication-title: Waste to Wealth – volume: 42 start-page: 8975 year: 2017 end-page: 8985 ident: b0350 article-title: Production of hydrogen via steam reforming of acetic acid over Ni and Co supported on La2O3 catalyst publication-title: Int. J. Hydrogen Energy – volume: 39 start-page: 5644 year: 2014 end-page: 5652 ident: b0505 article-title: Co–Ni bimetal catalyst supported on perovskite-type oxide for steam reforming of ethanol to produce hydrogen publication-title: Int. J. Hydrogen Energy – volume: 19 start-page: 4199 year: 2017 end-page: 4207 ident: b0115 article-title: The role of metal–support interaction for CO-free hydrogen from low temperature ethanol steam reforming on Rh–Fe catalysts publication-title: PCCP – volume: 41 start-page: 22619 year: 2016 end-page: 22625 ident: b0205 article-title: Techno-economic analysis of a novel bioprocess combining solid state fermentation and dark fermentation for H publication-title: Int. J. Hydrogen Energy – volume: 87 start-page: 461 year: 2006 end-page: 472 ident: b0365 article-title: An overview of hydrogen production from biomass publication-title: Fuel Process. Technol. – volume: 92 start-page: 807 year: 2018 end-page: 822 ident: b0145 article-title: Influence and strategies for enhanced biohydrogen production from food waste publication-title: Renew. Sustain. Energy Rev. – volume: 298 year: 2020 ident: b0045 article-title: Industrial wastewater to biohydrogen: Possibilities towards successful biorefinery route publication-title: Bioresour. Technol. – volume: 41 start-page: 4489 year: 2016 end-page: 4497 ident: b0215 article-title: Commercialization model of hydrogen production technology in Taiwan: Dark fermentation technology applications publication-title: Int. J. Hydrogen Energy – volume: 301 year: 2020 ident: b0290 article-title: A novel energetically efficient combinative microwave pretreatment for achieving profitable hydrogen production from marine macro algae (Ulva reticulate) publication-title: Bioresour. Technol. – volume: 32 start-page: 3343 year: 2007 end-page: 3355 ident: b0055 article-title: Catalytic steam reforming of acetic acid for hydrogen production publication-title: Int. J. Hydrogen Energy – volume: 43 start-page: 6011 year: 2018 end-page: 6039 ident: b0175 article-title: Green hydrogen production potential for developing a hydrogen economy in Pakistan publication-title: Int. J. Hydrogen Energy – volume: 1 start-page: 651 year: 2017 end-page: 658 ident: b0155 article-title: Membraneless electrolyzers for low-cost hydrogen production in a renewable energy future publication-title: Joule – start-page: 6713 year: 2016 end-page: 6733 ident: b0070 article-title: Inhibition of dark fermentative bio-hydrogen production: A review, in publication-title: Int. J. Hydrogen Energy. Elsevier Ltd – volume: 144 start-page: 73 year: 2015 end-page: 95 ident: b0170 article-title: A review on dark fermentative biohydrogen production from organic biomass: Process parameters and use of by-products publication-title: Appl. Energy – start-page: 15616 year: 2012 end-page: 15631 ident: b0450 article-title: Biohydrogen production: Current perspectives and the way forward publication-title: Int. J. Hydrogen Energy – volume: 42 start-page: 7798 year: 2017 end-page: 7810 ident: b0120 article-title: Techno-economic and environmental performances of glycerol reforming for hydrogen and power production with low carbon dioxide emissions publication-title: Int. J. Hydrogen Energy – volume: 41 start-page: 19957 year: 2016 end-page: 19971 ident: b0385 article-title: Integrated dark- and photo-fermentation: Recent advances and provisions for improvement publication-title: Int. J. Hydrogen Energy – volume: 42 start-page: 2018 year: 2017 end-page: 2033 ident: b0130 article-title: Hydrogen: Trends, production and characterization of the main process worldwide publication-title: Int. J. Hydrogen Energy – volume: 37 start-page: 15704 year: 2012 end-page: 15710 ident: b0310 article-title: Techno-economic evaluation of biohydrogen production from wastewater and agricultural waste publication-title: Int. J. Hydrogen Energy – volume: 12 start-page: 4830 year: 2017 end-page: 4853 ident: b0495 article-title: Hydrogen production from steam reforming of acetic acid over Ni-Fe/Palygorskite modified with cerium publication-title: BioResources – volume: 148 start-page: 16 year: 2017 end-page: 29 ident: b0160 article-title: Investigation of a novel concept for hydrogen production by PEM water electrolysis integrated with multi-junction solar cells publication-title: Energy Convers. Manag. – volume: 35 start-page: 127 year: 2010 end-page: 134 ident: b0465 article-title: Economic analysis of hydrogen production through a bio-ethanol steam reforming process: Sensitivity analyses and cost estimations publication-title: Int. J. Hydrogen Energy – volume: 35 start-page: 11829 year: 2010 end-page: 11843 ident: b0295 article-title: Hydrogen production from ethanol steam reforming over core–shell structured NixOy–, FexOy–, and CoxOy–Pd catalysts publication-title: Int. J. Hydrogen Energy – volume: 128 start-page: 104 year: 2014 end-page: 112 ident: b0480 article-title: A techno-economic analysis of microalgae remnant catalytic pyrolysis and upgrading to fuels publication-title: Fuel – volume: 201 start-page: 225 year: 2000 end-page: 239 ident: b0165 article-title: Catalytic steam reforming of bio-oils for the production of hydrogen: effects of catalyst composition publication-title: Appl. Catal. A Gen. – volume: 141 start-page: 390 year: 2017 end-page: 402 ident: b0280 article-title: A comprehensive overview on light independent fermentative hydrogen production from wastewater feedstock and possible integrative options publication-title: Energy Convers. Manag. – volume: 128 start-page: 467 year: 2013 end-page: 471 ident: b0075 article-title: Hydrogen production from oxidative steam reforming of bio-butanol over CoIr-based catalysts: Effect of the support publication-title: Bioresour. Technol. – volume: 3 start-page: 314 year: 2019 end-page: 342 ident: b0150 article-title: Hydrogen production from the thermochemical conversion of biomass: issues and challenges publication-title: Sustain. Energy Fuels – volume: 5 start-page: 1 year: 2017 end-page: 13 ident: b0270 article-title: Economic analysis of improved alkaline water electrolysis publication-title: Front. Energy Res. – year: 2009 ident: b0390 article-title: Analyzing the Levelized Cost Of Centralized And Distributed Hydrogen Production using the H2A Production Model, Version 2 – volume: 44 start-page: 17431 year: 2019 end-page: 17442 ident: b0335 article-title: Techno-economic modelling of water electrolysers in the range of several MW to provide grid services while generating hydrogen for different applications: A case study in Spain applied to mobility with FCEVs publication-title: Int. J. Hydrogen Energy – volume: 12 start-page: 1022 year: 2017 end-page: 1029 ident: b0500 article-title: Economic assessment of selected hydrogen production methods: A review. Energy Sources, Part B Econ publication-title: Planning, Policy – volume: 5 start-page: 1300 year: 2017 end-page: 1310 ident: b0140 article-title: New hybrid materials for improved hydrogen production by the sorption-enhanced steam reforming of butanol publication-title: Energy Technol. – start-page: 253 year: 2017 end-page: 267 ident: b0440 article-title: Biohydrogen economy: challenges and prospects for commercialization publication-title: Biohydrogen Production: Sustainability of Current Technology and Future Perspective – volume: 89 start-page: 764 year: 2008 end-page: 772 ident: b0180 article-title: Investigation on the reactions influencing biomass air and air/steam gasification for hydrogen production publication-title: Fuel Process. Technol. – volume: 244 start-page: 650 year: 2017 end-page: 657 ident: b0085 article-title: Effectiveness of piggery waste treatment using microbial fuel cells coupled with elutriated-phased acid fermentation publication-title: Bioresour. Technol. – volume: 45 start-page: 5881 year: 2020 end-page: 5889 ident: b0235 article-title: Biohydrogen production from seagrass via novel energetically efficient ozone coupled rotor stator homogenization publication-title: Int. J. Hydrogen Energy – volume: 36 start-page: 13914 year: 2011 end-page: 13921 ident: b0105 article-title: Constructing a new business model for fermentative hydrogen production from wastewater treatment publication-title: Int. J. Hydrogen Energy – volume: 31 start-page: 2002 year: 2002 ident: b0185 article-title: Hydrogen from coal publication-title: Mitretek Tech. Pap. MTR – volume: 33 start-page: 1607 year: 2008 end-page: 1618 ident: b0305 article-title: Hydrogen economy in Taiwan and biohydrogen publication-title: Int. J. Hydrogen Energy – start-page: 11 year: 2017 end-page: 48 ident: b0015 article-title: Biohydrogen production potential of different biomass sources BT – biohydrogen production: sustainability of current technology and future perspective – volume: 44 start-page: 21205 year: 2019 end-page: 21219 ident: b0345 article-title: A techno-economic evaluation of the hydrogen production for energy generation using an ethanol fuel processor publication-title: Int. J. Hydrogen Energy – year: 2011 ident: b0415 article-title: Hydrogen Production Cost Estimate Using Biomass Gasification: Independent Review. – start-page: 393 year: 2019 end-page: 426 ident: b0245 article-title: Valorization of nutrient-rich urinal wastewater by microalgae for biofuel production publication-title: Application of Microalgae in Wastewater Treatment: Volume 2: Biorefinery Approaches of Wastewater Treatment – volume: 1 start-page: 154 year: 2006 end-page: 169 ident: b0410 article-title: Is nuclear power more competitive producing electricity or hydrogen? publication-title: Int. J. Nucl. Hydrog. Prod. Appl. – start-page: 325 year: 2019 end-page: 343 ident: b0445 article-title: Biohydrogen production from algae: Perspectives, challenges, and prospects publication-title: From A. (Second E. (Eds.), Biomass, Biofuels, Biochemicals – volume: 127 start-page: 567 year: 2016 end-page: 572 ident: b0200 article-title: Techno-economic analysis of dark fermentative hydrogen production from molasses in a continuous mixed immobilized sludge reactor publication-title: J. Clean. Prod. – volume: 101 start-page: 806 year: 2016 end-page: 813 ident: b0420 article-title: Techno-economic analysis of hydrogen production using biomass gasification -–a small scale power plant study publication-title: Energy Procedia – volume: 202 start-page: 107 year: 2016 end-page: 112 ident: b0190 article-title: Techno-economic evaluation of a combined bioprocess for fermentative hydrogen production from food waste publication-title: Bioresour. Technol. – volume: 33 start-page: 1874 year: 2008 end-page: 1879 ident: b0325 article-title: A study on the economic efficiency of hydrogen production from biomass residues in China publication-title: Renew. Energy – volume: 26 start-page: 42 year: 2017 end-page: 48 ident: b0080 article-title: Hydrogen production through glycerol steam reforming using Co catalysts supported on SBA-15 doped with Zr, Ce and La publication-title: J. Energy Chem. – volume: 92 start-page: 282 year: 2014 end-page: 290 ident: b0300 article-title: Economic feasibility of a pilot-scale fermentative succinic acid production from bakery wastes publication-title: Food Bioprod. Process. – year: 2004 ident: b0010 article-title: Updated Cost Analysis Of Photobiological Hydrogen Production from Chlamydomonas reinhardtii Green Algae: Milestone Completion Report – start-page: 7 year: 2007 end-page: 13 ident: b0510 article-title: Estimates of hydrogen production potential and costs from California landfill gas publication-title: in: 15 – volume: 12 start-page: 494 year: 2019 ident: b0380 article-title: Techno-economic analysis of a small-scale biomass-to-energy BFB gasification-based system publication-title: Energies – volume: 6 start-page: 352 year: 2015 ident: b0425 article-title: Economics of bio-hydrogen production publication-title: Int. J. Environ. Sci. Dev. – volume: 44 start-page: 21251 year: 2019 end-page: 21263 ident: b0035 article-title: Development and techno-economic analyses of a novel hydrogen production process via chemical looping publication-title: Int. J. Hydrogen Energy – volume: 129 start-page: 754 year: 2018 ident: 10.1016/j.biortech.2020.124175_b0265 article-title: Biohydrogen production from anaerobic digestion and its potential as renewable energy publication-title: Renew. Energy doi: 10.1016/j.renene.2017.04.029 – volume: 44 start-page: 10384 year: 2019 ident: 10.1016/j.biortech.2020.124175_b0285 article-title: A comparative analysis of hydrogen production from the thermochemical conversion of algal biomass publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2019.02.220 – volume: 3 start-page: 314 year: 2019 ident: 10.1016/j.biortech.2020.124175_b0150 article-title: Hydrogen production from the thermochemical conversion of biomass: issues and challenges publication-title: Sustain. Energy Fuels doi: 10.1039/C8SE00535D – start-page: 1 year: 2020 ident: 10.1016/j.biortech.2020.124175_b0220 – volume: 11 start-page: 1777 year: 2018 ident: 10.1016/j.biortech.2020.124175_b0435 article-title: Techno-economic analysis of solar pv electricity supply to rural areas of Balochistan publication-title: Pakistan. Energies doi: 10.3390/en11071777 – volume: 690627 year: 2013 ident: 10.1016/j.biortech.2020.124175_b0230 article-title: Hydrogen production technologies: current state and future developments publication-title: Conf. Papers in Sci. – start-page: 319 year: 2018 ident: 10.1016/j.biortech.2020.124175_b0250 article-title: Food waste valorization by microalgae – volume: 141 start-page: 390 year: 2017 ident: 10.1016/j.biortech.2020.124175_b0280 article-title: A comprehensive overview on light independent fermentative hydrogen production from wastewater feedstock and possible integrative options publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2016.09.087 – volume: 39 start-page: 11411 year: 2014 ident: 10.1016/j.biortech.2020.124175_b0100 article-title: Bio-electrohydrolysis as a pretreatment strategy to catabolize complex food waste in closed circuitry: Function of electron flux to enhance acidogenic biohydrogen production publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2014.05.035 – volume: 36 start-page: 13914 year: 2011 ident: 10.1016/j.biortech.2020.124175_b0105 article-title: Constructing a new business model for fermentative hydrogen production from wastewater treatment publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2011.03.066 – volume: 13 start-page: 463 year: 2020 ident: 10.1016/j.biortech.2020.124175_b0255 article-title: Assessment of global potential of biohydrogen production from agricultural residues and its application in nitrogen fertilizer production publication-title: Bioenergy Res. doi: 10.1007/s12155-019-10046-1 – volume: 43 start-page: 6011 year: 2018 ident: 10.1016/j.biortech.2020.124175_b0175 article-title: Green hydrogen production potential for developing a hydrogen economy in Pakistan publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2018.01.113 – volume: 92 start-page: 282 year: 2014 ident: 10.1016/j.biortech.2020.124175_b0300 article-title: Economic feasibility of a pilot-scale fermentative succinic acid production from bakery wastes publication-title: Food Bioprod. Process. doi: 10.1016/j.fbp.2013.09.001 – volume: 6 start-page: 352 year: 2015 ident: 10.1016/j.biortech.2020.124175_b0425 article-title: Economics of bio-hydrogen production publication-title: Int. J. Environ. Sci. Dev. doi: 10.7763/IJESD.2015.V6.617 – volume: 1 start-page: 651 year: 2017 ident: 10.1016/j.biortech.2020.124175_b0155 article-title: Membraneless electrolyzers for low-cost hydrogen production in a renewable energy future publication-title: Joule doi: 10.1016/j.joule.2017.07.003 – volume: 19 start-page: 4199 year: 2017 ident: 10.1016/j.biortech.2020.124175_b0115 article-title: The role of metal–support interaction for CO-free hydrogen from low temperature ethanol steam reforming on Rh–Fe catalysts publication-title: PCCP doi: 10.1039/C6CP05934A – volume: 32 start-page: 3343 year: 2007 ident: 10.1016/j.biortech.2020.124175_b0055 article-title: Catalytic steam reforming of acetic acid for hydrogen production publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2007.04.039 – volume: 195 start-page: 16 year: 2016 ident: 10.1016/j.biortech.2020.124175_b0065 article-title: Steam reforming of acetone over Ni- and Co-based catalysts: Effect of the composition of reactants and catalysts on reaction pathways publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2016.04.047 – volume: 301 year: 2020 ident: 10.1016/j.biortech.2020.124175_b0290 article-title: A novel energetically efficient combinative microwave pretreatment for achieving profitable hydrogen production from marine macro algae (Ulva reticulate) publication-title: Bioresour. Technol. – start-page: 253 year: 2017 ident: 10.1016/j.biortech.2020.124175_b0440 article-title: Biohydrogen economy: challenges and prospects for commercialization – volume: 52 start-page: 1555 year: 2011 ident: 10.1016/j.biortech.2020.124175_b0340 article-title: Air gasification of empty fruit bunch for hydrogen-rich gas production in a fluidized-bed reactor publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2010.10.023 – volume: 50 start-page: 136 year: 2018 ident: 10.1016/j.biortech.2020.124175_b0275 article-title: Biomass based hydrogen production by dark fermentation—recent trends and opportunities for greener processes publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2017.12.024 – volume: 44 start-page: 2203 year: 2019 ident: 10.1016/j.biortech.2020.124175_b0240 article-title: Biohydrogen production from rice straw: Effect of combinative pretreatment, modelling assessment and energy balance consideration publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2018.07.201 – volume: 33 start-page: 1607 year: 2008 ident: 10.1016/j.biortech.2020.124175_b0305 article-title: Hydrogen economy in Taiwan and biohydrogen publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2007.09.028 – volume: 124 start-page: 197 year: 2018 ident: 10.1016/j.biortech.2020.124175_b0005 article-title: Comparison of slow and fast pyrolysis for converting biomass into fuel publication-title: Renew. Energy doi: 10.1016/j.renene.2017.04.060 – volume: 35 start-page: 127 year: 2010 ident: 10.1016/j.biortech.2020.124175_b0465 article-title: Economic analysis of hydrogen production through a bio-ethanol steam reforming process: Sensitivity analyses and cost estimations publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2009.10.043 – volume: 12 start-page: 463 year: 2019 ident: 10.1016/j.biortech.2020.124175_b0470 article-title: The role of hydrogen and fuel cells in the global energy system publication-title: Energy Environ. Sci. doi: 10.1039/C8EE01157E – start-page: 1 year: 2017 ident: 10.1016/j.biortech.2020.124175_b0530 article-title: Techno-economic assessment of utilizing wind energy for hydrogen production through electrolysis – volume: 215 start-page: 92 year: 2016 ident: 10.1016/j.biortech.2020.124175_b0400 article-title: A review on bioconversion of lignocellulosic biomass to H2: Key challenges and new insights publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2016.03.124 – volume: 22 start-page: 365 year: 2011 ident: 10.1016/j.biortech.2020.124175_b0405 article-title: Biological hydrogen production by dark fermentation: Challenges and prospects towards scaled-up production publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2011.04.022 – start-page: 15616 year: 2012 ident: 10.1016/j.biortech.2020.124175_b0450 article-title: Biohydrogen production: Current perspectives and the way forward publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2012.04.109 – volume: 12 start-page: 4830 year: 2017 ident: 10.1016/j.biortech.2020.124175_b0495 article-title: Hydrogen production from steam reforming of acetic acid over Ni-Fe/Palygorskite modified with cerium publication-title: BioResources doi: 10.15376/biores.12.3.4830-4853 – volume: 39 start-page: 5644 year: 2014 ident: 10.1016/j.biortech.2020.124175_b0505 article-title: Co–Ni bimetal catalyst supported on perovskite-type oxide for steam reforming of ethanol to produce hydrogen publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2014.01.151 – volume: 44 start-page: 17431 year: 2019 ident: 10.1016/j.biortech.2020.124175_b0335 article-title: Techno-economic modelling of water electrolysers in the range of several MW to provide grid services while generating hydrogen for different applications: A case study in Spain applied to mobility with FCEVs publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2019.05.092 – volume: 87 start-page: 461 year: 2006 ident: 10.1016/j.biortech.2020.124175_b0365 article-title: An overview of hydrogen production from biomass publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2005.11.003 – start-page: 117 year: 2020 ident: 10.1016/j.biortech.2020.124175_b0460 – volume: 7 start-page: 308 year: 2019 ident: 10.1016/j.biortech.2020.124175_b0515 article-title: Off-grid solar PV power generation system in Sindh, Pakistan: a techno-economic feasibility analysis publication-title: Processes doi: 10.3390/pr7050308 – volume: 33 start-page: 303 year: 2008 ident: 10.1016/j.biortech.2020.124175_b0135 article-title: Robust, high reactivity and enhanced capacity carbon dioxide removal agents for hydrogen production applications publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2007.07.015 – start-page: 393 year: 2019 ident: 10.1016/j.biortech.2020.124175_b0245 article-title: Valorization of nutrient-rich urinal wastewater by microalgae for biofuel production – volume: 165 start-page: 696 year: 2018 ident: 10.1016/j.biortech.2020.124175_b0020 article-title: Evaluation of thermochemical routes for hydrogen production from biomass: A review publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2018.03.089 – volume: 144 start-page: 73 year: 2015 ident: 10.1016/j.biortech.2020.124175_b0170 article-title: A review on dark fermentative biohydrogen production from organic biomass: Process parameters and use of by-products publication-title: Appl. Energy doi: 10.1016/j.apenergy.2015.01.045 – start-page: 11 year: 2017 ident: 10.1016/j.biortech.2020.124175_b0015 – volume: 202 start-page: 107 year: 2016 ident: 10.1016/j.biortech.2020.124175_b0190 article-title: Techno-economic evaluation of a combined bioprocess for fermentative hydrogen production from food waste publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2015.11.072 – volume: 42 start-page: 2018 year: 2017 ident: 10.1016/j.biortech.2020.124175_b0130 article-title: Hydrogen: Trends, production and characterization of the main process worldwide publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2016.08.219 – volume: 45 start-page: 5881 year: 2020 ident: 10.1016/j.biortech.2020.124175_b0235 article-title: Biohydrogen production from seagrass via novel energetically efficient ozone coupled rotor stator homogenization publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2019.04.151 – volume: 200 year: 2019 ident: 10.1016/j.biortech.2020.124175_b0360 article-title: Grid-connected hydrogen production via large-scale water electrolysis publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2019.112108 – volume: 93 start-page: 96 year: 2016 ident: 10.1016/j.biortech.2020.124175_b0060 article-title: Techno-economic assessment of solar hydrogen production using CPV-electrolysis systems publication-title: Energy Proc. doi: 10.1016/j.egypro.2016.07.155 – volume: 12 start-page: 1022 year: 2017 ident: 10.1016/j.biortech.2020.124175_b0500 article-title: Economic assessment of selected hydrogen production methods: A review. Energy Sources, Part B Econ publication-title: Planning, Policy – year: 2004 ident: 10.1016/j.biortech.2020.124175_b0010 – volume: 35 start-page: 8371 year: 2010 ident: 10.1016/j.biortech.2020.124175_b0050 article-title: An economic survey of hydrogen production from conventional and alternative energy sources publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2010.04.035 – volume: 221 start-page: 318 year: 2016 ident: 10.1016/j.biortech.2020.124175_b0195 article-title: Biohydrogen production from waste bread in a continuous stirred tank reactor: A techno-economic analysis publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2016.09.055 – volume: 5 start-page: 1 year: 2017 ident: 10.1016/j.biortech.2020.124175_b0270 article-title: Economic analysis of improved alkaline water electrolysis publication-title: Front. Energy Res. doi: 10.3389/fenrg.2017.00001 – volume: 41 start-page: 4489 year: 2016 ident: 10.1016/j.biortech.2020.124175_b0215 article-title: Commercialization model of hydrogen production technology in Taiwan: Dark fermentation technology applications publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2015.07.080 – volume: 39 start-page: 390 year: 2018 ident: 10.1016/j.biortech.2020.124175_b0110 article-title: Water electrolysis based on renewable energy for hydrogen production publication-title: Chinese J. Catal. doi: 10.1016/S1872-2067(17)62949-8 – volume: 298 year: 2020 ident: 10.1016/j.biortech.2020.124175_b0045 article-title: Industrial wastewater to biohydrogen: Possibilities towards successful biorefinery route publication-title: Bioresour. Technol. – volume: 128 start-page: 104 year: 2014 ident: 10.1016/j.biortech.2020.124175_b0480 article-title: A techno-economic analysis of microalgae remnant catalytic pyrolysis and upgrading to fuels publication-title: Fuel doi: 10.1016/j.fuel.2014.02.077 – volume: 148 start-page: 16 year: 2017 ident: 10.1016/j.biortech.2020.124175_b0160 article-title: Investigation of a novel concept for hydrogen production by PEM water electrolysis integrated with multi-junction solar cells publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2017.05.059 – volume: 41 start-page: 21573 year: 2016 ident: 10.1016/j.biortech.2020.124175_b0210 article-title: Using social network analysis to examine the technological evolution of fermentative hydrogen production from biomass publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2016.07.157 – volume: 128 start-page: 467 year: 2013 ident: 10.1016/j.biortech.2020.124175_b0075 article-title: Hydrogen production from oxidative steam reforming of bio-butanol over CoIr-based catalysts: Effect of the support publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2012.10.125 – start-page: 1059 year: 2005 ident: 10.1016/j.biortech.2020.124175_b0455 article-title: Hydrogen costs with CO2 capture – volume: 31 start-page: 2002 year: 2002 ident: 10.1016/j.biortech.2020.124175_b0185 article-title: Hydrogen from coal publication-title: Mitretek Tech. Pap. MTR – volume: 16 start-page: 8266 year: 2015 ident: 10.1016/j.biortech.2020.124175_b0090 article-title: Biohydrogen production: strategies to improve process efficiency through microbial routes publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms16048266 – volume: 44 start-page: 19676 year: 2019 ident: 10.1016/j.biortech.2020.124175_b0320 article-title: Recent developments of hydrogen production from sewage sludge by biological and thermochemical process publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2019.06.044 – start-page: 7 year: 2007 ident: 10.1016/j.biortech.2020.124175_b0510 article-title: Estimates of hydrogen production potential and costs from California landfill gas – volume: 7 year: 2018 ident: 10.1016/j.biortech.2020.124175_b0030 article-title: Emerging technologies, markets and commercialization of solid-electrolytic hydrogen production publication-title: Wiley Interdiscip. Rev. Energy Environ. doi: 10.1002/wene.286 – volume: 259 start-page: 244 year: 2018 ident: 10.1016/j.biortech.2020.124175_b0125 article-title: Techno-economic and profitability analysis of food waste biorefineries at European level publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2018.03.016 – volume: 92 start-page: 807 year: 2018 ident: 10.1016/j.biortech.2020.124175_b0145 article-title: Influence and strategies for enhanced biohydrogen production from food waste publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2018.05.009 – volume: 127 start-page: 567 year: 2016 ident: 10.1016/j.biortech.2020.124175_b0200 article-title: Techno-economic analysis of dark fermentative hydrogen production from molasses in a continuous mixed immobilized sludge reactor publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2016.04.055 – volume: 34 start-page: 3589 year: 2009 ident: 10.1016/j.biortech.2020.124175_b0040 article-title: Political, economic and environmental impacts of biomass-based hydrogen publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2009.02.067 – start-page: 511 year: 2019 ident: 10.1016/j.biortech.2020.124175_b0490 article-title: Photobiological hydrogen production – volume: 5 start-page: 362 year: 2013 ident: 10.1016/j.biortech.2020.124175_b0330 article-title: Water electrolysis: Divide and conquer publication-title: Nat. Chem. doi: 10.1038/nchem.1634 – volume: 41 start-page: 22619 year: 2016 ident: 10.1016/j.biortech.2020.124175_b0205 article-title: Techno-economic analysis of a novel bioprocess combining solid state fermentation and dark fermentation for H2 production from food waste publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2016.09.047 – volume: 19 start-page: 19 year: 2019 ident: 10.1016/j.biortech.2020.124175_b0475 article-title: Techno-economic analysis of a more efficient hydrogen generation system prototype: a case study of PEM electrolyzer with Cr-C coated SS304 bipolar plates publication-title: Fuel Cells doi: 10.1002/fuce.201700225 – volume: 89 start-page: 764 year: 2008 ident: 10.1016/j.biortech.2020.124175_b0180 article-title: Investigation on the reactions influencing biomass air and air/steam gasification for hydrogen production publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2008.01.011 – volume: 6 start-page: 223 year: 2016 ident: 10.1016/j.biortech.2020.124175_b0355 article-title: Evaluation of reaction parameters of the phenol steam reforming over Ni/Co on ZrO2 using the full factorial experimental design publication-title: Appl. Sci. doi: 10.3390/app6080223 – volume: 67 start-page: 597 year: 2017 ident: 10.1016/j.biortech.2020.124175_b0375 article-title: A comparative overview of hydrogen production processes publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2016.09.044 – volume: 36 start-page: 2057 year: 2011 ident: 10.1016/j.biortech.2020.124175_b0315 article-title: Hydrogen production by sorption enhanced steam reforming of oxygenated hydrocarbons (ethanol, glycerol, n-butanol and methanol): Thermodynamic modelling publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2010.11.051 – start-page: 6713 year: 2016 ident: 10.1016/j.biortech.2020.124175_b0070 article-title: Inhibition of dark fermentative bio-hydrogen production: A review, in publication-title: Int. J. Hydrogen Energy. Elsevier Ltd doi: 10.1016/j.ijhydene.2016.03.057 – volume: 44 start-page: 21251 year: 2019 ident: 10.1016/j.biortech.2020.124175_b0035 article-title: Development and techno-economic analyses of a novel hydrogen production process via chemical looping publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2019.05.202 – volume: 36 start-page: 307 year: 2010 ident: 10.1016/j.biortech.2020.124175_b0520 article-title: Recent progress in alkaline water electrolysis for hydrogen production and applications publication-title: Prog. Energy Combust. Sci. doi: 10.1016/j.pecs.2009.11.002 – volume: 41 start-page: 19957 year: 2016 ident: 10.1016/j.biortech.2020.124175_b0385 article-title: Integrated dark- and photo-fermentation: Recent advances and provisions for improvement publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2016.08.084 – volume: 13 start-page: 822 year: 2019 ident: 10.1016/j.biortech.2020.124175_b0430 article-title: Thermo-chemical conversion of biomass and upgrading to biofuel: The Thermo-Catalytic Reforming process–A review. Biofuels publication-title: Bioprod. Biorefining doi: 10.1002/bbb.1980 – volume: 201 start-page: 225 year: 2000 ident: 10.1016/j.biortech.2020.124175_b0165 article-title: Catalytic steam reforming of bio-oils for the production of hydrogen: effects of catalyst composition publication-title: Appl. Catal. A Gen. doi: 10.1016/S0926-860X(00)00440-3 – volume: 22 start-page: 571 year: 2013 ident: 10.1016/j.biortech.2020.124175_b0395 article-title: Current status, barriers and developments in biohydrogen production by microalgae publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2013.01.051 – year: 2011 ident: 10.1016/j.biortech.2020.124175_b0415 – volume: 45 start-page: 11395 year: 2020 ident: 10.1016/j.biortech.2020.124175_b0370 article-title: Green hydrogen as feedstock: Financial analysis of a photovoltaic-powered electrolysis plant publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2020.02.062 – start-page: 1 year: 2017 ident: 10.1016/j.biortech.2020.124175_b0225 – volume: 165 start-page: 372 year: 2014 ident: 10.1016/j.biortech.2020.124175_b0095 article-title: Induced catabolic bio-electrohydrolysis of complex food waste by regulating external resistance for enhancing acidogenic biohydrogen production publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2014.02.073 – volume: 101 start-page: 806 year: 2016 ident: 10.1016/j.biortech.2020.124175_b0420 article-title: Techno-economic analysis of hydrogen production using biomass gasification -–a small scale power plant study publication-title: Energy Procedia doi: 10.1016/j.egypro.2016.11.102 – volume: 35 start-page: 11829 year: 2010 ident: 10.1016/j.biortech.2020.124175_b0295 article-title: Hydrogen production from ethanol steam reforming over core–shell structured NixOy–, FexOy–, and CoxOy–Pd catalysts publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2010.08.073 – start-page: 325 year: 2019 ident: 10.1016/j.biortech.2020.124175_b0445 article-title: Biohydrogen production from algae: Perspectives, challenges, and prospects – volume: 5 start-page: 1300 year: 2017 ident: 10.1016/j.biortech.2020.124175_b0140 article-title: New hybrid materials for improved hydrogen production by the sorption-enhanced steam reforming of butanol publication-title: Energy Technol. doi: 10.1002/ente.201600645 – volume: 45 start-page: 5890 year: 2020 ident: 10.1016/j.biortech.2020.124175_b0260 article-title: Rhamnolipid induced deagglomeration of anaerobic granular biosolids for energetically feasible ultrasonic homogenization and profitable biohydrogen publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2019.04.063 – volume: 244 start-page: 650 year: 2017 ident: 10.1016/j.biortech.2020.124175_b0085 article-title: Effectiveness of piggery waste treatment using microbial fuel cells coupled with elutriated-phased acid fermentation publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.08.021 – volume: 181 start-page: 608 year: 2018 ident: 10.1016/j.biortech.2020.124175_b0485 article-title: A systematic review of the literature on integrating sustainability into engineering curricula publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2017.12.130 – volume: 37 start-page: 15704 year: 2012 ident: 10.1016/j.biortech.2020.124175_b0310 article-title: Techno-economic evaluation of biohydrogen production from wastewater and agricultural waste publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2012.05.043 – volume: 33 start-page: 1874 year: 2008 ident: 10.1016/j.biortech.2020.124175_b0325 article-title: A study on the economic efficiency of hydrogen production from biomass residues in China publication-title: Renew. Energy doi: 10.1016/j.renene.2007.11.002 – year: 2009 ident: 10.1016/j.biortech.2020.124175_b0390 – volume: 26 start-page: 42 year: 2017 ident: 10.1016/j.biortech.2020.124175_b0080 article-title: Hydrogen production through glycerol steam reforming using Co catalysts supported on SBA-15 doped with Zr, Ce and La publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2016.09.001 – volume: 44 start-page: 21205 year: 2019 ident: 10.1016/j.biortech.2020.124175_b0345 article-title: A techno-economic evaluation of the hydrogen production for energy generation using an ethanol fuel processor publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2019.06.182 – volume: 12 start-page: 494 year: 2019 ident: 10.1016/j.biortech.2020.124175_b0380 article-title: Techno-economic analysis of a small-scale biomass-to-energy BFB gasification-based system publication-title: Energies doi: 10.3390/en12030494 – volume: 42 start-page: 7798 year: 2017 ident: 10.1016/j.biortech.2020.124175_b0120 article-title: Techno-economic and environmental performances of glycerol reforming for hydrogen and power production with low carbon dioxide emissions publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2016.11.172 – volume: 269 start-page: 452 year: 2018 ident: 10.1016/j.biortech.2020.124175_b0025 article-title: Anaerobic membrane bioreactors for biohydrogen production: Recent developments, challenges and perspectives publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2018.08.050 – volume: 1 start-page: 154 year: 2006 ident: 10.1016/j.biortech.2020.124175_b0410 article-title: Is nuclear power more competitive producing electricity or hydrogen? publication-title: Int. J. Nucl. Hydrog. Prod. Appl. – volume: 42 start-page: 8975 year: 2017 ident: 10.1016/j.biortech.2020.124175_b0350 article-title: Production of hydrogen via steam reforming of acetic acid over Ni and Co supported on La2O3 catalyst publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2016.04.176 – volume: 51 start-page: 99 year: 2013 ident: 10.1016/j.biortech.2020.124175_b0525 article-title: Comparative techno-economic analysis of biohydrogen production via bio-oil gasification and bio-oil reforming publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2013.01.013 |
SSID | ssj0003172 |
Score | 2.7129126 |
SecondaryResourceType | review_article |
Snippet | [Display omitted]
•Hydrogen has the potential to unlock 18% of global energy demand in 2050.•96% of H2 is produced from non-renewables and remaining 4% by... Hydrogen is a clean fuel that could provide energy incentives and reduce environmental impacts, if production platform is carefully selected and optimized. In... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 124175 |
SubjectTerms | carbon dioxide cost effectiveness Dark fermentation electrolysis energy fermentation gasification Hydrogen hydrogen production liquids natural gas pyrolysis Sensitivity analysis steam Steam reforming electrolysis Techno-economics |
Title | Techno-economic assessment of various hydrogen production methods – A review |
URI | https://dx.doi.org/10.1016/j.biortech.2020.124175 https://www.proquest.com/docview/2449178073 https://www.proquest.com/docview/2551988156 |
Volume | 319 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxELYieqAcKhqKoIXISFxNdtf27voYRUVpEbkQpNwsvxaCUBLlUakXxH_oP-wv6cw-IK0qOHDdtSVrZjQz9nzzDSGnCFALXqSsSExgopCSWeMtM0pyn0c-lxYrupfDdHAtvo_luEX6TS8Mwipr31_59NJb11-6tTS788mke4XJdy4hxCADu1DY8CtEhlZ-9vAM84D4WFYSYDHD1RtdwndndoKI1rIokSDRgogRb_j_APWPqy7jz_ku-VAnjrRXne0jaYVpm-z0bhY1eUZok-1-M70N_mwQDe6RYfWCzkLdhkzNEyEnnRX0B1yYZ-slvf3pFzOwKDqveGBBZ7QaMb2kvx9_0R6tOl0-kdH511F_wOpJCszxLF8xb1WsXOqjIF0cMmcSbo0yWewh-zLWGI7UbTxSBXg7J4JQPOYm9qnJZGod3ydb09k0HBBahFRZm0QmTZxITJEjm1QaXKQCiLTgh0Q20tOuZhnHYRf3uoGT3elG6hqlriupH5Lu0755xbPx6g7VKEf_ZTEagsGre08abWrQC9ZIzDSAoDVkO3CBzcHxvbAGskyVI83O5zec4Qt5nyA-pnzOOSJbq8U6HEOCs7Kd0oI75F3v28Vg-AeXjv1i |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9swDCa69ND1UGzthr62qUCvWmzLcqxjEKxIX7k0A3oT9PKWokiCNB2wW__D_uF-SUlbDrphWA-92iIgfBRISiQ_AhxTgVrwecGrzASeV1Jya7zlRknhy8SX0lJG93JUDL_mZ9fyeg0GbS8MlVVG29_Y9Npaxy_diGZ3Ppl0ryj4LiW6GGJgz1X5CtaJnUp2YL1_ej4crQwyusg6mYDrOQk8aRS--WwnVNRa5yUy4lrIUyo5_LeP-sta1y7o5A1sxdiR9ZvtvYW1MN2Gzf63ReTPCNuwMWgHuOGfJ1yDOzBqHtF5iJ3IzKw4OdmsYj_wzjy7v2Pff_rFDA8VmzdUsKg21kyZvmO_H36xPmuaXd7B-OTLeDDkcZgCd6JXLrm3KlWu8EmQLg09ZzJhjTK91GMAZqwxgtjbRKIqNHguD7kSqTCpL0xPFtaJ99CZzqZhF1gVCmVtlpgic3lmqpIIpYrgEhUQ0krsgWzR0y4SjdO8i1vdVpTd6BZ1TajrBvU96K7k5g3VxrMSqlWO_uPQaPQHz8oetdrUqBdKk5hpQKA1Bjx4hy3R9v1nDQaaqiSmnf0X7OETbAzHlxf64nR0fgCvMyqXqV93DqGzXNyHDxjvLO3HeJ4fAT2MACI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Techno-economic+assessment+of+various+hydrogen+production+methods+%E2%80%93+A+review&rft.jtitle=Bioresource+technology&rft.au=Yukesh+Kannah%2C+R.&rft.au=Kavitha%2C+S.&rft.au=Preethi&rft.au=Parthiba+Karthikeyan%2C+O.&rft.date=2021-01-01&rft.pub=Elsevier+Ltd&rft.issn=0960-8524&rft.eissn=1873-2976&rft.volume=319&rft_id=info:doi/10.1016%2Fj.biortech.2020.124175&rft.externalDocID=S0960852420314498 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-8524&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-8524&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-8524&client=summon |