Techno-economic assessment of various hydrogen production methods – A review

[Display omitted] •Hydrogen has the potential to unlock 18% of global energy demand in 2050.•96% of H2 is produced from non-renewables and remaining 4% by water electrolysis.•In biomass gasification, feedstock cost demands 20 to 40% of H2 production cost. Hydrogen is a clean fuel that could provide...

Full description

Saved in:
Bibliographic Details
Published inBioresource technology Vol. 319; p. 124175
Main Authors Yukesh Kannah, R., Kavitha, S., Preethi, Parthiba Karthikeyan, O., Kumar, Gopalakrishnan, Dai-Viet, N. Vo, Rajesh Banu, J.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.01.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •Hydrogen has the potential to unlock 18% of global energy demand in 2050.•96% of H2 is produced from non-renewables and remaining 4% by water electrolysis.•In biomass gasification, feedstock cost demands 20 to 40% of H2 production cost. Hydrogen is a clean fuel that could provide energy incentives and reduce environmental impacts, if production platform is carefully selected and optimized. In specific, techno-economic and sensitivity analysis of the existing hydrogen production platforms and processes is need for an hour to boost the future hydrogen economical aspects. This will have greater impact on future hydrogen production project designs and developing new approaches to reduce the overall production costs to make it as cheaper fuel. The sensitivity analysis of various hydrogen production process such as pyrolysis, gasification, steam reforming of natural gas, dark fermentation, photobiolysis, water electrolysis and renewable liquid reforming were reviewed to evaluate their merits and demerits along with cost-effectiveness. On economic view point, steam reforming of natural gas is efficient, low cost and best methods for hydrogen production. A future research is required to reduce energy input and trapping carbon dioxide emission using membrane models.
AbstractList Hydrogen is a clean fuel that could provide energy incentives and reduce environmental impacts, if production platform is carefully selected and optimized. In specific, techno-economic and sensitivity analysis of the existing hydrogen production platforms and processes is need for an hour to boost the future hydrogen economical aspects. This will have greater impact on future hydrogen production project designs and developing new approaches to reduce the overall production costs to make it as cheaper fuel. The sensitivity analysis of various hydrogen production process such as pyrolysis, gasification, steam reforming of natural gas, dark fermentation, photobiolysis, water electrolysis and renewable liquid reforming were reviewed to evaluate their merits and demerits along with cost-effectiveness. On economic view point, steam reforming of natural gas is efficient, low cost and best methods for hydrogen production. A future research is required to reduce energy input and trapping carbon dioxide emission using membrane models.Hydrogen is a clean fuel that could provide energy incentives and reduce environmental impacts, if production platform is carefully selected and optimized. In specific, techno-economic and sensitivity analysis of the existing hydrogen production platforms and processes is need for an hour to boost the future hydrogen economical aspects. This will have greater impact on future hydrogen production project designs and developing new approaches to reduce the overall production costs to make it as cheaper fuel. The sensitivity analysis of various hydrogen production process such as pyrolysis, gasification, steam reforming of natural gas, dark fermentation, photobiolysis, water electrolysis and renewable liquid reforming were reviewed to evaluate their merits and demerits along with cost-effectiveness. On economic view point, steam reforming of natural gas is efficient, low cost and best methods for hydrogen production. A future research is required to reduce energy input and trapping carbon dioxide emission using membrane models.
[Display omitted] •Hydrogen has the potential to unlock 18% of global energy demand in 2050.•96% of H2 is produced from non-renewables and remaining 4% by water electrolysis.•In biomass gasification, feedstock cost demands 20 to 40% of H2 production cost. Hydrogen is a clean fuel that could provide energy incentives and reduce environmental impacts, if production platform is carefully selected and optimized. In specific, techno-economic and sensitivity analysis of the existing hydrogen production platforms and processes is need for an hour to boost the future hydrogen economical aspects. This will have greater impact on future hydrogen production project designs and developing new approaches to reduce the overall production costs to make it as cheaper fuel. The sensitivity analysis of various hydrogen production process such as pyrolysis, gasification, steam reforming of natural gas, dark fermentation, photobiolysis, water electrolysis and renewable liquid reforming were reviewed to evaluate their merits and demerits along with cost-effectiveness. On economic view point, steam reforming of natural gas is efficient, low cost and best methods for hydrogen production. A future research is required to reduce energy input and trapping carbon dioxide emission using membrane models.
Hydrogen is a clean fuel that could provide energy incentives and reduce environmental impacts, if production platform is carefully selected and optimized. In specific, techno-economic and sensitivity analysis of the existing hydrogen production platforms and processes is need for an hour to boost the future hydrogen economical aspects. This will have greater impact on future hydrogen production project designs and developing new approaches to reduce the overall production costs to make it as cheaper fuel. The sensitivity analysis of various hydrogen production process such as pyrolysis, gasification, steam reforming of natural gas, dark fermentation, photobiolysis, water electrolysis and renewable liquid reforming were reviewed to evaluate their merits and demerits along with cost-effectiveness. On economic view point, steam reforming of natural gas is efficient, low cost and best methods for hydrogen production. A future research is required to reduce energy input and trapping carbon dioxide emission using membrane models.
ArticleNumber 124175
Author Dai-Viet, N. Vo
Kavitha, S.
Yukesh Kannah, R.
Rajesh Banu, J.
Preethi
Parthiba Karthikeyan, O.
Kumar, Gopalakrishnan
Author_xml – sequence: 1
  givenname: R.
  surname: Yukesh Kannah
  fullname: Yukesh Kannah, R.
  organization: Department of Civil Engineering, Anna University Regional Campus Tirunelveli, India
– sequence: 2
  givenname: S.
  surname: Kavitha
  fullname: Kavitha, S.
  organization: Department of Civil Engineering, Anna University Regional Campus Tirunelveli, India
– sequence: 3
  surname: Preethi
  fullname: Preethi
  organization: Department of Civil Engineering, Anna University Regional Campus Tirunelveli, India
– sequence: 4
  givenname: O.
  surname: Parthiba Karthikeyan
  fullname: Parthiba Karthikeyan, O.
  organization: Department of Engineering Technology, College of Technology, University of Houston, Houston, TX - 77204, USA
– sequence: 5
  givenname: Gopalakrishnan
  surname: Kumar
  fullname: Kumar, Gopalakrishnan
  organization: School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
– sequence: 6
  givenname: N. Vo
  surname: Dai-Viet
  fullname: Dai-Viet, N. Vo
  organization: Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, Ho Chi Minh City 755414, Viet Nam
– sequence: 7
  givenname: J.
  surname: Rajesh Banu
  fullname: Rajesh Banu, J.
  email: rajeshces@gmail.com
  organization: Department of Life Sciences, Central University of Tamilnadu, Tiruvarur, India
BookMark eNqFkMtKAzEUhoMoWC-vIFm6mZrLTDIBF0rxBqKb7kMmObUpnUSTVOnOd_ANfRKnVDduujpw-L-fc74jtB9iAITOKBlTQsXFYtz5mArY-ZgRNixZTWWzh0a0lbxiSop9NCJKkKptWH2IjnJeEEI4lWyEnqYDF2IFNobYe4tNzpBzD6HgOMPvJvm4yni-dim-QMCvKbqVLT4G3EOZR5fx9-cXvsYJ3j18nKCDmVlmOP2dx2h6ezOd3FePz3cPk-vHynLZlsp1iiorHIHGUpDWMN4ZZSR1jAnTGcMJ5YITNXMObA214pQb6oSRjegsP0bn29rhnLcV5KJ7ny0slybAcK5mTUNV29JG7I7WtaKyJZIP0ctt1KaYc4KZtr6Yza8lGb_UlOiNcL3Qf8L1RrjeCh9w8Q9_Tb43ab0bvNqCMBgbLCadrYdgwfkEtmgX_a6KHxDSor8
CitedBy_id crossref_primary_10_1016_j_enconman_2025_119500
crossref_primary_10_1016_j_enconman_2024_119221
crossref_primary_10_1007_s13205_022_03288_y
crossref_primary_10_1016_j_resconrec_2024_107972
crossref_primary_10_1016_j_ijhydene_2022_05_036
crossref_primary_10_1016_j_jpowsour_2021_229589
crossref_primary_10_1134_S0040601524020010
crossref_primary_10_3390_catal14120913
crossref_primary_10_1007_s11157_023_09648_1
crossref_primary_10_1016_j_biortech_2021_125055
crossref_primary_10_1016_j_ijhydene_2023_07_045
crossref_primary_10_1016_j_ijhydene_2022_04_233
crossref_primary_10_3390_app13158711
crossref_primary_10_1016_j_enconman_2022_116629
crossref_primary_10_1016_j_susmat_2024_e00972
crossref_primary_10_3390_hydrogen5030027
crossref_primary_10_1016_j_ijhydene_2024_08_256
crossref_primary_10_1016_j_ijhydene_2023_04_074
crossref_primary_10_1021_acs_langmuir_2c02435
crossref_primary_10_1016_j_ceramint_2024_11_161
crossref_primary_10_1016_j_mtchem_2024_102450
crossref_primary_10_1007_s40974_023_00280_x
crossref_primary_10_1016_j_psep_2024_07_029
crossref_primary_10_1016_j_heliyon_2024_e41428
crossref_primary_10_1016_j_ijhydene_2023_02_113
crossref_primary_10_1021_acs_energyfuels_4c02755
crossref_primary_10_1016_j_psep_2024_04_080
crossref_primary_10_3390_en17010195
crossref_primary_10_3390_su152316371
crossref_primary_10_3390_su17010146
crossref_primary_10_1016_j_applthermaleng_2025_125578
crossref_primary_10_1016_j_ijhydene_2023_06_135
crossref_primary_10_1016_j_fuel_2022_123317
crossref_primary_10_1002_bbb_2713
crossref_primary_10_1002_cssc_202400513
crossref_primary_10_3390_recycling8040061
crossref_primary_10_3390_gases3010002
crossref_primary_10_1016_j_jece_2024_115069
crossref_primary_10_1021_acs_energyfuels_2c03079
crossref_primary_10_1039_D4TA00848K
crossref_primary_10_1080_01614940_2023_2275093
crossref_primary_10_1021_acsami_3c03934
crossref_primary_10_1039_D2GC04932E
crossref_primary_10_1002_slct_202401237
crossref_primary_10_1039_D4CY00151F
crossref_primary_10_1039_D2SE00351A
crossref_primary_10_1016_j_advmem_2021_100011
crossref_primary_10_1007_s11431_024_2730_7
crossref_primary_10_1016_j_ijhydene_2024_10_407
crossref_primary_10_1016_j_ijhydene_2022_05_128
crossref_primary_10_1021_acs_energyfuels_3c04026
crossref_primary_10_1016_j_est_2023_109207
crossref_primary_10_1016_j_ijhydene_2022_10_044
crossref_primary_10_1016_j_ijhydene_2023_01_205
crossref_primary_10_1016_j_ijhydene_2023_12_058
crossref_primary_10_1016_j_jenvman_2024_120611
crossref_primary_10_1080_15567249_2023_2254764
crossref_primary_10_1016_j_ijhydene_2023_03_059
crossref_primary_10_1002_er_7606
crossref_primary_10_1016_j_jclepro_2021_128846
crossref_primary_10_1021_acs_iecr_3c04486
crossref_primary_10_3390_nano13010053
crossref_primary_10_15251_DJNB_2023_184_1461
crossref_primary_10_3390_en13246495
crossref_primary_10_1016_j_ijhydene_2023_12_186
crossref_primary_10_1016_j_biortech_2020_124573
crossref_primary_10_1016_j_jclepro_2024_143492
crossref_primary_10_1016_j_jenvman_2022_115239
crossref_primary_10_31613_ceramist_2023_26_3_07
crossref_primary_10_1007_s11356_024_34096_x
crossref_primary_10_1016_j_apcatb_2022_121541
crossref_primary_10_1016_j_jclepro_2023_137991
crossref_primary_10_1016_j_rineng_2023_101456
crossref_primary_10_3390_su131911034
crossref_primary_10_1016_j_cattod_2022_10_010
crossref_primary_10_3390_app14146217
crossref_primary_10_1007_s11090_022_10282_y
crossref_primary_10_1016_j_fuel_2023_128474
crossref_primary_10_1039_D2TA06913J
crossref_primary_10_1002_anie_202317864
crossref_primary_10_1016_j_ijhydene_2023_11_069
crossref_primary_10_1002_ese3_1723
crossref_primary_10_1039_D2NJ05170B
crossref_primary_10_3390_en15134741
crossref_primary_10_1016_j_egyai_2023_100264
crossref_primary_10_1007_s12155_023_10704_5
crossref_primary_10_3390_en15249329
crossref_primary_10_3390_nano13182609
crossref_primary_10_1039_D4TA00224E
crossref_primary_10_1016_j_enpol_2023_113974
crossref_primary_10_1021_acsomega_4c01338
crossref_primary_10_1021_acsomega_2c06188
crossref_primary_10_1080_17597269_2025_2455813
crossref_primary_10_1016_j_renene_2024_121382
crossref_primary_10_1016_j_ijhydene_2023_08_157
crossref_primary_10_1177_0734242X211010364
crossref_primary_10_1039_D3EE02283H
crossref_primary_10_1016_j_enconman_2025_119530
crossref_primary_10_1016_j_biortech_2021_126596
crossref_primary_10_3389_frsus_2022_943145
crossref_primary_10_1016_j_biortech_2021_125024
crossref_primary_10_1016_j_ijhydene_2023_07_133
crossref_primary_10_1016_j_enconman_2023_117875
crossref_primary_10_3390_app11041616
crossref_primary_10_1007_s11356_024_35212_7
crossref_primary_10_1016_j_biortech_2020_124304
crossref_primary_10_1016_j_spc_2022_12_021
crossref_primary_10_1016_j_apenergy_2023_120850
crossref_primary_10_1039_D1SE01870A
crossref_primary_10_1063_5_0188819
crossref_primary_10_1002_ceat_202300330
crossref_primary_10_1016_j_ijhydene_2023_08_286
crossref_primary_10_1021_acs_energyfuels_2c01776
crossref_primary_10_1016_j_mtener_2024_101754
crossref_primary_10_1021_acs_energyfuels_1c02294
crossref_primary_10_3390_catal11050547
crossref_primary_10_1016_j_energy_2024_130477
crossref_primary_10_1016_j_envres_2024_119028
crossref_primary_10_1016_j_jclepro_2023_138141
crossref_primary_10_1016_j_cej_2025_159291
crossref_primary_10_1016_j_ijhydene_2022_06_137
crossref_primary_10_1002_cnma_202200422
crossref_primary_10_3390_en16093948
crossref_primary_10_1016_j_ijhydene_2024_04_208
crossref_primary_10_3390_su16198659
crossref_primary_10_1016_j_apcatb_2023_123537
crossref_primary_10_1016_j_biopha_2023_115807
crossref_primary_10_1016_j_energy_2021_121793
crossref_primary_10_1007_s42114_023_00815_0
crossref_primary_10_1016_j_tibtech_2021_12_007
crossref_primary_10_2139_ssrn_4075574
crossref_primary_10_3389_fenrg_2021_646057
crossref_primary_10_1016_j_jics_2025_101570
crossref_primary_10_1016_j_ijhydene_2022_03_199
crossref_primary_10_1016_j_ijhydene_2022_12_119
crossref_primary_10_1016_j_ijhydene_2023_11_196
crossref_primary_10_1016_j_ijhydene_2022_10_092
crossref_primary_10_1002_aenm_202201358
crossref_primary_10_1021_acs_inorgchem_4c01382
crossref_primary_10_3390_polym17060743
crossref_primary_10_1016_j_ijhydene_2021_09_142
crossref_primary_10_1016_j_rser_2021_111721
crossref_primary_10_1016_j_ijhydene_2022_07_172
crossref_primary_10_1016_j_fuel_2023_128925
crossref_primary_10_1039_D4TA02056A
crossref_primary_10_1016_j_jma_2022_06_017
crossref_primary_10_1016_j_est_2023_109512
crossref_primary_10_3390_en16031141
crossref_primary_10_1039_D4SE00333K
crossref_primary_10_1109_TIA_2021_3126691
crossref_primary_10_1016_j_biortech_2022_128203
crossref_primary_10_1016_j_clet_2025_100902
crossref_primary_10_1016_j_enconman_2021_114577
crossref_primary_10_1016_j_fuproc_2025_108210
crossref_primary_10_1016_j_techfore_2023_122574
crossref_primary_10_1088_1742_6596_2507_1_012012
crossref_primary_10_1016_j_energy_2023_127318
crossref_primary_10_1038_s41929_024_01248_8
crossref_primary_10_1016_j_catcom_2023_106601
crossref_primary_10_1016_j_jece_2024_113937
crossref_primary_10_1016_j_fuel_2023_129409
crossref_primary_10_3390_buildings14040945
crossref_primary_10_3390_en18030725
crossref_primary_10_1016_j_solener_2021_10_026
crossref_primary_10_1016_j_ijhydene_2023_02_074
crossref_primary_10_1155_2024_9930258
crossref_primary_10_1002_wene_527
crossref_primary_10_1016_j_enconman_2023_116983
crossref_primary_10_1016_j_scitotenv_2021_149648
crossref_primary_10_1016_j_ijhydene_2022_07_272
crossref_primary_10_1016_j_enconman_2021_114318
crossref_primary_10_1016_j_rser_2025_115544
crossref_primary_10_1016_j_seta_2022_102677
crossref_primary_10_1021_acssuschemeng_3c08236
crossref_primary_10_1016_j_jiec_2023_12_045
crossref_primary_10_1007_s13399_020_01127_9
crossref_primary_10_1016_j_xcrp_2024_102171
crossref_primary_10_1016_j_ijhydene_2023_07_204
crossref_primary_10_1002_sus2_75
crossref_primary_10_1016_j_ijhydene_2025_01_274
crossref_primary_10_1016_j_renene_2023_119243
crossref_primary_10_3390_designs8060117
crossref_primary_10_3389_fceng_2022_1072761
crossref_primary_10_1016_j_seta_2025_104202
crossref_primary_10_1134_S1023193524700290
crossref_primary_10_1016_j_biombioe_2025_107761
crossref_primary_10_1016_j_heliyon_2021_e06506
crossref_primary_10_1016_j_enconman_2023_117981
crossref_primary_10_1016_j_ijhydene_2024_05_211
crossref_primary_10_1016_j_ijhydene_2025_02_285
crossref_primary_10_1016_j_ijhydene_2023_07_300
crossref_primary_10_1016_j_rser_2021_111991
crossref_primary_10_1016_j_rser_2022_112646
crossref_primary_10_20517_energymater_2024_235
crossref_primary_10_1016_j_ijhydene_2021_11_089
crossref_primary_10_1002_smll_202302866
crossref_primary_10_1016_j_ecmx_2023_100511
crossref_primary_10_1016_j_jclepro_2022_135706
crossref_primary_10_1016_j_egyr_2024_03_008
crossref_primary_10_1016_j_ijhydene_2022_09_101
crossref_primary_10_1016_j_ijhydene_2024_03_172
crossref_primary_10_1002_bbb_2686
crossref_primary_10_1016_j_jclepro_2023_136956
crossref_primary_10_3390_su14159118
crossref_primary_10_1007_s10668_022_02234_5
crossref_primary_10_1016_j_ijhydene_2023_01_048
crossref_primary_10_3390_en17225653
crossref_primary_10_1007_s13369_022_07581_z
crossref_primary_10_1016_j_ijhydene_2023_08_339
crossref_primary_10_1139_cjc_2023_0151
crossref_primary_10_1016_j_ijhydene_2023_05_288
crossref_primary_10_1021_acssuschemeng_1c04031
crossref_primary_10_1002_cctc_202400700
crossref_primary_10_1038_s43586_022_00097_8
crossref_primary_10_3390_fermentation8040165
crossref_primary_10_1002_ange_202317864
crossref_primary_10_1016_j_ijhydene_2022_11_014
crossref_primary_10_62184_in_jin010120241
crossref_primary_10_1080_15435075_2023_2244583
crossref_primary_10_2139_ssrn_4274802
crossref_primary_10_1002_ente_202201252
crossref_primary_10_1016_j_eti_2025_104165
crossref_primary_10_1016_j_ijhydene_2021_07_225
crossref_primary_10_3390_pr11071977
crossref_primary_10_1016_j_mtnano_2021_100156
crossref_primary_10_1016_j_ijhydene_2021_01_014
crossref_primary_10_3390_hydrogen3040034
crossref_primary_10_1016_j_ijhydene_2021_12_029
crossref_primary_10_1016_j_renene_2022_06_037
crossref_primary_10_1016_j_biortech_2022_128087
crossref_primary_10_1007_s12274_022_4448_6
crossref_primary_10_3390_fermentation8070325
crossref_primary_10_1039_D3NR01836A
crossref_primary_10_1016_j_rechem_2025_102052
crossref_primary_10_3390_en15166064
crossref_primary_10_3390_catal15030280
crossref_primary_10_1016_j_jece_2024_112017
crossref_primary_10_1016_j_ijhydene_2022_08_209
crossref_primary_10_1016_j_ijhydene_2022_04_158
crossref_primary_10_1016_j_cej_2021_132278
crossref_primary_10_1016_j_ijhydene_2022_04_154
crossref_primary_10_1016_j_ijhydene_2022_01_189
crossref_primary_10_1021_acscatal_2c02923
crossref_primary_10_1016_j_ijhydene_2022_04_272
crossref_primary_10_1016_j_ijhydene_2021_08_055
crossref_primary_10_1016_j_ijhydene_2024_03_116
crossref_primary_10_1002_ente_202200439
crossref_primary_10_1016_j_biortech_2022_128074
crossref_primary_10_1016_j_seta_2023_103463
crossref_primary_10_1016_j_ijhydene_2022_02_094
crossref_primary_10_55930_jonas_1101384
crossref_primary_10_1016_j_biortech_2023_129221
crossref_primary_10_1016_j_fuel_2024_132624
crossref_primary_10_1016_j_scca_2023_100024
crossref_primary_10_1039_D3GC03297C
crossref_primary_10_1016_j_energy_2022_123174
crossref_primary_10_1016_j_jece_2022_109076
crossref_primary_10_1016_j_ijhydene_2022_09_263
crossref_primary_10_1016_j_jgsce_2023_204918
crossref_primary_10_1016_j_enconman_2021_114523
crossref_primary_10_3390_catal12030322
crossref_primary_10_46632_rmc_3_2_7
crossref_primary_10_1016_j_solener_2022_11_001
crossref_primary_10_3390_membranes12020173
crossref_primary_10_1016_j_ijhydene_2023_05_216
crossref_primary_10_1039_D3TA04095J
crossref_primary_10_1016_j_ceramint_2023_09_323
crossref_primary_10_1134_S0022476622090037
crossref_primary_10_3390_su14042189
crossref_primary_10_1016_j_ijft_2025_101154
crossref_primary_10_1016_j_enconman_2023_117262
crossref_primary_10_1016_j_ijhydene_2022_03_125
crossref_primary_10_3390_en16186542
crossref_primary_10_1016_j_enconman_2024_118514
crossref_primary_10_1002_er_8191
crossref_primary_10_1016_j_ijhydene_2023_09_111
crossref_primary_10_3390_polym15193906
crossref_primary_10_1016_j_ijhydene_2023_07_183
crossref_primary_10_1007_s10668_024_04798_w
crossref_primary_10_3390_en16073017
crossref_primary_10_3390_bios12010028
crossref_primary_10_3390_su16010147
crossref_primary_10_1016_j_ijhydene_2022_04_010
crossref_primary_10_3390_en17010180
crossref_primary_10_1002_cctc_202301110
crossref_primary_10_1557_s43578_024_01475_6
crossref_primary_10_1016_j_biortech_2024_131164
crossref_primary_10_1007_s42524_022_0245_x
crossref_primary_10_1051_e3sconf_202458905001
crossref_primary_10_1063_5_0183511
crossref_primary_10_3390_en14175558
crossref_primary_10_1016_j_enconman_2024_118764
crossref_primary_10_1016_j_ijhydene_2021_05_201
crossref_primary_10_1016_j_biortech_2021_126057
crossref_primary_10_1186_s13068_024_02573_7
crossref_primary_10_1039_D2CS00038E
crossref_primary_10_1016_j_fuel_2023_127794
crossref_primary_10_1016_j_psep_2023_07_075
crossref_primary_10_1016_j_biortech_2022_126904
crossref_primary_10_1016_j_ijhydene_2022_06_096
crossref_primary_10_1016_j_energy_2022_125008
crossref_primary_10_3389_feart_2023_1268103
crossref_primary_10_1016_j_ijhydene_2022_04_027
crossref_primary_10_1021_acs_chemmater_1c01983
crossref_primary_10_1016_j_energy_2021_120853
crossref_primary_10_1016_j_ijhydene_2024_08_287
crossref_primary_10_1016_j_ijhydene_2023_06_271
crossref_primary_10_1039_D4YA00483C
crossref_primary_10_3390_su151511501
Cites_doi 10.1016/j.renene.2017.04.029
10.1016/j.ijhydene.2019.02.220
10.1039/C8SE00535D
10.3390/en11071777
10.1016/j.enconman.2016.09.087
10.1016/j.ijhydene.2014.05.035
10.1016/j.ijhydene.2011.03.066
10.1007/s12155-019-10046-1
10.1016/j.ijhydene.2018.01.113
10.1016/j.fbp.2013.09.001
10.7763/IJESD.2015.V6.617
10.1016/j.joule.2017.07.003
10.1039/C6CP05934A
10.1016/j.ijhydene.2007.04.039
10.1016/j.apcatb.2016.04.047
10.1016/j.enconman.2010.10.023
10.1016/j.copbio.2017.12.024
10.1016/j.ijhydene.2018.07.201
10.1016/j.ijhydene.2007.09.028
10.1016/j.renene.2017.04.060
10.1016/j.ijhydene.2009.10.043
10.1039/C8EE01157E
10.1016/j.biortech.2016.03.124
10.1016/j.copbio.2011.04.022
10.1016/j.ijhydene.2012.04.109
10.15376/biores.12.3.4830-4853
10.1016/j.ijhydene.2014.01.151
10.1016/j.ijhydene.2019.05.092
10.1016/j.fuproc.2005.11.003
10.3390/pr7050308
10.1016/j.ijhydene.2007.07.015
10.1016/j.enconman.2018.03.089
10.1016/j.apenergy.2015.01.045
10.1016/j.biortech.2015.11.072
10.1016/j.ijhydene.2016.08.219
10.1016/j.ijhydene.2019.04.151
10.1016/j.enconman.2019.112108
10.1016/j.egypro.2016.07.155
10.1016/j.ijhydene.2010.04.035
10.1016/j.biortech.2016.09.055
10.3389/fenrg.2017.00001
10.1016/j.ijhydene.2015.07.080
10.1016/S1872-2067(17)62949-8
10.1016/j.fuel.2014.02.077
10.1016/j.enconman.2017.05.059
10.1016/j.ijhydene.2016.07.157
10.1016/j.biortech.2012.10.125
10.3390/ijms16048266
10.1016/j.ijhydene.2019.06.044
10.1002/wene.286
10.1016/j.biortech.2018.03.016
10.1016/j.rser.2018.05.009
10.1016/j.jclepro.2016.04.055
10.1016/j.ijhydene.2009.02.067
10.1038/nchem.1634
10.1016/j.ijhydene.2016.09.047
10.1002/fuce.201700225
10.1016/j.fuproc.2008.01.011
10.3390/app6080223
10.1016/j.rser.2016.09.044
10.1016/j.ijhydene.2010.11.051
10.1016/j.ijhydene.2016.03.057
10.1016/j.ijhydene.2019.05.202
10.1016/j.pecs.2009.11.002
10.1016/j.ijhydene.2016.08.084
10.1002/bbb.1980
10.1016/S0926-860X(00)00440-3
10.1016/j.rser.2013.01.051
10.1016/j.ijhydene.2020.02.062
10.1016/j.biortech.2014.02.073
10.1016/j.egypro.2016.11.102
10.1016/j.ijhydene.2010.08.073
10.1002/ente.201600645
10.1016/j.ijhydene.2019.04.063
10.1016/j.biortech.2017.08.021
10.1016/j.jclepro.2017.12.130
10.1016/j.ijhydene.2012.05.043
10.1016/j.renene.2007.11.002
10.1016/j.jechem.2016.09.001
10.1016/j.ijhydene.2019.06.182
10.3390/en12030494
10.1016/j.ijhydene.2016.11.172
10.1016/j.biortech.2018.08.050
10.1016/j.ijhydene.2016.04.176
10.1016/j.biombioe.2013.01.013
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright © 2020 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright © 2020 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
7X8
7S9
L.6
DOI 10.1016/j.biortech.2020.124175
DatabaseName CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic

AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Agriculture
EISSN 1873-2976
ExternalDocumentID 10_1016_j_biortech_2020_124175
S0960852420314498
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
AAAJQ
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AARKO
AATLK
AAXUO
ABFNM
ABFYP
ABGRD
ABGSF
ABJNI
ABLST
ABMAC
ABNUV
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADQTV
ADUVX
AEBSH
AEHWI
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGEKW
AGHFR
AGRDE
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLECG
BLXMC
CBWCG
CJTIS
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMC
HVGLF
HZ~
IHE
J1W
JARJE
KCYFY
KOM
LUGTX
LW9
LY6
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SAC
SDF
SDG
SDP
SEN
SES
SEW
SPC
SPCBC
SSA
SSG
SSI
SSJ
SSR
SSU
SSZ
T5K
VH1
WUQ
Y6R
~02
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7X8
7S9
L.6
ID FETCH-LOGICAL-c378t-db919c6d0e5c1e7ca23ba9a71d226abaa30136309fddec4e49313a1d6a756bc3
IEDL.DBID .~1
ISSN 0960-8524
1873-2976
IngestDate Thu Jul 10 22:22:40 EDT 2025
Fri Jul 11 09:29:37 EDT 2025
Tue Jul 01 03:18:48 EDT 2025
Thu Apr 24 23:12:08 EDT 2025
Fri Feb 23 02:49:09 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Techno-economics
Steam reforming electrolysis
Sensitivity analysis
Hydrogen
Dark fermentation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c378t-db919c6d0e5c1e7ca23ba9a71d226abaa30136309fddec4e49313a1d6a756bc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
PQID 2449178073
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2551988156
proquest_miscellaneous_2449178073
crossref_citationtrail_10_1016_j_biortech_2020_124175
crossref_primary_10_1016_j_biortech_2020_124175
elsevier_sciencedirect_doi_10_1016_j_biortech_2020_124175
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2021
2021-01-00
20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: January 2021
PublicationDecade 2020
PublicationTitle Bioresource technology
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Gray, Tomlinson (b0185) 2002; 31
Aslam, Ahmad, Yasin, Khan, Shahid, Hossain, Khan, Jamil, Rafiq, Bilad, Kim, Kumar (b0025) 2018; 269
Kumar, Kannah, Kumar, Sivashanmugam, Banu (b0290) 2020; 301
Bahzad, Shah, Dowell, Boot-Handford, Soltani, Ho, Fennell (b0035) 2019; 44
Ghimire, Frunzo, Pirozzi, Trably, Escudie, Lens, Esposito (b0170) 2015; 144
Song, Ozkan (b0465) 2010; 35
Cormos, Cormos (b0120) 2017; 42
Argun, Gokfiliz, Karapinar (b0015) 2017
Li, Liu, Chu, Chang, Hsu, Lin, Wu (b0310) 2012; 37
Choong, Chen, Du, Schreyer, Daniel Ong, Poh, Hong, Borgna (b0115) 2017; 19
Chandrasekhar, Lee, Lee (b0090) 2015; 16
Ren, Guo, Liu, Cao, Ding (b0405) 2011; 22
Hsu, Lin (b0215) 2016; 41
Rai, Singh (b0385) 2016; 41
Boudries (b0060) 2016; 93
Zeng, Zhang (b0520) 2010; 36
Soares, Confortin, Todero, Mayer, Mazutti (b0460) 2020
Han, Liu, Fang, Huang, Zhao, Li (b0200) 2016; 127
Lam, Leung, Lei, Lin (b0300) 2014; 92
Chandrasekhar, Venkata Mohan (b0095) 2014; 165
Carrero, Vizcaíno, Calles, García-Moreno (b0080) 2017; 26
Kumar, Shobana, Nagarajan, Lee, Lee, Lin, Chen, Chang (b0275) 2018; 50
Lee, Lee (b0305) 2008; 33
Sathyaprakasan, Kannan (b0425) 2015; 6
Kwak, Kim, Kang (b0295) 2010; 35
Arregi, Amutio, Lopez, Bilbao, Olazar (b0020) 2018; 165
Taner, Naqvi, Ozkaymak (b0475) 2019; 19
Khan, Ngo, Guo, Liu, Zhang, Guo, Chang, Nguyen, Wang (b0265) 2018; 129
Chang, Hsu, Lin, Hsiung (b0105) 2011; 36
Chi, Yu (b0110) 2018; 39
Wang, Zhang (b0500) 2017; 12
Bartels, Pate, Olson (b0050) 2010; 35
Show, Yan, Lee (b0445) 2019
Ruth (b0415) 2011
Ren, Zhao, Chen, Guo, Cao (b0400) 2016; 215
Dasgupta, Mondal, Wiltowski (b0135) 2008; 33
González, Román, Bragado, Calderón (b0180) 2008; 89
Moraes, Cozendey da Silva, Zotes, Mattos, Pizarro Borges, Farrauto, Noronha (b0345) 2019; 44
Sara, Enrico, Mauro, Andrea, Vincenzo (b0420) 2016; 101
Ramsden, Steward, Zuboy (b0390) 2009
Wang, Wang, Chen, Liu (b0505) 2014; 39
Staffell, Scamman, Velazquez Abad, Balcombe, Dodds, Ekins, Shah, Ward (b0470) 2019; 12
Han, Fang, Liu, Tang (b0190) 2016; 202
Balat, Balat (b0040) 2009; 34
Nguyen, Abdin, Holm, Mérida (b0360) 2019; 200
Schmitt, Apfelbacher, Jäger, Daschner, Stenzel, Hornung (b0430) 2019; 13
Badwal, Giddey, Munnings (b0030) 2018; 7
Kannah, Velu, Banu, Heimann, Karthikeyan (b0250) 2018
Matute, Yusta, Correas (b0335) 2019; 44
Thilakaratne, Wright, Brown (b0480) 2014; 128
Wang, Chen, Yang, Liu, Yang, Wang, Liang (b0495) 2017; 12
Hsu, Lin (b0210) 2016; 41
Mohammed, Salmiaton, Wan Azlina, Mohammad Amran, Fakhru’l-Razi, A. (b0340) 2011; 52
Chandrasekhar, Venkata Mohan (b0100) 2014; 39
Dewoolkar, Vaidya (b0140) 2017; 5
Ziazi, Mohammadi, Goudarzi (b0530) 2017
da Silva Veras, Mozer, da Costa Rubim, Messeder dos Santos, da Silva César (b0130) 2017; 42
Amos (b0010) 2004
Han, Yan, Gu, Shi, Tang, Li (b0205) 2016; 41
Thürer, Tomašević, Stevenson, Qu, Huisingh (b0485) 2018; 181
Ni, Leung, Leung, Sumathy (b0365) 2006; 87
Kuckshinrichs, Ketelaer, Koj (b0270) 2017; 5
Hydrogen Council (b0225) 2017
Basagiannis, Verykios (b0055) 2007; 32
Rothwell, Williams (b0410) 2006; 1
Xu, Wang, Solangi, Zameer, Shah (b0515) 2019; 7
Cai, de la Piscina, Gabrowska, Homs (b0075) 2013; 128
Nabgan, Tuan Abdullah, Mat, Nabgan, Gambo, Johari (b0355) 2016; 6
Nicita, Maggio, Andaloro, Squadrito (b0370) 2020; 45
Nikolaidis, Poullikkas (b0375) 2017; 67
Kavitha, Kannah, Gunasekaran, Kumar, Banu (b0260) 2020; 45
Nabgan, Abdullah, Mat, Nabgan, Jalil, Firmansyah, Triwahyono (b0350) 2017; 42
Sharma, Kaushik (b0440) 2017
Han, Hu, Li, Li, Tang (b0195) 2016; 221
Lv, Wu, Ma, Yuan (b0325) 2008; 33
Show, Lee, Tay, Lin, Chang (b0450) 2012
Liu, Lin, Man, Ren (b0320) 2019; 44
Garcia, French, Czernik, Chornet (b0165) 2000; 201
Cristóbal, Caldeira, Corrado, Sala (b0125) 2018; 259
Williams, Kornbluth, Erickson, Jenkins, Gildart (b0510) 2007
Gondal, Masood, Khan (b0175) 2018; 43
Kannah, Kavitha, Gunasekaran, Kumar, Banu, Zhen (b0235) 2020; 45
Ferrero, Santarelli (b0160) 2017; 148
Dinesh, Chauhan, Chakma (b0145) 2018; 92
Rashid, Rehman, Memon, Ur Rahman, Lee, Han (b0395) 2013; 22
Braga, Sodré, Santos, de Paula Marques, Bueno (b0065) 2016; 195
Esposito (b0155) 2017; 1
Porcu, Sollai, Marotto, Mureddu, Ferrara, Pettinau (b0380) 2019; 12
Zhang, Brown, Hu, Brown (b0525) 2013; 51
Kannah, Merrylin, Preethi, Gunasekaran, Kumar, Banu (b0245) 2019
Kumar, Oyedun, Kumar (b0285) 2019; 44
Chandrasekhar, Ahn (b0085) 2017; 244
Dou, Zhang, Song, Zhao, Jiang, He, Ruan, Chen, Xu (b0150) 2019; 3
Kalamaras, Efstathiou (b0230) 2013; 690627
Lima da Silva, Müller (b0315) 2011; 36
Touloupakis, Torzillo (b0490) 2019
Kumar, Sivagurunathan, Pugazhendhi, Thi, Zhen, Chandrasekhar, Kadier (b0280) 2017; 141
Bundhoo, Mohee (b0070) 2016
Karimi Alavijeh, Yaghmaei, Mardanpour (b0255) 2020; 13
Al Arni (b0005) 2018; 124
Shah, Valasai, Memon, Laghari, Jalbani, Strait (b0435) 2018; 11
Hydrogen Council (b0220) 2020
Simbeck (b0455) 2005
Kannah, Kavitha, Sivashanmugham, Kumar, Nguyen, Chang, Banu (b0240) 2019; 44
Mallouk (b0330) 2013; 5
Banu, Kavitha, Kannah, Bhosale, Kumar (b0045) 2020; 298
Xu (10.1016/j.biortech.2020.124175_b0515) 2019; 7
Thilakaratne (10.1016/j.biortech.2020.124175_b0480) 2014; 128
Argun (10.1016/j.biortech.2020.124175_b0015) 2017
Nabgan (10.1016/j.biortech.2020.124175_b0350) 2017; 42
Amos (10.1016/j.biortech.2020.124175_b0010) 2004
Rai (10.1016/j.biortech.2020.124175_b0385) 2016; 41
Liu (10.1016/j.biortech.2020.124175_b0320) 2019; 44
Sharma (10.1016/j.biortech.2020.124175_b0440) 2017
Hsu (10.1016/j.biortech.2020.124175_b0215) 2016; 41
Show (10.1016/j.biortech.2020.124175_b0450) 2012
Aslam (10.1016/j.biortech.2020.124175_b0025) 2018; 269
Nicita (10.1016/j.biortech.2020.124175_b0370) 2020; 45
Thürer (10.1016/j.biortech.2020.124175_b0485) 2018; 181
Balat (10.1016/j.biortech.2020.124175_b0040) 2009; 34
Kavitha (10.1016/j.biortech.2020.124175_b0260) 2020; 45
Han (10.1016/j.biortech.2020.124175_b0195) 2016; 221
Touloupakis (10.1016/j.biortech.2020.124175_b0490) 2019
Chandrasekhar (10.1016/j.biortech.2020.124175_b0100) 2014; 39
Moraes (10.1016/j.biortech.2020.124175_b0345) 2019; 44
Nabgan (10.1016/j.biortech.2020.124175_b0355) 2016; 6
Basagiannis (10.1016/j.biortech.2020.124175_b0055) 2007; 32
da Silva Veras (10.1016/j.biortech.2020.124175_b0130) 2017; 42
Hydrogen Council (10.1016/j.biortech.2020.124175_b0220) 2020
Han (10.1016/j.biortech.2020.124175_b0205) 2016; 41
Zeng (10.1016/j.biortech.2020.124175_b0520) 2010; 36
Dasgupta (10.1016/j.biortech.2020.124175_b0135) 2008; 33
Mallouk (10.1016/j.biortech.2020.124175_b0330) 2013; 5
González (10.1016/j.biortech.2020.124175_b0180) 2008; 89
Zhang (10.1016/j.biortech.2020.124175_b0525) 2013; 51
Kannah (10.1016/j.biortech.2020.124175_b0250) 2018
Han (10.1016/j.biortech.2020.124175_b0190) 2016; 202
Ren (10.1016/j.biortech.2020.124175_b0405) 2011; 22
Kumar (10.1016/j.biortech.2020.124175_b0275) 2018; 50
Choong (10.1016/j.biortech.2020.124175_b0115) 2017; 19
Ramsden (10.1016/j.biortech.2020.124175_b0390) 2009
Taner (10.1016/j.biortech.2020.124175_b0475) 2019; 19
Ren (10.1016/j.biortech.2020.124175_b0400) 2016; 215
Bahzad (10.1016/j.biortech.2020.124175_b0035) 2019; 44
Kannah (10.1016/j.biortech.2020.124175_b0240) 2019; 44
Chi (10.1016/j.biortech.2020.124175_b0110) 2018; 39
Soares (10.1016/j.biortech.2020.124175_b0460) 2020
Cristóbal (10.1016/j.biortech.2020.124175_b0125) 2018; 259
Khan (10.1016/j.biortech.2020.124175_b0265) 2018; 129
Lee (10.1016/j.biortech.2020.124175_b0305) 2008; 33
Chandrasekhar (10.1016/j.biortech.2020.124175_b0085) 2017; 244
Show (10.1016/j.biortech.2020.124175_b0445) 2019
Hydrogen Council (10.1016/j.biortech.2020.124175_b0225) 2017
Porcu (10.1016/j.biortech.2020.124175_b0380) 2019; 12
Williams (10.1016/j.biortech.2020.124175_b0510) 2007
Braga (10.1016/j.biortech.2020.124175_b0065) 2016; 195
Rothwell (10.1016/j.biortech.2020.124175_b0410) 2006; 1
Ziazi (10.1016/j.biortech.2020.124175_b0530) 2017
Badwal (10.1016/j.biortech.2020.124175_b0030) 2018; 7
Lv (10.1016/j.biortech.2020.124175_b0325) 2008; 33
Sara (10.1016/j.biortech.2020.124175_b0420) 2016; 101
Arregi (10.1016/j.biortech.2020.124175_b0020) 2018; 165
Shah (10.1016/j.biortech.2020.124175_b0435) 2018; 11
Ruth (10.1016/j.biortech.2020.124175_b0415) 2011
Song (10.1016/j.biortech.2020.124175_b0465) 2010; 35
Chandrasekhar (10.1016/j.biortech.2020.124175_b0090) 2015; 16
Dou (10.1016/j.biortech.2020.124175_b0150) 2019; 3
Kumar (10.1016/j.biortech.2020.124175_b0280) 2017; 141
Chandrasekhar (10.1016/j.biortech.2020.124175_b0095) 2014; 165
Carrero (10.1016/j.biortech.2020.124175_b0080) 2017; 26
Chang (10.1016/j.biortech.2020.124175_b0105) 2011; 36
Han (10.1016/j.biortech.2020.124175_b0200) 2016; 127
Nikolaidis (10.1016/j.biortech.2020.124175_b0375) 2017; 67
Garcia (10.1016/j.biortech.2020.124175_b0165) 2000; 201
Lam (10.1016/j.biortech.2020.124175_b0300) 2014; 92
Kalamaras (10.1016/j.biortech.2020.124175_b0230) 2013; 690627
Bartels (10.1016/j.biortech.2020.124175_b0050) 2010; 35
Cormos (10.1016/j.biortech.2020.124175_b0120) 2017; 42
Ferrero (10.1016/j.biortech.2020.124175_b0160) 2017; 148
Wang (10.1016/j.biortech.2020.124175_b0505) 2014; 39
Kannah (10.1016/j.biortech.2020.124175_b0245) 2019
Ghimire (10.1016/j.biortech.2020.124175_b0170) 2015; 144
Kumar (10.1016/j.biortech.2020.124175_b0290) 2020; 301
Sathyaprakasan (10.1016/j.biortech.2020.124175_b0425) 2015; 6
Wang (10.1016/j.biortech.2020.124175_b0495) 2017; 12
Staffell (10.1016/j.biortech.2020.124175_b0470) 2019; 12
Ni (10.1016/j.biortech.2020.124175_b0365) 2006; 87
Dewoolkar (10.1016/j.biortech.2020.124175_b0140) 2017; 5
Nguyen (10.1016/j.biortech.2020.124175_b0360) 2019; 200
Al Arni (10.1016/j.biortech.2020.124175_b0005) 2018; 124
Lima da Silva (10.1016/j.biortech.2020.124175_b0315) 2011; 36
Cai (10.1016/j.biortech.2020.124175_b0075) 2013; 128
Karimi Alavijeh (10.1016/j.biortech.2020.124175_b0255) 2020; 13
Matute (10.1016/j.biortech.2020.124175_b0335) 2019; 44
Bundhoo (10.1016/j.biortech.2020.124175_b0070) 2016
Kannah (10.1016/j.biortech.2020.124175_b0235) 2020; 45
Rashid (10.1016/j.biortech.2020.124175_b0395) 2013; 22
Boudries (10.1016/j.biortech.2020.124175_b0060) 2016; 93
Simbeck (10.1016/j.biortech.2020.124175_b0455) 2005
Li (10.1016/j.biortech.2020.124175_b0310) 2012; 37
Gondal (10.1016/j.biortech.2020.124175_b0175) 2018; 43
Dinesh (10.1016/j.biortech.2020.124175_b0145) 2018; 92
Gray (10.1016/j.biortech.2020.124175_b0185) 2002; 31
Schmitt (10.1016/j.biortech.2020.124175_b0430) 2019; 13
Kuckshinrichs (10.1016/j.biortech.2020.124175_b0270) 2017; 5
Hsu (10.1016/j.biortech.2020.124175_b0210) 2016; 41
Wang (10.1016/j.biortech.2020.124175_b0500) 2017; 12
Banu (10.1016/j.biortech.2020.124175_b0045) 2020; 298
Mohammed (10.1016/j.biortech.2020.124175_b0340) 2011; 52
Kwak (10.1016/j.biortech.2020.124175_b0295) 2010; 35
Esposito (10.1016/j.biortech.2020.124175_b0155) 2017; 1
Kumar (10.1016/j.biortech.2020.124175_b0285) 2019; 44
References_xml – volume: 200
  year: 2019
  ident: b0360
  article-title: Grid-connected hydrogen production via large-scale water electrolysis
  publication-title: Energy Convers. Manag.
– start-page: 1
  year: 2020
  end-page: 88
  ident: b0220
  article-title: Path to Hydrogen Competitiveness A Cost Perspective
– volume: 44
  start-page: 19676
  year: 2019
  end-page: 19697
  ident: b0320
  article-title: Recent developments of hydrogen production from sewage sludge by biological and thermochemical process
  publication-title: Int. J. Hydrogen Energy
– start-page: 1059
  year: 2005
  end-page: 1066
  ident: b0455
  article-title: Hydrogen costs with CO
  publication-title: Greenhouse Gas Control Technologies
– start-page: 511
  year: 2019
  end-page: 525
  ident: b0490
  article-title: Photobiological hydrogen production
  publication-title: Solar Hydrogen Production Processes, Systems and Technologies
– volume: 41
  start-page: 21573
  year: 2016
  end-page: 21582
  ident: b0210
  article-title: Using social network analysis to examine the technological evolution of fermentative hydrogen production from biomass
  publication-title: Int. J. Hydrogen Energy
– volume: 6
  start-page: 223
  year: 2016
  ident: b0355
  article-title: Evaluation of reaction parameters of the phenol steam reforming over Ni/Co on ZrO2 using the full factorial experimental design
  publication-title: Appl. Sci.
– volume: 13
  start-page: 463
  year: 2020
  end-page: 476
  ident: b0255
  article-title: Assessment of global potential of biohydrogen production from agricultural residues and its application in nitrogen fertilizer production
  publication-title: Bioenergy Res.
– start-page: 117
  year: 2020
  ident: b0460
  article-title: Dark fermentative biohydrogen production from lignocellulosic biomass: Technological challenges and future prospects
– volume: 22
  start-page: 571
  year: 2013
  end-page: 579
  ident: b0395
  article-title: Current status, barriers and developments in biohydrogen production by microalgae
  publication-title: Renew. Sustain. Energy Rev.
– start-page: 1
  year: 2017
  end-page: 13
  ident: b0530
  article-title: Techno-economic assessment of utilizing wind energy for hydrogen production through electrolysis
  publication-title: ASME 2017 Power Conference Joint With ICOPE-17 Collocated with the ASME 2017 11
– volume: 215
  start-page: 92
  year: 2016
  end-page: 99
  ident: b0400
  article-title: A review on bioconversion of lignocellulosic biomass to H2: Key challenges and new insights
  publication-title: Bioresour. Technol.
– volume: 36
  start-page: 307
  year: 2010
  end-page: 326
  ident: b0520
  article-title: Recent progress in alkaline water electrolysis for hydrogen production and applications
  publication-title: Prog. Energy Combust. Sci.
– volume: 124
  start-page: 197
  year: 2018
  end-page: 201
  ident: b0005
  article-title: Comparison of slow and fast pyrolysis for converting biomass into fuel
  publication-title: Renew. Energy
– volume: 269
  start-page: 452
  year: 2018
  end-page: 464
  ident: b0025
  article-title: Anaerobic membrane bioreactors for biohydrogen production: Recent developments, challenges and perspectives
  publication-title: Bioresour. Technol.
– volume: 165
  start-page: 372
  year: 2014
  end-page: 382
  ident: b0095
  article-title: Induced catabolic bio-electrohydrolysis of complex food waste by regulating external resistance for enhancing acidogenic biohydrogen production
  publication-title: Bioresour. Technol.
– volume: 39
  start-page: 390
  year: 2018
  end-page: 394
  ident: b0110
  article-title: Water electrolysis based on renewable energy for hydrogen production
  publication-title: Chinese J. Catal.
– volume: 690627
  year: 2013
  ident: b0230
  article-title: Hydrogen production technologies: current state and future developments
  publication-title: Conf. Papers in Sci.
– volume: 67
  start-page: 597
  year: 2017
  end-page: 611
  ident: b0375
  article-title: A comparative overview of hydrogen production processes
  publication-title: Renew. Sustain. Energy Rev.
– volume: 22
  start-page: 365
  year: 2011
  end-page: 370
  ident: b0405
  article-title: Biological hydrogen production by dark fermentation: Challenges and prospects towards scaled-up production
  publication-title: Curr. Opin. Biotechnol.
– volume: 19
  start-page: 19
  year: 2019
  end-page: 26
  ident: b0475
  article-title: Techno-economic analysis of a more efficient hydrogen generation system prototype: a case study of PEM electrolyzer with Cr-C coated SS304 bipolar plates
  publication-title: Fuel Cells
– volume: 7
  start-page: 308
  year: 2019
  ident: b0515
  article-title: Off-grid solar PV power generation system in Sindh, Pakistan: a techno-economic feasibility analysis
  publication-title: Processes
– volume: 13
  start-page: 822
  year: 2019
  end-page: 837
  ident: b0430
  article-title: Thermo-chemical conversion of biomass and upgrading to biofuel: The Thermo-Catalytic Reforming process–A review. Biofuels
  publication-title: Bioprod. Biorefining
– volume: 93
  start-page: 96
  year: 2016
  end-page: 101
  ident: b0060
  article-title: Techno-economic assessment of solar hydrogen production using CPV-electrolysis systems
  publication-title: Energy Proc.
– volume: 50
  start-page: 136
  year: 2018
  end-page: 145
  ident: b0275
  article-title: Biomass based hydrogen production by dark fermentation—recent trends and opportunities for greener processes
  publication-title: Curr. Opin. Biotechnol.
– volume: 5
  start-page: 362
  year: 2013
  end-page: 363
  ident: b0330
  article-title: Water electrolysis: Divide and conquer
  publication-title: Nat. Chem.
– volume: 11
  start-page: 1777
  year: 2018
  ident: b0435
  article-title: Techno-economic analysis of solar pv electricity supply to rural areas of Balochistan
  publication-title: Pakistan. Energies
– volume: 51
  start-page: 99
  year: 2013
  end-page: 108
  ident: b0525
  article-title: Comparative techno-economic analysis of biohydrogen production via bio-oil gasification and bio-oil reforming
  publication-title: Biomass Bioenergy
– volume: 39
  start-page: 11411
  year: 2014
  end-page: 11422
  ident: b0100
  article-title: Bio-electrohydrolysis as a pretreatment strategy to catabolize complex food waste in closed circuitry: Function of electron flux to enhance acidogenic biohydrogen production
  publication-title: Int. J. Hydrogen Energy
– volume: 33
  start-page: 303
  year: 2008
  end-page: 311
  ident: b0135
  article-title: Robust, high reactivity and enhanced capacity carbon dioxide removal agents for hydrogen production applications
  publication-title: Int. J. Hydrogen Energy
– volume: 35
  start-page: 8371
  year: 2010
  end-page: 8384
  ident: b0050
  article-title: An economic survey of hydrogen production from conventional and alternative energy sources
  publication-title: Int. J. Hydrogen Energy
– volume: 259
  start-page: 244
  year: 2018
  end-page: 252
  ident: b0125
  article-title: Techno-economic and profitability analysis of food waste biorefineries at European level
  publication-title: Bioresour. Technol.
– volume: 181
  start-page: 608
  year: 2018
  end-page: 617
  ident: b0485
  article-title: A systematic review of the literature on integrating sustainability into engineering curricula
  publication-title: J. Clean. Prod.
– volume: 45
  start-page: 11395
  year: 2020
  end-page: 11408
  ident: b0370
  article-title: Green hydrogen as feedstock: Financial analysis of a photovoltaic-powered electrolysis plant
  publication-title: Int. J. Hydrogen Energy
– volume: 221
  start-page: 318
  year: 2016
  end-page: 323
  ident: b0195
  article-title: Biohydrogen production from waste bread in a continuous stirred tank reactor: A techno-economic analysis
  publication-title: Bioresour. Technol.
– volume: 129
  start-page: 754
  year: 2018
  end-page: 768
  ident: b0265
  article-title: Biohydrogen production from anaerobic digestion and its potential as renewable energy
  publication-title: Renew. Energy
– volume: 7
  year: 2018
  ident: b0030
  article-title: Emerging technologies, markets and commercialization of solid-electrolytic hydrogen production
  publication-title: Wiley Interdiscip. Rev. Energy Environ.
– start-page: 1
  year: 2017
  end-page: 80
  ident: b0225
  article-title: Hydrogen Scaling Up, A Sustainable Pathway For The Global Energy Transition
– volume: 45
  start-page: 5890
  year: 2020
  end-page: 5899
  ident: b0260
  article-title: Rhamnolipid induced deagglomeration of anaerobic granular biosolids for energetically feasible ultrasonic homogenization and profitable biohydrogen
  publication-title: Int. J. Hydrogen Energy
– volume: 12
  start-page: 463
  year: 2019
  end-page: 491
  ident: b0470
  article-title: The role of hydrogen and fuel cells in the global energy system
  publication-title: Energy Environ. Sci.
– volume: 44
  start-page: 10384
  year: 2019
  end-page: 10397
  ident: b0285
  article-title: A comparative analysis of hydrogen production from the thermochemical conversion of algal biomass
  publication-title: Int. J. Hydrogen Energy
– volume: 195
  start-page: 16
  year: 2016
  end-page: 28
  ident: b0065
  article-title: Steam reforming of acetone over Ni- and Co-based catalysts: Effect of the composition of reactants and catalysts on reaction pathways
  publication-title: Appl. Catal. B Environ.
– volume: 16
  start-page: 8266
  year: 2015
  end-page: 8293
  ident: b0090
  article-title: Biohydrogen production: strategies to improve process efficiency through microbial routes
  publication-title: Int. J. Mol. Sci.
– volume: 36
  start-page: 2057
  year: 2011
  end-page: 2075
  ident: b0315
  article-title: Hydrogen production by sorption enhanced steam reforming of oxygenated hydrocarbons (ethanol, glycerol, n-butanol and methanol): Thermodynamic modelling
  publication-title: Int. J. Hydrogen Energy
– volume: 34
  start-page: 3589
  year: 2009
  end-page: 3603
  ident: b0040
  article-title: Political, economic and environmental impacts of biomass-based hydrogen
  publication-title: Int. J. Hydrogen Energy
– volume: 165
  start-page: 696
  year: 2018
  end-page: 719
  ident: b0020
  article-title: Evaluation of thermochemical routes for hydrogen production from biomass: A review
  publication-title: Energy Convers. Manag.
– volume: 52
  start-page: 1555
  year: 2011
  end-page: 1561
  ident: b0340
  article-title: Air gasification of empty fruit bunch for hydrogen-rich gas production in a fluidized-bed reactor
  publication-title: Energy Convers. Manag.
– volume: 44
  start-page: 2203
  year: 2019
  end-page: 2215
  ident: b0240
  article-title: Biohydrogen production from rice straw: Effect of combinative pretreatment, modelling assessment and energy balance consideration
  publication-title: Int. J. Hydrogen Energy
– start-page: 319
  year: 2018
  end-page: 342
  ident: b0250
  article-title: Food waste valorization by microalgae
  publication-title: Waste to Wealth
– volume: 42
  start-page: 8975
  year: 2017
  end-page: 8985
  ident: b0350
  article-title: Production of hydrogen via steam reforming of acetic acid over Ni and Co supported on La2O3 catalyst
  publication-title: Int. J. Hydrogen Energy
– volume: 39
  start-page: 5644
  year: 2014
  end-page: 5652
  ident: b0505
  article-title: Co–Ni bimetal catalyst supported on perovskite-type oxide for steam reforming of ethanol to produce hydrogen
  publication-title: Int. J. Hydrogen Energy
– volume: 19
  start-page: 4199
  year: 2017
  end-page: 4207
  ident: b0115
  article-title: The role of metal–support interaction for CO-free hydrogen from low temperature ethanol steam reforming on Rh–Fe catalysts
  publication-title: PCCP
– volume: 41
  start-page: 22619
  year: 2016
  end-page: 22625
  ident: b0205
  article-title: Techno-economic analysis of a novel bioprocess combining solid state fermentation and dark fermentation for H
  publication-title: Int. J. Hydrogen Energy
– volume: 87
  start-page: 461
  year: 2006
  end-page: 472
  ident: b0365
  article-title: An overview of hydrogen production from biomass
  publication-title: Fuel Process. Technol.
– volume: 92
  start-page: 807
  year: 2018
  end-page: 822
  ident: b0145
  article-title: Influence and strategies for enhanced biohydrogen production from food waste
  publication-title: Renew. Sustain. Energy Rev.
– volume: 298
  year: 2020
  ident: b0045
  article-title: Industrial wastewater to biohydrogen: Possibilities towards successful biorefinery route
  publication-title: Bioresour. Technol.
– volume: 41
  start-page: 4489
  year: 2016
  end-page: 4497
  ident: b0215
  article-title: Commercialization model of hydrogen production technology in Taiwan: Dark fermentation technology applications
  publication-title: Int. J. Hydrogen Energy
– volume: 301
  year: 2020
  ident: b0290
  article-title: A novel energetically efficient combinative microwave pretreatment for achieving profitable hydrogen production from marine macro algae (Ulva reticulate)
  publication-title: Bioresour. Technol.
– volume: 32
  start-page: 3343
  year: 2007
  end-page: 3355
  ident: b0055
  article-title: Catalytic steam reforming of acetic acid for hydrogen production
  publication-title: Int. J. Hydrogen Energy
– volume: 43
  start-page: 6011
  year: 2018
  end-page: 6039
  ident: b0175
  article-title: Green hydrogen production potential for developing a hydrogen economy in Pakistan
  publication-title: Int. J. Hydrogen Energy
– volume: 1
  start-page: 651
  year: 2017
  end-page: 658
  ident: b0155
  article-title: Membraneless electrolyzers for low-cost hydrogen production in a renewable energy future
  publication-title: Joule
– start-page: 6713
  year: 2016
  end-page: 6733
  ident: b0070
  article-title: Inhibition of dark fermentative bio-hydrogen production: A review, in
  publication-title: Int. J. Hydrogen Energy. Elsevier Ltd
– volume: 144
  start-page: 73
  year: 2015
  end-page: 95
  ident: b0170
  article-title: A review on dark fermentative biohydrogen production from organic biomass: Process parameters and use of by-products
  publication-title: Appl. Energy
– start-page: 15616
  year: 2012
  end-page: 15631
  ident: b0450
  article-title: Biohydrogen production: Current perspectives and the way forward
  publication-title: Int. J. Hydrogen Energy
– volume: 42
  start-page: 7798
  year: 2017
  end-page: 7810
  ident: b0120
  article-title: Techno-economic and environmental performances of glycerol reforming for hydrogen and power production with low carbon dioxide emissions
  publication-title: Int. J. Hydrogen Energy
– volume: 41
  start-page: 19957
  year: 2016
  end-page: 19971
  ident: b0385
  article-title: Integrated dark- and photo-fermentation: Recent advances and provisions for improvement
  publication-title: Int. J. Hydrogen Energy
– volume: 42
  start-page: 2018
  year: 2017
  end-page: 2033
  ident: b0130
  article-title: Hydrogen: Trends, production and characterization of the main process worldwide
  publication-title: Int. J. Hydrogen Energy
– volume: 37
  start-page: 15704
  year: 2012
  end-page: 15710
  ident: b0310
  article-title: Techno-economic evaluation of biohydrogen production from wastewater and agricultural waste
  publication-title: Int. J. Hydrogen Energy
– volume: 12
  start-page: 4830
  year: 2017
  end-page: 4853
  ident: b0495
  article-title: Hydrogen production from steam reforming of acetic acid over Ni-Fe/Palygorskite modified with cerium
  publication-title: BioResources
– volume: 148
  start-page: 16
  year: 2017
  end-page: 29
  ident: b0160
  article-title: Investigation of a novel concept for hydrogen production by PEM water electrolysis integrated with multi-junction solar cells
  publication-title: Energy Convers. Manag.
– volume: 35
  start-page: 127
  year: 2010
  end-page: 134
  ident: b0465
  article-title: Economic analysis of hydrogen production through a bio-ethanol steam reforming process: Sensitivity analyses and cost estimations
  publication-title: Int. J. Hydrogen Energy
– volume: 35
  start-page: 11829
  year: 2010
  end-page: 11843
  ident: b0295
  article-title: Hydrogen production from ethanol steam reforming over core–shell structured NixOy–, FexOy–, and CoxOy–Pd catalysts
  publication-title: Int. J. Hydrogen Energy
– volume: 128
  start-page: 104
  year: 2014
  end-page: 112
  ident: b0480
  article-title: A techno-economic analysis of microalgae remnant catalytic pyrolysis and upgrading to fuels
  publication-title: Fuel
– volume: 201
  start-page: 225
  year: 2000
  end-page: 239
  ident: b0165
  article-title: Catalytic steam reforming of bio-oils for the production of hydrogen: effects of catalyst composition
  publication-title: Appl. Catal. A Gen.
– volume: 141
  start-page: 390
  year: 2017
  end-page: 402
  ident: b0280
  article-title: A comprehensive overview on light independent fermentative hydrogen production from wastewater feedstock and possible integrative options
  publication-title: Energy Convers. Manag.
– volume: 128
  start-page: 467
  year: 2013
  end-page: 471
  ident: b0075
  article-title: Hydrogen production from oxidative steam reforming of bio-butanol over CoIr-based catalysts: Effect of the support
  publication-title: Bioresour. Technol.
– volume: 3
  start-page: 314
  year: 2019
  end-page: 342
  ident: b0150
  article-title: Hydrogen production from the thermochemical conversion of biomass: issues and challenges
  publication-title: Sustain. Energy Fuels
– volume: 5
  start-page: 1
  year: 2017
  end-page: 13
  ident: b0270
  article-title: Economic analysis of improved alkaline water electrolysis
  publication-title: Front. Energy Res.
– year: 2009
  ident: b0390
  article-title: Analyzing the Levelized Cost Of Centralized And Distributed Hydrogen Production using the H2A Production Model, Version 2
– volume: 44
  start-page: 17431
  year: 2019
  end-page: 17442
  ident: b0335
  article-title: Techno-economic modelling of water electrolysers in the range of several MW to provide grid services while generating hydrogen for different applications: A case study in Spain applied to mobility with FCEVs
  publication-title: Int. J. Hydrogen Energy
– volume: 12
  start-page: 1022
  year: 2017
  end-page: 1029
  ident: b0500
  article-title: Economic assessment of selected hydrogen production methods: A review. Energy Sources, Part B Econ
  publication-title: Planning, Policy
– volume: 5
  start-page: 1300
  year: 2017
  end-page: 1310
  ident: b0140
  article-title: New hybrid materials for improved hydrogen production by the sorption-enhanced steam reforming of butanol
  publication-title: Energy Technol.
– start-page: 253
  year: 2017
  end-page: 267
  ident: b0440
  article-title: Biohydrogen economy: challenges and prospects for commercialization
  publication-title: Biohydrogen Production: Sustainability of Current Technology and Future Perspective
– volume: 89
  start-page: 764
  year: 2008
  end-page: 772
  ident: b0180
  article-title: Investigation on the reactions influencing biomass air and air/steam gasification for hydrogen production
  publication-title: Fuel Process. Technol.
– volume: 244
  start-page: 650
  year: 2017
  end-page: 657
  ident: b0085
  article-title: Effectiveness of piggery waste treatment using microbial fuel cells coupled with elutriated-phased acid fermentation
  publication-title: Bioresour. Technol.
– volume: 45
  start-page: 5881
  year: 2020
  end-page: 5889
  ident: b0235
  article-title: Biohydrogen production from seagrass via novel energetically efficient ozone coupled rotor stator homogenization
  publication-title: Int. J. Hydrogen Energy
– volume: 36
  start-page: 13914
  year: 2011
  end-page: 13921
  ident: b0105
  article-title: Constructing a new business model for fermentative hydrogen production from wastewater treatment
  publication-title: Int. J. Hydrogen Energy
– volume: 31
  start-page: 2002
  year: 2002
  ident: b0185
  article-title: Hydrogen from coal
  publication-title: Mitretek Tech. Pap. MTR
– volume: 33
  start-page: 1607
  year: 2008
  end-page: 1618
  ident: b0305
  article-title: Hydrogen economy in Taiwan and biohydrogen
  publication-title: Int. J. Hydrogen Energy
– start-page: 11
  year: 2017
  end-page: 48
  ident: b0015
  article-title: Biohydrogen production potential of different biomass sources BT – biohydrogen production: sustainability of current technology and future perspective
– volume: 44
  start-page: 21205
  year: 2019
  end-page: 21219
  ident: b0345
  article-title: A techno-economic evaluation of the hydrogen production for energy generation using an ethanol fuel processor
  publication-title: Int. J. Hydrogen Energy
– year: 2011
  ident: b0415
  article-title: Hydrogen Production Cost Estimate Using Biomass Gasification: Independent Review.
– start-page: 393
  year: 2019
  end-page: 426
  ident: b0245
  article-title: Valorization of nutrient-rich urinal wastewater by microalgae for biofuel production
  publication-title: Application of Microalgae in Wastewater Treatment: Volume 2: Biorefinery Approaches of Wastewater Treatment
– volume: 1
  start-page: 154
  year: 2006
  end-page: 169
  ident: b0410
  article-title: Is nuclear power more competitive producing electricity or hydrogen?
  publication-title: Int. J. Nucl. Hydrog. Prod. Appl.
– start-page: 325
  year: 2019
  end-page: 343
  ident: b0445
  article-title: Biohydrogen production from algae: Perspectives, challenges, and prospects
  publication-title: From A. (Second E. (Eds.), Biomass, Biofuels, Biochemicals
– volume: 127
  start-page: 567
  year: 2016
  end-page: 572
  ident: b0200
  article-title: Techno-economic analysis of dark fermentative hydrogen production from molasses in a continuous mixed immobilized sludge reactor
  publication-title: J. Clean. Prod.
– volume: 101
  start-page: 806
  year: 2016
  end-page: 813
  ident: b0420
  article-title: Techno-economic analysis of hydrogen production using biomass gasification -–a small scale power plant study
  publication-title: Energy Procedia
– volume: 202
  start-page: 107
  year: 2016
  end-page: 112
  ident: b0190
  article-title: Techno-economic evaluation of a combined bioprocess for fermentative hydrogen production from food waste
  publication-title: Bioresour. Technol.
– volume: 33
  start-page: 1874
  year: 2008
  end-page: 1879
  ident: b0325
  article-title: A study on the economic efficiency of hydrogen production from biomass residues in China
  publication-title: Renew. Energy
– volume: 26
  start-page: 42
  year: 2017
  end-page: 48
  ident: b0080
  article-title: Hydrogen production through glycerol steam reforming using Co catalysts supported on SBA-15 doped with Zr, Ce and La
  publication-title: J. Energy Chem.
– volume: 92
  start-page: 282
  year: 2014
  end-page: 290
  ident: b0300
  article-title: Economic feasibility of a pilot-scale fermentative succinic acid production from bakery wastes
  publication-title: Food Bioprod. Process.
– year: 2004
  ident: b0010
  article-title: Updated Cost Analysis Of Photobiological Hydrogen Production from Chlamydomonas reinhardtii Green Algae: Milestone Completion Report
– start-page: 7
  year: 2007
  end-page: 13
  ident: b0510
  article-title: Estimates of hydrogen production potential and costs from California landfill gas
  publication-title: in: 15
– volume: 12
  start-page: 494
  year: 2019
  ident: b0380
  article-title: Techno-economic analysis of a small-scale biomass-to-energy BFB gasification-based system
  publication-title: Energies
– volume: 6
  start-page: 352
  year: 2015
  ident: b0425
  article-title: Economics of bio-hydrogen production
  publication-title: Int. J. Environ. Sci. Dev.
– volume: 44
  start-page: 21251
  year: 2019
  end-page: 21263
  ident: b0035
  article-title: Development and techno-economic analyses of a novel hydrogen production process via chemical looping
  publication-title: Int. J. Hydrogen Energy
– volume: 129
  start-page: 754
  year: 2018
  ident: 10.1016/j.biortech.2020.124175_b0265
  article-title: Biohydrogen production from anaerobic digestion and its potential as renewable energy
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2017.04.029
– volume: 44
  start-page: 10384
  year: 2019
  ident: 10.1016/j.biortech.2020.124175_b0285
  article-title: A comparative analysis of hydrogen production from the thermochemical conversion of algal biomass
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.02.220
– volume: 3
  start-page: 314
  year: 2019
  ident: 10.1016/j.biortech.2020.124175_b0150
  article-title: Hydrogen production from the thermochemical conversion of biomass: issues and challenges
  publication-title: Sustain. Energy Fuels
  doi: 10.1039/C8SE00535D
– start-page: 1
  year: 2020
  ident: 10.1016/j.biortech.2020.124175_b0220
– volume: 11
  start-page: 1777
  year: 2018
  ident: 10.1016/j.biortech.2020.124175_b0435
  article-title: Techno-economic analysis of solar pv electricity supply to rural areas of Balochistan
  publication-title: Pakistan. Energies
  doi: 10.3390/en11071777
– volume: 690627
  year: 2013
  ident: 10.1016/j.biortech.2020.124175_b0230
  article-title: Hydrogen production technologies: current state and future developments
  publication-title: Conf. Papers in Sci.
– start-page: 319
  year: 2018
  ident: 10.1016/j.biortech.2020.124175_b0250
  article-title: Food waste valorization by microalgae
– volume: 141
  start-page: 390
  year: 2017
  ident: 10.1016/j.biortech.2020.124175_b0280
  article-title: A comprehensive overview on light independent fermentative hydrogen production from wastewater feedstock and possible integrative options
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2016.09.087
– volume: 39
  start-page: 11411
  year: 2014
  ident: 10.1016/j.biortech.2020.124175_b0100
  article-title: Bio-electrohydrolysis as a pretreatment strategy to catabolize complex food waste in closed circuitry: Function of electron flux to enhance acidogenic biohydrogen production
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2014.05.035
– volume: 36
  start-page: 13914
  year: 2011
  ident: 10.1016/j.biortech.2020.124175_b0105
  article-title: Constructing a new business model for fermentative hydrogen production from wastewater treatment
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2011.03.066
– volume: 13
  start-page: 463
  year: 2020
  ident: 10.1016/j.biortech.2020.124175_b0255
  article-title: Assessment of global potential of biohydrogen production from agricultural residues and its application in nitrogen fertilizer production
  publication-title: Bioenergy Res.
  doi: 10.1007/s12155-019-10046-1
– volume: 43
  start-page: 6011
  year: 2018
  ident: 10.1016/j.biortech.2020.124175_b0175
  article-title: Green hydrogen production potential for developing a hydrogen economy in Pakistan
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2018.01.113
– volume: 92
  start-page: 282
  year: 2014
  ident: 10.1016/j.biortech.2020.124175_b0300
  article-title: Economic feasibility of a pilot-scale fermentative succinic acid production from bakery wastes
  publication-title: Food Bioprod. Process.
  doi: 10.1016/j.fbp.2013.09.001
– volume: 6
  start-page: 352
  year: 2015
  ident: 10.1016/j.biortech.2020.124175_b0425
  article-title: Economics of bio-hydrogen production
  publication-title: Int. J. Environ. Sci. Dev.
  doi: 10.7763/IJESD.2015.V6.617
– volume: 1
  start-page: 651
  year: 2017
  ident: 10.1016/j.biortech.2020.124175_b0155
  article-title: Membraneless electrolyzers for low-cost hydrogen production in a renewable energy future
  publication-title: Joule
  doi: 10.1016/j.joule.2017.07.003
– volume: 19
  start-page: 4199
  year: 2017
  ident: 10.1016/j.biortech.2020.124175_b0115
  article-title: The role of metal–support interaction for CO-free hydrogen from low temperature ethanol steam reforming on Rh–Fe catalysts
  publication-title: PCCP
  doi: 10.1039/C6CP05934A
– volume: 32
  start-page: 3343
  year: 2007
  ident: 10.1016/j.biortech.2020.124175_b0055
  article-title: Catalytic steam reforming of acetic acid for hydrogen production
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2007.04.039
– volume: 195
  start-page: 16
  year: 2016
  ident: 10.1016/j.biortech.2020.124175_b0065
  article-title: Steam reforming of acetone over Ni- and Co-based catalysts: Effect of the composition of reactants and catalysts on reaction pathways
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2016.04.047
– volume: 301
  year: 2020
  ident: 10.1016/j.biortech.2020.124175_b0290
  article-title: A novel energetically efficient combinative microwave pretreatment for achieving profitable hydrogen production from marine macro algae (Ulva reticulate)
  publication-title: Bioresour. Technol.
– start-page: 253
  year: 2017
  ident: 10.1016/j.biortech.2020.124175_b0440
  article-title: Biohydrogen economy: challenges and prospects for commercialization
– volume: 52
  start-page: 1555
  year: 2011
  ident: 10.1016/j.biortech.2020.124175_b0340
  article-title: Air gasification of empty fruit bunch for hydrogen-rich gas production in a fluidized-bed reactor
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2010.10.023
– volume: 50
  start-page: 136
  year: 2018
  ident: 10.1016/j.biortech.2020.124175_b0275
  article-title: Biomass based hydrogen production by dark fermentation—recent trends and opportunities for greener processes
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2017.12.024
– volume: 44
  start-page: 2203
  year: 2019
  ident: 10.1016/j.biortech.2020.124175_b0240
  article-title: Biohydrogen production from rice straw: Effect of combinative pretreatment, modelling assessment and energy balance consideration
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2018.07.201
– volume: 33
  start-page: 1607
  year: 2008
  ident: 10.1016/j.biortech.2020.124175_b0305
  article-title: Hydrogen economy in Taiwan and biohydrogen
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2007.09.028
– volume: 124
  start-page: 197
  year: 2018
  ident: 10.1016/j.biortech.2020.124175_b0005
  article-title: Comparison of slow and fast pyrolysis for converting biomass into fuel
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2017.04.060
– volume: 35
  start-page: 127
  year: 2010
  ident: 10.1016/j.biortech.2020.124175_b0465
  article-title: Economic analysis of hydrogen production through a bio-ethanol steam reforming process: Sensitivity analyses and cost estimations
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2009.10.043
– volume: 12
  start-page: 463
  year: 2019
  ident: 10.1016/j.biortech.2020.124175_b0470
  article-title: The role of hydrogen and fuel cells in the global energy system
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE01157E
– start-page: 1
  year: 2017
  ident: 10.1016/j.biortech.2020.124175_b0530
  article-title: Techno-economic assessment of utilizing wind energy for hydrogen production through electrolysis
– volume: 215
  start-page: 92
  year: 2016
  ident: 10.1016/j.biortech.2020.124175_b0400
  article-title: A review on bioconversion of lignocellulosic biomass to H2: Key challenges and new insights
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2016.03.124
– volume: 22
  start-page: 365
  year: 2011
  ident: 10.1016/j.biortech.2020.124175_b0405
  article-title: Biological hydrogen production by dark fermentation: Challenges and prospects towards scaled-up production
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2011.04.022
– start-page: 15616
  year: 2012
  ident: 10.1016/j.biortech.2020.124175_b0450
  article-title: Biohydrogen production: Current perspectives and the way forward
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2012.04.109
– volume: 12
  start-page: 4830
  year: 2017
  ident: 10.1016/j.biortech.2020.124175_b0495
  article-title: Hydrogen production from steam reforming of acetic acid over Ni-Fe/Palygorskite modified with cerium
  publication-title: BioResources
  doi: 10.15376/biores.12.3.4830-4853
– volume: 39
  start-page: 5644
  year: 2014
  ident: 10.1016/j.biortech.2020.124175_b0505
  article-title: Co–Ni bimetal catalyst supported on perovskite-type oxide for steam reforming of ethanol to produce hydrogen
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2014.01.151
– volume: 44
  start-page: 17431
  year: 2019
  ident: 10.1016/j.biortech.2020.124175_b0335
  article-title: Techno-economic modelling of water electrolysers in the range of several MW to provide grid services while generating hydrogen for different applications: A case study in Spain applied to mobility with FCEVs
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.05.092
– volume: 87
  start-page: 461
  year: 2006
  ident: 10.1016/j.biortech.2020.124175_b0365
  article-title: An overview of hydrogen production from biomass
  publication-title: Fuel Process. Technol.
  doi: 10.1016/j.fuproc.2005.11.003
– start-page: 117
  year: 2020
  ident: 10.1016/j.biortech.2020.124175_b0460
– volume: 7
  start-page: 308
  year: 2019
  ident: 10.1016/j.biortech.2020.124175_b0515
  article-title: Off-grid solar PV power generation system in Sindh, Pakistan: a techno-economic feasibility analysis
  publication-title: Processes
  doi: 10.3390/pr7050308
– volume: 33
  start-page: 303
  year: 2008
  ident: 10.1016/j.biortech.2020.124175_b0135
  article-title: Robust, high reactivity and enhanced capacity carbon dioxide removal agents for hydrogen production applications
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2007.07.015
– start-page: 393
  year: 2019
  ident: 10.1016/j.biortech.2020.124175_b0245
  article-title: Valorization of nutrient-rich urinal wastewater by microalgae for biofuel production
– volume: 165
  start-page: 696
  year: 2018
  ident: 10.1016/j.biortech.2020.124175_b0020
  article-title: Evaluation of thermochemical routes for hydrogen production from biomass: A review
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2018.03.089
– volume: 144
  start-page: 73
  year: 2015
  ident: 10.1016/j.biortech.2020.124175_b0170
  article-title: A review on dark fermentative biohydrogen production from organic biomass: Process parameters and use of by-products
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2015.01.045
– start-page: 11
  year: 2017
  ident: 10.1016/j.biortech.2020.124175_b0015
– volume: 202
  start-page: 107
  year: 2016
  ident: 10.1016/j.biortech.2020.124175_b0190
  article-title: Techno-economic evaluation of a combined bioprocess for fermentative hydrogen production from food waste
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2015.11.072
– volume: 42
  start-page: 2018
  year: 2017
  ident: 10.1016/j.biortech.2020.124175_b0130
  article-title: Hydrogen: Trends, production and characterization of the main process worldwide
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2016.08.219
– volume: 45
  start-page: 5881
  year: 2020
  ident: 10.1016/j.biortech.2020.124175_b0235
  article-title: Biohydrogen production from seagrass via novel energetically efficient ozone coupled rotor stator homogenization
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.04.151
– volume: 200
  year: 2019
  ident: 10.1016/j.biortech.2020.124175_b0360
  article-title: Grid-connected hydrogen production via large-scale water electrolysis
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2019.112108
– volume: 93
  start-page: 96
  year: 2016
  ident: 10.1016/j.biortech.2020.124175_b0060
  article-title: Techno-economic assessment of solar hydrogen production using CPV-electrolysis systems
  publication-title: Energy Proc.
  doi: 10.1016/j.egypro.2016.07.155
– volume: 12
  start-page: 1022
  year: 2017
  ident: 10.1016/j.biortech.2020.124175_b0500
  article-title: Economic assessment of selected hydrogen production methods: A review. Energy Sources, Part B Econ
  publication-title: Planning, Policy
– year: 2004
  ident: 10.1016/j.biortech.2020.124175_b0010
– volume: 35
  start-page: 8371
  year: 2010
  ident: 10.1016/j.biortech.2020.124175_b0050
  article-title: An economic survey of hydrogen production from conventional and alternative energy sources
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2010.04.035
– volume: 221
  start-page: 318
  year: 2016
  ident: 10.1016/j.biortech.2020.124175_b0195
  article-title: Biohydrogen production from waste bread in a continuous stirred tank reactor: A techno-economic analysis
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2016.09.055
– volume: 5
  start-page: 1
  year: 2017
  ident: 10.1016/j.biortech.2020.124175_b0270
  article-title: Economic analysis of improved alkaline water electrolysis
  publication-title: Front. Energy Res.
  doi: 10.3389/fenrg.2017.00001
– volume: 41
  start-page: 4489
  year: 2016
  ident: 10.1016/j.biortech.2020.124175_b0215
  article-title: Commercialization model of hydrogen production technology in Taiwan: Dark fermentation technology applications
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2015.07.080
– volume: 39
  start-page: 390
  year: 2018
  ident: 10.1016/j.biortech.2020.124175_b0110
  article-title: Water electrolysis based on renewable energy for hydrogen production
  publication-title: Chinese J. Catal.
  doi: 10.1016/S1872-2067(17)62949-8
– volume: 298
  year: 2020
  ident: 10.1016/j.biortech.2020.124175_b0045
  article-title: Industrial wastewater to biohydrogen: Possibilities towards successful biorefinery route
  publication-title: Bioresour. Technol.
– volume: 128
  start-page: 104
  year: 2014
  ident: 10.1016/j.biortech.2020.124175_b0480
  article-title: A techno-economic analysis of microalgae remnant catalytic pyrolysis and upgrading to fuels
  publication-title: Fuel
  doi: 10.1016/j.fuel.2014.02.077
– volume: 148
  start-page: 16
  year: 2017
  ident: 10.1016/j.biortech.2020.124175_b0160
  article-title: Investigation of a novel concept for hydrogen production by PEM water electrolysis integrated with multi-junction solar cells
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2017.05.059
– volume: 41
  start-page: 21573
  year: 2016
  ident: 10.1016/j.biortech.2020.124175_b0210
  article-title: Using social network analysis to examine the technological evolution of fermentative hydrogen production from biomass
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2016.07.157
– volume: 128
  start-page: 467
  year: 2013
  ident: 10.1016/j.biortech.2020.124175_b0075
  article-title: Hydrogen production from oxidative steam reforming of bio-butanol over CoIr-based catalysts: Effect of the support
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2012.10.125
– start-page: 1059
  year: 2005
  ident: 10.1016/j.biortech.2020.124175_b0455
  article-title: Hydrogen costs with CO2 capture
– volume: 31
  start-page: 2002
  year: 2002
  ident: 10.1016/j.biortech.2020.124175_b0185
  article-title: Hydrogen from coal
  publication-title: Mitretek Tech. Pap. MTR
– volume: 16
  start-page: 8266
  year: 2015
  ident: 10.1016/j.biortech.2020.124175_b0090
  article-title: Biohydrogen production: strategies to improve process efficiency through microbial routes
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms16048266
– volume: 44
  start-page: 19676
  year: 2019
  ident: 10.1016/j.biortech.2020.124175_b0320
  article-title: Recent developments of hydrogen production from sewage sludge by biological and thermochemical process
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.06.044
– start-page: 7
  year: 2007
  ident: 10.1016/j.biortech.2020.124175_b0510
  article-title: Estimates of hydrogen production potential and costs from California landfill gas
– volume: 7
  year: 2018
  ident: 10.1016/j.biortech.2020.124175_b0030
  article-title: Emerging technologies, markets and commercialization of solid-electrolytic hydrogen production
  publication-title: Wiley Interdiscip. Rev. Energy Environ.
  doi: 10.1002/wene.286
– volume: 259
  start-page: 244
  year: 2018
  ident: 10.1016/j.biortech.2020.124175_b0125
  article-title: Techno-economic and profitability analysis of food waste biorefineries at European level
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2018.03.016
– volume: 92
  start-page: 807
  year: 2018
  ident: 10.1016/j.biortech.2020.124175_b0145
  article-title: Influence and strategies for enhanced biohydrogen production from food waste
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2018.05.009
– volume: 127
  start-page: 567
  year: 2016
  ident: 10.1016/j.biortech.2020.124175_b0200
  article-title: Techno-economic analysis of dark fermentative hydrogen production from molasses in a continuous mixed immobilized sludge reactor
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2016.04.055
– volume: 34
  start-page: 3589
  year: 2009
  ident: 10.1016/j.biortech.2020.124175_b0040
  article-title: Political, economic and environmental impacts of biomass-based hydrogen
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2009.02.067
– start-page: 511
  year: 2019
  ident: 10.1016/j.biortech.2020.124175_b0490
  article-title: Photobiological hydrogen production
– volume: 5
  start-page: 362
  year: 2013
  ident: 10.1016/j.biortech.2020.124175_b0330
  article-title: Water electrolysis: Divide and conquer
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1634
– volume: 41
  start-page: 22619
  year: 2016
  ident: 10.1016/j.biortech.2020.124175_b0205
  article-title: Techno-economic analysis of a novel bioprocess combining solid state fermentation and dark fermentation for H2 production from food waste
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2016.09.047
– volume: 19
  start-page: 19
  year: 2019
  ident: 10.1016/j.biortech.2020.124175_b0475
  article-title: Techno-economic analysis of a more efficient hydrogen generation system prototype: a case study of PEM electrolyzer with Cr-C coated SS304 bipolar plates
  publication-title: Fuel Cells
  doi: 10.1002/fuce.201700225
– volume: 89
  start-page: 764
  year: 2008
  ident: 10.1016/j.biortech.2020.124175_b0180
  article-title: Investigation on the reactions influencing biomass air and air/steam gasification for hydrogen production
  publication-title: Fuel Process. Technol.
  doi: 10.1016/j.fuproc.2008.01.011
– volume: 6
  start-page: 223
  year: 2016
  ident: 10.1016/j.biortech.2020.124175_b0355
  article-title: Evaluation of reaction parameters of the phenol steam reforming over Ni/Co on ZrO2 using the full factorial experimental design
  publication-title: Appl. Sci.
  doi: 10.3390/app6080223
– volume: 67
  start-page: 597
  year: 2017
  ident: 10.1016/j.biortech.2020.124175_b0375
  article-title: A comparative overview of hydrogen production processes
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2016.09.044
– volume: 36
  start-page: 2057
  year: 2011
  ident: 10.1016/j.biortech.2020.124175_b0315
  article-title: Hydrogen production by sorption enhanced steam reforming of oxygenated hydrocarbons (ethanol, glycerol, n-butanol and methanol): Thermodynamic modelling
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2010.11.051
– start-page: 6713
  year: 2016
  ident: 10.1016/j.biortech.2020.124175_b0070
  article-title: Inhibition of dark fermentative bio-hydrogen production: A review, in
  publication-title: Int. J. Hydrogen Energy. Elsevier Ltd
  doi: 10.1016/j.ijhydene.2016.03.057
– volume: 44
  start-page: 21251
  year: 2019
  ident: 10.1016/j.biortech.2020.124175_b0035
  article-title: Development and techno-economic analyses of a novel hydrogen production process via chemical looping
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.05.202
– volume: 36
  start-page: 307
  year: 2010
  ident: 10.1016/j.biortech.2020.124175_b0520
  article-title: Recent progress in alkaline water electrolysis for hydrogen production and applications
  publication-title: Prog. Energy Combust. Sci.
  doi: 10.1016/j.pecs.2009.11.002
– volume: 41
  start-page: 19957
  year: 2016
  ident: 10.1016/j.biortech.2020.124175_b0385
  article-title: Integrated dark- and photo-fermentation: Recent advances and provisions for improvement
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2016.08.084
– volume: 13
  start-page: 822
  year: 2019
  ident: 10.1016/j.biortech.2020.124175_b0430
  article-title: Thermo-chemical conversion of biomass and upgrading to biofuel: The Thermo-Catalytic Reforming process–A review. Biofuels
  publication-title: Bioprod. Biorefining
  doi: 10.1002/bbb.1980
– volume: 201
  start-page: 225
  year: 2000
  ident: 10.1016/j.biortech.2020.124175_b0165
  article-title: Catalytic steam reforming of bio-oils for the production of hydrogen: effects of catalyst composition
  publication-title: Appl. Catal. A Gen.
  doi: 10.1016/S0926-860X(00)00440-3
– volume: 22
  start-page: 571
  year: 2013
  ident: 10.1016/j.biortech.2020.124175_b0395
  article-title: Current status, barriers and developments in biohydrogen production by microalgae
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2013.01.051
– year: 2011
  ident: 10.1016/j.biortech.2020.124175_b0415
– volume: 45
  start-page: 11395
  year: 2020
  ident: 10.1016/j.biortech.2020.124175_b0370
  article-title: Green hydrogen as feedstock: Financial analysis of a photovoltaic-powered electrolysis plant
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2020.02.062
– start-page: 1
  year: 2017
  ident: 10.1016/j.biortech.2020.124175_b0225
– volume: 165
  start-page: 372
  year: 2014
  ident: 10.1016/j.biortech.2020.124175_b0095
  article-title: Induced catabolic bio-electrohydrolysis of complex food waste by regulating external resistance for enhancing acidogenic biohydrogen production
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2014.02.073
– volume: 101
  start-page: 806
  year: 2016
  ident: 10.1016/j.biortech.2020.124175_b0420
  article-title: Techno-economic analysis of hydrogen production using biomass gasification -–a small scale power plant study
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2016.11.102
– volume: 35
  start-page: 11829
  year: 2010
  ident: 10.1016/j.biortech.2020.124175_b0295
  article-title: Hydrogen production from ethanol steam reforming over core–shell structured NixOy–, FexOy–, and CoxOy–Pd catalysts
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2010.08.073
– start-page: 325
  year: 2019
  ident: 10.1016/j.biortech.2020.124175_b0445
  article-title: Biohydrogen production from algae: Perspectives, challenges, and prospects
– volume: 5
  start-page: 1300
  year: 2017
  ident: 10.1016/j.biortech.2020.124175_b0140
  article-title: New hybrid materials for improved hydrogen production by the sorption-enhanced steam reforming of butanol
  publication-title: Energy Technol.
  doi: 10.1002/ente.201600645
– volume: 45
  start-page: 5890
  year: 2020
  ident: 10.1016/j.biortech.2020.124175_b0260
  article-title: Rhamnolipid induced deagglomeration of anaerobic granular biosolids for energetically feasible ultrasonic homogenization and profitable biohydrogen
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.04.063
– volume: 244
  start-page: 650
  year: 2017
  ident: 10.1016/j.biortech.2020.124175_b0085
  article-title: Effectiveness of piggery waste treatment using microbial fuel cells coupled with elutriated-phased acid fermentation
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2017.08.021
– volume: 181
  start-page: 608
  year: 2018
  ident: 10.1016/j.biortech.2020.124175_b0485
  article-title: A systematic review of the literature on integrating sustainability into engineering curricula
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2017.12.130
– volume: 37
  start-page: 15704
  year: 2012
  ident: 10.1016/j.biortech.2020.124175_b0310
  article-title: Techno-economic evaluation of biohydrogen production from wastewater and agricultural waste
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2012.05.043
– volume: 33
  start-page: 1874
  year: 2008
  ident: 10.1016/j.biortech.2020.124175_b0325
  article-title: A study on the economic efficiency of hydrogen production from biomass residues in China
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2007.11.002
– year: 2009
  ident: 10.1016/j.biortech.2020.124175_b0390
– volume: 26
  start-page: 42
  year: 2017
  ident: 10.1016/j.biortech.2020.124175_b0080
  article-title: Hydrogen production through glycerol steam reforming using Co catalysts supported on SBA-15 doped with Zr, Ce and La
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2016.09.001
– volume: 44
  start-page: 21205
  year: 2019
  ident: 10.1016/j.biortech.2020.124175_b0345
  article-title: A techno-economic evaluation of the hydrogen production for energy generation using an ethanol fuel processor
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.06.182
– volume: 12
  start-page: 494
  year: 2019
  ident: 10.1016/j.biortech.2020.124175_b0380
  article-title: Techno-economic analysis of a small-scale biomass-to-energy BFB gasification-based system
  publication-title: Energies
  doi: 10.3390/en12030494
– volume: 42
  start-page: 7798
  year: 2017
  ident: 10.1016/j.biortech.2020.124175_b0120
  article-title: Techno-economic and environmental performances of glycerol reforming for hydrogen and power production with low carbon dioxide emissions
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2016.11.172
– volume: 269
  start-page: 452
  year: 2018
  ident: 10.1016/j.biortech.2020.124175_b0025
  article-title: Anaerobic membrane bioreactors for biohydrogen production: Recent developments, challenges and perspectives
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2018.08.050
– volume: 1
  start-page: 154
  year: 2006
  ident: 10.1016/j.biortech.2020.124175_b0410
  article-title: Is nuclear power more competitive producing electricity or hydrogen?
  publication-title: Int. J. Nucl. Hydrog. Prod. Appl.
– volume: 42
  start-page: 8975
  year: 2017
  ident: 10.1016/j.biortech.2020.124175_b0350
  article-title: Production of hydrogen via steam reforming of acetic acid over Ni and Co supported on La2O3 catalyst
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2016.04.176
– volume: 51
  start-page: 99
  year: 2013
  ident: 10.1016/j.biortech.2020.124175_b0525
  article-title: Comparative techno-economic analysis of biohydrogen production via bio-oil gasification and bio-oil reforming
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2013.01.013
SSID ssj0003172
Score 2.7129126
SecondaryResourceType review_article
Snippet [Display omitted] •Hydrogen has the potential to unlock 18% of global energy demand in 2050.•96% of H2 is produced from non-renewables and remaining 4% by...
Hydrogen is a clean fuel that could provide energy incentives and reduce environmental impacts, if production platform is carefully selected and optimized. In...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 124175
SubjectTerms carbon dioxide
cost effectiveness
Dark fermentation
electrolysis
energy
fermentation
gasification
Hydrogen
hydrogen production
liquids
natural gas
pyrolysis
Sensitivity analysis
steam
Steam reforming electrolysis
Techno-economics
Title Techno-economic assessment of various hydrogen production methods – A review
URI https://dx.doi.org/10.1016/j.biortech.2020.124175
https://www.proquest.com/docview/2449178073
https://www.proquest.com/docview/2551988156
Volume 319
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxELYieqAcKhqKoIXISFxNdtf27voYRUVpEbkQpNwsvxaCUBLlUakXxH_oP-wv6cw-IK0qOHDdtSVrZjQz9nzzDSGnCFALXqSsSExgopCSWeMtM0pyn0c-lxYrupfDdHAtvo_luEX6TS8Mwipr31_59NJb11-6tTS788mke4XJdy4hxCADu1DY8CtEhlZ-9vAM84D4WFYSYDHD1RtdwndndoKI1rIokSDRgogRb_j_APWPqy7jz_ku-VAnjrRXne0jaYVpm-z0bhY1eUZok-1-M70N_mwQDe6RYfWCzkLdhkzNEyEnnRX0B1yYZ-slvf3pFzOwKDqveGBBZ7QaMb2kvx9_0R6tOl0-kdH511F_wOpJCszxLF8xb1WsXOqjIF0cMmcSbo0yWewh-zLWGI7UbTxSBXg7J4JQPOYm9qnJZGod3ydb09k0HBBahFRZm0QmTZxITJEjm1QaXKQCiLTgh0Q20tOuZhnHYRf3uoGT3elG6hqlriupH5Lu0755xbPx6g7VKEf_ZTEagsGre08abWrQC9ZIzDSAoDVkO3CBzcHxvbAGskyVI83O5zec4Qt5nyA-pnzOOSJbq8U6HEOCs7Kd0oI75F3v28Vg-AeXjv1i
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9swDCa69ND1UGzthr62qUCvWmzLcqxjEKxIX7k0A3oT9PKWokiCNB2wW__D_uF-SUlbDrphWA-92iIgfBRISiQ_AhxTgVrwecGrzASeV1Jya7zlRknhy8SX0lJG93JUDL_mZ9fyeg0GbS8MlVVG29_Y9Npaxy_diGZ3Ppl0ryj4LiW6GGJgz1X5CtaJnUp2YL1_ej4crQwyusg6mYDrOQk8aRS--WwnVNRa5yUy4lrIUyo5_LeP-sta1y7o5A1sxdiR9ZvtvYW1MN2Gzf63ReTPCNuwMWgHuOGfJ1yDOzBqHtF5iJ3IzKw4OdmsYj_wzjy7v2Pff_rFDA8VmzdUsKg21kyZvmO_H36xPmuaXd7B-OTLeDDkcZgCd6JXLrm3KlWu8EmQLg09ZzJhjTK91GMAZqwxgtjbRKIqNHguD7kSqTCpL0xPFtaJ99CZzqZhF1gVCmVtlpgic3lmqpIIpYrgEhUQ0krsgWzR0y4SjdO8i1vdVpTd6BZ1TajrBvU96K7k5g3VxrMSqlWO_uPQaPQHz8oetdrUqBdKk5hpQKA1Bjx4hy3R9v1nDQaaqiSmnf0X7OETbAzHlxf64nR0fgCvMyqXqV93DqGzXNyHDxjvLO3HeJ4fAT2MACI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Techno-economic+assessment+of+various+hydrogen+production+methods+%E2%80%93+A+review&rft.jtitle=Bioresource+technology&rft.au=Yukesh+Kannah%2C+R.&rft.au=Kavitha%2C+S.&rft.au=Preethi&rft.au=Parthiba+Karthikeyan%2C+O.&rft.date=2021-01-01&rft.pub=Elsevier+Ltd&rft.issn=0960-8524&rft.eissn=1873-2976&rft.volume=319&rft_id=info:doi/10.1016%2Fj.biortech.2020.124175&rft.externalDocID=S0960852420314498
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-8524&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-8524&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-8524&client=summon