Analysis of two-grid method for second-order hyperbolic equation by expanded mixed finite element methods
In this article, we present a scheme for solving two-dimensional hyperbolic equation using an expanded mixed finite element method. To solve the resulting nonlinear expanded mixed finite element system more efficiently, we propose a two-step two-grid algorithm. Numerical stability and error estimate...
Saved in:
Published in | Open mathematics (Warsaw, Poland) Vol. 22; no. 1; pp. 90 - 116 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Warsaw
De Gruyter
27.08.2024
De Gruyter Poland |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this article, we present a scheme for solving two-dimensional hyperbolic equation using an expanded mixed finite element method. To solve the resulting nonlinear expanded mixed finite element system more efficiently, we propose a two-step two-grid algorithm. Numerical stability and error estimate are proved on both the coarse grid and fine grid. It is shown that the two-grid method can achieve asymptotically optimal approximation as long as the coarse grid size
and the fine grid size
satisfy
(
), where
is the degree of the approximating space for the primary variable. Numerical experiment is presented to demonstrate the accuracy and the efficiency of the proposed method. |
---|---|
AbstractList | In this article, we present a scheme for solving two-dimensional hyperbolic equation using an expanded mixed finite element method. To solve the resulting nonlinear expanded mixed finite element system more efficiently, we propose a two-step two-grid algorithm. Numerical stability and error estimate are proved on both the coarse grid and fine grid. It is shown that the two-grid method can achieve asymptotically optimal approximation as long as the coarse grid size HH and the fine grid size hh satisfy h=O(H(2k+1)⁄(k+1))h={\mathcal{O}}\left({H}^{\left(2k+1)/\left(k+1)}) (k≥1k\ge 1), where kk is the degree of the approximating space for the primary variable. Numerical experiment is presented to demonstrate the accuracy and the efficiency of the proposed method. In this article, we present a scheme for solving two-dimensional hyperbolic equation using an expanded mixed finite element method. To solve the resulting nonlinear expanded mixed finite element system more efficiently, we propose a two-step two-grid algorithm. Numerical stability and error estimate are proved on both the coarse grid and fine grid. It is shown that the two-grid method can achieve asymptotically optimal approximation as long as the coarse grid size H and the fine grid size h satisfy h=O(H(2k+1)⁄(k+1)) (k≥1), where k is the degree of the approximating space for the primary variable. Numerical experiment is presented to demonstrate the accuracy and the efficiency of the proposed method. In this article, we present a scheme for solving two-dimensional hyperbolic equation using an expanded mixed finite element method. To solve the resulting nonlinear expanded mixed finite element system more efficiently, we propose a two-step two-grid algorithm. Numerical stability and error estimate are proved on both the coarse grid and fine grid. It is shown that the two-grid method can achieve asymptotically optimal approximation as long as the coarse grid size H H and the fine grid size h h satisfy h = O ( H ( 2 k + 1 ) ⁄ ( k + 1 ) ) h={\mathcal{O}}\left({H}^{\left(2k+1)/\left(k+1)}) ( k ≥ 1 k\ge 1 ), where k k is the degree of the approximating space for the primary variable. Numerical experiment is presented to demonstrate the accuracy and the efficiency of the proposed method. In this article, we present a scheme for solving two-dimensional hyperbolic equation using an expanded mixed finite element method. To solve the resulting nonlinear expanded mixed finite element system more efficiently, we propose a two-step two-grid algorithm. Numerical stability and error estimate are proved on both the coarse grid and fine grid. It is shown that the two-grid method can achieve asymptotically optimal approximation as long as the coarse grid size and the fine grid size satisfy ( ), where is the degree of the approximating space for the primary variable. Numerical experiment is presented to demonstrate the accuracy and the efficiency of the proposed method. |
Author | Wang, Keyan |
Author_xml | – sequence: 1 givenname: Keyan surname: Wang fullname: Wang, Keyan email: wangkeyan2013@126.com organization: School of Mathematics and Statistics, Hengyang Normal University, Hengyang 421008, Hunan, P. R. China |
BookMark | eNptkUFv3CAQhVGUSknTXHNG6tkpYLDhGEVtEylSL-0Zjc2wy8prNsAq8b8v7kZpD73MPKH53qB5H8n5HGck5IazW664-rKHsm0EE7JhTOozcilawxsllTr_R1-Q65x3jLHKsJ7zSxLuZpiWHDKNnpaX2GxScHSPZRsd9THRjGOcXROTw0S3ywHTEKcwUnw-QglxpsNC8fUAs8PKhddafZhDQYoT7nEub2b5E_ngYcp4_davyK9vX3_ePzRPP74_3t89NWPb69K43gyjGAzzqKGqjnt0Q9-DYt7x0auhZcpzKY3EDgQ6rjRXfugUjC1q016Rx5Ovi7CzhxT2kBYbIdg_DzFtLKQSxgmt5n1rDJMClJZdx-rWvvOSawWdBLZ6fT55HVJ8PmIudhePqV4s25YZbTpR_1ynbk9TY4o5J_TvWzmzazp2Tceu6dg1nQqYE_ACU8F62U06LlX8df8_KARvfwOuNJgq |
Cites_doi | 10.1155/2013/657952 10.1007/BF01389710 10.1090/conm/180/01971 10.1080/00207160.2018.1548699 10.1137/0915016 10.1002/nme.668 10.4208/aamm.09-m09S09 10.1137/S0036142992232949 10.1016/j.jcp.2003.09.024 10.1007/BFb0064470 10.1016/0045-7825(90)90165-I 10.1016/j.amc.2015.02.081 10.1007/s11075-022-01396-7 10.1007/s11075-021-01127-4 10.1016/j.camwa.2015.09.012 10.1051/m2an/1998320404791 10.1002/num.21766 10.1007/s11071-016-2843-9 10.1016/S0377-0427(00)00440-4 10.1137/S0036142996311040 10.1016/j.camwa.2019.12.008 10.1016/j.cam.2009.11.043 10.1137/0713048 10.1007/s10444-018-9596-6 10.1016/B978-0-12-460811-5.50006-4 10.1051/m2an/1998320405011 10.1051/m2an/1988220202431 10.1137/S0036142994262585 10.1002/(SICI)1098-2426(199905)15:3<317::AID-NUM4>3.0.CO;2-U 10.1002/num.21753 10.1007/s11075-018-0575-2 |
ContentType | Journal Article |
Copyright | 2024. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7XB 88I 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- M2P P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U DOA |
DOI | 10.1515/math-2024-0048 |
DatabaseName | CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Science Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies & Aerospace Collection ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2391-5455 |
EndPage | 116 |
ExternalDocumentID | oai_doaj_org_article_817399042a584660b9076f4185a64a09 10_1515_math_2024_0048 10_1515_math_2024_0048221 |
GroupedDBID | 5VS 88I AAFWJ ABFKT ABUWG ACGFS ADBBV AENEX AFBDD AFKRA AFPKN AHGSO ALMA_UNASSIGNED_HOLDINGS AMVHM ARAPS AZQEC BCNDV BENPR BGLVJ CCPQU DWQXO EBS GNUQQ GROUPED_DOAJ HCIFZ K7- KQ8 M2P M48 M~E OK1 PHGZM PHGZT PIMPY PQGLB QD8 SLJYH AAYXX CITATION 3V. 7XB 8FE 8FG 8FK JQ2 P62 PKEHL PQEST PQQKQ PQUKI PRINS Q9U Y2W PUEGO |
ID | FETCH-LOGICAL-c378t-d79bc2b90fe8abc261fedb77a50fd1cf5b305f14494e6a2ed15815fb65ac3e893 |
IEDL.DBID | M48 |
ISSN | 2391-5455 |
IngestDate | Wed Aug 27 01:32:08 EDT 2025 Sat Jul 26 02:16:19 EDT 2025 Tue Jul 01 04:05:19 EDT 2025 Thu Jul 10 10:32:57 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This work is licensed under the Creative Commons Attribution 4.0 International License. http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c378t-d79bc2b90fe8abc261fedb77a50fd1cf5b305f14494e6a2ed15815fb65ac3e893 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1515/math-2024-0048 |
PQID | 3098962378 |
PQPubID | 5000747 |
PageCount | 15 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_817399042a584660b9076f4185a64a09 proquest_journals_3098962378 crossref_primary_10_1515_math_2024_0048 walterdegruyter_journals_10_1515_math_2024_0048221 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-08-27 |
PublicationDateYYYYMMDD | 2024-08-27 |
PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-27 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | Warsaw |
PublicationPlace_xml | – name: Warsaw |
PublicationTitle | Open mathematics (Warsaw, Poland) |
PublicationYear | 2024 |
Publisher | De Gruyter De Gruyter Poland |
Publisher_xml | – name: De Gruyter – name: De Gruyter Poland |
References | 2024082713261085110_j_math-2024-0048_ref_008 2024082713261085110_j_math-2024-0048_ref_009 2024082713261085110_j_math-2024-0048_ref_004 2024082713261085110_j_math-2024-0048_ref_026 2024082713261085110_j_math-2024-0048_ref_005 2024082713261085110_j_math-2024-0048_ref_027 2024082713261085110_j_math-2024-0048_ref_006 2024082713261085110_j_math-2024-0048_ref_028 2024082713261085110_j_math-2024-0048_ref_007 2024082713261085110_j_math-2024-0048_ref_029 2024082713261085110_j_math-2024-0048_ref_022 2024082713261085110_j_math-2024-0048_ref_001 2024082713261085110_j_math-2024-0048_ref_023 2024082713261085110_j_math-2024-0048_ref_002 2024082713261085110_j_math-2024-0048_ref_024 2024082713261085110_j_math-2024-0048_ref_003 2024082713261085110_j_math-2024-0048_ref_025 2024082713261085110_j_math-2024-0048_ref_020 2024082713261085110_j_math-2024-0048_ref_021 2024082713261085110_j_math-2024-0048_ref_019 2024082713261085110_j_math-2024-0048_ref_015 2024082713261085110_j_math-2024-0048_ref_016 2024082713261085110_j_math-2024-0048_ref_017 2024082713261085110_j_math-2024-0048_ref_018 2024082713261085110_j_math-2024-0048_ref_011 2024082713261085110_j_math-2024-0048_ref_012 2024082713261085110_j_math-2024-0048_ref_013 2024082713261085110_j_math-2024-0048_ref_014 2024082713261085110_j_math-2024-0048_ref_030 2024082713261085110_j_math-2024-0048_ref_031 2024082713261085110_j_math-2024-0048_ref_010 2024082713261085110_j_math-2024-0048_ref_032 |
References_xml | – ident: 2024082713261085110_j_math-2024-0048_ref_007 doi: 10.1155/2013/657952 – ident: 2024082713261085110_j_math-2024-0048_ref_031 doi: 10.1007/BF01389710 – ident: 2024082713261085110_j_math-2024-0048_ref_018 doi: 10.1090/conm/180/01971 – ident: 2024082713261085110_j_math-2024-0048_ref_028 doi: 10.1080/00207160.2018.1548699 – ident: 2024082713261085110_j_math-2024-0048_ref_016 doi: 10.1137/0915016 – ident: 2024082713261085110_j_math-2024-0048_ref_020 doi: 10.1002/nme.668 – ident: 2024082713261085110_j_math-2024-0048_ref_021 doi: 10.4208/aamm.09-m09S09 – ident: 2024082713261085110_j_math-2024-0048_ref_002 – ident: 2024082713261085110_j_math-2024-0048_ref_017 doi: 10.1137/S0036142992232949 – ident: 2024082713261085110_j_math-2024-0048_ref_003 doi: 10.1016/j.jcp.2003.09.024 – ident: 2024082713261085110_j_math-2024-0048_ref_030 doi: 10.1007/BFb0064470 – ident: 2024082713261085110_j_math-2024-0048_ref_006 doi: 10.1016/0045-7825(90)90165-I – ident: 2024082713261085110_j_math-2024-0048_ref_014 doi: 10.1016/j.amc.2015.02.081 – ident: 2024082713261085110_j_math-2024-0048_ref_032 doi: 10.1007/s11075-022-01396-7 – ident: 2024082713261085110_j_math-2024-0048_ref_024 doi: 10.1007/s11075-021-01127-4 – ident: 2024082713261085110_j_math-2024-0048_ref_025 doi: 10.1016/j.camwa.2015.09.012 – ident: 2024082713261085110_j_math-2024-0048_ref_009 doi: 10.1051/m2an/1998320404791 – ident: 2024082713261085110_j_math-2024-0048_ref_027 doi: 10.1002/num.21766 – ident: 2024082713261085110_j_math-2024-0048_ref_026 doi: 10.1007/s11071-016-2843-9 – ident: 2024082713261085110_j_math-2024-0048_ref_013 doi: 10.1016/S0377-0427(00)00440-4 – ident: 2024082713261085110_j_math-2024-0048_ref_012 doi: 10.1137/S0036142996311040 – ident: 2024082713261085110_j_math-2024-0048_ref_029 doi: 10.1016/j.camwa.2019.12.008 – ident: 2024082713261085110_j_math-2024-0048_ref_008 doi: 10.1016/j.cam.2009.11.043 – ident: 2024082713261085110_j_math-2024-0048_ref_004 doi: 10.1137/0713048 – ident: 2024082713261085110_j_math-2024-0048_ref_015 doi: 10.1007/s10444-018-9596-6 – ident: 2024082713261085110_j_math-2024-0048_ref_001 doi: 10.1016/B978-0-12-460811-5.50006-4 – ident: 2024082713261085110_j_math-2024-0048_ref_010 doi: 10.1051/m2an/1998320405011 – ident: 2024082713261085110_j_math-2024-0048_ref_005 doi: 10.1051/m2an/1988220202431 – ident: 2024082713261085110_j_math-2024-0048_ref_011 doi: 10.1137/S0036142994262585 – ident: 2024082713261085110_j_math-2024-0048_ref_019 doi: 10.1002/(SICI)1098-2426(199905)15:3<317::AID-NUM4>3.0.CO;2-U – ident: 2024082713261085110_j_math-2024-0048_ref_022 doi: 10.1002/num.21753 – ident: 2024082713261085110_j_math-2024-0048_ref_023 doi: 10.1007/s11075-018-0575-2 |
SSID | ssj0001510711 |
Score | 2.3050573 |
Snippet | In this article, we present a scheme for solving two-dimensional hyperbolic equation using an expanded mixed finite element method. To solve the resulting... |
SourceID | doaj proquest crossref walterdegruyter |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 90 |
SubjectTerms | 35L20 65M60 Algorithms Approximation Asymptotic methods error estimate expanded mixed finite element method Finite element method Grid method hyperbolic equation Mathematical analysis Numerical stability Two dimensional analysis two-grid method |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwGA2ykx6GP3E6JQfBU9jSH0l7VHEMYZ4c7BaSNtl62Wbbse2_90vTzk0EL15KKU0b3ve1731t8oLQA7NznIC6SOJJTQLpSxJpbQeueYE0AVB2ZZI0emfDcfA2CSd7S33ZMWHOHtgB14soBw6F1JKWKllfQTXHjLVckSyQbuoecN5eMeXmB0NZQ2nt0gic3QP9N4OU8AJik_aAhSqz_gOF2V5X_6pTPc1X27L5N1pRzuAUtWutiJ9cH8_QkZ6fo5PRzmi1uEBZYyqCFwaX6wWZ5lmK3bLQGPQoLmzBm5LKYRPPoOjMlXUCxvrTeXxjtcV6s7SfkqFdtoGtyawOxdoNLK8vVlyi8eD142VI6tUTSOLzqCQpj1XiAVxGRxL2GDU6VZzLsG9SmphQwaNuoJ6KA82kp1MaRjQ0ioUy8TXImCvUmi_m-hrhUELLkCpgsyTQoEioiamiMoXmiVK8gx4bNMXSmWQIW1wA7sLiLizuwuLeQc8W7N1Z1ty6OgAhF3XIxV8h76BuEypRP3GF8PtxFIOW43AP70f4vs_6vVeeR2_-o2O36NhlGLx8eBe1ynyl70CzlOq-Ss8vFBPoqA priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1RT9swED5t7cv2gIBtohtDfkDiySJOkzh5mgAVoUlU0wQSb5Yd26UvTUmCgH-_u8RpBUJ7iaLItpLz-e67s_MdwHFG_zih6-JlrB1P9FTz3Dk6uBYn2ifosjuSpOt5dnWb_L5L70LCrQnHKgeb2BlqW5WUIz-dRkVeoK-W-a_1A6eqUbS7GkpofIQxmuA8H8H4fDb_83ebZUGVk0IEtkb03aeIA-9RNeKEk_K-8kYdaf8rpLnz1O1ZW7eoH1_aYY-0cz2Xu7ATMCM76yd5Dz641T58vt4QrjZfYDmQi7DKs_ap4ot6aVlfHpohLmUNBb6Wd0yb7B6Dz9oQIzBzDz3XNzMvzD2vKaWM_ZbPePVLwqPM9QfMw2DNV7i9nN1cXPFQRYGXKKyWW1mYMjZF5F2u8S4T3lkjpU4jb0XpU4NL3mNcVSQu07GzIs1F6k2W6nLqEM58g9GqWrkDYKnGnqkw6NXKxCEyEb4QRmiL3Utj5AROBmmqdU-WoSjIQLkrkrsiuSuS-wTOSdibVkRy3T2o6oUKa0blQiJ8QquiCSVlEX6DzDyx7egs0VExgcNhqlRYeY3a6skE4jfTt231_lvFsfj-_zF_wKded9C8yEMYtfWj-4mopDVHQfX-ATf_5Bg priority: 102 providerName: ProQuest |
Title | Analysis of two-grid method for second-order hyperbolic equation by expanded mixed finite element methods |
URI | https://www.degruyter.com/doi/10.1515/math-2024-0048 https://www.proquest.com/docview/3098962378 https://doaj.org/article/817399042a584660b9076f4185a64a09 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Na9wwEB2a5NIeQj_ptumiQ6EntZZsWfYhlKZkGwobSulCbkKypc1C2E28Dtn995mR7YS0OfRijJFka2akeWNJbwA-5nTGCV0Xr6T1PLOp5YX3tHFNZjZk6LIjSdL0ND-ZZT_P1Nn9_qdegOtHQzvKJzVrLj5vrrZfccAfxuw9Qn1BaHeO2pYZJ3vcgT30SpqyGUx7qN-dGMZAJ6bjlWkpOAIH1XM4_tvEAx8Vqfwf4M_9m7iSXft5c71th5XT6JAmz2G_R5LsW6f6F_DEL1_Cs-kdDev6FSwGyhG2Cqy9WfF5s6hZlzSaIVplawqHax75N9k5hqSNI55g5q86BnDmtsxvLulHM9ZbbPAaFoRSme-2nfeNrV_DbHL85_sJ73Mr8CrVRctrXbpKujIJvrB4l4vga6e1VUmoRRWUw4kgYLRVZj630tdCFUIFlytbpR5BzhvYXa6W_i0wZbGmEg59XZV5xCsilMIJW2P1yjk9gk-DNM1lR6FhKPRAuRuSuyG5G5L7CI5I2HeliPo6Plg1c9OPJFMIjaAK5xpL2ClPsA86D8TBY_PMJuUIDgZVmcGcTJqURYlIT-M75F_quy_1-FdJKd79dxfew9POjHD-0Qew2zbX_gPCltaNYaeY_BjD3tHx6a_f4xj8j6ON3gL41u5B |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5V5QAcKp5ioYAPIE5WY28SJweEeC1b2u2plXozdmxv97LZJqm2-6f4jczk0VUR4tZLFEV2lIzn8Y0f3wC8S-mME4YuXkjjeWzGhmfe08Y1GZsQY8huSZJmJ-n0LP55npzvwO_hLAxtqxx8YuuoXVnQHPnBOMqzHGO1yj6tLjlVjaLV1aGERqcWR36zxpSt_nj4Dcf3vZST76dfp7yvKsAL7Nxwp3JbSJtHwWcG71IRvLNKmSQKThQhsWgCAfOMPPapkd6JJBNJsGliirHPiHwJXf69eIyRnE6mT35s53RQwZUQPTckIoUDRJ0XqIgy5mQqt2JfWyLgFq7dW7cr5M7Pq6tNM6zItoFu8gj2eoTKPncq9Rh2_PIJPJzd0LvWT2ExUJmwMrBmXfJ5tXCsK0bNEAWzmtJsx1teT3aBqW5liX-Y-cuOWZzZDfPXK5rAxn6La7yGBaFf5rvt7P3L6mdwdifSfQ67y3LpXwBLDPZMhMUYWsQecZAIubDCOOxeWKtG8GGQpl511ByaUhqUuya5a5K7JrmP4AsJ-6YVUWq3D8pqrnsL1ZlQCNbQhxnCZGmE_6DSQNw-Jo1NlI9gfxgq3dt5rbdaOQL51_BtW_37q6QUL___zrdwf3o6O9bHhydHr-BBp0fo2NQ-7DbVlX-NeKixb1olZPDrrrX-D30_IV0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7RRaraA-pTXaDUh0qcrI2T2E6OPLpsaYFKLVJvlh3by142S5IV8O87TrILtJx6iaLIkzgzY883zuQzwGcR_nHC0EWLWDua6kTTzLlQuBan2qcYsluSpLNzMblMT3_zVTVh3ZdVWjetlndNx5A6smWxDAtla64BjMAjRHNXaOA4pcEFRwvrn8GmEHnCB7B5MDn5eXG_0IJeJxnrCRv_FX4UkFre_kdgc-um_Wy97tOD6DN-BVs9bCQHnZ1fw4abv4GXZ2vO1fotzFb8IqT0pLkp6bSaWdLtEE0QmpI65L6WtmSb5Arzz8oEUmDirju6b2LuiLtdhFVllJvd4tHPAiQlrqsx729Wv4PL8ZdfRxPab6RAi0RmDbUyN0Vs8si7TOOZYN5ZI6Xmkbes8NzgqPeYWuWpEzp2lvGMcW8E10XiENG8h8G8nLsPQLhGSc4MBrYidQhOmM-ZYdqieGGMHML-Sptq0fFlqJBnoN5V0LsKeldB70M4DMpetwo81-2FspqqftiojElEUDix6ACURITvIIUPhDtapDrKh7C7MpXqB1-tkijPcoR1Ep8R_2W--1ZP9yqO2fb_CH2C5z-Ox-r71_NvO_Cicy6cguQuDJpq6T4icmnMXu-bfwDhOu0f |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+two-grid+method+for+second-order+hyperbolic+equation+by+expanded+mixed+finite+element+methods&rft.jtitle=Open+mathematics+%28Warsaw%2C+Poland%29&rft.au=Wang%2C+Keyan&rft.date=2024-08-27&rft.issn=2391-5455&rft.eissn=2391-5455&rft.volume=22&rft.issue=1&rft_id=info:doi/10.1515%2Fmath-2024-0048&rft.externalDBID=n%2Fa&rft.externalDocID=10_1515_math_2024_0048 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2391-5455&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2391-5455&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2391-5455&client=summon |