Analysis of two-grid method for second-order hyperbolic equation by expanded mixed finite element methods

In this article, we present a scheme for solving two-dimensional hyperbolic equation using an expanded mixed finite element method. To solve the resulting nonlinear expanded mixed finite element system more efficiently, we propose a two-step two-grid algorithm. Numerical stability and error estimate...

Full description

Saved in:
Bibliographic Details
Published inOpen mathematics (Warsaw, Poland) Vol. 22; no. 1; pp. 90 - 116
Main Author Wang, Keyan
Format Journal Article
LanguageEnglish
Published Warsaw De Gruyter 27.08.2024
De Gruyter Poland
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this article, we present a scheme for solving two-dimensional hyperbolic equation using an expanded mixed finite element method. To solve the resulting nonlinear expanded mixed finite element system more efficiently, we propose a two-step two-grid algorithm. Numerical stability and error estimate are proved on both the coarse grid and fine grid. It is shown that the two-grid method can achieve asymptotically optimal approximation as long as the coarse grid size and the fine grid size satisfy ( ), where is the degree of the approximating space for the primary variable. Numerical experiment is presented to demonstrate the accuracy and the efficiency of the proposed method.
AbstractList In this article, we present a scheme for solving two-dimensional hyperbolic equation using an expanded mixed finite element method. To solve the resulting nonlinear expanded mixed finite element system more efficiently, we propose a two-step two-grid algorithm. Numerical stability and error estimate are proved on both the coarse grid and fine grid. It is shown that the two-grid method can achieve asymptotically optimal approximation as long as the coarse grid size HH and the fine grid size hh satisfy h=O(H(2k+1)⁄(k+1))h={\mathcal{O}}\left({H}^{\left(2k+1)/\left(k+1)}) (k≥1k\ge 1), where kk is the degree of the approximating space for the primary variable. Numerical experiment is presented to demonstrate the accuracy and the efficiency of the proposed method.
In this article, we present a scheme for solving two-dimensional hyperbolic equation using an expanded mixed finite element method. To solve the resulting nonlinear expanded mixed finite element system more efficiently, we propose a two-step two-grid algorithm. Numerical stability and error estimate are proved on both the coarse grid and fine grid. It is shown that the two-grid method can achieve asymptotically optimal approximation as long as the coarse grid size H and the fine grid size h satisfy h=O(H(2k+1)⁄(k+1)) (k≥1), where k is the degree of the approximating space for the primary variable. Numerical experiment is presented to demonstrate the accuracy and the efficiency of the proposed method.
In this article, we present a scheme for solving two-dimensional hyperbolic equation using an expanded mixed finite element method. To solve the resulting nonlinear expanded mixed finite element system more efficiently, we propose a two-step two-grid algorithm. Numerical stability and error estimate are proved on both the coarse grid and fine grid. It is shown that the two-grid method can achieve asymptotically optimal approximation as long as the coarse grid size H H and the fine grid size h h satisfy h = O ( H ( 2 k + 1 ) ⁄ ( k + 1 ) ) h={\mathcal{O}}\left({H}^{\left(2k+1)/\left(k+1)}) ( k ≥ 1 k\ge 1 ), where k k is the degree of the approximating space for the primary variable. Numerical experiment is presented to demonstrate the accuracy and the efficiency of the proposed method.
In this article, we present a scheme for solving two-dimensional hyperbolic equation using an expanded mixed finite element method. To solve the resulting nonlinear expanded mixed finite element system more efficiently, we propose a two-step two-grid algorithm. Numerical stability and error estimate are proved on both the coarse grid and fine grid. It is shown that the two-grid method can achieve asymptotically optimal approximation as long as the coarse grid size and the fine grid size satisfy ( ), where is the degree of the approximating space for the primary variable. Numerical experiment is presented to demonstrate the accuracy and the efficiency of the proposed method.
Author Wang, Keyan
Author_xml – sequence: 1
  givenname: Keyan
  surname: Wang
  fullname: Wang, Keyan
  email: wangkeyan2013@126.com
  organization: School of Mathematics and Statistics, Hengyang Normal University, Hengyang 421008, Hunan, P. R. China
BookMark eNptkUFv3CAQhVGUSknTXHNG6tkpYLDhGEVtEylSL-0Zjc2wy8prNsAq8b8v7kZpD73MPKH53qB5H8n5HGck5IazW664-rKHsm0EE7JhTOozcilawxsllTr_R1-Q65x3jLHKsJ7zSxLuZpiWHDKNnpaX2GxScHSPZRsd9THRjGOcXROTw0S3ywHTEKcwUnw-QglxpsNC8fUAs8PKhddafZhDQYoT7nEub2b5E_ngYcp4_davyK9vX3_ePzRPP74_3t89NWPb69K43gyjGAzzqKGqjnt0Q9-DYt7x0auhZcpzKY3EDgQ6rjRXfugUjC1q016Rx5Ovi7CzhxT2kBYbIdg_DzFtLKQSxgmt5n1rDJMClJZdx-rWvvOSawWdBLZ6fT55HVJ8PmIudhePqV4s25YZbTpR_1ynbk9TY4o5J_TvWzmzazp2Tceu6dg1nQqYE_ACU8F62U06LlX8df8_KARvfwOuNJgq
Cites_doi 10.1155/2013/657952
10.1007/BF01389710
10.1090/conm/180/01971
10.1080/00207160.2018.1548699
10.1137/0915016
10.1002/nme.668
10.4208/aamm.09-m09S09
10.1137/S0036142992232949
10.1016/j.jcp.2003.09.024
10.1007/BFb0064470
10.1016/0045-7825(90)90165-I
10.1016/j.amc.2015.02.081
10.1007/s11075-022-01396-7
10.1007/s11075-021-01127-4
10.1016/j.camwa.2015.09.012
10.1051/m2an/1998320404791
10.1002/num.21766
10.1007/s11071-016-2843-9
10.1016/S0377-0427(00)00440-4
10.1137/S0036142996311040
10.1016/j.camwa.2019.12.008
10.1016/j.cam.2009.11.043
10.1137/0713048
10.1007/s10444-018-9596-6
10.1016/B978-0-12-460811-5.50006-4
10.1051/m2an/1998320405011
10.1051/m2an/1988220202431
10.1137/S0036142994262585
10.1002/(SICI)1098-2426(199905)15:3<317::AID-NUM4>3.0.CO;2-U
10.1002/num.21753
10.1007/s11075-018-0575-2
ContentType Journal Article
Copyright 2024. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7XB
88I
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
M2P
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOA
DOI 10.1515/math-2024-0048
DatabaseName CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Science Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2391-5455
EndPage 116
ExternalDocumentID oai_doaj_org_article_817399042a584660b9076f4185a64a09
10_1515_math_2024_0048
10_1515_math_2024_0048221
GroupedDBID 5VS
88I
AAFWJ
ABFKT
ABUWG
ACGFS
ADBBV
AENEX
AFBDD
AFKRA
AFPKN
AHGSO
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
CCPQU
DWQXO
EBS
GNUQQ
GROUPED_DOAJ
HCIFZ
K7-
KQ8
M2P
M48
M~E
OK1
PHGZM
PHGZT
PIMPY
PQGLB
QD8
SLJYH
AAYXX
CITATION
3V.
7XB
8FE
8FG
8FK
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
Y2W
PUEGO
ID FETCH-LOGICAL-c378t-d79bc2b90fe8abc261fedb77a50fd1cf5b305f14494e6a2ed15815fb65ac3e893
IEDL.DBID M48
ISSN 2391-5455
IngestDate Wed Aug 27 01:32:08 EDT 2025
Sat Jul 26 02:16:19 EDT 2025
Tue Jul 01 04:05:19 EDT 2025
Thu Jul 10 10:32:57 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This work is licensed under the Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c378t-d79bc2b90fe8abc261fedb77a50fd1cf5b305f14494e6a2ed15815fb65ac3e893
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1515/math-2024-0048
PQID 3098962378
PQPubID 5000747
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_817399042a584660b9076f4185a64a09
proquest_journals_3098962378
crossref_primary_10_1515_math_2024_0048
walterdegruyter_journals_10_1515_math_2024_0048221
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-08-27
PublicationDateYYYYMMDD 2024-08-27
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-27
  day: 27
PublicationDecade 2020
PublicationPlace Warsaw
PublicationPlace_xml – name: Warsaw
PublicationTitle Open mathematics (Warsaw, Poland)
PublicationYear 2024
Publisher De Gruyter
De Gruyter Poland
Publisher_xml – name: De Gruyter
– name: De Gruyter Poland
References 2024082713261085110_j_math-2024-0048_ref_008
2024082713261085110_j_math-2024-0048_ref_009
2024082713261085110_j_math-2024-0048_ref_004
2024082713261085110_j_math-2024-0048_ref_026
2024082713261085110_j_math-2024-0048_ref_005
2024082713261085110_j_math-2024-0048_ref_027
2024082713261085110_j_math-2024-0048_ref_006
2024082713261085110_j_math-2024-0048_ref_028
2024082713261085110_j_math-2024-0048_ref_007
2024082713261085110_j_math-2024-0048_ref_029
2024082713261085110_j_math-2024-0048_ref_022
2024082713261085110_j_math-2024-0048_ref_001
2024082713261085110_j_math-2024-0048_ref_023
2024082713261085110_j_math-2024-0048_ref_002
2024082713261085110_j_math-2024-0048_ref_024
2024082713261085110_j_math-2024-0048_ref_003
2024082713261085110_j_math-2024-0048_ref_025
2024082713261085110_j_math-2024-0048_ref_020
2024082713261085110_j_math-2024-0048_ref_021
2024082713261085110_j_math-2024-0048_ref_019
2024082713261085110_j_math-2024-0048_ref_015
2024082713261085110_j_math-2024-0048_ref_016
2024082713261085110_j_math-2024-0048_ref_017
2024082713261085110_j_math-2024-0048_ref_018
2024082713261085110_j_math-2024-0048_ref_011
2024082713261085110_j_math-2024-0048_ref_012
2024082713261085110_j_math-2024-0048_ref_013
2024082713261085110_j_math-2024-0048_ref_014
2024082713261085110_j_math-2024-0048_ref_030
2024082713261085110_j_math-2024-0048_ref_031
2024082713261085110_j_math-2024-0048_ref_010
2024082713261085110_j_math-2024-0048_ref_032
References_xml – ident: 2024082713261085110_j_math-2024-0048_ref_007
  doi: 10.1155/2013/657952
– ident: 2024082713261085110_j_math-2024-0048_ref_031
  doi: 10.1007/BF01389710
– ident: 2024082713261085110_j_math-2024-0048_ref_018
  doi: 10.1090/conm/180/01971
– ident: 2024082713261085110_j_math-2024-0048_ref_028
  doi: 10.1080/00207160.2018.1548699
– ident: 2024082713261085110_j_math-2024-0048_ref_016
  doi: 10.1137/0915016
– ident: 2024082713261085110_j_math-2024-0048_ref_020
  doi: 10.1002/nme.668
– ident: 2024082713261085110_j_math-2024-0048_ref_021
  doi: 10.4208/aamm.09-m09S09
– ident: 2024082713261085110_j_math-2024-0048_ref_002
– ident: 2024082713261085110_j_math-2024-0048_ref_017
  doi: 10.1137/S0036142992232949
– ident: 2024082713261085110_j_math-2024-0048_ref_003
  doi: 10.1016/j.jcp.2003.09.024
– ident: 2024082713261085110_j_math-2024-0048_ref_030
  doi: 10.1007/BFb0064470
– ident: 2024082713261085110_j_math-2024-0048_ref_006
  doi: 10.1016/0045-7825(90)90165-I
– ident: 2024082713261085110_j_math-2024-0048_ref_014
  doi: 10.1016/j.amc.2015.02.081
– ident: 2024082713261085110_j_math-2024-0048_ref_032
  doi: 10.1007/s11075-022-01396-7
– ident: 2024082713261085110_j_math-2024-0048_ref_024
  doi: 10.1007/s11075-021-01127-4
– ident: 2024082713261085110_j_math-2024-0048_ref_025
  doi: 10.1016/j.camwa.2015.09.012
– ident: 2024082713261085110_j_math-2024-0048_ref_009
  doi: 10.1051/m2an/1998320404791
– ident: 2024082713261085110_j_math-2024-0048_ref_027
  doi: 10.1002/num.21766
– ident: 2024082713261085110_j_math-2024-0048_ref_026
  doi: 10.1007/s11071-016-2843-9
– ident: 2024082713261085110_j_math-2024-0048_ref_013
  doi: 10.1016/S0377-0427(00)00440-4
– ident: 2024082713261085110_j_math-2024-0048_ref_012
  doi: 10.1137/S0036142996311040
– ident: 2024082713261085110_j_math-2024-0048_ref_029
  doi: 10.1016/j.camwa.2019.12.008
– ident: 2024082713261085110_j_math-2024-0048_ref_008
  doi: 10.1016/j.cam.2009.11.043
– ident: 2024082713261085110_j_math-2024-0048_ref_004
  doi: 10.1137/0713048
– ident: 2024082713261085110_j_math-2024-0048_ref_015
  doi: 10.1007/s10444-018-9596-6
– ident: 2024082713261085110_j_math-2024-0048_ref_001
  doi: 10.1016/B978-0-12-460811-5.50006-4
– ident: 2024082713261085110_j_math-2024-0048_ref_010
  doi: 10.1051/m2an/1998320405011
– ident: 2024082713261085110_j_math-2024-0048_ref_005
  doi: 10.1051/m2an/1988220202431
– ident: 2024082713261085110_j_math-2024-0048_ref_011
  doi: 10.1137/S0036142994262585
– ident: 2024082713261085110_j_math-2024-0048_ref_019
  doi: 10.1002/(SICI)1098-2426(199905)15:3<317::AID-NUM4>3.0.CO;2-U
– ident: 2024082713261085110_j_math-2024-0048_ref_022
  doi: 10.1002/num.21753
– ident: 2024082713261085110_j_math-2024-0048_ref_023
  doi: 10.1007/s11075-018-0575-2
SSID ssj0001510711
Score 2.3050573
Snippet In this article, we present a scheme for solving two-dimensional hyperbolic equation using an expanded mixed finite element method. To solve the resulting...
SourceID doaj
proquest
crossref
walterdegruyter
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 90
SubjectTerms 35L20
65M60
Algorithms
Approximation
Asymptotic methods
error estimate
expanded mixed finite element method
Finite element method
Grid method
hyperbolic equation
Mathematical analysis
Numerical stability
Two dimensional analysis
two-grid method
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwGA2ykx6GP3E6JQfBU9jSH0l7VHEMYZ4c7BaSNtl62Wbbse2_90vTzk0EL15KKU0b3ve1731t8oLQA7NznIC6SOJJTQLpSxJpbQeueYE0AVB2ZZI0emfDcfA2CSd7S33ZMWHOHtgB14soBw6F1JKWKllfQTXHjLVckSyQbuoecN5eMeXmB0NZQ2nt0gic3QP9N4OU8AJik_aAhSqz_gOF2V5X_6pTPc1X27L5N1pRzuAUtWutiJ9cH8_QkZ6fo5PRzmi1uEBZYyqCFwaX6wWZ5lmK3bLQGPQoLmzBm5LKYRPPoOjMlXUCxvrTeXxjtcV6s7SfkqFdtoGtyawOxdoNLK8vVlyi8eD142VI6tUTSOLzqCQpj1XiAVxGRxL2GDU6VZzLsG9SmphQwaNuoJ6KA82kp1MaRjQ0ioUy8TXImCvUmi_m-hrhUELLkCpgsyTQoEioiamiMoXmiVK8gx4bNMXSmWQIW1wA7sLiLizuwuLeQc8W7N1Z1ty6OgAhF3XIxV8h76BuEypRP3GF8PtxFIOW43AP70f4vs_6vVeeR2_-o2O36NhlGLx8eBe1ynyl70CzlOq-Ss8vFBPoqA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1RT9swED5t7cv2gIBtohtDfkDiySJOkzh5mgAVoUlU0wQSb5Yd26UvTUmCgH-_u8RpBUJ7iaLItpLz-e67s_MdwHFG_zih6-JlrB1P9FTz3Dk6uBYn2ifosjuSpOt5dnWb_L5L70LCrQnHKgeb2BlqW5WUIz-dRkVeoK-W-a_1A6eqUbS7GkpofIQxmuA8H8H4fDb_83ebZUGVk0IEtkb03aeIA-9RNeKEk_K-8kYdaf8rpLnz1O1ZW7eoH1_aYY-0cz2Xu7ATMCM76yd5Dz641T58vt4QrjZfYDmQi7DKs_ap4ot6aVlfHpohLmUNBb6Wd0yb7B6Dz9oQIzBzDz3XNzMvzD2vKaWM_ZbPePVLwqPM9QfMw2DNV7i9nN1cXPFQRYGXKKyWW1mYMjZF5F2u8S4T3lkjpU4jb0XpU4NL3mNcVSQu07GzIs1F6k2W6nLqEM58g9GqWrkDYKnGnqkw6NXKxCEyEb4QRmiL3Utj5AROBmmqdU-WoSjIQLkrkrsiuSuS-wTOSdibVkRy3T2o6oUKa0blQiJ8QquiCSVlEX6DzDyx7egs0VExgcNhqlRYeY3a6skE4jfTt231_lvFsfj-_zF_wKded9C8yEMYtfWj-4mopDVHQfX-ATf_5Bg
  priority: 102
  providerName: ProQuest
Title Analysis of two-grid method for second-order hyperbolic equation by expanded mixed finite element methods
URI https://www.degruyter.com/doi/10.1515/math-2024-0048
https://www.proquest.com/docview/3098962378
https://doaj.org/article/817399042a584660b9076f4185a64a09
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Na9wwEB2a5NIeQj_ptumiQ6EntZZsWfYhlKZkGwobSulCbkKypc1C2E28Dtn995mR7YS0OfRijJFka2akeWNJbwA-5nTGCV0Xr6T1PLOp5YX3tHFNZjZk6LIjSdL0ND-ZZT_P1Nn9_qdegOtHQzvKJzVrLj5vrrZfccAfxuw9Qn1BaHeO2pYZJ3vcgT30SpqyGUx7qN-dGMZAJ6bjlWkpOAIH1XM4_tvEAx8Vqfwf4M_9m7iSXft5c71th5XT6JAmz2G_R5LsW6f6F_DEL1_Cs-kdDev6FSwGyhG2Cqy9WfF5s6hZlzSaIVplawqHax75N9k5hqSNI55g5q86BnDmtsxvLulHM9ZbbPAaFoRSme-2nfeNrV_DbHL85_sJ73Mr8CrVRctrXbpKujIJvrB4l4vga6e1VUmoRRWUw4kgYLRVZj630tdCFUIFlytbpR5BzhvYXa6W_i0wZbGmEg59XZV5xCsilMIJW2P1yjk9gk-DNM1lR6FhKPRAuRuSuyG5G5L7CI5I2HeliPo6Plg1c9OPJFMIjaAK5xpL2ClPsA86D8TBY_PMJuUIDgZVmcGcTJqURYlIT-M75F_quy_1-FdJKd79dxfew9POjHD-0Qew2zbX_gPCltaNYaeY_BjD3tHx6a_f4xj8j6ON3gL41u5B
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5V5QAcKp5ioYAPIE5WY28SJweEeC1b2u2plXozdmxv97LZJqm2-6f4jczk0VUR4tZLFEV2lIzn8Y0f3wC8S-mME4YuXkjjeWzGhmfe08Y1GZsQY8huSZJmJ-n0LP55npzvwO_hLAxtqxx8YuuoXVnQHPnBOMqzHGO1yj6tLjlVjaLV1aGERqcWR36zxpSt_nj4Dcf3vZST76dfp7yvKsAL7Nxwp3JbSJtHwWcG71IRvLNKmSQKThQhsWgCAfOMPPapkd6JJBNJsGliirHPiHwJXf69eIyRnE6mT35s53RQwZUQPTckIoUDRJ0XqIgy5mQqt2JfWyLgFq7dW7cr5M7Pq6tNM6zItoFu8gj2eoTKPncq9Rh2_PIJPJzd0LvWT2ExUJmwMrBmXfJ5tXCsK0bNEAWzmtJsx1teT3aBqW5liX-Y-cuOWZzZDfPXK5rAxn6La7yGBaFf5rvt7P3L6mdwdifSfQ67y3LpXwBLDPZMhMUYWsQecZAIubDCOOxeWKtG8GGQpl511ByaUhqUuya5a5K7JrmP4AsJ-6YVUWq3D8pqrnsL1ZlQCNbQhxnCZGmE_6DSQNw-Jo1NlI9gfxgq3dt5rbdaOQL51_BtW_37q6QUL___zrdwf3o6O9bHhydHr-BBp0fo2NQ-7DbVlX-NeKixb1olZPDrrrX-D30_IV0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7RRaraA-pTXaDUh0qcrI2T2E6OPLpsaYFKLVJvlh3by142S5IV8O87TrILtJx6iaLIkzgzY883zuQzwGcR_nHC0EWLWDua6kTTzLlQuBan2qcYsluSpLNzMblMT3_zVTVh3ZdVWjetlndNx5A6smWxDAtla64BjMAjRHNXaOA4pcEFRwvrn8GmEHnCB7B5MDn5eXG_0IJeJxnrCRv_FX4UkFre_kdgc-um_Wy97tOD6DN-BVs9bCQHnZ1fw4abv4GXZ2vO1fotzFb8IqT0pLkp6bSaWdLtEE0QmpI65L6WtmSb5Arzz8oEUmDirju6b2LuiLtdhFVllJvd4tHPAiQlrqsx729Wv4PL8ZdfRxPab6RAi0RmDbUyN0Vs8si7TOOZYN5ZI6Xmkbes8NzgqPeYWuWpEzp2lvGMcW8E10XiENG8h8G8nLsPQLhGSc4MBrYidQhOmM-ZYdqieGGMHML-Sptq0fFlqJBnoN5V0LsKeldB70M4DMpetwo81-2FspqqftiojElEUDix6ACURITvIIUPhDtapDrKh7C7MpXqB1-tkijPcoR1Ep8R_2W--1ZP9yqO2fb_CH2C5z-Ox-r71_NvO_Cicy6cguQuDJpq6T4icmnMXu-bfwDhOu0f
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+two-grid+method+for+second-order+hyperbolic+equation+by+expanded+mixed+finite+element+methods&rft.jtitle=Open+mathematics+%28Warsaw%2C+Poland%29&rft.au=Wang%2C+Keyan&rft.date=2024-08-27&rft.issn=2391-5455&rft.eissn=2391-5455&rft.volume=22&rft.issue=1&rft_id=info:doi/10.1515%2Fmath-2024-0048&rft.externalDBID=n%2Fa&rft.externalDocID=10_1515_math_2024_0048
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2391-5455&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2391-5455&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2391-5455&client=summon