Solution of the free vibration equation of a multi span bridge deck by local estimation method

► Solve the motion equation only once using a simple criterion for the optimal position. ► The optimal position coincides with the mode shape maximum amplitude of the beam. ► This approach minimizes drastically the computing time, produces satisfactory results. ► Good concordance results comparable...

Full description

Saved in:
Bibliographic Details
Published inEngineering structures Vol. 48; pp. 695 - 703
Main Authors Guebailia, M., Ouelaa, N., Guyader, J.L.
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.03.2013
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract ► Solve the motion equation only once using a simple criterion for the optimal position. ► The optimal position coincides with the mode shape maximum amplitude of the beam. ► This approach minimizes drastically the computing time, produces satisfactory results. ► Good concordance results comparable with those of the literature, ANSYS simulation. ► The proposed method can be easily integrated in a calculated structure software. The study of the dynamic behavior of the roadway bridges solicited by the mobile vehicles’ passage is a topicality subject, which interests many researchers in different fields. In this work, we present a roadway bridge modeling by the equation of motion of a multi span orthotropic thin plate. We propose to solve the free vibration equation by separation of variables leading to an equation of motion with varying coefficients by the longitudinal position, estimating the coefficients at anti nodes of the mode shapes of the beam. The proposed method allows us to obtain good approximations of natural frequencies and mode shapes of the bridge. This new method is very efficient compared to the previous methods, because it is analytical and avoids carrying out several integrations as in the case in the Rayleigh–Ritz method. The results obtained by the suggested method are very close to those obtained numerically by ANSYS software; the variation does not exceed 2.5%. The obtained results show a good agreement to the previously published results mainly for the bending modes, whereas the difference becomes important for the mode shapes of the second order. The difference can be explained by the consideration, in previous works, the beam boundary conditions whereas in our work, plate and beam boundary conditions are used.
AbstractList ► Solve the motion equation only once using a simple criterion for the optimal position. ► The optimal position coincides with the mode shape maximum amplitude of the beam. ► This approach minimizes drastically the computing time, produces satisfactory results. ► Good concordance results comparable with those of the literature, ANSYS simulation. ► The proposed method can be easily integrated in a calculated structure software. The study of the dynamic behavior of the roadway bridges solicited by the mobile vehicles’ passage is a topicality subject, which interests many researchers in different fields. In this work, we present a roadway bridge modeling by the equation of motion of a multi span orthotropic thin plate. We propose to solve the free vibration equation by separation of variables leading to an equation of motion with varying coefficients by the longitudinal position, estimating the coefficients at anti nodes of the mode shapes of the beam. The proposed method allows us to obtain good approximations of natural frequencies and mode shapes of the bridge. This new method is very efficient compared to the previous methods, because it is analytical and avoids carrying out several integrations as in the case in the Rayleigh–Ritz method. The results obtained by the suggested method are very close to those obtained numerically by ANSYS software; the variation does not exceed 2.5%. The obtained results show a good agreement to the previously published results mainly for the bending modes, whereas the difference becomes important for the mode shapes of the second order. The difference can be explained by the consideration, in previous works, the beam boundary conditions whereas in our work, plate and beam boundary conditions are used.
The study of the dynamic behavior of the roadway bridges solicited by the mobile vehiclesa passage is a topicality subject, which interests many researchers in different fields. In this work, we present a roadway bridge modeling by the equation of motion of a multi span orthotropic thin plate. We propose to solve the free vibration equation by separation of variables leading to an equation of motion with varying coefficients by the longitudinal position, estimating the coefficients at anti nodes of the mode shapes of the beam. The proposed method allows us to obtain good approximations of natural frequencies and mode shapes of the bridge. This new method is very efficient compared to the previous methods, because it is analytical and avoids carrying out several integrations as in the case in the Rayleigh-Ritz method. The results obtained by the suggested method are very close to those obtained numerically by ANSYS software; the variation does not exceed 2.5%. The obtained results show a good agreement to the previously published results mainly for the bending modes, whereas the difference becomes important for the mode shapes of the second order. The difference can be explained by the consideration, in previous works, the beam boundary conditions whereas in our work, plate and beam boundary conditions are used.
Author Ouelaa, N.
Guyader, J.L.
Guebailia, M.
Author_xml – sequence: 1
  givenname: M.
  surname: Guebailia
  fullname: Guebailia, M.
  organization: Mechanics & Structures Laboratory, Guelma University, Guelma, Algeria
– sequence: 2
  givenname: N.
  surname: Ouelaa
  fullname: Ouelaa, N.
  email: n_ouelaa@yahoo.fr
  organization: Mechanics & Structures Laboratory, Guelma University, Guelma, Algeria
– sequence: 3
  givenname: J.L.
  surname: Guyader
  fullname: Guyader, J.L.
  organization: Vibration & Acoustics Laboratory, INSA of Lyon, France
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27081230$$DView record in Pascal Francis
BookMark eNqFkE9vGyEQxVHlSHHcfoZwqdTLOgN4WfbQQxQ1f6RIPbS5FmGYTXDXiw2sJX_7kNjJIZeIkZCG3xvevDMyGcKAhJwzmDNg8mI1x-Ex5TjaPOfA-LwUwOILmTLViKoRXEzIFNiCVcBbeUrOUloBAFcKpuTfn9CP2YeBho7mJ6RdRKQ7v4zmtYvb0bw9G7oe--xp2piBLqN3j0gd2v90uad9sKanmLJfH_g15qfgvpKTzvQJvx3vGXm4_vX36ra6_31zd3V5X1nRqFy5ul0K0cpWqoVtWzRgO8k5b5QTzhnmrBS27GZkLRUI23GmWFN3SpUutELMyI_D3E0M27HY0GufLPa9GTCMSTMha1aLppwZ-X5ETSqeu2gG65PexOI87jVvQDEuoHA_D5yNIaWInbY-v-6Wo_G9ZqBf8tcr_Z6_fslflyr5F33zQf_2xefKy4MSS2I7j1En63Gw6HzEwrrgP53xDFOFp1A
CODEN ENSTDF
CitedBy_id crossref_primary_10_1007_s00419_023_02498_x
crossref_primary_10_1016_j_istruc_2022_03_088
crossref_primary_10_1007_s42107_023_00979_6
crossref_primary_10_1088_1361_6501_ad2ad5
crossref_primary_10_1177_1077546317708696
crossref_primary_10_1142_S0219455418500256
crossref_primary_10_32604_sv_2022_014874
crossref_primary_10_21595_jve_2016_17249
Cites_doi 10.1016/j.engstruct.2010.01.015
10.1016/j.engstruct.2010.03.019
10.1016/S0022-460X(03)00378-X
10.1016/j.apacoust.2005.07.005
10.1016/j.engstruct.2007.10.004
10.1006/jsvi.1999.2197
10.1016/j.compstruct.2008.11.010
10.1006/jsvi.2001.3996
10.1016/j.engstruct.2010.02.022
ContentType Journal Article
Copyright 2012 Elsevier Ltd
2014 INIST-CNRS
Copyright_xml – notice: 2012 Elsevier Ltd
– notice: 2014 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7SR
8BQ
8FD
FR3
JG9
KR7
DOI 10.1016/j.engstruct.2012.12.004
DatabaseName CrossRef
Pascal-Francis
Engineered Materials Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Engineered Materials Abstracts
Engineering Research Database
Technology Research Database
METADEX
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1873-7323
EndPage 703
ExternalDocumentID 27081230
10_1016_j_engstruct_2012_12_004
S0141029612006177
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABJNI
ABMAC
ABQEM
ABQYD
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACLVX
ACNNM
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
IMUCA
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSE
SST
SSZ
T5K
TN5
UAO
VH1
WUQ
XPP
ZMT
ZY4
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
IQODW
7SR
8BQ
8FD
EFKBS
FR3
JG9
KR7
ID FETCH-LOGICAL-c378t-d59b33969684c99ea0cf622278d3dda1dc63c012a656803cf218175f88c010933
IEDL.DBID .~1
ISSN 0141-0296
IngestDate Sun Aug 24 03:56:05 EDT 2025
Wed Apr 02 07:25:22 EDT 2025
Tue Jul 01 03:01:42 EDT 2025
Thu Apr 24 23:04:04 EDT 2025
Fri Feb 23 02:27:33 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Mode shape
Natrual frequency
Bridge
Estimate local method
Validation
Dynamic characteristic
Bridge span
Free vibration
Modeling
Natural frequency
Vibration effect
Example
Bridge deck
Road bridge
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c378t-d59b33969684c99ea0cf622278d3dda1dc63c012a656803cf218175f88c010933
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 1365153737
PQPubID 23500
PageCount 9
ParticipantIDs proquest_miscellaneous_1365153737
pascalfrancis_primary_27081230
crossref_citationtrail_10_1016_j_engstruct_2012_12_004
crossref_primary_10_1016_j_engstruct_2012_12_004
elsevier_sciencedirect_doi_10_1016_j_engstruct_2012_12_004
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-03-01
PublicationDateYYYYMMDD 2013-03-01
PublicationDate_xml – month: 03
  year: 2013
  text: 2013-03-01
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Engineering structures
PublicationYear 2013
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Marchesiello, Fasana, Garibaldi, Piombo (b0015) 1999; 224
Ouelaa, Resaiguia, Laulagnet (b0040) 2006; 67
Yang, Lin, Yau (b0030) 2004; 272
Zhu, Law (b0010) 2002; 251
Martinez-Rodrigon, Lavado, Museros (b0020) 2010; 32
Xing, Liu (b0045) 2009; 89
Hamidi, Danshjoo (b0050) 2010; 32
Cai, Shi, Araujo, Chen (b0035) 2007; 29
Yin, Fang, Cai, Deng (b0025) 2010; 32
Rezaiguia A. Vibroacoustic modelling of highway bridges crossing by moving vehicles. Doctorate thesis, Annaba University, Algeria; 2008.
Zhu (10.1016/j.engstruct.2012.12.004_b0010) 2002; 251
Xing (10.1016/j.engstruct.2012.12.004_b0045) 2009; 89
Martinez-Rodrigon (10.1016/j.engstruct.2012.12.004_b0020) 2010; 32
Ouelaa (10.1016/j.engstruct.2012.12.004_b0040) 2006; 67
Yang (10.1016/j.engstruct.2012.12.004_b0030) 2004; 272
Hamidi (10.1016/j.engstruct.2012.12.004_b0050) 2010; 32
Cai (10.1016/j.engstruct.2012.12.004_b0035) 2007; 29
10.1016/j.engstruct.2012.12.004_b0005
Yin (10.1016/j.engstruct.2012.12.004_b0025) 2010; 32
Marchesiello (10.1016/j.engstruct.2012.12.004_b0015) 1999; 224
References_xml – volume: 32
  start-page: 1861
  year: 2010
  end-page: 1875
  ident: b0020
  article-title: Transverse vibrations in existing railway bridges under resonant conditions: single-track versus double-track configurations
  publication-title: Eng Struct
– volume: 32
  start-page: 2166
  year: 2010
  end-page: 2174
  ident: b0025
  article-title: Non-stationary random vibration of bridges under vehicles with variable speed
  publication-title: Eng Struct
– volume: 272
  start-page: 471
  year: 2004
  end-page: 493
  ident: b0030
  article-title: Extracting bridge frequencies from the dynamic response of a passing vehicle
  publication-title: J Sound Vib
– volume: 67
  start-page: 461
  year: 2006
  end-page: 475
  ident: b0040
  article-title: Vibro-acoustic modeling of a railway bridge crossed by a train
  publication-title: Appl Acoust
– reference: Rezaiguia A. Vibroacoustic modelling of highway bridges crossing by moving vehicles. Doctorate thesis, Annaba University, Algeria; 2008.
– volume: 32
  start-page: 1369
  year: 2010
  end-page: 1376
  ident: b0050
  article-title: Determination of impact factor for steel railway bridges considering simultaneous effects of vehicle speed and axle distance to span length ratio
  publication-title: Eng Struct
– volume: 224
  start-page: 541
  year: 1999
  end-page: 561
  ident: b0015
  article-title: Dynamics of multi-span continuous straight bridges subject to multi-degrees of freedom moving vehicle excitation
  publication-title: J Sound Vib
– volume: 29
  start-page: 3210
  year: 2007
  end-page: 3226
  ident: b0035
  article-title: Effect of approach span condition on vehicle-induced dynamic response of slab-on-girder road bridges
  publication-title: Eng Struct
– volume: 251
  start-page: 697
  year: 2002
  end-page: 716
  ident: b0010
  article-title: Dynamic load on continuous multi-lane bridge deck from moving vehicles
  publication-title: J Sound Vib
– volume: 89
  start-page: 567
  year: 2009
  end-page: 574
  ident: b0045
  article-title: New exact solutions for free vibrations of thin orthotropic rectangular plates
  publication-title: Compos Struct
– volume: 32
  start-page: 1369
  year: 2010
  ident: 10.1016/j.engstruct.2012.12.004_b0050
  article-title: Determination of impact factor for steel railway bridges considering simultaneous effects of vehicle speed and axle distance to span length ratio
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2010.01.015
– ident: 10.1016/j.engstruct.2012.12.004_b0005
– volume: 32
  start-page: 2166
  year: 2010
  ident: 10.1016/j.engstruct.2012.12.004_b0025
  article-title: Non-stationary random vibration of bridges under vehicles with variable speed
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2010.03.019
– volume: 272
  start-page: 471
  year: 2004
  ident: 10.1016/j.engstruct.2012.12.004_b0030
  article-title: Extracting bridge frequencies from the dynamic response of a passing vehicle
  publication-title: J Sound Vib
  doi: 10.1016/S0022-460X(03)00378-X
– volume: 67
  start-page: 461
  year: 2006
  ident: 10.1016/j.engstruct.2012.12.004_b0040
  article-title: Vibro-acoustic modeling of a railway bridge crossed by a train
  publication-title: Appl Acoust
  doi: 10.1016/j.apacoust.2005.07.005
– volume: 29
  start-page: 3210
  year: 2007
  ident: 10.1016/j.engstruct.2012.12.004_b0035
  article-title: Effect of approach span condition on vehicle-induced dynamic response of slab-on-girder road bridges
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2007.10.004
– volume: 224
  start-page: 541
  issue: 3
  year: 1999
  ident: 10.1016/j.engstruct.2012.12.004_b0015
  article-title: Dynamics of multi-span continuous straight bridges subject to multi-degrees of freedom moving vehicle excitation
  publication-title: J Sound Vib
  doi: 10.1006/jsvi.1999.2197
– volume: 89
  start-page: 567
  year: 2009
  ident: 10.1016/j.engstruct.2012.12.004_b0045
  article-title: New exact solutions for free vibrations of thin orthotropic rectangular plates
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2008.11.010
– volume: 251
  start-page: 697
  issue: 4
  year: 2002
  ident: 10.1016/j.engstruct.2012.12.004_b0010
  article-title: Dynamic load on continuous multi-lane bridge deck from moving vehicles
  publication-title: J Sound Vib
  doi: 10.1006/jsvi.2001.3996
– volume: 32
  start-page: 1861
  year: 2010
  ident: 10.1016/j.engstruct.2012.12.004_b0020
  article-title: Transverse vibrations in existing railway bridges under resonant conditions: single-track versus double-track configurations
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2010.02.022
SSID ssj0002880
Score 2.0918171
Snippet ► Solve the motion equation only once using a simple criterion for the optimal position. ► The optimal position coincides with the mode shape maximum amplitude...
The study of the dynamic behavior of the roadway bridges solicited by the mobile vehiclesa passage is a topicality subject, which interests many researchers in...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 695
SubjectTerms Applied sciences
Beams (structural)
Boundary conditions
Bridge
Bridge elements
Bridges
Bridges (structures)
Buildings. Public works
Equations of motion
Estimate local method
Exact sciences and technology
Free vibration
Mathematical analysis
Mathematical models
Mode shape
Natrual frequency
Roadways
Stresses. Safety
Structural analysis. Stresses
Title Solution of the free vibration equation of a multi span bridge deck by local estimation method
URI https://dx.doi.org/10.1016/j.engstruct.2012.12.004
https://www.proquest.com/docview/1365153737
Volume 48
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA8yL4qInzg_RgSvdV3Tpq03EcdU3EUHOxmyfMhUuulU8OLf7ntJOx0KOwg9tQktL-n7vSS_93uEHEWJYYly4oM6CWIIqAOpVAprHst5FOlEWtzQv-7yTi--7Cf9BXJW5cIgrbL0_d6nO29d3mmW1myOh8PmjaMoRjlAtMNhzCiP4xRn-fHnN80jylz1NGwcYOsZjpcp7r1MK3K8IrcvWFZs-wOhVsZyAnazvuDFL9_tAKm9RlbLSJKe-o9dJwum2CDLP_QFN8ldtelFR5ZCpEftizH0HVfI7q559kLf-FhSxy2k4GEK6tO4qDbqkQ4-qAM8inocPtGR-rrTW6TXPr896wRlQYVAsTR7DXSSDxhzejixynMjQ2W5S4bVTGvZ0oozBYaQEORlIVMW8T9NbJYpPEFjbJvUilFhdghlNoytDrlpSR7nCsKKOGGWw9-fMkwHrhNeGVGoUm0ci148iYpW9iCm1hdofQEXWL9OwmnHsRfcmN_lpBolMTN3BMDC_M6NmXGdvjRKIVqCBVqdHFYDLeDXw_MUWZjR20QgQxAAI2Xp7n--YI8sRa7GBhLb9kkNGpgDiHReBw03lRtk8fTiqtP9AuIC_dg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9tAEB7c5JCGUvoKcR_uFnpVrGilldRbCTVuavtSG3zKst5HSRNkJ3YCufS3d2ZXcmsS8CGgk7SLxKx25tvdb-YD-JxklmfaFx80WZQioI6U1jmueZwQSWIy5WhDfzgS_Ul6Os2mLThpcmGIVln7_uDTvbeu73Rra3YX5-fdn56imJQYon0czp_AborTl2QMjv7843kkhZdPo9YRNd8gednqV6jTSiSvxG8M1pJtD4SoZwu1RMO5oHhxz3n7iNR7Ac9rKMm-hq99CS1bvYL9_woMvoazZteLzR1DqMfctbXslpbI_q69CpW-6bFinlzI0MVULORxMWP1BZvdMR_xGBXkCJmOLAhPv4FJ79v4pB_VigqR5nmxikxWzjj3BXFSXZZWxdoJnw1ruDHq2GjBNRpCIcorYq4dAYA8c0Wh6QiN8wPYqeaVPQTGXZw6Ewt7rERaasQVaHwncPrnnPKB2yAaI0pdlxsn1YtL2fDKfsu19SVZX-KF1m9DvO64CBU3tnf50oyS3Ph5JMaF7Z07G-O6fmmSI1zCFVobPjUDLXHu0YGKquz8ZimJIogRI-f528d8wUfY64-HAzn4PvrxDp4mXnCDWG7vYQcb2w8Ie1azjv-t_wKiRP9m
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solution+of+the+free+vibration+equation+of+a+multi+span+bridge+deck+by+local+estimation+method&rft.jtitle=Engineering+structures&rft.au=GUEBAILIA%2C+M&rft.au=OUELAA%2C+N&rft.au=GUYADER%2C+J.+L&rft.date=2013-03-01&rft.pub=Elsevier&rft.issn=0141-0296&rft.volume=48&rft.spage=695&rft.epage=703&rft_id=info:doi/10.1016%2Fj.engstruct.2012.12.004&rft.externalDBID=n%2Fa&rft.externalDocID=27081230
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-0296&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-0296&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-0296&client=summon