Comparison of feature learning methods for non-invasive interstitial glucose prediction using wearable sensors in healthy cohorts: a pilot study
Alterations in glucose metabolism, especially the postprandial glucose response (PPGR), are crucial contributors to metabolic dysfunction, which underlies the pathogenesis of metabolic syndrome. Personalized low-glycemic diets have shown promise in reducing postprandial glucose spikes. However, curr...
Saved in:
Published in | Intelligent medicine Vol. 4; no. 4; pp. 226 - 238 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.11.2024
Institute of Medical Informatics, University of Lübeck, Germany%Institute of Nutritional Medicine, University of Luebeck and University Medical Center Schleswig-Holstein, Lübeck, Germany%Department of IT, University of the Punjab, Lahore, Pakistan%Perfood GmbH, Research & Development, Lübeck, Germany%Fraunhofer Research Institution for Individualized and Cell-Based Medical Engineering (IMTE), Lübeck, Germany%German Research Center for Artificial Intelligence (DFKI), Lübeck, Germany |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Alterations in glucose metabolism, especially the postprandial glucose response (PPGR), are crucial contributors to metabolic dysfunction, which underlies the pathogenesis of metabolic syndrome. Personalized low-glycemic diets have shown promise in reducing postprandial glucose spikes. However, current methods such as invasive continuous glucose monitoring (CGM) or multi-omics data integration to assess PPGR have limitations, including cost and invasiveness that hinder the widespread adoption of these methods in primary disease prevention. Our aim was to assess machine learning algorithms for predicting individual PPGR using non-invasive wearable devices, thereby, circumventing the limitations associated with the existing approaches. By identifying the most accurate model, we sought to provide a more accessible and efficient method for managing glucose metabolic dysfunction.
This data-driven analysis used the experimental dataset from the SENSE (”Systemische Ernährungsmedizin”) study. Healthy participants used an Empatica E4 wristband and Abbott Freestyle Libre 3 CGM for 10 days. Blood volume pulse, electrodermal activity, heart rate, skin temperature, and the corresponding CGM values were measured. Subsequently, four data-driven deep learning (DL) models-convolutional neural network, lightweight transformer, long short-term memory with attention, and Bi-directional LSTM (BiLSTM) were implemented and compared to determine the potential of DL in predicting interstitial glucose levels without involving food and activity logs.
The proposed BiLSTM achieved the best interstitial glucose prediction performance, with an average root mean squared error of 13.42 mg/dL, an average mean absolute percentage error of 0.12, and only 3.01% values falling within area D in Clarke error grid analysis, incorporating the leave-one-out cross-validation strategy for a five-minute prediction horizon.
The findings of this study may demonstrate the feasibility of transferring knowledge gained from invasive glucose monitoring devices to non-invasive approaches. Furthermore, it could emphasize the promising prospects of combining DL with wearable technologies to predict glucose levels in healthy individuals. |
---|---|
AbstractList | Alterations in glucose metabolism, especially the postprandial glucose response (PPGR), are crucial contributors to metabolic dysfunction, which underlies the pathogenesis of metabolic syndrome. Personalized low-glycemic diets have shown promise in reducing postprandial glucose spikes. However, current methods such as invasive continuous glucose monitoring (CGM) or multi-omics data integration to assess PPGR have limitations, including cost and invasiveness that hinder the widespread adoption of these methods in primary disease prevention. Our aim was to assess machine learning algorithms for predicting individual PPGR using non-invasive wearable devices, thereby, circumventing the limitations associated with the existing approaches. By identifying the most accurate model, we sought to provide a more accessible and efficient method for managing glucose metabolic dysfunction.
This data-driven analysis used the experimental dataset from the SENSE (”Systemische Ernährungsmedizin”) study. Healthy participants used an Empatica E4 wristband and Abbott Freestyle Libre 3 CGM for 10 days. Blood volume pulse, electrodermal activity, heart rate, skin temperature, and the corresponding CGM values were measured. Subsequently, four data-driven deep learning (DL) models-convolutional neural network, lightweight transformer, long short-term memory with attention, and Bi-directional LSTM (BiLSTM) were implemented and compared to determine the potential of DL in predicting interstitial glucose levels without involving food and activity logs.
The proposed BiLSTM achieved the best interstitial glucose prediction performance, with an average root mean squared error of 13.42 mg/dL, an average mean absolute percentage error of 0.12, and only 3.01% values falling within area D in Clarke error grid analysis, incorporating the leave-one-out cross-validation strategy for a five-minute prediction horizon.
The findings of this study may demonstrate the feasibility of transferring knowledge gained from invasive glucose monitoring devices to non-invasive approaches. Furthermore, it could emphasize the promising prospects of combining DL with wearable technologies to predict glucose levels in healthy individuals. Background:Alterations in glucose metabolism, especially the postprandial glucose response (PPGR), are crucial contributors to metabolic dysfunction, which underlies the pathogenesis of metabolic syndrome. Personalized low-glycemic diets have shown promise in reducing postprandial glucose spikes. However, current methods such as invasive continuous glucose monitoring (CGM) or multi-omics data integration to assess PPGR have limitations, including cost and invasiveness that hinder the widespread adoption of these methods in primary disease prevention. Our aim was to assess machine learning algorithms for predicting individual PPGR using non-invasive wearable devices, thereby, circumventing the limitations associated with the existing approaches. By identifying the most accurate model, we sought to provide a more accessible and efficient method for managing glucose metabolic dysfunction.Methods:This data-driven analysis used the experimental dataset from the SENSE (" Systemische Ern?hrungsmedizin" ) study. Healthy participants used an Empatica E4 wristband and Abbott Freestyle Libre 3 CGM for 10 days. Blood volume pulse, electrodermal activity, heart rate, skin temperature, and the corresponding CGM values were measured. Subsequently, four data-driven deep learning (DL) models-convolutional neural network, lightweight transformer, long short-term memory with attention, and Bi-directional LSTM (BiLSTM) were implemented and compared to determine the potential of DL in predicting interstitial glucose levels without involving food and activity logs.Results:The proposed BiLSTM achieved the best interstitial glucose prediction performance, with an average root mean squared error of 13.42 mg/dL, an average mean absolute percentage error of 0.12, and only 3.01% values falling within area D in Clarke error grid analysis, incorporating the leave-one-out cross-validation strategy for a five-minute prediction horizon.Conclusion:The findings of this study may demonstrate the feasibility of transferring knowledge gained from invasive glucose monitoring devices to non-invasive approaches. Furthermore, it could emphasize the promising prospects of combining DL with wearable technologies to predict glucose levels in healthy individuals. |
Abstract_FL | Background:Alterations in glucose metabolism, especially the postprandial glucose response (PPGR), are crucial contributors to metabolic dysfunction, which underlies the pathogenesis of metabolic syndrome. Personalized low-glycemic diets have shown promise in reducing postprandial glucose spikes. However, current methods such as invasive continuous glucose monitoring (CGM) or multi-omics data integration to assess PPGR have limitations, including cost and invasiveness that hinder the widespread adoption of these methods in primary disease prevention. Our aim was to assess machine learning algorithms for predicting individual PPGR using non-invasive wearable devices, thereby, circumventing the limitations associated with the existing approaches. By identifying the most accurate model, we sought to provide a more accessible and efficient method for managing glucose metabolic dysfunction.Methods:This data-driven analysis used the experimental dataset from the SENSE (" Systemische Ern?hrungsmedizin" ) study. Healthy participants used an Empatica E4 wristband and Abbott Freestyle Libre 3 CGM for 10 days. Blood volume pulse, electrodermal activity, heart rate, skin temperature, and the corresponding CGM values were measured. Subsequently, four data-driven deep learning (DL) models-convolutional neural network, lightweight transformer, long short-term memory with attention, and Bi-directional LSTM (BiLSTM) were implemented and compared to determine the potential of DL in predicting interstitial glucose levels without involving food and activity logs.Results:The proposed BiLSTM achieved the best interstitial glucose prediction performance, with an average root mean squared error of 13.42 mg/dL, an average mean absolute percentage error of 0.12, and only 3.01% values falling within area D in Clarke error grid analysis, incorporating the leave-one-out cross-validation strategy for a five-minute prediction horizon.Conclusion:The findings of this study may demonstrate the feasibility of transferring knowledge gained from invasive glucose monitoring devices to non-invasive approaches. Furthermore, it could emphasize the promising prospects of combining DL with wearable technologies to predict glucose levels in healthy individuals. |
Author | Schröder, Torsten Piet, Artur Irshad, Muhammad Tausif Uhlig, Annemarie Nisar, Muhammad Adeel Schmelter, Franziska Sina, Christian Jablonski, Lennart Witt, Oliver Grzegorzek, Marcin Huang, Xinyu |
AuthorAffiliation | Institute of Medical Informatics, University of Lübeck, Germany%Institute of Nutritional Medicine, University of Luebeck and University Medical Center Schleswig-Holstein, Lübeck, Germany%Department of IT, University of the Punjab, Lahore, Pakistan%Perfood GmbH, Research & Development, Lübeck, Germany%Fraunhofer Research Institution for Individualized and Cell-Based Medical Engineering (IMTE), Lübeck, Germany%German Research Center for Artificial Intelligence (DFKI), Lübeck, Germany |
AuthorAffiliation_xml | – name: Institute of Medical Informatics, University of Lübeck, Germany%Institute of Nutritional Medicine, University of Luebeck and University Medical Center Schleswig-Holstein, Lübeck, Germany%Department of IT, University of the Punjab, Lahore, Pakistan%Perfood GmbH, Research & Development, Lübeck, Germany%Fraunhofer Research Institution for Individualized and Cell-Based Medical Engineering (IMTE), Lübeck, Germany%German Research Center for Artificial Intelligence (DFKI), Lübeck, Germany |
Author_FL | Sina Christian Grzegorzek Marcin Schr?der Torsten Jablonski Lennart Irshad Muhammad Tausif Witt Oliver Piet Artur Uhlig Annemarie Huang Xinyu Schmelter Franziska Nisar Muhammad Adeel |
Author_FL_xml | – sequence: 1 fullname: Huang Xinyu – sequence: 2 fullname: Schmelter Franziska – sequence: 3 fullname: Uhlig Annemarie – sequence: 4 fullname: Irshad Muhammad Tausif – sequence: 5 fullname: Nisar Muhammad Adeel – sequence: 6 fullname: Piet Artur – sequence: 7 fullname: Jablonski Lennart – sequence: 8 fullname: Witt Oliver – sequence: 9 fullname: Schr?der Torsten – sequence: 10 fullname: Sina Christian – sequence: 11 fullname: Grzegorzek Marcin |
Author_xml | – sequence: 1 givenname: Xinyu orcidid: 0000-0003-3210-3891 surname: Huang fullname: Huang, Xinyu organization: Institute of Medical Informatics, University of Lübeck , Germany – sequence: 2 givenname: Franziska surname: Schmelter fullname: Schmelter, Franziska organization: Institute of Nutritional Medicine, University of Luebeck and University Medical Center Schleswig-Holstein, Lübeck, Germany – sequence: 3 givenname: Annemarie orcidid: 0009-0008-1869-1897 surname: Uhlig fullname: Uhlig, Annemarie organization: Institute of Medical Informatics, University of Lübeck , Germany – sequence: 4 givenname: Muhammad Tausif orcidid: 0000-0003-4581-4107 surname: Irshad fullname: Irshad, Muhammad Tausif organization: Institute of Medical Informatics, University of Lübeck , Germany – sequence: 5 givenname: Muhammad Adeel orcidid: 0000-0003-3288-750X surname: Nisar fullname: Nisar, Muhammad Adeel organization: Department of IT, University of the Punjab, Lahore, Pakistan – sequence: 6 givenname: Artur orcidid: 0000-0003-2137-8363 surname: Piet fullname: Piet, Artur organization: Institute of Medical Informatics, University of Lübeck , Germany – sequence: 7 givenname: Lennart orcidid: 0009-0003-6185-3146 surname: Jablonski fullname: Jablonski, Lennart organization: Institute of Medical Informatics, University of Lübeck , Germany – sequence: 8 givenname: Oliver surname: Witt fullname: Witt, Oliver organization: Perfood GmbH, Research & Development, Lübeck, Germany – sequence: 9 givenname: Torsten orcidid: 0009-0006-4897-1481 surname: Schröder fullname: Schröder, Torsten organization: Institute of Nutritional Medicine, University of Luebeck and University Medical Center Schleswig-Holstein, Lübeck, Germany – sequence: 10 givenname: Christian surname: Sina fullname: Sina, Christian organization: Institute of Nutritional Medicine, University of Luebeck and University Medical Center Schleswig-Holstein, Lübeck, Germany – sequence: 11 givenname: Marcin orcidid: 0000-0003-4877-8287 surname: Grzegorzek fullname: Grzegorzek, Marcin organization: Institute of Medical Informatics, University of Lübeck , Germany |
BookMark | eNqFkD1v2zAQhjmkQNI0fyATt0xSKVkfdNClMJq0QIAsyUxQ5NE6hyYNknKi_or85FBwpw7tdMDhnvfFPZ_JmfMOCLmuWFmxqvu6K3EPuqxZ3ZSsLRmrz8hF3XV9UbG6OydXMe5Y3vZs3TTNBXnf-P1BBozeUW-oAZmmANSCDA7dlu4hjV5HanyguapAd5QRj0DRJQgxYUJp6dZOykeghwAaVcIcNsUFf805crBAI7joQ8wYHUHaNM5U-dGHFG-ppAe0PtGYJj1_IZ-MtBGu_sxL8nz342nzs3h4vP-1-f5QqFXPU6Ebpuu6b9a95D1vpW4rw_mq1Vx3mg-aGykZ9Jx3Q8vXg666amU4M9ywQQ18WF2Sm1Puq3RGuq3Y-Sm43Ch-j_ObgMUga7KpfFmfLlXwMQYw4hBwL8MsKiYW6WInFuliQQRrxQn6doIg_3BECCIqBKeynwAqCe3x3_jtX7iy6FBJ-wLz_-APUfimNQ |
Cites_doi | 10.1016/j.artmed.2020.101981 10.1016/j.jjcc.2014.03.012 10.1016/j.icte.2020.04.010 10.1016/j.imed.2023.09.001 10.1007/s12555-019-0984-6 10.3390/s22093534 10.1177/1932296819855670 10.1001/jamanetworkopen.2023.3273 10.3390/computers12050091 10.1109/JSEN.2021.3070706 10.1007/s41666-019-00059-y 10.2337/dc18-1843 10.1016/j.compbiomed.2023.107489 10.18653/v1/2021.emnlp-main.446 10.1109/ACCESS.2019.2919184 10.1016/j.compbiomed.2022.105265 10.3390/nu14142927 10.1152/ajpendo.90563.2008 10.1038/nrendo.2017.151 10.1186/s40104-017-0164-6 10.1088/1742-6596/2562/1/012012 10.1088/0967-3334/24/2/306 10.1109/TNNLS.2016.2582924 10.1016/j.egyr.2020.09.019 10.1117/12.231366 10.1016/j.compbiomed.2023.107034 10.3390/diagnostics3040385 10.1109/TNNLS.2021.3131377 10.1109/ACCESS.2020.3041355 10.1001/jamanetworkopen.2023.19420 10.3390/nu14214465 10.1038/s41598-017-13018-7 10.1016/j.imed.2021.12.001 10.1177/1932296817699637 10.1038/s41746-021-00465-w 10.3390/s22197639 10.1007/978-3-030-01261-8_1 10.1016/j.compbiomed.2023.107501 10.3390/s22207711 10.2337/dc15-0429 10.1038/s41746-020-0260-4 10.3390/s20123463 10.5194/gmd-7-1247-2014 10.3390/s22052030 10.1109/TCSVT.2017.2654543 10.1038/s41591-020-0934-0 10.1002/cem.2977 10.1109/JBHI.2021.3100558 10.21105/joss.03021 10.1088/1755-1315/294/1/012033 10.1007/978-3-642-35289-8_26 10.1016/j.metabol.2017.11.017 10.1016/j.imed.2022.04.001 10.1037/h0057145 |
ContentType | Journal Article |
Copyright | 2024 The Author(s) Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: 2024 The Author(s) – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 6I. AAFTH AAYXX CITATION 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.1016/j.imed.2024.05.002 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
DocumentTitle_FL | Comparison of feature learning methods for non-invasive interstitial glucose prediction using wearable sensors in healthy cohorts: a pilot study |
EndPage | 238 |
ExternalDocumentID | zhyx_e202404002 10_1016_j_imed_2024_05_002 S2667102624000615 |
GrantInformation_xml | – fundername: DAMP Foundation, Germany funderid: (Grant No. 2020-14) |
GroupedDBID | .1- .FO 0R~ AAEDW AALRI AAXUO AAYWO ACVFH ADCNI ADVLN AEUPX AFJKZ AFPUW AFRHN AIGII AITUG AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ EBS FDB GROUPED_DOAJ M41 M~E ROL Z5R 6I. AAFTH AFCTW AAYXX CITATION 2B. 4A8 92I 93N PSX TCJ |
ID | FETCH-LOGICAL-c378t-d40d227497a8785ad51f8835d8d6d8bd8faa0e7886b589bd1613f80f8f0bcb8b3 |
ISSN | 2667-1026 |
IngestDate | Thu May 29 04:06:51 EDT 2025 Tue Jul 01 04:31:15 EDT 2025 Sat Dec 28 15:52:03 EST 2024 Tue Aug 26 16:36:40 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Deep learning Clarke error grid Physiological signal processing Interstitial glucose prediction Wearable sensors Non-invasive glucose monitoring |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c378t-d40d227497a8785ad51f8835d8d6d8bd8faa0e7886b589bd1613f80f8f0bcb8b3 |
ORCID | 0009-0003-6185-3146 0000-0003-3210-3891 0009-0006-4897-1481 0009-0008-1869-1897 0000-0003-4581-4107 0000-0003-2137-8363 0000-0003-3288-750X 0000-0003-4877-8287 |
OpenAccessLink | http://dx.doi.org/10.1016/j.imed.2024.05.002 |
PageCount | 13 |
ParticipantIDs | wanfang_journals_zhyx_e202404002 crossref_primary_10_1016_j_imed_2024_05_002 elsevier_sciencedirect_doi_10_1016_j_imed_2024_05_002 elsevier_clinicalkey_doi_10_1016_j_imed_2024_05_002 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-11-01 |
PublicationDateYYYYMMDD | 2024-11-01 |
PublicationDate_xml | – month: 11 year: 2024 text: 2024-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Intelligent medicine |
PublicationTitle_FL | Intelligent Medicine |
PublicationYear | 2024 |
Publisher | Elsevier B.V Institute of Medical Informatics, University of Lübeck, Germany%Institute of Nutritional Medicine, University of Luebeck and University Medical Center Schleswig-Holstein, Lübeck, Germany%Department of IT, University of the Punjab, Lahore, Pakistan%Perfood GmbH, Research & Development, Lübeck, Germany%Fraunhofer Research Institution for Individualized and Cell-Based Medical Engineering (IMTE), Lübeck, Germany%German Research Center for Artificial Intelligence (DFKI), Lübeck, Germany |
Publisher_xml | – name: Elsevier B.V – name: Institute of Medical Informatics, University of Lübeck, Germany%Institute of Nutritional Medicine, University of Luebeck and University Medical Center Schleswig-Holstein, Lübeck, Germany%Department of IT, University of the Punjab, Lahore, Pakistan%Perfood GmbH, Research & Development, Lübeck, Germany%Fraunhofer Research Institution for Individualized and Cell-Based Medical Engineering (IMTE), Lübeck, Germany%German Research Center for Artificial Intelligence (DFKI), Lübeck, Germany |
References | Gao, Fang, Ruan (bib0052) 2019; 294 Huang, Schmelter, Seitzer (bib0028) 2023 Mahrishi, Hiran (bib0012) 2020 Dolson, Harlow, Phelan (bib0009) 2022; 22 Radiuk (bib0062) 2017; 20 Huang, Shirahama, Li (bib0024) 2020; 110 LeCun, Bengio (bib0034) 1998 Suharyono, Mahmuda, Febrian (bib0004) 2023 Irshad, Li, Nisar (bib0036) 2023 Bogue-Jimenez, Huang, Powell (bib0017) 2022; 22 van den Brink, van den Broek, Palmisano (bib0019) 2022; 14 Dexcom g7 rtcgm. Available from Lin, Fan, Lu (bib0031) 2015; 65 Maniatopoulos, Mitianoudis (bib0039) 2021; 12 Geng, Tang, Ding (bib0006) 2017; 7 Holzer, Bloch, Brinkmann (bib0007) 2022; 22 Wang, Tong, Yu (bib0070) 2020; 8 Bengio Y. Practical recommendations for gradient-based training of deep architectures. 2012. 1206.5533. Waskom (bib0068) 2021; 6 Baker, Taylor (bib0032) 1954; 48 Bent, Cho, Henriquez (bib0018) 2021; 4 Dinan E, Yaida S, Zhang S. Effective theory of transformers at initialization. 2023. 2304.02034. Kim, Han, Kim (bib0049) 2020; 6 Hidalgo, Colmenar, Risco-Martín (bib0056) 2014 Cheng, Garrick, Fernando (bib0057) 2017; 8 Holzer, Bloch, Brinkmann (bib0001) 2022; 22 Yao, Yu, Gong (bib0065) 2023; 34 Zhang, Sun, Han (bib0045) 2018; 28 Wasserman (bib0003) 2009; 296 Goldsack, Coravos, Bakker (bib0073) 2020; 3 Poggiogalle, Jamshed, Peterson (bib0076) 2018; 84 Irshad, Nisar, Huang (bib0011) 2022; 22 Landy, Wang, Baldwin (bib0035) 2023; 6 Hendrycks D, Gimpel K. Gaussian error linear units (gelus). 2023. 1606.08415. Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need. 2023. 1706.03762. Augustinov, Nisar, Li (bib0043) 2023 Malek, Melgani, Bazi (bib0038) 2018; 32 Hu, Li, Li (bib0014) 2023; 161 Huang, Shirahama, Irshad (bib0023) 2023 Huang, Schmelter, Irshad (bib0074) 2023 E4 wristband. Available from Kandel, Castelli (bib0063) 2020; 6 Qiao S, Wang H, Liu C, et al. Micro-batch training with batch-channel normalization and weight standardization. 2020. 1903.10520. Gunturkun, Bakir-Batu, Siddiqui (bib0037) 2023; 6 Chen, Li, Li (bib0041) 2022; 143 Wu Y, He K. Group normalization. 2018. 1803.08494. (Accessed on 26 April 2024). 2024. Shukla, Iliescu, Thomas (bib0020) 2015; 38 Loshchilov I, Hutter F. Sgdr: Stochastic gradient descent with warm restarts. 2017. 1608.03983. Lelleck, Schulz, Witt (bib0005) 2022; 14 Greff, Srivastava, Koutník (bib0050) 2016; 28 Heinemann, Schoemaker, Schmelzeisen-Redecker (bib0033) 2019; 14 Daniels, Herrero, Georgiou (bib0059) 2022; 26 Vozzi, Palumbo, Ferro (bib0022) 2022; 2 Freestyle libre 3 system. Available from Zheng, Ley, Hu (bib0002) 2018; 14 Wu, Wang, Guo (bib0010) 2022; 2 Shah, Shandilya, Patel (bib0053) 2023 Obeidat, Ammar (bib0016) 2021; 21 Geva M, Schuster R, Berant J, et al. Transformer feed-forward layers are key-value memories. 2021. 2012.14913. Martinsson, Schliep, Eliasson, Mogren (bib0051) 2020; 4 He, Liu, Tao (bib0061) 2019 Chai, Draxler (bib0055) 2014; 7 Bekkink, Koeneman, Galan (bib0058) 2019; 42 Berry, Valdes, Drew (bib0071) 2020; 26 Nitzan, Turivnenko, Milston (bib0030) 1996; 1 Wen, Zhou, Zhang (bib0044) 2023 Vashist (bib0072) 2013; 3 Aliberti, Pupillo, Terna (bib0069) 2019; 7 (Accessed on 11 April 2024) 2021. (Accessed on 04 March 2024). 2022. Taye (bib0013) 2023; 12 Allen, Murray (bib0029) 2003; 24 Kang, Yang, Jianying (bib0054) 2020; 18 Brose, Kronberg, Pohl-Apel (bib0060) 2021 Siegmund, Heinemann, Kolassa (bib0008) 2017; 11 Lyu, Wang, Li (bib0042) 2024; 4 Liu, Chen, Zhou (bib0040) 2023; 2562 Nisar, Shirahama, Li (bib0021) 2020; 20 Wu (10.1016/j.imed.2024.05.002_bib0010) 2022; 2 Vashist (10.1016/j.imed.2024.05.002_bib0072) 2013; 3 Gao (10.1016/j.imed.2024.05.002_bib0052) 2019; 294 Nisar (10.1016/j.imed.2024.05.002_bib0021) 2020; 20 Huang (10.1016/j.imed.2024.05.002_bib0024) 2020; 110 10.1016/j.imed.2024.05.002_bib0015 Dolson (10.1016/j.imed.2024.05.002_bib0009) 2022; 22 Huang (10.1016/j.imed.2024.05.002_bib0074) 2023 Lyu (10.1016/j.imed.2024.05.002_bib0042) 2024; 4 Geng (10.1016/j.imed.2024.05.002_bib0006) 2017; 7 Kandel (10.1016/j.imed.2024.05.002_bib0063) 2020; 6 Baker (10.1016/j.imed.2024.05.002_bib0032) 1954; 48 Radiuk (10.1016/j.imed.2024.05.002_bib0062) 2017; 20 Mahrishi (10.1016/j.imed.2024.05.002_sbref0012) 2020 Kim (10.1016/j.imed.2024.05.002_bib0049) 2020; 6 Bekkink (10.1016/j.imed.2024.05.002_bib0058) 2019; 42 Waskom (10.1016/j.imed.2024.05.002_bib0068) 2021; 6 Siegmund (10.1016/j.imed.2024.05.002_bib0008) 2017; 11 Zheng (10.1016/j.imed.2024.05.002_bib0002) 2018; 14 Wasserman (10.1016/j.imed.2024.05.002_bib0003) 2009; 296 He (10.1016/j.imed.2024.05.002_bib0061) 2019 10.1016/j.imed.2024.05.002_bib0064 LeCun (10.1016/j.imed.2024.05.002_sbref0030) 1998 Martinsson (10.1016/j.imed.2024.05.002_bib0051) 2020; 4 Hidalgo (10.1016/j.imed.2024.05.002_bib0056) 2014 10.1016/j.imed.2024.05.002_bib0027 Aliberti (10.1016/j.imed.2024.05.002_bib0069) 2019; 7 10.1016/j.imed.2024.05.002_bib0026 Brose (10.1016/j.imed.2024.05.002_bib0060) 2021 Berry (10.1016/j.imed.2024.05.002_bib0071) 2020; 26 10.1016/j.imed.2024.05.002_bib0025 Irshad (10.1016/j.imed.2024.05.002_bib0036) 2023 10.1016/j.imed.2024.05.002_bib0067 10.1016/j.imed.2024.05.002_bib0066 Daniels (10.1016/j.imed.2024.05.002_bib0059) 2022; 26 Chen (10.1016/j.imed.2024.05.002_bib0041) 2022; 143 Huang (10.1016/j.imed.2024.05.002_bib0028) 2023 Goldsack (10.1016/j.imed.2024.05.002_bib0073) 2020; 3 Shah (10.1016/j.imed.2024.05.002_bib0053) 2023 Yao (10.1016/j.imed.2024.05.002_bib0065) 2023; 34 10.1016/j.imed.2024.05.002_bib0075 Liu (10.1016/j.imed.2024.05.002_bib0040) 2023; 2562 Nitzan (10.1016/j.imed.2024.05.002_bib0030) 1996; 1 Holzer (10.1016/j.imed.2024.05.002_bib0001) 2022; 22 Vozzi (10.1016/j.imed.2024.05.002_bib0022) 2022; 2 Wen (10.1016/j.imed.2024.05.002_bib0044) 2023 Zhang (10.1016/j.imed.2024.05.002_bib0045) 2018; 28 Heinemann (10.1016/j.imed.2024.05.002_bib0033) 2019; 14 Landy (10.1016/j.imed.2024.05.002_sbref0031) 2023; 6 Maniatopoulos (10.1016/j.imed.2024.05.002_bib0039) 2021; 12 Lin (10.1016/j.imed.2024.05.002_bib0031) 2015; 65 Suharyono (10.1016/j.imed.2024.05.002_sbref0004) 2023 Bent (10.1016/j.imed.2024.05.002_bib0018) 2021; 4 Irshad (10.1016/j.imed.2024.05.002_bib0011) 2022; 22 Taye (10.1016/j.imed.2024.05.002_bib0013) 2023; 12 Malek (10.1016/j.imed.2024.05.002_bib0038) 2018; 32 Greff (10.1016/j.imed.2024.05.002_bib0050) 2016; 28 Lelleck (10.1016/j.imed.2024.05.002_bib0005) 2022; 14 van den Brink (10.1016/j.imed.2024.05.002_bib0019) 2022; 14 Shukla (10.1016/j.imed.2024.05.002_bib0020) 2015; 38 Chai (10.1016/j.imed.2024.05.002_bib0055) 2014; 7 Huang (10.1016/j.imed.2024.05.002_bib0023) 2023 Obeidat (10.1016/j.imed.2024.05.002_bib0016) 2021; 21 10.1016/j.imed.2024.05.002_bib0048 10.1016/j.imed.2024.05.002_bib0047 10.1016/j.imed.2024.05.002_bib0046 Cheng (10.1016/j.imed.2024.05.002_bib0057) 2017; 8 Holzer (10.1016/j.imed.2024.05.002_bib0007) 2022; 22 Gunturkun (10.1016/j.imed.2024.05.002_sbref0033) 2023; 6 Wang (10.1016/j.imed.2024.05.002_bib0070) 2020; 8 Poggiogalle (10.1016/j.imed.2024.05.002_bib0076) 2018; 84 Augustinov (10.1016/j.imed.2024.05.002_bib0043) 2023 Kang (10.1016/j.imed.2024.05.002_bib0054) 2020; 18 Allen (10.1016/j.imed.2024.05.002_bib0029) 2003; 24 Hu (10.1016/j.imed.2024.05.002_bib0014) 2023; 161 Bogue-Jimenez (10.1016/j.imed.2024.05.002_bib0017) 2022; 22 |
References_xml | – volume: 84 start-page: 11 year: 2018 end-page: 27 ident: bib0076 article-title: Circadian regulation of glucose, lipid, and energy metabolism in humans publication-title: Metabolism – volume: 28 start-page: 1303 year: 2018 end-page: 1314 ident: bib0045 article-title: Residual networks of residual networks: Multilevel residual networks publication-title: IEEE Trans Circuits Syst Video Technol – volume: 296 start-page: E11 year: 2009 end-page: E21 ident: bib0003 article-title: Four grams of glucose publication-title: Am J Physiol Endocrinol Metab – reference: (Accessed on 11 April 2024) 2021. – volume: 6 year: 2023 ident: bib0037 article-title: Development of a Deep Learning Model for Retinal Hemorrhage Detection on Head Computed Tomography in Young Children publication-title: JAMA Netw Open – reference: Geva M, Schuster R, Berant J, et al. Transformer feed-forward layers are key-value memories. 2021. 2012.14913. – year: 2021 ident: bib0060 article-title: Beschreibung und quantifizierung von diversität publication-title: Taschenlehrbuch Biologie: Ökologie ø Evolution – start-page: 1305 year: 2014 end-page: 1312 ident: bib0056 publication-title: Clarke and parkes error grid analysis of diabetic glucose models obtained with evolutionary computation – volume: 4 start-page: 10 year: 2024 end-page: 15 ident: bib0042 article-title: Generative pretrained transformer 4: an innovative approach to facilitate value-based healthcare publication-title: Intell Med – volume: 26 start-page: 436 year: 2022 end-page: 445 ident: bib0059 article-title: A multitask learning approach to personalized blood glucose prediction publication-title: IEEE J Biomed Health Inform – volume: 3 year: 2020 ident: bib0073 article-title: Verification, analytical validation, and clinical validation (v3): the foundation of determining fit-for-purpose for biometric monitoring technologies (biomets) publication-title: NPJ Digit Med – year: 2019 ident: bib0061 article-title: Control batch size and learning rate to generalize well: Theoretical and empirical evidence publication-title: Adv Neural Inf Process Syst – start-page: 23 year: 2023 ident: bib0023 article-title: Sleep stage classification in children using self-attention and gaussian noise data augmentation publication-title: Sensors (Basel) – volume: 11 start-page: 766 year: 2017 end-page: 772 ident: bib0008 article-title: Discrepancies between blood glucose and interstitial glucose-technological artifacts or physiology: Implications for selection of the appropriate therapeutic target publication-title: J Diabetes Sci Technol – volume: 8 start-page: 217908 year: 2020 end-page: 217916 ident: bib0070 article-title: Blood glucose prediction with vmd and lstm optimized by improved particle swarm optimization publication-title: IEEE Access – reference: (Accessed on 26 April 2024). 2024. – reference: Freestyle libre 3 system. Available from – volume: 6 year: 2023 ident: bib0035 article-title: Recalibration of a Deep Learning Model for Low-Dose Computed Tomographic Images to Inform Lung Cancer Screening Intervals publication-title: JAMA Netw Open – volume: 6 start-page: 2604 year: 2020 end-page: 2618 ident: bib0049 article-title: Electricity load forecasting using advanced feature selection and optimal deep learning model for the variable refrigerant flow systems publication-title: Energy Rep – volume: 14 start-page: 4465 year: 2022 ident: bib0019 article-title: Digital biomarkers for personalized nutrition: Predicting meal moments and interstitial glucose with non-invasive, wearable technologies publication-title: Nutrients – volume: 28 start-page: 2222 year: 2016 end-page: 2232 ident: bib0050 article-title: Lstm: A search space odyssey publication-title: IEEE Trans Neural Netw Learn Syst – volume: 4 start-page: 89 year: 2021 ident: bib0018 article-title: Engineering digital biomarkers of interstitial glucose from noninvasive smartwatches publication-title: NPJ Digit Med – volume: 7 year: 2017 ident: bib0006 article-title: Noninvasive continuous glucose monitoring using a multisensor-based glucometer and time series analysis publication-title: Sci Rep – volume: 2 start-page: 88 year: 2022 end-page: 96 ident: bib0010 article-title: Application of artificial intelligence in clinical diagnosis and treatment: an overview of systematic reviews publication-title: Intell Med – volume: 12 start-page: 91 year: 2023 ident: bib0013 article-title: Understanding of machine learning with deep learning: Architectures workflow applications and future directions publication-title: Comput – volume: 65 start-page: 50 year: 2015 end-page: 56 ident: bib0031 article-title: Exploring the blood volume amplitude and pulse transit time during anger recall in patients with coronary artery disease publication-title: J Cardiol – volume: 38 start-page: e98 year: 2015 end-page: e99 ident: bib0020 article-title: Food Order Has a Significant Impact on Postprandial Glucose and Insulin Levels publication-title: Diabetes Care – start-page: 2202.07125 year: 2023 ident: bib0044 article-title: Transformers in time series publication-title: A survey – volume: 14 start-page: 88 year: 2018 end-page: 98 ident: bib0002 article-title: Global aetiology and epidemiology of type 2 diabetes mellitus and its complications publication-title: Nat Rev Endocrinol – volume: 18 start-page: 3023 year: 2020 end-page: 3030 ident: bib0054 article-title: Time series prediction of wastewater flow rate by bidirectional lstm deep learning publication-title: Int J Control Autom Syst – start-page: 107501 year: 2023 ident: bib0074 article-title: Optimizing sleep staging on multimodal time series: Leveraging borderline synthetic minority oversampling technique and supervised convolutional contrastive learning publication-title: Comput Biol Med – volume: 21 start-page: 13895 year: 2021 end-page: 13909 ident: bib0016 article-title: A system for blood glucose monitoring and smart insulin prediction publication-title: IEEE Sens J – volume: 22 start-page: 2030 year: 2022 ident: bib0001 article-title: Continuous glucose monitoring in healthy adults-possible applications in health care, wellness, and sports publication-title: Sensors (Basel) – volume: 48 start-page: 361 year: 1954 ident: bib0032 article-title: The relationship under stress between changes in skin temperature, electrical skin resistance, and pulse rate publication-title: J Exp Psychol – year: 2020 ident: bib0012 publication-title: Machine Learning and Deep Learning in Real-Time Applications – volume: 143 start-page: 105265 year: 2022 ident: bib0041 article-title: An interactive learning and multi-channel attention mechanism-based weakly supervised colorectal histopathology image classification approach publication-title: Comput Biol Med – volume: 4 start-page: 1 year: 2020 end-page: 18 ident: bib0051 article-title: Blood glucose prediction with variance estimation using recurrent neural networks publication-title: J Healthc Inform Res – volume: 42 start-page: 689 year: 2019 end-page: 692 ident: bib0058 article-title: Early detection of hypoglycemia in type 1 diabetes using heart rate variability measured by a wearable device publication-title: Diabetes Care – year: 2023 ident: bib0028 article-title: From data to insight: Predicting interstitial glucose in healthy cohort with non-invasive sensor technology and machine learning publication-title: Res Sq (Preprint) – volume: 161 start-page: 107034 year: 2023 ident: bib0014 article-title: A state-of-the-art survey of artificial neural networks for whole-slide image analysis: From popular convolutional neural networks to potential visual transformers publication-title: Comput Biol Med – reference: Bengio Y. Practical recommendations for gradient-based training of deep architectures. 2012. 1206.5533. – start-page: 5 year: 2023 end-page: 11 ident: bib0004 article-title: Correlation between age, gender, and fasting blood sugar levels with peripheral artery disease incidence in patients with type 2 diabetes mellitus publication-title: Proc Int Conf Health Well-Being (ICHWB 2022) – reference: Qiao S, Wang H, Liu C, et al. Micro-batch training with batch-channel normalization and weight standardization. 2020. 1903.10520. – volume: 14 start-page: 135 year: 2019 end-page: 150 ident: bib0033 article-title: Benefits and Limitations of MARD as a Performance Parameter for Continuous Glucose Monitoring in the Interstitial Space publication-title: J Diabetes Sci Technol – volume: 22 year: 2022 ident: bib0007 article-title: Continuous glucose monitoring in healthy adults—possible applications in health care, wellness, and sports publication-title: Sensors (Basel) – volume: 20 start-page: 20 year: 2017 end-page: 24 ident: bib0062 article-title: Impact of training set batch size on the performance of convolutional neural networks for diverse datasets publication-title: Inf Technol Manag Sci – volume: 22 year: 2022 ident: bib0017 article-title: Selection of noninvasive features in Wrist-Based wearable sensors to predict blood glucose concentrations using machine learning algorithms publication-title: Sensors (Basel) – start-page: 255 year: 1998 end-page: 258 ident: bib0034 article-title: Convolutional networks for images, speech, and time series publication-title: The Handbook of Brain Theory and Neural Networks – volume: 2562 start-page: 012012 year: 2023 ident: bib0040 article-title: Improved mobilevit: A more efficient light-weight convolution and vision transformer hybrid model publication-title: J Phys Conf Ser – reference: Hendrycks D, Gimpel K. Gaussian error linear units (gelus). 2023. 1606.08415. – volume: 26 start-page: 964 year: 2020 end-page: 973 ident: bib0071 article-title: Human postprandial responses to food and potential for precision nutrition publication-title: Nat Med – volume: 7 start-page: 1247 year: 2014 end-page: 1250 ident: bib0055 article-title: Root mean square error (rmse) or mean absolute error (mae)? - arguments against avoiding rmse in the literature publication-title: Geosci Model Dev – reference: Dexcom g7 rtcgm. Available from – reference: Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need. 2023. 1706.03762. – volume: 2 start-page: 181 year: 2022 end-page: 192 ident: bib0022 article-title: Nutritional and physical improvements in older adults through the doremi remote coaching approach: a real-world study publication-title: Intell Med – volume: 14 year: 2022 ident: bib0005 article-title: A digital therapeutic allowing a personalized low-glycemic nutrition for the prophylaxis of migraine: Real world data from two prospective studies publication-title: Nutrients – volume: 6 start-page: 312 year: 2020 end-page: 315 ident: bib0063 article-title: The effect of batch size on the generalizability of the convolutional neural networks on a histopathology dataset publication-title: ICT Express – volume: 110 start-page: 101981 year: 2020 ident: bib0024 article-title: Sleep stage classification for child patients using deconvolutional neural network publication-title: Artif Intell Med – volume: 24 start-page: 297 year: 2003 ident: bib0029 article-title: Age-related changes in the characteristics of the photoplethysmographic pulse shape at various body sites publication-title: Physiol Meas – volume: 1 start-page: 223 year: 1996 end-page: 229 ident: bib0030 article-title: Low-frequency variability in the blood volume and in the blood volume pulse measured by photoplethysmography publication-title: J Biomed Opt – reference: Dinan E, Yaida S, Zhang S. Effective theory of transformers at initialization. 2023. 2304.02034. – volume: 6 start-page: 3021 year: 2021 ident: bib0068 article-title: Seaborn: statistical data visualization publication-title: J Open Source Softw – reference: Loshchilov I, Hutter F. Sgdr: Stochastic gradient descent with warm restarts. 2017. 1608.03983. – volume: 12 year: 2021 ident: bib0039 article-title: Learnable leaky relu (lelelu): An alternative accuracy-optimized activation function publication-title: Inf – volume: 294 start-page: 012033 year: 2019 ident: bib0052 article-title: A novel model for the prediction of long-term building energy demand: Lstm with attention layer publication-title: IOP Conf Ser Earth Environ Sci – year: 2023 ident: bib0053 article-title: Neuropsychological detection and prediction using machine learning algorithms: a comprehensive review publication-title: Intell Med – volume: 7 start-page: 69311 year: 2019 end-page: 69325 ident: bib0069 article-title: A multi-patient data-driven approach to blood glucose prediction publication-title: IEEE Access – volume: 20 start-page: 3463 year: 2020 ident: bib0021 article-title: Rank pooling approach for wearable sensor-based adls recognition publication-title: Sensors (Basel) – reference: Wu Y, He K. Group normalization. 2018. 1803.08494. – volume: 8 start-page: 38 year: 2017 ident: bib0057 article-title: Efficient strategies for leave-one-out cross validation for genomic best linear unbiased prediction publication-title: J Anim Sci Biotechnol – reference: E4 wristband. Available from – start-page: 1 year: 2023 end-page: 8 ident: bib0043 article-title: Transformer-based recognition of activities of daily living from wearable sensor data publication-title: 22;Association for Computing Machinery – reference: (Accessed on 04 March 2024). 2022. – volume: 34 start-page: 5828 year: 2023 end-page: 5840 ident: bib0065 article-title: Understanding how pretraining regularizes deep learning algorithms publication-title: IEEE Trans Neural Netw Learn Syst – volume: 3 start-page: 385 year: 2013 end-page: 412 ident: bib0072 article-title: Continuous glucose monitoring systems: A review publication-title: Diagnostics (Basel) – volume: 22 year: 2022 ident: bib0009 article-title: Wearable sensor technology to predict core body temperature: A systematic review publication-title: Sensors (Basel) – volume: 22 start-page: 7711 year: 2022 ident: bib0011 article-title: Sensehunger: Machine learning approach to hunger detection using wearable sensors publication-title: Sensors (Basel) – volume: 32 start-page: e2977 year: 2018 ident: bib0038 article-title: One-dimensional convolutional neural networks for spectroscopic signal regression publication-title: J Chemom – start-page: 107489 year: 2023 ident: bib0036 article-title: Wearable-based human flow experience recognition enhanced by transfer learning methods using emotion data publication-title: Comput Biol Med – year: 2019 ident: 10.1016/j.imed.2024.05.002_bib0061 article-title: Control batch size and learning rate to generalize well: Theoretical and empirical evidence – year: 2023 ident: 10.1016/j.imed.2024.05.002_bib0053 article-title: Neuropsychological detection and prediction using machine learning algorithms: a comprehensive review publication-title: Intell Med – volume: 110 start-page: 101981 year: 2020 ident: 10.1016/j.imed.2024.05.002_bib0024 article-title: Sleep stage classification for child patients using deconvolutional neural network publication-title: Artif Intell Med doi: 10.1016/j.artmed.2020.101981 – start-page: 255 year: 1998 ident: 10.1016/j.imed.2024.05.002_sbref0030 article-title: Convolutional networks for images, speech, and time series – volume: 12 issue: 12 year: 2021 ident: 10.1016/j.imed.2024.05.002_bib0039 article-title: Learnable leaky relu (lelelu): An alternative accuracy-optimized activation function publication-title: Inf – volume: 65 start-page: 50 issue: 1 year: 2015 ident: 10.1016/j.imed.2024.05.002_bib0031 article-title: Exploring the blood volume amplitude and pulse transit time during anger recall in patients with coronary artery disease publication-title: J Cardiol doi: 10.1016/j.jjcc.2014.03.012 – volume: 6 start-page: 312 issue: 4 year: 2020 ident: 10.1016/j.imed.2024.05.002_bib0063 article-title: The effect of batch size on the generalizability of the convolutional neural networks on a histopathology dataset publication-title: ICT Express doi: 10.1016/j.icte.2020.04.010 – volume: 4 start-page: 10 issue: 1 year: 2024 ident: 10.1016/j.imed.2024.05.002_bib0042 article-title: Generative pretrained transformer 4: an innovative approach to facilitate value-based healthcare publication-title: Intell Med doi: 10.1016/j.imed.2023.09.001 – volume: 18 start-page: 3023 year: 2020 ident: 10.1016/j.imed.2024.05.002_bib0054 article-title: Time series prediction of wastewater flow rate by bidirectional lstm deep learning publication-title: Int J Control Autom Syst doi: 10.1007/s12555-019-0984-6 – year: 2023 ident: 10.1016/j.imed.2024.05.002_bib0028 article-title: From data to insight: Predicting interstitial glucose in healthy cohort with non-invasive sensor technology and machine learning publication-title: Res Sq (Preprint) – volume: 22 issue: 9 year: 2022 ident: 10.1016/j.imed.2024.05.002_bib0017 article-title: Selection of noninvasive features in Wrist-Based wearable sensors to predict blood glucose concentrations using machine learning algorithms publication-title: Sensors (Basel) doi: 10.3390/s22093534 – volume: 14 start-page: 135 issue: 1 year: 2019 ident: 10.1016/j.imed.2024.05.002_bib0033 article-title: Benefits and Limitations of MARD as a Performance Parameter for Continuous Glucose Monitoring in the Interstitial Space publication-title: J Diabetes Sci Technol doi: 10.1177/1932296819855670 – volume: 6 issue: 3 year: 2023 ident: 10.1016/j.imed.2024.05.002_sbref0031 article-title: Recalibration of a Deep Learning Model for Low-Dose Computed Tomographic Images to Inform Lung Cancer Screening Intervals publication-title: JAMA Netw Open doi: 10.1001/jamanetworkopen.2023.3273 – volume: 12 start-page: 91 issue: 5 year: 2023 ident: 10.1016/j.imed.2024.05.002_bib0013 article-title: Understanding of machine learning with deep learning: Architectures workflow applications and future directions publication-title: Comput doi: 10.3390/computers12050091 – volume: 21 start-page: 13895 issue: 12 year: 2021 ident: 10.1016/j.imed.2024.05.002_bib0016 article-title: A system for blood glucose monitoring and smart insulin prediction publication-title: IEEE Sens J doi: 10.1109/JSEN.2021.3070706 – ident: 10.1016/j.imed.2024.05.002_bib0015 – volume: 4 start-page: 1 issue: 1 year: 2020 ident: 10.1016/j.imed.2024.05.002_bib0051 article-title: Blood glucose prediction with variance estimation using recurrent neural networks publication-title: J Healthc Inform Res doi: 10.1007/s41666-019-00059-y – volume: 42 start-page: 689 year: 2019 ident: 10.1016/j.imed.2024.05.002_bib0058 article-title: Early detection of hypoglycemia in type 1 diabetes using heart rate variability measured by a wearable device publication-title: Diabetes Care doi: 10.2337/dc18-1843 – start-page: 107489 year: 2023 ident: 10.1016/j.imed.2024.05.002_bib0036 article-title: Wearable-based human flow experience recognition enhanced by transfer learning methods using emotion data publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2023.107489 – ident: 10.1016/j.imed.2024.05.002_bib0048 – ident: 10.1016/j.imed.2024.05.002_bib0047 doi: 10.18653/v1/2021.emnlp-main.446 – start-page: 1305 year: 2014 ident: 10.1016/j.imed.2024.05.002_bib0056 – ident: 10.1016/j.imed.2024.05.002_bib0027 – volume: 7 start-page: 69311 year: 2019 ident: 10.1016/j.imed.2024.05.002_bib0069 article-title: A multi-patient data-driven approach to blood glucose prediction publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2919184 – volume: 143 start-page: 105265 year: 2022 ident: 10.1016/j.imed.2024.05.002_bib0041 article-title: An interactive learning and multi-channel attention mechanism-based weakly supervised colorectal histopathology image classification approach publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2022.105265 – ident: 10.1016/j.imed.2024.05.002_bib0075 – volume: 14 issue: 14 year: 2022 ident: 10.1016/j.imed.2024.05.002_bib0005 article-title: A digital therapeutic allowing a personalized low-glycemic nutrition for the prophylaxis of migraine: Real world data from two prospective studies publication-title: Nutrients doi: 10.3390/nu14142927 – start-page: 5 year: 2023 ident: 10.1016/j.imed.2024.05.002_sbref0004 article-title: Correlation between age, gender, and fasting blood sugar levels with peripheral artery disease incidence in patients with type 2 diabetes mellitus – volume: 20 start-page: 20 year: 2017 ident: 10.1016/j.imed.2024.05.002_bib0062 article-title: Impact of training set batch size on the performance of convolutional neural networks for diverse datasets publication-title: Inf Technol Manag Sci – volume: 296 start-page: E11 issue: 1 year: 2009 ident: 10.1016/j.imed.2024.05.002_bib0003 article-title: Four grams of glucose publication-title: Am J Physiol Endocrinol Metab doi: 10.1152/ajpendo.90563.2008 – start-page: 1 year: 2023 ident: 10.1016/j.imed.2024.05.002_bib0043 article-title: Transformer-based recognition of activities of daily living from wearable sensor data – start-page: 23 year: 2023 ident: 10.1016/j.imed.2024.05.002_bib0023 article-title: Sleep stage classification in children using self-attention and gaussian noise data augmentation publication-title: Sensors (Basel) – volume: 14 start-page: 88 year: 2018 ident: 10.1016/j.imed.2024.05.002_bib0002 article-title: Global aetiology and epidemiology of type 2 diabetes mellitus and its complications publication-title: Nat Rev Endocrinol doi: 10.1038/nrendo.2017.151 – volume: 8 start-page: 38 year: 2017 ident: 10.1016/j.imed.2024.05.002_bib0057 article-title: Efficient strategies for leave-one-out cross validation for genomic best linear unbiased prediction publication-title: J Anim Sci Biotechnol doi: 10.1186/s40104-017-0164-6 – volume: 2562 start-page: 012012 issue: 1 year: 2023 ident: 10.1016/j.imed.2024.05.002_bib0040 article-title: Improved mobilevit: A more efficient light-weight convolution and vision transformer hybrid model publication-title: J Phys Conf Ser doi: 10.1088/1742-6596/2562/1/012012 – volume: 24 start-page: 297 issue: 2 year: 2003 ident: 10.1016/j.imed.2024.05.002_bib0029 article-title: Age-related changes in the characteristics of the photoplethysmographic pulse shape at various body sites publication-title: Physiol Meas doi: 10.1088/0967-3334/24/2/306 – year: 2020 ident: 10.1016/j.imed.2024.05.002_sbref0012 – volume: 28 start-page: 2222 issue: 10 year: 2016 ident: 10.1016/j.imed.2024.05.002_bib0050 article-title: Lstm: A search space odyssey publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2016.2582924 – volume: 6 start-page: 2604 year: 2020 ident: 10.1016/j.imed.2024.05.002_bib0049 article-title: Electricity load forecasting using advanced feature selection and optimal deep learning model for the variable refrigerant flow systems publication-title: Energy Rep doi: 10.1016/j.egyr.2020.09.019 – volume: 1 start-page: 223 issue: 2 year: 1996 ident: 10.1016/j.imed.2024.05.002_bib0030 article-title: Low-frequency variability in the blood volume and in the blood volume pulse measured by photoplethysmography publication-title: J Biomed Opt doi: 10.1117/12.231366 – start-page: 2202.07125 year: 2023 ident: 10.1016/j.imed.2024.05.002_bib0044 article-title: Transformers in time series publication-title: A survey – volume: 161 start-page: 107034 year: 2023 ident: 10.1016/j.imed.2024.05.002_bib0014 article-title: A state-of-the-art survey of artificial neural networks for whole-slide image analysis: From popular convolutional neural networks to potential visual transformers publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2023.107034 – volume: 3 start-page: 385 year: 2013 ident: 10.1016/j.imed.2024.05.002_bib0072 article-title: Continuous glucose monitoring systems: A review publication-title: Diagnostics (Basel) doi: 10.3390/diagnostics3040385 – ident: 10.1016/j.imed.2024.05.002_bib0026 – volume: 34 start-page: 5828 issue: 9 year: 2023 ident: 10.1016/j.imed.2024.05.002_bib0065 article-title: Understanding how pretraining regularizes deep learning algorithms publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2021.3131377 – volume: 8 start-page: 217908 year: 2020 ident: 10.1016/j.imed.2024.05.002_bib0070 article-title: Blood glucose prediction with vmd and lstm optimized by improved particle swarm optimization publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3041355 – volume: 6 issue: 6 year: 2023 ident: 10.1016/j.imed.2024.05.002_sbref0033 article-title: Development of a Deep Learning Model for Retinal Hemorrhage Detection on Head Computed Tomography in Young Children publication-title: JAMA Netw Open doi: 10.1001/jamanetworkopen.2023.19420 – volume: 14 start-page: 4465 issue: 21 year: 2022 ident: 10.1016/j.imed.2024.05.002_bib0019 article-title: Digital biomarkers for personalized nutrition: Predicting meal moments and interstitial glucose with non-invasive, wearable technologies publication-title: Nutrients doi: 10.3390/nu14214465 – volume: 7 year: 2017 ident: 10.1016/j.imed.2024.05.002_bib0006 article-title: Noninvasive continuous glucose monitoring using a multisensor-based glucometer and time series analysis publication-title: Sci Rep doi: 10.1038/s41598-017-13018-7 – volume: 2 start-page: 88 issue: 2 year: 2022 ident: 10.1016/j.imed.2024.05.002_bib0010 article-title: Application of artificial intelligence in clinical diagnosis and treatment: an overview of systematic reviews publication-title: Intell Med doi: 10.1016/j.imed.2021.12.001 – volume: 11 start-page: 766 issue: 4 year: 2017 ident: 10.1016/j.imed.2024.05.002_bib0008 article-title: Discrepancies between blood glucose and interstitial glucose-technological artifacts or physiology: Implications for selection of the appropriate therapeutic target publication-title: J Diabetes Sci Technol doi: 10.1177/1932296817699637 – volume: 4 start-page: 89 issue: 1 year: 2021 ident: 10.1016/j.imed.2024.05.002_bib0018 article-title: Engineering digital biomarkers of interstitial glucose from noninvasive smartwatches publication-title: NPJ Digit Med doi: 10.1038/s41746-021-00465-w – volume: 22 issue: 19 year: 2022 ident: 10.1016/j.imed.2024.05.002_bib0009 article-title: Wearable sensor technology to predict core body temperature: A systematic review publication-title: Sensors (Basel) doi: 10.3390/s22197639 – ident: 10.1016/j.imed.2024.05.002_bib0046 doi: 10.1007/978-3-030-01261-8_1 – start-page: 107501 year: 2023 ident: 10.1016/j.imed.2024.05.002_bib0074 article-title: Optimizing sleep staging on multimodal time series: Leveraging borderline synthetic minority oversampling technique and supervised convolutional contrastive learning publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2023.107501 – volume: 22 start-page: 7711 issue: 20 year: 2022 ident: 10.1016/j.imed.2024.05.002_bib0011 article-title: Sensehunger: Machine learning approach to hunger detection using wearable sensors publication-title: Sensors (Basel) doi: 10.3390/s22207711 – volume: 38 start-page: e98 issue: 7 year: 2015 ident: 10.1016/j.imed.2024.05.002_bib0020 article-title: Food Order Has a Significant Impact on Postprandial Glucose and Insulin Levels publication-title: Diabetes Care doi: 10.2337/dc15-0429 – volume: 3 year: 2020 ident: 10.1016/j.imed.2024.05.002_bib0073 article-title: Verification, analytical validation, and clinical validation (v3): the foundation of determining fit-for-purpose for biometric monitoring technologies (biomets) publication-title: NPJ Digit Med doi: 10.1038/s41746-020-0260-4 – volume: 20 start-page: 3463 issue: 12 year: 2020 ident: 10.1016/j.imed.2024.05.002_bib0021 article-title: Rank pooling approach for wearable sensor-based adls recognition publication-title: Sensors (Basel) doi: 10.3390/s20123463 – ident: 10.1016/j.imed.2024.05.002_bib0025 – ident: 10.1016/j.imed.2024.05.002_bib0067 – volume: 7 start-page: 1247 issue: 3 year: 2014 ident: 10.1016/j.imed.2024.05.002_bib0055 article-title: Root mean square error (rmse) or mean absolute error (mae)? - arguments against avoiding rmse in the literature publication-title: Geosci Model Dev doi: 10.5194/gmd-7-1247-2014 – volume: 22 issue: 5 year: 2022 ident: 10.1016/j.imed.2024.05.002_bib0007 article-title: Continuous glucose monitoring in healthy adults-possible applications in health care, wellness, and sports publication-title: Sensors (Basel) doi: 10.3390/s22052030 – volume: 28 start-page: 1303 issue: 6 year: 2018 ident: 10.1016/j.imed.2024.05.002_bib0045 article-title: Residual networks of residual networks: Multilevel residual networks publication-title: IEEE Trans Circuits Syst Video Technol doi: 10.1109/TCSVT.2017.2654543 – volume: 26 start-page: 964 issue: 6 year: 2020 ident: 10.1016/j.imed.2024.05.002_bib0071 article-title: Human postprandial responses to food and potential for precision nutrition publication-title: Nat Med doi: 10.1038/s41591-020-0934-0 – volume: 32 start-page: e2977 issue: 5 year: 2018 ident: 10.1016/j.imed.2024.05.002_bib0038 article-title: One-dimensional convolutional neural networks for spectroscopic signal regression publication-title: J Chemom doi: 10.1002/cem.2977 – volume: 26 start-page: 436 issue: 1 year: 2022 ident: 10.1016/j.imed.2024.05.002_bib0059 article-title: A multitask learning approach to personalized blood glucose prediction publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2021.3100558 – volume: 6 start-page: 3021 issue: 60 year: 2021 ident: 10.1016/j.imed.2024.05.002_bib0068 article-title: Seaborn: statistical data visualization publication-title: J Open Source Softw doi: 10.21105/joss.03021 – volume: 294 start-page: 012033 issue: 1 year: 2019 ident: 10.1016/j.imed.2024.05.002_bib0052 article-title: A novel model for the prediction of long-term building energy demand: Lstm with attention layer publication-title: IOP Conf Ser Earth Environ Sci doi: 10.1088/1755-1315/294/1/012033 – ident: 10.1016/j.imed.2024.05.002_bib0064 doi: 10.1007/978-3-642-35289-8_26 – volume: 84 start-page: 11 year: 2018 ident: 10.1016/j.imed.2024.05.002_bib0076 article-title: Circadian regulation of glucose, lipid, and energy metabolism in humans publication-title: Metabolism doi: 10.1016/j.metabol.2017.11.017 – volume: 2 start-page: 181 issue: 4 year: 2022 ident: 10.1016/j.imed.2024.05.002_bib0022 article-title: Nutritional and physical improvements in older adults through the doremi remote coaching approach: a real-world study publication-title: Intell Med doi: 10.1016/j.imed.2022.04.001 – year: 2021 ident: 10.1016/j.imed.2024.05.002_bib0060 article-title: Beschreibung und quantifizierung von diversität – volume: 22 start-page: 2030 issue: 5 year: 2022 ident: 10.1016/j.imed.2024.05.002_bib0001 article-title: Continuous glucose monitoring in healthy adults-possible applications in health care, wellness, and sports publication-title: Sensors (Basel) doi: 10.3390/s22052030 – ident: 10.1016/j.imed.2024.05.002_bib0066 – volume: 48 start-page: 361 issue: 5 year: 1954 ident: 10.1016/j.imed.2024.05.002_bib0032 article-title: The relationship under stress between changes in skin temperature, electrical skin resistance, and pulse rate publication-title: J Exp Psychol doi: 10.1037/h0057145 |
SSID | ssj0002709444 ssib048324889 ssib048328143 |
Score | 2.2870202 |
Snippet | Alterations in glucose metabolism, especially the postprandial glucose response (PPGR), are crucial contributors to metabolic dysfunction, which underlies the... Background:Alterations in glucose metabolism, especially the postprandial glucose response (PPGR), are crucial contributors to metabolic dysfunction, which... |
SourceID | wanfang crossref elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 226 |
SubjectTerms | Clarke error grid Deep learning Interstitial glucose prediction Non-invasive glucose monitoring Physiological signal processing Wearable sensors |
Title | Comparison of feature learning methods for non-invasive interstitial glucose prediction using wearable sensors in healthy cohorts: a pilot study |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S2667102624000615 https://dx.doi.org/10.1016/j.imed.2024.05.002 https://d.wanfangdata.com.cn/periodical/zhyx-e202404002 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKIiQuCASIXWDlA7cqVZo4icMNrUAV0nKhlXqL7DqmKdts1Sas2gO_gd_CL2TGdh6iPPcSVVHsOJ6v8_I8CHkVJGKcynHuxbEMPMYWwktB7nlhGhtzBLvdYrTFh3gyY-_n0Xww-N6LWqorOVocfplXchuqwj2gK2bJ_gdl20nhBvwG-sIVKAzXf6LxRb-J4FDnpkhn0wjik-sObQouDMHK94ryizDR6lgjYotBAugub4LWN1s8szFwqI0D4QbmMYlVOzB1sSdPUbq0yf0Q--puq51Nld4UV9dVr1DtqouOt9U-q6Mj_Ent_NTzotzX3WnQcp1fuVYhqFIfit3nVm7MljCZDcIs8zXa-C2ut7ulheplvRTrtVDDqYCP0H2fRsBccl_raDtKtkF-CKpEAlLDJtg3zJv1MMr6jNg9ZmV6YCvIHIkL67lYjQrYhREuZGRdbJ1wbEMWP-Lr8e0YdIt64B1yNwDTBHnr5dfOrxckYDCbHsLtel2ulg0r_PlVv9OH7t2IUgMpetrO9CF54MwU-sZi7hEZ5OVj8q3DG73W1OGNNnijDm8U8Eb7eKN9vFGHN9rhjRq80QZv1OENhlGHN-rw9poKatBGDdqekNm7t9OLiec6eniLMOGVp5ivgiBhaSJ4wiOhorHmYAMormLFpeJaCD9POI9lxFOpwBwJNfc1175cSC7Dp-QE1p8_IxQs_TAEdVOFQc6Ej1OO85QplkitlZSnZNjsa7axhVuyJqJxlSEVMqRC5kcZUOGUhM3WZ01KMgjRDIDyx1FRO8oprFYR_es46qibOW6yyw7LPfA0fAjFanB2qwU9J_e7v9MLclJt6_wlKM2VPDfOpnOD1R9bf8v6 |
linkProvider | ISSN International Centre |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+feature+learning+methods+for+non-invasive+interstitial+glucose+prediction+using+wearable+sensors+in+healthy+cohorts%3A+a+pilot+study&rft.jtitle=Intelligent+medicine&rft.au=Huang%2C+Xinyu&rft.au=Schmelter%2C+Franziska&rft.au=Uhlig%2C+Annemarie&rft.au=Irshad%2C+Muhammad+Tausif&rft.date=2024-11-01&rft.pub=Elsevier+B.V&rft.issn=2667-1026&rft.volume=4&rft.issue=4&rft.spage=226&rft.epage=238&rft_id=info:doi/10.1016%2Fj.imed.2024.05.002&rft.externalDocID=S2667102624000615 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzhyx-e%2Fzhyx-e.jpg |