Comparison of feature learning methods for non-invasive interstitial glucose prediction using wearable sensors in healthy cohorts: a pilot study

Alterations in glucose metabolism, especially the postprandial glucose response (PPGR), are crucial contributors to metabolic dysfunction, which underlies the pathogenesis of metabolic syndrome. Personalized low-glycemic diets have shown promise in reducing postprandial glucose spikes. However, curr...

Full description

Saved in:
Bibliographic Details
Published inIntelligent medicine Vol. 4; no. 4; pp. 226 - 238
Main Authors Huang, Xinyu, Schmelter, Franziska, Uhlig, Annemarie, Irshad, Muhammad Tausif, Nisar, Muhammad Adeel, Piet, Artur, Jablonski, Lennart, Witt, Oliver, Schröder, Torsten, Sina, Christian, Grzegorzek, Marcin
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.11.2024
Institute of Medical Informatics, University of Lübeck, Germany%Institute of Nutritional Medicine, University of Luebeck and University Medical Center Schleswig-Holstein, Lübeck, Germany%Department of IT, University of the Punjab, Lahore, Pakistan%Perfood GmbH, Research & Development, Lübeck, Germany%Fraunhofer Research Institution for Individualized and Cell-Based Medical Engineering (IMTE), Lübeck, Germany%German Research Center for Artificial Intelligence (DFKI), Lübeck, Germany
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Alterations in glucose metabolism, especially the postprandial glucose response (PPGR), are crucial contributors to metabolic dysfunction, which underlies the pathogenesis of metabolic syndrome. Personalized low-glycemic diets have shown promise in reducing postprandial glucose spikes. However, current methods such as invasive continuous glucose monitoring (CGM) or multi-omics data integration to assess PPGR have limitations, including cost and invasiveness that hinder the widespread adoption of these methods in primary disease prevention. Our aim was to assess machine learning algorithms for predicting individual PPGR using non-invasive wearable devices, thereby, circumventing the limitations associated with the existing approaches. By identifying the most accurate model, we sought to provide a more accessible and efficient method for managing glucose metabolic dysfunction. This data-driven analysis used the experimental dataset from the SENSE (”Systemische Ernährungsmedizin”) study. Healthy participants used an Empatica E4 wristband and Abbott Freestyle Libre 3 CGM for 10 days. Blood volume pulse, electrodermal activity, heart rate, skin temperature, and the corresponding CGM values were measured. Subsequently, four data-driven deep learning (DL) models-convolutional neural network, lightweight transformer, long short-term memory with attention, and Bi-directional LSTM (BiLSTM) were implemented and compared to determine the potential of DL in predicting interstitial glucose levels without involving food and activity logs. The proposed BiLSTM achieved the best interstitial glucose prediction performance, with an average root mean squared error of 13.42 mg/dL, an average mean absolute percentage error of 0.12, and only 3.01% values falling within area D in Clarke error grid analysis, incorporating the leave-one-out cross-validation strategy for a five-minute prediction horizon. The findings of this study may demonstrate the feasibility of transferring knowledge gained from invasive glucose monitoring devices to non-invasive approaches. Furthermore, it could emphasize the promising prospects of combining DL with wearable technologies to predict glucose levels in healthy individuals.
AbstractList Alterations in glucose metabolism, especially the postprandial glucose response (PPGR), are crucial contributors to metabolic dysfunction, which underlies the pathogenesis of metabolic syndrome. Personalized low-glycemic diets have shown promise in reducing postprandial glucose spikes. However, current methods such as invasive continuous glucose monitoring (CGM) or multi-omics data integration to assess PPGR have limitations, including cost and invasiveness that hinder the widespread adoption of these methods in primary disease prevention. Our aim was to assess machine learning algorithms for predicting individual PPGR using non-invasive wearable devices, thereby, circumventing the limitations associated with the existing approaches. By identifying the most accurate model, we sought to provide a more accessible and efficient method for managing glucose metabolic dysfunction. This data-driven analysis used the experimental dataset from the SENSE (”Systemische Ernährungsmedizin”) study. Healthy participants used an Empatica E4 wristband and Abbott Freestyle Libre 3 CGM for 10 days. Blood volume pulse, electrodermal activity, heart rate, skin temperature, and the corresponding CGM values were measured. Subsequently, four data-driven deep learning (DL) models-convolutional neural network, lightweight transformer, long short-term memory with attention, and Bi-directional LSTM (BiLSTM) were implemented and compared to determine the potential of DL in predicting interstitial glucose levels without involving food and activity logs. The proposed BiLSTM achieved the best interstitial glucose prediction performance, with an average root mean squared error of 13.42 mg/dL, an average mean absolute percentage error of 0.12, and only 3.01% values falling within area D in Clarke error grid analysis, incorporating the leave-one-out cross-validation strategy for a five-minute prediction horizon. The findings of this study may demonstrate the feasibility of transferring knowledge gained from invasive glucose monitoring devices to non-invasive approaches. Furthermore, it could emphasize the promising prospects of combining DL with wearable technologies to predict glucose levels in healthy individuals.
Background:Alterations in glucose metabolism, especially the postprandial glucose response (PPGR), are crucial contributors to metabolic dysfunction, which underlies the pathogenesis of metabolic syndrome. Personalized low-glycemic diets have shown promise in reducing postprandial glucose spikes. However, current methods such as invasive continuous glucose monitoring (CGM) or multi-omics data integration to assess PPGR have limitations, including cost and invasiveness that hinder the widespread adoption of these methods in primary disease prevention. Our aim was to assess machine learning algorithms for predicting individual PPGR using non-invasive wearable devices, thereby, circumventing the limitations associated with the existing approaches. By identifying the most accurate model, we sought to provide a more accessible and efficient method for managing glucose metabolic dysfunction.Methods:This data-driven analysis used the experimental dataset from the SENSE (" Systemische Ern?hrungsmedizin" ) study. Healthy participants used an Empatica E4 wristband and Abbott Freestyle Libre 3 CGM for 10 days. Blood volume pulse, electrodermal activity, heart rate, skin temperature, and the corresponding CGM values were measured. Subsequently, four data-driven deep learning (DL) models-convolutional neural network, lightweight transformer, long short-term memory with attention, and Bi-directional LSTM (BiLSTM) were implemented and compared to determine the potential of DL in predicting interstitial glucose levels without involving food and activity logs.Results:The proposed BiLSTM achieved the best interstitial glucose prediction performance, with an average root mean squared error of 13.42 mg/dL, an average mean absolute percentage error of 0.12, and only 3.01% values falling within area D in Clarke error grid analysis, incorporating the leave-one-out cross-validation strategy for a five-minute prediction horizon.Conclusion:The findings of this study may demonstrate the feasibility of transferring knowledge gained from invasive glucose monitoring devices to non-invasive approaches. Furthermore, it could emphasize the promising prospects of combining DL with wearable technologies to predict glucose levels in healthy individuals.
Abstract_FL Background:Alterations in glucose metabolism, especially the postprandial glucose response (PPGR), are crucial contributors to metabolic dysfunction, which underlies the pathogenesis of metabolic syndrome. Personalized low-glycemic diets have shown promise in reducing postprandial glucose spikes. However, current methods such as invasive continuous glucose monitoring (CGM) or multi-omics data integration to assess PPGR have limitations, including cost and invasiveness that hinder the widespread adoption of these methods in primary disease prevention. Our aim was to assess machine learning algorithms for predicting individual PPGR using non-invasive wearable devices, thereby, circumventing the limitations associated with the existing approaches. By identifying the most accurate model, we sought to provide a more accessible and efficient method for managing glucose metabolic dysfunction.Methods:This data-driven analysis used the experimental dataset from the SENSE (" Systemische Ern?hrungsmedizin" ) study. Healthy participants used an Empatica E4 wristband and Abbott Freestyle Libre 3 CGM for 10 days. Blood volume pulse, electrodermal activity, heart rate, skin temperature, and the corresponding CGM values were measured. Subsequently, four data-driven deep learning (DL) models-convolutional neural network, lightweight transformer, long short-term memory with attention, and Bi-directional LSTM (BiLSTM) were implemented and compared to determine the potential of DL in predicting interstitial glucose levels without involving food and activity logs.Results:The proposed BiLSTM achieved the best interstitial glucose prediction performance, with an average root mean squared error of 13.42 mg/dL, an average mean absolute percentage error of 0.12, and only 3.01% values falling within area D in Clarke error grid analysis, incorporating the leave-one-out cross-validation strategy for a five-minute prediction horizon.Conclusion:The findings of this study may demonstrate the feasibility of transferring knowledge gained from invasive glucose monitoring devices to non-invasive approaches. Furthermore, it could emphasize the promising prospects of combining DL with wearable technologies to predict glucose levels in healthy individuals.
Author Schröder, Torsten
Piet, Artur
Irshad, Muhammad Tausif
Uhlig, Annemarie
Nisar, Muhammad Adeel
Schmelter, Franziska
Sina, Christian
Jablonski, Lennart
Witt, Oliver
Grzegorzek, Marcin
Huang, Xinyu
AuthorAffiliation Institute of Medical Informatics, University of Lübeck, Germany%Institute of Nutritional Medicine, University of Luebeck and University Medical Center Schleswig-Holstein, Lübeck, Germany%Department of IT, University of the Punjab, Lahore, Pakistan%Perfood GmbH, Research & Development, Lübeck, Germany%Fraunhofer Research Institution for Individualized and Cell-Based Medical Engineering (IMTE), Lübeck, Germany%German Research Center for Artificial Intelligence (DFKI), Lübeck, Germany
AuthorAffiliation_xml – name: Institute of Medical Informatics, University of Lübeck, Germany%Institute of Nutritional Medicine, University of Luebeck and University Medical Center Schleswig-Holstein, Lübeck, Germany%Department of IT, University of the Punjab, Lahore, Pakistan%Perfood GmbH, Research & Development, Lübeck, Germany%Fraunhofer Research Institution for Individualized and Cell-Based Medical Engineering (IMTE), Lübeck, Germany%German Research Center for Artificial Intelligence (DFKI), Lübeck, Germany
Author_FL Sina Christian
Grzegorzek Marcin
Schr?der Torsten
Jablonski Lennart
Irshad Muhammad Tausif
Witt Oliver
Piet Artur
Uhlig Annemarie
Huang Xinyu
Schmelter Franziska
Nisar Muhammad Adeel
Author_FL_xml – sequence: 1
  fullname: Huang Xinyu
– sequence: 2
  fullname: Schmelter Franziska
– sequence: 3
  fullname: Uhlig Annemarie
– sequence: 4
  fullname: Irshad Muhammad Tausif
– sequence: 5
  fullname: Nisar Muhammad Adeel
– sequence: 6
  fullname: Piet Artur
– sequence: 7
  fullname: Jablonski Lennart
– sequence: 8
  fullname: Witt Oliver
– sequence: 9
  fullname: Schr?der Torsten
– sequence: 10
  fullname: Sina Christian
– sequence: 11
  fullname: Grzegorzek Marcin
Author_xml – sequence: 1
  givenname: Xinyu
  orcidid: 0000-0003-3210-3891
  surname: Huang
  fullname: Huang, Xinyu
  organization: Institute of Medical Informatics, University of Lübeck , Germany
– sequence: 2
  givenname: Franziska
  surname: Schmelter
  fullname: Schmelter, Franziska
  organization: Institute of Nutritional Medicine, University of Luebeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
– sequence: 3
  givenname: Annemarie
  orcidid: 0009-0008-1869-1897
  surname: Uhlig
  fullname: Uhlig, Annemarie
  organization: Institute of Medical Informatics, University of Lübeck , Germany
– sequence: 4
  givenname: Muhammad Tausif
  orcidid: 0000-0003-4581-4107
  surname: Irshad
  fullname: Irshad, Muhammad Tausif
  organization: Institute of Medical Informatics, University of Lübeck , Germany
– sequence: 5
  givenname: Muhammad Adeel
  orcidid: 0000-0003-3288-750X
  surname: Nisar
  fullname: Nisar, Muhammad Adeel
  organization: Department of IT, University of the Punjab, Lahore, Pakistan
– sequence: 6
  givenname: Artur
  orcidid: 0000-0003-2137-8363
  surname: Piet
  fullname: Piet, Artur
  organization: Institute of Medical Informatics, University of Lübeck , Germany
– sequence: 7
  givenname: Lennart
  orcidid: 0009-0003-6185-3146
  surname: Jablonski
  fullname: Jablonski, Lennart
  organization: Institute of Medical Informatics, University of Lübeck , Germany
– sequence: 8
  givenname: Oliver
  surname: Witt
  fullname: Witt, Oliver
  organization: Perfood GmbH, Research & Development, Lübeck, Germany
– sequence: 9
  givenname: Torsten
  orcidid: 0009-0006-4897-1481
  surname: Schröder
  fullname: Schröder, Torsten
  organization: Institute of Nutritional Medicine, University of Luebeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
– sequence: 10
  givenname: Christian
  surname: Sina
  fullname: Sina, Christian
  organization: Institute of Nutritional Medicine, University of Luebeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
– sequence: 11
  givenname: Marcin
  orcidid: 0000-0003-4877-8287
  surname: Grzegorzek
  fullname: Grzegorzek, Marcin
  organization: Institute of Medical Informatics, University of Lübeck , Germany
BookMark eNqFkD1v2zAQhjmkQNI0fyATt0xSKVkfdNClMJq0QIAsyUxQ5NE6hyYNknKi_or85FBwpw7tdMDhnvfFPZ_JmfMOCLmuWFmxqvu6K3EPuqxZ3ZSsLRmrz8hF3XV9UbG6OydXMe5Y3vZs3TTNBXnf-P1BBozeUW-oAZmmANSCDA7dlu4hjV5HanyguapAd5QRj0DRJQgxYUJp6dZOykeghwAaVcIcNsUFf805crBAI7joQ8wYHUHaNM5U-dGHFG-ppAe0PtGYJj1_IZ-MtBGu_sxL8nz342nzs3h4vP-1-f5QqFXPU6Ebpuu6b9a95D1vpW4rw_mq1Vx3mg-aGykZ9Jx3Q8vXg666amU4M9ywQQ18WF2Sm1Puq3RGuq3Y-Sm43Ch-j_ObgMUga7KpfFmfLlXwMQYw4hBwL8MsKiYW6WInFuliQQRrxQn6doIg_3BECCIqBKeynwAqCe3x3_jtX7iy6FBJ-wLz_-APUfimNQ
Cites_doi 10.1016/j.artmed.2020.101981
10.1016/j.jjcc.2014.03.012
10.1016/j.icte.2020.04.010
10.1016/j.imed.2023.09.001
10.1007/s12555-019-0984-6
10.3390/s22093534
10.1177/1932296819855670
10.1001/jamanetworkopen.2023.3273
10.3390/computers12050091
10.1109/JSEN.2021.3070706
10.1007/s41666-019-00059-y
10.2337/dc18-1843
10.1016/j.compbiomed.2023.107489
10.18653/v1/2021.emnlp-main.446
10.1109/ACCESS.2019.2919184
10.1016/j.compbiomed.2022.105265
10.3390/nu14142927
10.1152/ajpendo.90563.2008
10.1038/nrendo.2017.151
10.1186/s40104-017-0164-6
10.1088/1742-6596/2562/1/012012
10.1088/0967-3334/24/2/306
10.1109/TNNLS.2016.2582924
10.1016/j.egyr.2020.09.019
10.1117/12.231366
10.1016/j.compbiomed.2023.107034
10.3390/diagnostics3040385
10.1109/TNNLS.2021.3131377
10.1109/ACCESS.2020.3041355
10.1001/jamanetworkopen.2023.19420
10.3390/nu14214465
10.1038/s41598-017-13018-7
10.1016/j.imed.2021.12.001
10.1177/1932296817699637
10.1038/s41746-021-00465-w
10.3390/s22197639
10.1007/978-3-030-01261-8_1
10.1016/j.compbiomed.2023.107501
10.3390/s22207711
10.2337/dc15-0429
10.1038/s41746-020-0260-4
10.3390/s20123463
10.5194/gmd-7-1247-2014
10.3390/s22052030
10.1109/TCSVT.2017.2654543
10.1038/s41591-020-0934-0
10.1002/cem.2977
10.1109/JBHI.2021.3100558
10.21105/joss.03021
10.1088/1755-1315/294/1/012033
10.1007/978-3-642-35289-8_26
10.1016/j.metabol.2017.11.017
10.1016/j.imed.2022.04.001
10.1037/h0057145
ContentType Journal Article
Copyright 2024 The Author(s)
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: 2024 The Author(s)
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1016/j.imed.2024.05.002
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
DocumentTitle_FL Comparison of feature learning methods for non-invasive interstitial glucose prediction using wearable sensors in healthy cohorts: a pilot study
EndPage 238
ExternalDocumentID zhyx_e202404002
10_1016_j_imed_2024_05_002
S2667102624000615
GrantInformation_xml – fundername: DAMP Foundation, Germany
  funderid: (Grant No. 2020-14)
GroupedDBID .1-
.FO
0R~
AAEDW
AALRI
AAXUO
AAYWO
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AFRHN
AIGII
AITUG
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
EBS
FDB
GROUPED_DOAJ
M41
M~E
ROL
Z5R
6I.
AAFTH
AFCTW
AAYXX
CITATION
2B.
4A8
92I
93N
PSX
TCJ
ID FETCH-LOGICAL-c378t-d40d227497a8785ad51f8835d8d6d8bd8faa0e7886b589bd1613f80f8f0bcb8b3
ISSN 2667-1026
IngestDate Thu May 29 04:06:51 EDT 2025
Tue Jul 01 04:31:15 EDT 2025
Sat Dec 28 15:52:03 EST 2024
Tue Aug 26 16:36:40 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Deep learning
Clarke error grid
Physiological signal processing
Interstitial glucose prediction
Wearable sensors
Non-invasive glucose monitoring
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c378t-d40d227497a8785ad51f8835d8d6d8bd8faa0e7886b589bd1613f80f8f0bcb8b3
ORCID 0009-0003-6185-3146
0000-0003-3210-3891
0009-0006-4897-1481
0009-0008-1869-1897
0000-0003-4581-4107
0000-0003-2137-8363
0000-0003-3288-750X
0000-0003-4877-8287
OpenAccessLink http://dx.doi.org/10.1016/j.imed.2024.05.002
PageCount 13
ParticipantIDs wanfang_journals_zhyx_e202404002
crossref_primary_10_1016_j_imed_2024_05_002
elsevier_sciencedirect_doi_10_1016_j_imed_2024_05_002
elsevier_clinicalkey_doi_10_1016_j_imed_2024_05_002
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-11-01
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-01
  day: 01
PublicationDecade 2020
PublicationTitle Intelligent medicine
PublicationTitle_FL Intelligent Medicine
PublicationYear 2024
Publisher Elsevier B.V
Institute of Medical Informatics, University of Lübeck, Germany%Institute of Nutritional Medicine, University of Luebeck and University Medical Center Schleswig-Holstein, Lübeck, Germany%Department of IT, University of the Punjab, Lahore, Pakistan%Perfood GmbH, Research & Development, Lübeck, Germany%Fraunhofer Research Institution for Individualized and Cell-Based Medical Engineering (IMTE), Lübeck, Germany%German Research Center for Artificial Intelligence (DFKI), Lübeck, Germany
Publisher_xml – name: Elsevier B.V
– name: Institute of Medical Informatics, University of Lübeck, Germany%Institute of Nutritional Medicine, University of Luebeck and University Medical Center Schleswig-Holstein, Lübeck, Germany%Department of IT, University of the Punjab, Lahore, Pakistan%Perfood GmbH, Research & Development, Lübeck, Germany%Fraunhofer Research Institution for Individualized and Cell-Based Medical Engineering (IMTE), Lübeck, Germany%German Research Center for Artificial Intelligence (DFKI), Lübeck, Germany
References Gao, Fang, Ruan (bib0052) 2019; 294
Huang, Schmelter, Seitzer (bib0028) 2023
Mahrishi, Hiran (bib0012) 2020
Dolson, Harlow, Phelan (bib0009) 2022; 22
Radiuk (bib0062) 2017; 20
Huang, Shirahama, Li (bib0024) 2020; 110
LeCun, Bengio (bib0034) 1998
Suharyono, Mahmuda, Febrian (bib0004) 2023
Irshad, Li, Nisar (bib0036) 2023
Bogue-Jimenez, Huang, Powell (bib0017) 2022; 22
van den Brink, van den Broek, Palmisano (bib0019) 2022; 14
Dexcom g7 rtcgm. Available from
Lin, Fan, Lu (bib0031) 2015; 65
Maniatopoulos, Mitianoudis (bib0039) 2021; 12
Geng, Tang, Ding (bib0006) 2017; 7
Holzer, Bloch, Brinkmann (bib0007) 2022; 22
Wang, Tong, Yu (bib0070) 2020; 8
Bengio Y. Practical recommendations for gradient-based training of deep architectures. 2012. 1206.5533.
Waskom (bib0068) 2021; 6
Baker, Taylor (bib0032) 1954; 48
Bent, Cho, Henriquez (bib0018) 2021; 4
Dinan E, Yaida S, Zhang S. Effective theory of transformers at initialization. 2023. 2304.02034.
Kim, Han, Kim (bib0049) 2020; 6
Hidalgo, Colmenar, Risco-Martín (bib0056) 2014
Cheng, Garrick, Fernando (bib0057) 2017; 8
Holzer, Bloch, Brinkmann (bib0001) 2022; 22
Yao, Yu, Gong (bib0065) 2023; 34
Zhang, Sun, Han (bib0045) 2018; 28
Wasserman (bib0003) 2009; 296
Goldsack, Coravos, Bakker (bib0073) 2020; 3
Poggiogalle, Jamshed, Peterson (bib0076) 2018; 84
Irshad, Nisar, Huang (bib0011) 2022; 22
Landy, Wang, Baldwin (bib0035) 2023; 6
Hendrycks D, Gimpel K. Gaussian error linear units (gelus). 2023. 1606.08415.
Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need. 2023. 1706.03762.
Augustinov, Nisar, Li (bib0043) 2023
Malek, Melgani, Bazi (bib0038) 2018; 32
Hu, Li, Li (bib0014) 2023; 161
Huang, Shirahama, Irshad (bib0023) 2023
Huang, Schmelter, Irshad (bib0074) 2023
E4 wristband. Available from
Kandel, Castelli (bib0063) 2020; 6
Qiao S, Wang H, Liu C, et al. Micro-batch training with batch-channel normalization and weight standardization. 2020. 1903.10520.
Gunturkun, Bakir-Batu, Siddiqui (bib0037) 2023; 6
Chen, Li, Li (bib0041) 2022; 143
Wu Y, He K. Group normalization. 2018. 1803.08494.
(Accessed on 26 April 2024). 2024.
Shukla, Iliescu, Thomas (bib0020) 2015; 38
Loshchilov I, Hutter F. Sgdr: Stochastic gradient descent with warm restarts. 2017. 1608.03983.
Lelleck, Schulz, Witt (bib0005) 2022; 14
Greff, Srivastava, Koutník (bib0050) 2016; 28
Heinemann, Schoemaker, Schmelzeisen-Redecker (bib0033) 2019; 14
Daniels, Herrero, Georgiou (bib0059) 2022; 26
Vozzi, Palumbo, Ferro (bib0022) 2022; 2
Freestyle libre 3 system. Available from
Zheng, Ley, Hu (bib0002) 2018; 14
Wu, Wang, Guo (bib0010) 2022; 2
Shah, Shandilya, Patel (bib0053) 2023
Obeidat, Ammar (bib0016) 2021; 21
Geva M, Schuster R, Berant J, et al. Transformer feed-forward layers are key-value memories. 2021. 2012.14913.
Martinsson, Schliep, Eliasson, Mogren (bib0051) 2020; 4
He, Liu, Tao (bib0061) 2019
Chai, Draxler (bib0055) 2014; 7
Bekkink, Koeneman, Galan (bib0058) 2019; 42
Berry, Valdes, Drew (bib0071) 2020; 26
Nitzan, Turivnenko, Milston (bib0030) 1996; 1
Wen, Zhou, Zhang (bib0044) 2023
Vashist (bib0072) 2013; 3
Aliberti, Pupillo, Terna (bib0069) 2019; 7
(Accessed on 11 April 2024) 2021.
(Accessed on 04 March 2024). 2022.
Taye (bib0013) 2023; 12
Allen, Murray (bib0029) 2003; 24
Kang, Yang, Jianying (bib0054) 2020; 18
Brose, Kronberg, Pohl-Apel (bib0060) 2021
Siegmund, Heinemann, Kolassa (bib0008) 2017; 11
Lyu, Wang, Li (bib0042) 2024; 4
Liu, Chen, Zhou (bib0040) 2023; 2562
Nisar, Shirahama, Li (bib0021) 2020; 20
Wu (10.1016/j.imed.2024.05.002_bib0010) 2022; 2
Vashist (10.1016/j.imed.2024.05.002_bib0072) 2013; 3
Gao (10.1016/j.imed.2024.05.002_bib0052) 2019; 294
Nisar (10.1016/j.imed.2024.05.002_bib0021) 2020; 20
Huang (10.1016/j.imed.2024.05.002_bib0024) 2020; 110
10.1016/j.imed.2024.05.002_bib0015
Dolson (10.1016/j.imed.2024.05.002_bib0009) 2022; 22
Huang (10.1016/j.imed.2024.05.002_bib0074) 2023
Lyu (10.1016/j.imed.2024.05.002_bib0042) 2024; 4
Geng (10.1016/j.imed.2024.05.002_bib0006) 2017; 7
Kandel (10.1016/j.imed.2024.05.002_bib0063) 2020; 6
Baker (10.1016/j.imed.2024.05.002_bib0032) 1954; 48
Radiuk (10.1016/j.imed.2024.05.002_bib0062) 2017; 20
Mahrishi (10.1016/j.imed.2024.05.002_sbref0012) 2020
Kim (10.1016/j.imed.2024.05.002_bib0049) 2020; 6
Bekkink (10.1016/j.imed.2024.05.002_bib0058) 2019; 42
Waskom (10.1016/j.imed.2024.05.002_bib0068) 2021; 6
Siegmund (10.1016/j.imed.2024.05.002_bib0008) 2017; 11
Zheng (10.1016/j.imed.2024.05.002_bib0002) 2018; 14
Wasserman (10.1016/j.imed.2024.05.002_bib0003) 2009; 296
He (10.1016/j.imed.2024.05.002_bib0061) 2019
10.1016/j.imed.2024.05.002_bib0064
LeCun (10.1016/j.imed.2024.05.002_sbref0030) 1998
Martinsson (10.1016/j.imed.2024.05.002_bib0051) 2020; 4
Hidalgo (10.1016/j.imed.2024.05.002_bib0056) 2014
10.1016/j.imed.2024.05.002_bib0027
Aliberti (10.1016/j.imed.2024.05.002_bib0069) 2019; 7
10.1016/j.imed.2024.05.002_bib0026
Brose (10.1016/j.imed.2024.05.002_bib0060) 2021
Berry (10.1016/j.imed.2024.05.002_bib0071) 2020; 26
10.1016/j.imed.2024.05.002_bib0025
Irshad (10.1016/j.imed.2024.05.002_bib0036) 2023
10.1016/j.imed.2024.05.002_bib0067
10.1016/j.imed.2024.05.002_bib0066
Daniels (10.1016/j.imed.2024.05.002_bib0059) 2022; 26
Chen (10.1016/j.imed.2024.05.002_bib0041) 2022; 143
Huang (10.1016/j.imed.2024.05.002_bib0028) 2023
Goldsack (10.1016/j.imed.2024.05.002_bib0073) 2020; 3
Shah (10.1016/j.imed.2024.05.002_bib0053) 2023
Yao (10.1016/j.imed.2024.05.002_bib0065) 2023; 34
10.1016/j.imed.2024.05.002_bib0075
Liu (10.1016/j.imed.2024.05.002_bib0040) 2023; 2562
Nitzan (10.1016/j.imed.2024.05.002_bib0030) 1996; 1
Holzer (10.1016/j.imed.2024.05.002_bib0001) 2022; 22
Vozzi (10.1016/j.imed.2024.05.002_bib0022) 2022; 2
Wen (10.1016/j.imed.2024.05.002_bib0044) 2023
Zhang (10.1016/j.imed.2024.05.002_bib0045) 2018; 28
Heinemann (10.1016/j.imed.2024.05.002_bib0033) 2019; 14
Landy (10.1016/j.imed.2024.05.002_sbref0031) 2023; 6
Maniatopoulos (10.1016/j.imed.2024.05.002_bib0039) 2021; 12
Lin (10.1016/j.imed.2024.05.002_bib0031) 2015; 65
Suharyono (10.1016/j.imed.2024.05.002_sbref0004) 2023
Bent (10.1016/j.imed.2024.05.002_bib0018) 2021; 4
Irshad (10.1016/j.imed.2024.05.002_bib0011) 2022; 22
Taye (10.1016/j.imed.2024.05.002_bib0013) 2023; 12
Malek (10.1016/j.imed.2024.05.002_bib0038) 2018; 32
Greff (10.1016/j.imed.2024.05.002_bib0050) 2016; 28
Lelleck (10.1016/j.imed.2024.05.002_bib0005) 2022; 14
van den Brink (10.1016/j.imed.2024.05.002_bib0019) 2022; 14
Shukla (10.1016/j.imed.2024.05.002_bib0020) 2015; 38
Chai (10.1016/j.imed.2024.05.002_bib0055) 2014; 7
Huang (10.1016/j.imed.2024.05.002_bib0023) 2023
Obeidat (10.1016/j.imed.2024.05.002_bib0016) 2021; 21
10.1016/j.imed.2024.05.002_bib0048
10.1016/j.imed.2024.05.002_bib0047
10.1016/j.imed.2024.05.002_bib0046
Cheng (10.1016/j.imed.2024.05.002_bib0057) 2017; 8
Holzer (10.1016/j.imed.2024.05.002_bib0007) 2022; 22
Gunturkun (10.1016/j.imed.2024.05.002_sbref0033) 2023; 6
Wang (10.1016/j.imed.2024.05.002_bib0070) 2020; 8
Poggiogalle (10.1016/j.imed.2024.05.002_bib0076) 2018; 84
Augustinov (10.1016/j.imed.2024.05.002_bib0043) 2023
Kang (10.1016/j.imed.2024.05.002_bib0054) 2020; 18
Allen (10.1016/j.imed.2024.05.002_bib0029) 2003; 24
Hu (10.1016/j.imed.2024.05.002_bib0014) 2023; 161
Bogue-Jimenez (10.1016/j.imed.2024.05.002_bib0017) 2022; 22
References_xml – volume: 84
  start-page: 11
  year: 2018
  end-page: 27
  ident: bib0076
  article-title: Circadian regulation of glucose, lipid, and energy metabolism in humans
  publication-title: Metabolism
– volume: 28
  start-page: 1303
  year: 2018
  end-page: 1314
  ident: bib0045
  article-title: Residual networks of residual networks: Multilevel residual networks
  publication-title: IEEE Trans Circuits Syst Video Technol
– volume: 296
  start-page: E11
  year: 2009
  end-page: E21
  ident: bib0003
  article-title: Four grams of glucose
  publication-title: Am J Physiol Endocrinol Metab
– reference: (Accessed on 11 April 2024) 2021.
– volume: 6
  year: 2023
  ident: bib0037
  article-title: Development of a Deep Learning Model for Retinal Hemorrhage Detection on Head Computed Tomography in Young Children
  publication-title: JAMA Netw Open
– reference: Geva M, Schuster R, Berant J, et al. Transformer feed-forward layers are key-value memories. 2021. 2012.14913.
– year: 2021
  ident: bib0060
  article-title: Beschreibung und quantifizierung von diversität
  publication-title: Taschenlehrbuch Biologie: Ökologie ø Evolution
– start-page: 1305
  year: 2014
  end-page: 1312
  ident: bib0056
  publication-title: Clarke and parkes error grid analysis of diabetic glucose models obtained with evolutionary computation
– volume: 4
  start-page: 10
  year: 2024
  end-page: 15
  ident: bib0042
  article-title: Generative pretrained transformer 4: an innovative approach to facilitate value-based healthcare
  publication-title: Intell Med
– volume: 26
  start-page: 436
  year: 2022
  end-page: 445
  ident: bib0059
  article-title: A multitask learning approach to personalized blood glucose prediction
  publication-title: IEEE J Biomed Health Inform
– volume: 3
  year: 2020
  ident: bib0073
  article-title: Verification, analytical validation, and clinical validation (v3): the foundation of determining fit-for-purpose for biometric monitoring technologies (biomets)
  publication-title: NPJ Digit Med
– year: 2019
  ident: bib0061
  article-title: Control batch size and learning rate to generalize well: Theoretical and empirical evidence
  publication-title: Adv Neural Inf Process Syst
– start-page: 23
  year: 2023
  ident: bib0023
  article-title: Sleep stage classification in children using self-attention and gaussian noise data augmentation
  publication-title: Sensors (Basel)
– volume: 11
  start-page: 766
  year: 2017
  end-page: 772
  ident: bib0008
  article-title: Discrepancies between blood glucose and interstitial glucose-technological artifacts or physiology: Implications for selection of the appropriate therapeutic target
  publication-title: J Diabetes Sci Technol
– volume: 8
  start-page: 217908
  year: 2020
  end-page: 217916
  ident: bib0070
  article-title: Blood glucose prediction with vmd and lstm optimized by improved particle swarm optimization
  publication-title: IEEE Access
– reference: (Accessed on 26 April 2024). 2024.
– reference: Freestyle libre 3 system. Available from
– volume: 6
  year: 2023
  ident: bib0035
  article-title: Recalibration of a Deep Learning Model for Low-Dose Computed Tomographic Images to Inform Lung Cancer Screening Intervals
  publication-title: JAMA Netw Open
– volume: 6
  start-page: 2604
  year: 2020
  end-page: 2618
  ident: bib0049
  article-title: Electricity load forecasting using advanced feature selection and optimal deep learning model for the variable refrigerant flow systems
  publication-title: Energy Rep
– volume: 14
  start-page: 4465
  year: 2022
  ident: bib0019
  article-title: Digital biomarkers for personalized nutrition: Predicting meal moments and interstitial glucose with non-invasive, wearable technologies
  publication-title: Nutrients
– volume: 28
  start-page: 2222
  year: 2016
  end-page: 2232
  ident: bib0050
  article-title: Lstm: A search space odyssey
  publication-title: IEEE Trans Neural Netw Learn Syst
– volume: 4
  start-page: 89
  year: 2021
  ident: bib0018
  article-title: Engineering digital biomarkers of interstitial glucose from noninvasive smartwatches
  publication-title: NPJ Digit Med
– volume: 7
  year: 2017
  ident: bib0006
  article-title: Noninvasive continuous glucose monitoring using a multisensor-based glucometer and time series analysis
  publication-title: Sci Rep
– volume: 2
  start-page: 88
  year: 2022
  end-page: 96
  ident: bib0010
  article-title: Application of artificial intelligence in clinical diagnosis and treatment: an overview of systematic reviews
  publication-title: Intell Med
– volume: 12
  start-page: 91
  year: 2023
  ident: bib0013
  article-title: Understanding of machine learning with deep learning: Architectures workflow applications and future directions
  publication-title: Comput
– volume: 65
  start-page: 50
  year: 2015
  end-page: 56
  ident: bib0031
  article-title: Exploring the blood volume amplitude and pulse transit time during anger recall in patients with coronary artery disease
  publication-title: J Cardiol
– volume: 38
  start-page: e98
  year: 2015
  end-page: e99
  ident: bib0020
  article-title: Food Order Has a Significant Impact on Postprandial Glucose and Insulin Levels
  publication-title: Diabetes Care
– start-page: 2202.07125
  year: 2023
  ident: bib0044
  article-title: Transformers in time series
  publication-title: A survey
– volume: 14
  start-page: 88
  year: 2018
  end-page: 98
  ident: bib0002
  article-title: Global aetiology and epidemiology of type 2 diabetes mellitus and its complications
  publication-title: Nat Rev Endocrinol
– volume: 18
  start-page: 3023
  year: 2020
  end-page: 3030
  ident: bib0054
  article-title: Time series prediction of wastewater flow rate by bidirectional lstm deep learning
  publication-title: Int J Control Autom Syst
– start-page: 107501
  year: 2023
  ident: bib0074
  article-title: Optimizing sleep staging on multimodal time series: Leveraging borderline synthetic minority oversampling technique and supervised convolutional contrastive learning
  publication-title: Comput Biol Med
– volume: 21
  start-page: 13895
  year: 2021
  end-page: 13909
  ident: bib0016
  article-title: A system for blood glucose monitoring and smart insulin prediction
  publication-title: IEEE Sens J
– volume: 22
  start-page: 2030
  year: 2022
  ident: bib0001
  article-title: Continuous glucose monitoring in healthy adults-possible applications in health care, wellness, and sports
  publication-title: Sensors (Basel)
– volume: 48
  start-page: 361
  year: 1954
  ident: bib0032
  article-title: The relationship under stress between changes in skin temperature, electrical skin resistance, and pulse rate
  publication-title: J Exp Psychol
– year: 2020
  ident: bib0012
  publication-title: Machine Learning and Deep Learning in Real-Time Applications
– volume: 143
  start-page: 105265
  year: 2022
  ident: bib0041
  article-title: An interactive learning and multi-channel attention mechanism-based weakly supervised colorectal histopathology image classification approach
  publication-title: Comput Biol Med
– volume: 4
  start-page: 1
  year: 2020
  end-page: 18
  ident: bib0051
  article-title: Blood glucose prediction with variance estimation using recurrent neural networks
  publication-title: J Healthc Inform Res
– volume: 42
  start-page: 689
  year: 2019
  end-page: 692
  ident: bib0058
  article-title: Early detection of hypoglycemia in type 1 diabetes using heart rate variability measured by a wearable device
  publication-title: Diabetes Care
– year: 2023
  ident: bib0028
  article-title: From data to insight: Predicting interstitial glucose in healthy cohort with non-invasive sensor technology and machine learning
  publication-title: Res Sq (Preprint)
– volume: 161
  start-page: 107034
  year: 2023
  ident: bib0014
  article-title: A state-of-the-art survey of artificial neural networks for whole-slide image analysis: From popular convolutional neural networks to potential visual transformers
  publication-title: Comput Biol Med
– reference: Bengio Y. Practical recommendations for gradient-based training of deep architectures. 2012. 1206.5533.
– start-page: 5
  year: 2023
  end-page: 11
  ident: bib0004
  article-title: Correlation between age, gender, and fasting blood sugar levels with peripheral artery disease incidence in patients with type 2 diabetes mellitus
  publication-title: Proc Int Conf Health Well-Being (ICHWB 2022)
– reference: Qiao S, Wang H, Liu C, et al. Micro-batch training with batch-channel normalization and weight standardization. 2020. 1903.10520.
– volume: 14
  start-page: 135
  year: 2019
  end-page: 150
  ident: bib0033
  article-title: Benefits and Limitations of MARD as a Performance Parameter for Continuous Glucose Monitoring in the Interstitial Space
  publication-title: J Diabetes Sci Technol
– volume: 22
  year: 2022
  ident: bib0007
  article-title: Continuous glucose monitoring in healthy adults—possible applications in health care, wellness, and sports
  publication-title: Sensors (Basel)
– volume: 20
  start-page: 20
  year: 2017
  end-page: 24
  ident: bib0062
  article-title: Impact of training set batch size on the performance of convolutional neural networks for diverse datasets
  publication-title: Inf Technol Manag Sci
– volume: 22
  year: 2022
  ident: bib0017
  article-title: Selection of noninvasive features in Wrist-Based wearable sensors to predict blood glucose concentrations using machine learning algorithms
  publication-title: Sensors (Basel)
– start-page: 255
  year: 1998
  end-page: 258
  ident: bib0034
  article-title: Convolutional networks for images, speech, and time series
  publication-title: The Handbook of Brain Theory and Neural Networks
– volume: 2562
  start-page: 012012
  year: 2023
  ident: bib0040
  article-title: Improved mobilevit: A more efficient light-weight convolution and vision transformer hybrid model
  publication-title: J Phys Conf Ser
– reference: Hendrycks D, Gimpel K. Gaussian error linear units (gelus). 2023. 1606.08415.
– volume: 26
  start-page: 964
  year: 2020
  end-page: 973
  ident: bib0071
  article-title: Human postprandial responses to food and potential for precision nutrition
  publication-title: Nat Med
– volume: 7
  start-page: 1247
  year: 2014
  end-page: 1250
  ident: bib0055
  article-title: Root mean square error (rmse) or mean absolute error (mae)? - arguments against avoiding rmse in the literature
  publication-title: Geosci Model Dev
– reference: Dexcom g7 rtcgm. Available from
– reference: Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need. 2023. 1706.03762.
– volume: 2
  start-page: 181
  year: 2022
  end-page: 192
  ident: bib0022
  article-title: Nutritional and physical improvements in older adults through the doremi remote coaching approach: a real-world study
  publication-title: Intell Med
– volume: 14
  year: 2022
  ident: bib0005
  article-title: A digital therapeutic allowing a personalized low-glycemic nutrition for the prophylaxis of migraine: Real world data from two prospective studies
  publication-title: Nutrients
– volume: 6
  start-page: 312
  year: 2020
  end-page: 315
  ident: bib0063
  article-title: The effect of batch size on the generalizability of the convolutional neural networks on a histopathology dataset
  publication-title: ICT Express
– volume: 110
  start-page: 101981
  year: 2020
  ident: bib0024
  article-title: Sleep stage classification for child patients using deconvolutional neural network
  publication-title: Artif Intell Med
– volume: 24
  start-page: 297
  year: 2003
  ident: bib0029
  article-title: Age-related changes in the characteristics of the photoplethysmographic pulse shape at various body sites
  publication-title: Physiol Meas
– volume: 1
  start-page: 223
  year: 1996
  end-page: 229
  ident: bib0030
  article-title: Low-frequency variability in the blood volume and in the blood volume pulse measured by photoplethysmography
  publication-title: J Biomed Opt
– reference: Dinan E, Yaida S, Zhang S. Effective theory of transformers at initialization. 2023. 2304.02034.
– volume: 6
  start-page: 3021
  year: 2021
  ident: bib0068
  article-title: Seaborn: statistical data visualization
  publication-title: J Open Source Softw
– reference: Loshchilov I, Hutter F. Sgdr: Stochastic gradient descent with warm restarts. 2017. 1608.03983.
– volume: 12
  year: 2021
  ident: bib0039
  article-title: Learnable leaky relu (lelelu): An alternative accuracy-optimized activation function
  publication-title: Inf
– volume: 294
  start-page: 012033
  year: 2019
  ident: bib0052
  article-title: A novel model for the prediction of long-term building energy demand: Lstm with attention layer
  publication-title: IOP Conf Ser Earth Environ Sci
– year: 2023
  ident: bib0053
  article-title: Neuropsychological detection and prediction using machine learning algorithms: a comprehensive review
  publication-title: Intell Med
– volume: 7
  start-page: 69311
  year: 2019
  end-page: 69325
  ident: bib0069
  article-title: A multi-patient data-driven approach to blood glucose prediction
  publication-title: IEEE Access
– volume: 20
  start-page: 3463
  year: 2020
  ident: bib0021
  article-title: Rank pooling approach for wearable sensor-based adls recognition
  publication-title: Sensors (Basel)
– reference: Wu Y, He K. Group normalization. 2018. 1803.08494.
– volume: 8
  start-page: 38
  year: 2017
  ident: bib0057
  article-title: Efficient strategies for leave-one-out cross validation for genomic best linear unbiased prediction
  publication-title: J Anim Sci Biotechnol
– reference: E4 wristband. Available from
– start-page: 1
  year: 2023
  end-page: 8
  ident: bib0043
  article-title: Transformer-based recognition of activities of daily living from wearable sensor data
  publication-title: 22;Association for Computing Machinery
– reference: (Accessed on 04 March 2024). 2022.
– volume: 34
  start-page: 5828
  year: 2023
  end-page: 5840
  ident: bib0065
  article-title: Understanding how pretraining regularizes deep learning algorithms
  publication-title: IEEE Trans Neural Netw Learn Syst
– volume: 3
  start-page: 385
  year: 2013
  end-page: 412
  ident: bib0072
  article-title: Continuous glucose monitoring systems: A review
  publication-title: Diagnostics (Basel)
– volume: 22
  year: 2022
  ident: bib0009
  article-title: Wearable sensor technology to predict core body temperature: A systematic review
  publication-title: Sensors (Basel)
– volume: 22
  start-page: 7711
  year: 2022
  ident: bib0011
  article-title: Sensehunger: Machine learning approach to hunger detection using wearable sensors
  publication-title: Sensors (Basel)
– volume: 32
  start-page: e2977
  year: 2018
  ident: bib0038
  article-title: One-dimensional convolutional neural networks for spectroscopic signal regression
  publication-title: J Chemom
– start-page: 107489
  year: 2023
  ident: bib0036
  article-title: Wearable-based human flow experience recognition enhanced by transfer learning methods using emotion data
  publication-title: Comput Biol Med
– year: 2019
  ident: 10.1016/j.imed.2024.05.002_bib0061
  article-title: Control batch size and learning rate to generalize well: Theoretical and empirical evidence
– year: 2023
  ident: 10.1016/j.imed.2024.05.002_bib0053
  article-title: Neuropsychological detection and prediction using machine learning algorithms: a comprehensive review
  publication-title: Intell Med
– volume: 110
  start-page: 101981
  year: 2020
  ident: 10.1016/j.imed.2024.05.002_bib0024
  article-title: Sleep stage classification for child patients using deconvolutional neural network
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2020.101981
– start-page: 255
  year: 1998
  ident: 10.1016/j.imed.2024.05.002_sbref0030
  article-title: Convolutional networks for images, speech, and time series
– volume: 12
  issue: 12
  year: 2021
  ident: 10.1016/j.imed.2024.05.002_bib0039
  article-title: Learnable leaky relu (lelelu): An alternative accuracy-optimized activation function
  publication-title: Inf
– volume: 65
  start-page: 50
  issue: 1
  year: 2015
  ident: 10.1016/j.imed.2024.05.002_bib0031
  article-title: Exploring the blood volume amplitude and pulse transit time during anger recall in patients with coronary artery disease
  publication-title: J Cardiol
  doi: 10.1016/j.jjcc.2014.03.012
– volume: 6
  start-page: 312
  issue: 4
  year: 2020
  ident: 10.1016/j.imed.2024.05.002_bib0063
  article-title: The effect of batch size on the generalizability of the convolutional neural networks on a histopathology dataset
  publication-title: ICT Express
  doi: 10.1016/j.icte.2020.04.010
– volume: 4
  start-page: 10
  issue: 1
  year: 2024
  ident: 10.1016/j.imed.2024.05.002_bib0042
  article-title: Generative pretrained transformer 4: an innovative approach to facilitate value-based healthcare
  publication-title: Intell Med
  doi: 10.1016/j.imed.2023.09.001
– volume: 18
  start-page: 3023
  year: 2020
  ident: 10.1016/j.imed.2024.05.002_bib0054
  article-title: Time series prediction of wastewater flow rate by bidirectional lstm deep learning
  publication-title: Int J Control Autom Syst
  doi: 10.1007/s12555-019-0984-6
– year: 2023
  ident: 10.1016/j.imed.2024.05.002_bib0028
  article-title: From data to insight: Predicting interstitial glucose in healthy cohort with non-invasive sensor technology and machine learning
  publication-title: Res Sq (Preprint)
– volume: 22
  issue: 9
  year: 2022
  ident: 10.1016/j.imed.2024.05.002_bib0017
  article-title: Selection of noninvasive features in Wrist-Based wearable sensors to predict blood glucose concentrations using machine learning algorithms
  publication-title: Sensors (Basel)
  doi: 10.3390/s22093534
– volume: 14
  start-page: 135
  issue: 1
  year: 2019
  ident: 10.1016/j.imed.2024.05.002_bib0033
  article-title: Benefits and Limitations of MARD as a Performance Parameter for Continuous Glucose Monitoring in the Interstitial Space
  publication-title: J Diabetes Sci Technol
  doi: 10.1177/1932296819855670
– volume: 6
  issue: 3
  year: 2023
  ident: 10.1016/j.imed.2024.05.002_sbref0031
  article-title: Recalibration of a Deep Learning Model for Low-Dose Computed Tomographic Images to Inform Lung Cancer Screening Intervals
  publication-title: JAMA Netw Open
  doi: 10.1001/jamanetworkopen.2023.3273
– volume: 12
  start-page: 91
  issue: 5
  year: 2023
  ident: 10.1016/j.imed.2024.05.002_bib0013
  article-title: Understanding of machine learning with deep learning: Architectures workflow applications and future directions
  publication-title: Comput
  doi: 10.3390/computers12050091
– volume: 21
  start-page: 13895
  issue: 12
  year: 2021
  ident: 10.1016/j.imed.2024.05.002_bib0016
  article-title: A system for blood glucose monitoring and smart insulin prediction
  publication-title: IEEE Sens J
  doi: 10.1109/JSEN.2021.3070706
– ident: 10.1016/j.imed.2024.05.002_bib0015
– volume: 4
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.imed.2024.05.002_bib0051
  article-title: Blood glucose prediction with variance estimation using recurrent neural networks
  publication-title: J Healthc Inform Res
  doi: 10.1007/s41666-019-00059-y
– volume: 42
  start-page: 689
  year: 2019
  ident: 10.1016/j.imed.2024.05.002_bib0058
  article-title: Early detection of hypoglycemia in type 1 diabetes using heart rate variability measured by a wearable device
  publication-title: Diabetes Care
  doi: 10.2337/dc18-1843
– start-page: 107489
  year: 2023
  ident: 10.1016/j.imed.2024.05.002_bib0036
  article-title: Wearable-based human flow experience recognition enhanced by transfer learning methods using emotion data
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2023.107489
– ident: 10.1016/j.imed.2024.05.002_bib0048
– ident: 10.1016/j.imed.2024.05.002_bib0047
  doi: 10.18653/v1/2021.emnlp-main.446
– start-page: 1305
  year: 2014
  ident: 10.1016/j.imed.2024.05.002_bib0056
– ident: 10.1016/j.imed.2024.05.002_bib0027
– volume: 7
  start-page: 69311
  year: 2019
  ident: 10.1016/j.imed.2024.05.002_bib0069
  article-title: A multi-patient data-driven approach to blood glucose prediction
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2919184
– volume: 143
  start-page: 105265
  year: 2022
  ident: 10.1016/j.imed.2024.05.002_bib0041
  article-title: An interactive learning and multi-channel attention mechanism-based weakly supervised colorectal histopathology image classification approach
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2022.105265
– ident: 10.1016/j.imed.2024.05.002_bib0075
– volume: 14
  issue: 14
  year: 2022
  ident: 10.1016/j.imed.2024.05.002_bib0005
  article-title: A digital therapeutic allowing a personalized low-glycemic nutrition for the prophylaxis of migraine: Real world data from two prospective studies
  publication-title: Nutrients
  doi: 10.3390/nu14142927
– start-page: 5
  year: 2023
  ident: 10.1016/j.imed.2024.05.002_sbref0004
  article-title: Correlation between age, gender, and fasting blood sugar levels with peripheral artery disease incidence in patients with type 2 diabetes mellitus
– volume: 20
  start-page: 20
  year: 2017
  ident: 10.1016/j.imed.2024.05.002_bib0062
  article-title: Impact of training set batch size on the performance of convolutional neural networks for diverse datasets
  publication-title: Inf Technol Manag Sci
– volume: 296
  start-page: E11
  issue: 1
  year: 2009
  ident: 10.1016/j.imed.2024.05.002_bib0003
  article-title: Four grams of glucose
  publication-title: Am J Physiol Endocrinol Metab
  doi: 10.1152/ajpendo.90563.2008
– start-page: 1
  year: 2023
  ident: 10.1016/j.imed.2024.05.002_bib0043
  article-title: Transformer-based recognition of activities of daily living from wearable sensor data
– start-page: 23
  year: 2023
  ident: 10.1016/j.imed.2024.05.002_bib0023
  article-title: Sleep stage classification in children using self-attention and gaussian noise data augmentation
  publication-title: Sensors (Basel)
– volume: 14
  start-page: 88
  year: 2018
  ident: 10.1016/j.imed.2024.05.002_bib0002
  article-title: Global aetiology and epidemiology of type 2 diabetes mellitus and its complications
  publication-title: Nat Rev Endocrinol
  doi: 10.1038/nrendo.2017.151
– volume: 8
  start-page: 38
  year: 2017
  ident: 10.1016/j.imed.2024.05.002_bib0057
  article-title: Efficient strategies for leave-one-out cross validation for genomic best linear unbiased prediction
  publication-title: J Anim Sci Biotechnol
  doi: 10.1186/s40104-017-0164-6
– volume: 2562
  start-page: 012012
  issue: 1
  year: 2023
  ident: 10.1016/j.imed.2024.05.002_bib0040
  article-title: Improved mobilevit: A more efficient light-weight convolution and vision transformer hybrid model
  publication-title: J Phys Conf Ser
  doi: 10.1088/1742-6596/2562/1/012012
– volume: 24
  start-page: 297
  issue: 2
  year: 2003
  ident: 10.1016/j.imed.2024.05.002_bib0029
  article-title: Age-related changes in the characteristics of the photoplethysmographic pulse shape at various body sites
  publication-title: Physiol Meas
  doi: 10.1088/0967-3334/24/2/306
– year: 2020
  ident: 10.1016/j.imed.2024.05.002_sbref0012
– volume: 28
  start-page: 2222
  issue: 10
  year: 2016
  ident: 10.1016/j.imed.2024.05.002_bib0050
  article-title: Lstm: A search space odyssey
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2016.2582924
– volume: 6
  start-page: 2604
  year: 2020
  ident: 10.1016/j.imed.2024.05.002_bib0049
  article-title: Electricity load forecasting using advanced feature selection and optimal deep learning model for the variable refrigerant flow systems
  publication-title: Energy Rep
  doi: 10.1016/j.egyr.2020.09.019
– volume: 1
  start-page: 223
  issue: 2
  year: 1996
  ident: 10.1016/j.imed.2024.05.002_bib0030
  article-title: Low-frequency variability in the blood volume and in the blood volume pulse measured by photoplethysmography
  publication-title: J Biomed Opt
  doi: 10.1117/12.231366
– start-page: 2202.07125
  year: 2023
  ident: 10.1016/j.imed.2024.05.002_bib0044
  article-title: Transformers in time series
  publication-title: A survey
– volume: 161
  start-page: 107034
  year: 2023
  ident: 10.1016/j.imed.2024.05.002_bib0014
  article-title: A state-of-the-art survey of artificial neural networks for whole-slide image analysis: From popular convolutional neural networks to potential visual transformers
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2023.107034
– volume: 3
  start-page: 385
  year: 2013
  ident: 10.1016/j.imed.2024.05.002_bib0072
  article-title: Continuous glucose monitoring systems: A review
  publication-title: Diagnostics (Basel)
  doi: 10.3390/diagnostics3040385
– ident: 10.1016/j.imed.2024.05.002_bib0026
– volume: 34
  start-page: 5828
  issue: 9
  year: 2023
  ident: 10.1016/j.imed.2024.05.002_bib0065
  article-title: Understanding how pretraining regularizes deep learning algorithms
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2021.3131377
– volume: 8
  start-page: 217908
  year: 2020
  ident: 10.1016/j.imed.2024.05.002_bib0070
  article-title: Blood glucose prediction with vmd and lstm optimized by improved particle swarm optimization
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3041355
– volume: 6
  issue: 6
  year: 2023
  ident: 10.1016/j.imed.2024.05.002_sbref0033
  article-title: Development of a Deep Learning Model for Retinal Hemorrhage Detection on Head Computed Tomography in Young Children
  publication-title: JAMA Netw Open
  doi: 10.1001/jamanetworkopen.2023.19420
– volume: 14
  start-page: 4465
  issue: 21
  year: 2022
  ident: 10.1016/j.imed.2024.05.002_bib0019
  article-title: Digital biomarkers for personalized nutrition: Predicting meal moments and interstitial glucose with non-invasive, wearable technologies
  publication-title: Nutrients
  doi: 10.3390/nu14214465
– volume: 7
  year: 2017
  ident: 10.1016/j.imed.2024.05.002_bib0006
  article-title: Noninvasive continuous glucose monitoring using a multisensor-based glucometer and time series analysis
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-13018-7
– volume: 2
  start-page: 88
  issue: 2
  year: 2022
  ident: 10.1016/j.imed.2024.05.002_bib0010
  article-title: Application of artificial intelligence in clinical diagnosis and treatment: an overview of systematic reviews
  publication-title: Intell Med
  doi: 10.1016/j.imed.2021.12.001
– volume: 11
  start-page: 766
  issue: 4
  year: 2017
  ident: 10.1016/j.imed.2024.05.002_bib0008
  article-title: Discrepancies between blood glucose and interstitial glucose-technological artifacts or physiology: Implications for selection of the appropriate therapeutic target
  publication-title: J Diabetes Sci Technol
  doi: 10.1177/1932296817699637
– volume: 4
  start-page: 89
  issue: 1
  year: 2021
  ident: 10.1016/j.imed.2024.05.002_bib0018
  article-title: Engineering digital biomarkers of interstitial glucose from noninvasive smartwatches
  publication-title: NPJ Digit Med
  doi: 10.1038/s41746-021-00465-w
– volume: 22
  issue: 19
  year: 2022
  ident: 10.1016/j.imed.2024.05.002_bib0009
  article-title: Wearable sensor technology to predict core body temperature: A systematic review
  publication-title: Sensors (Basel)
  doi: 10.3390/s22197639
– ident: 10.1016/j.imed.2024.05.002_bib0046
  doi: 10.1007/978-3-030-01261-8_1
– start-page: 107501
  year: 2023
  ident: 10.1016/j.imed.2024.05.002_bib0074
  article-title: Optimizing sleep staging on multimodal time series: Leveraging borderline synthetic minority oversampling technique and supervised convolutional contrastive learning
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2023.107501
– volume: 22
  start-page: 7711
  issue: 20
  year: 2022
  ident: 10.1016/j.imed.2024.05.002_bib0011
  article-title: Sensehunger: Machine learning approach to hunger detection using wearable sensors
  publication-title: Sensors (Basel)
  doi: 10.3390/s22207711
– volume: 38
  start-page: e98
  issue: 7
  year: 2015
  ident: 10.1016/j.imed.2024.05.002_bib0020
  article-title: Food Order Has a Significant Impact on Postprandial Glucose and Insulin Levels
  publication-title: Diabetes Care
  doi: 10.2337/dc15-0429
– volume: 3
  year: 2020
  ident: 10.1016/j.imed.2024.05.002_bib0073
  article-title: Verification, analytical validation, and clinical validation (v3): the foundation of determining fit-for-purpose for biometric monitoring technologies (biomets)
  publication-title: NPJ Digit Med
  doi: 10.1038/s41746-020-0260-4
– volume: 20
  start-page: 3463
  issue: 12
  year: 2020
  ident: 10.1016/j.imed.2024.05.002_bib0021
  article-title: Rank pooling approach for wearable sensor-based adls recognition
  publication-title: Sensors (Basel)
  doi: 10.3390/s20123463
– ident: 10.1016/j.imed.2024.05.002_bib0025
– ident: 10.1016/j.imed.2024.05.002_bib0067
– volume: 7
  start-page: 1247
  issue: 3
  year: 2014
  ident: 10.1016/j.imed.2024.05.002_bib0055
  article-title: Root mean square error (rmse) or mean absolute error (mae)? - arguments against avoiding rmse in the literature
  publication-title: Geosci Model Dev
  doi: 10.5194/gmd-7-1247-2014
– volume: 22
  issue: 5
  year: 2022
  ident: 10.1016/j.imed.2024.05.002_bib0007
  article-title: Continuous glucose monitoring in healthy adults-possible applications in health care, wellness, and sports
  publication-title: Sensors (Basel)
  doi: 10.3390/s22052030
– volume: 28
  start-page: 1303
  issue: 6
  year: 2018
  ident: 10.1016/j.imed.2024.05.002_bib0045
  article-title: Residual networks of residual networks: Multilevel residual networks
  publication-title: IEEE Trans Circuits Syst Video Technol
  doi: 10.1109/TCSVT.2017.2654543
– volume: 26
  start-page: 964
  issue: 6
  year: 2020
  ident: 10.1016/j.imed.2024.05.002_bib0071
  article-title: Human postprandial responses to food and potential for precision nutrition
  publication-title: Nat Med
  doi: 10.1038/s41591-020-0934-0
– volume: 32
  start-page: e2977
  issue: 5
  year: 2018
  ident: 10.1016/j.imed.2024.05.002_bib0038
  article-title: One-dimensional convolutional neural networks for spectroscopic signal regression
  publication-title: J Chemom
  doi: 10.1002/cem.2977
– volume: 26
  start-page: 436
  issue: 1
  year: 2022
  ident: 10.1016/j.imed.2024.05.002_bib0059
  article-title: A multitask learning approach to personalized blood glucose prediction
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2021.3100558
– volume: 6
  start-page: 3021
  issue: 60
  year: 2021
  ident: 10.1016/j.imed.2024.05.002_bib0068
  article-title: Seaborn: statistical data visualization
  publication-title: J Open Source Softw
  doi: 10.21105/joss.03021
– volume: 294
  start-page: 012033
  issue: 1
  year: 2019
  ident: 10.1016/j.imed.2024.05.002_bib0052
  article-title: A novel model for the prediction of long-term building energy demand: Lstm with attention layer
  publication-title: IOP Conf Ser Earth Environ Sci
  doi: 10.1088/1755-1315/294/1/012033
– ident: 10.1016/j.imed.2024.05.002_bib0064
  doi: 10.1007/978-3-642-35289-8_26
– volume: 84
  start-page: 11
  year: 2018
  ident: 10.1016/j.imed.2024.05.002_bib0076
  article-title: Circadian regulation of glucose, lipid, and energy metabolism in humans
  publication-title: Metabolism
  doi: 10.1016/j.metabol.2017.11.017
– volume: 2
  start-page: 181
  issue: 4
  year: 2022
  ident: 10.1016/j.imed.2024.05.002_bib0022
  article-title: Nutritional and physical improvements in older adults through the doremi remote coaching approach: a real-world study
  publication-title: Intell Med
  doi: 10.1016/j.imed.2022.04.001
– year: 2021
  ident: 10.1016/j.imed.2024.05.002_bib0060
  article-title: Beschreibung und quantifizierung von diversität
– volume: 22
  start-page: 2030
  issue: 5
  year: 2022
  ident: 10.1016/j.imed.2024.05.002_bib0001
  article-title: Continuous glucose monitoring in healthy adults-possible applications in health care, wellness, and sports
  publication-title: Sensors (Basel)
  doi: 10.3390/s22052030
– ident: 10.1016/j.imed.2024.05.002_bib0066
– volume: 48
  start-page: 361
  issue: 5
  year: 1954
  ident: 10.1016/j.imed.2024.05.002_bib0032
  article-title: The relationship under stress between changes in skin temperature, electrical skin resistance, and pulse rate
  publication-title: J Exp Psychol
  doi: 10.1037/h0057145
SSID ssj0002709444
ssib048324889
ssib048328143
Score 2.2870202
Snippet Alterations in glucose metabolism, especially the postprandial glucose response (PPGR), are crucial contributors to metabolic dysfunction, which underlies the...
Background:Alterations in glucose metabolism, especially the postprandial glucose response (PPGR), are crucial contributors to metabolic dysfunction, which...
SourceID wanfang
crossref
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 226
SubjectTerms Clarke error grid
Deep learning
Interstitial glucose prediction
Non-invasive glucose monitoring
Physiological signal processing
Wearable sensors
Title Comparison of feature learning methods for non-invasive interstitial glucose prediction using wearable sensors in healthy cohorts: a pilot study
URI https://www.clinicalkey.com/#!/content/1-s2.0-S2667102624000615
https://dx.doi.org/10.1016/j.imed.2024.05.002
https://d.wanfangdata.com.cn/periodical/zhyx-e202404002
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKIiQuCASIXWDlA7cqVZo4icMNrUAV0nKhlXqL7DqmKdts1Sas2gO_gd_CL2TGdh6iPPcSVVHsOJ6v8_I8CHkVJGKcynHuxbEMPMYWwktB7nlhGhtzBLvdYrTFh3gyY-_n0Xww-N6LWqorOVocfplXchuqwj2gK2bJ_gdl20nhBvwG-sIVKAzXf6LxRb-J4FDnpkhn0wjik-sObQouDMHK94ryizDR6lgjYotBAugub4LWN1s8szFwqI0D4QbmMYlVOzB1sSdPUbq0yf0Q--puq51Nld4UV9dVr1DtqouOt9U-q6Mj_Ent_NTzotzX3WnQcp1fuVYhqFIfit3nVm7MljCZDcIs8zXa-C2ut7ulheplvRTrtVDDqYCP0H2fRsBccl_raDtKtkF-CKpEAlLDJtg3zJv1MMr6jNg9ZmV6YCvIHIkL67lYjQrYhREuZGRdbJ1wbEMWP-Lr8e0YdIt64B1yNwDTBHnr5dfOrxckYDCbHsLtel2ulg0r_PlVv9OH7t2IUgMpetrO9CF54MwU-sZi7hEZ5OVj8q3DG73W1OGNNnijDm8U8Eb7eKN9vFGHN9rhjRq80QZv1OENhlGHN-rw9poKatBGDdqekNm7t9OLiec6eniLMOGVp5ivgiBhaSJ4wiOhorHmYAMormLFpeJaCD9POI9lxFOpwBwJNfc1175cSC7Dp-QE1p8_IxQs_TAEdVOFQc6Ej1OO85QplkitlZSnZNjsa7axhVuyJqJxlSEVMqRC5kcZUOGUhM3WZ01KMgjRDIDyx1FRO8oprFYR_es46qibOW6yyw7LPfA0fAjFanB2qwU9J_e7v9MLclJt6_wlKM2VPDfOpnOD1R9bf8v6
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+feature+learning+methods+for+non-invasive+interstitial+glucose+prediction+using+wearable+sensors+in+healthy+cohorts%3A+a+pilot+study&rft.jtitle=Intelligent+medicine&rft.au=Huang%2C+Xinyu&rft.au=Schmelter%2C+Franziska&rft.au=Uhlig%2C+Annemarie&rft.au=Irshad%2C+Muhammad+Tausif&rft.date=2024-11-01&rft.pub=Elsevier+B.V&rft.issn=2667-1026&rft.volume=4&rft.issue=4&rft.spage=226&rft.epage=238&rft_id=info:doi/10.1016%2Fj.imed.2024.05.002&rft.externalDocID=S2667102624000615
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzhyx-e%2Fzhyx-e.jpg