Twenty years of progress in angiotensin converting enzyme 2 and its link to SARS-CoV-2 disease
The virulence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and the aggressive nature of the disease has transformed the universal pace of research in the desperate attempt to seek effective therapies to halt the morbidity and mortality of this pandemic. The rapid seq...
Saved in:
Published in | Clinical science (1979) Vol. 134; no. 19; pp. 2645 - 2664 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
16.10.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The virulence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and the aggressive nature of the disease has transformed the universal pace of research in the desperate attempt to seek effective therapies to halt the morbidity and mortality of this pandemic. The rapid sequencing of the SARS-CoV-2 virus facilitated identification of the receptor for angiotensin converting enzyme 2 (ACE2) as the high affinity binding site that allows virus endocytosis. Parallel evidence that coronavirus disease 2019 (COVID-19) disease evolution shows greater lethality in patients with antecedent cardiovascular disease, diabetes, or even obesity questioned the potential unfavorable contribution of angiotensin converting enzyme (ACE) inhibitors or angiotensin II (Ang II) receptor blockers as facilitators of adverse outcomes due to the ability of these therapies to augment the transcription of Ace2 with consequent increase in protein formation and enzymatic activity. We review, here, the specific studies that support a role of these agents in altering the expression and activity of ACE2 and underscore that the robustness of the experimental data is associated with weak clinical long-term studies of the existence of a similar regulation of tissue or plasma ACE2 in human subjects. |
---|---|
AbstractList | The virulence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and the aggressive nature of the disease has transformed the universal pace of research in the desperate attempt to seek effective therapies to halt the morbidity and mortality of this pandemic. The rapid sequencing of the SARS-CoV-2 virus facilitated identification of the receptor for angiotensin converting enzyme 2 (ACE2) as the high affinity binding site that allows virus endocytosis. Parallel evidence that coronavirus disease 2019 (COVID-19) disease evolution shows greater lethality in patients with antecedent cardiovascular disease, diabetes, or even obesity questioned the potential unfavorable contribution of angiotensin converting enzyme (ACE) inhibitors or angiotensin II (Ang II) receptor blockers as facilitators of adverse outcomes due to the ability of these therapies to augment the transcription of Ace2 with consequent increase in protein formation and enzymatic activity. We review, here, the specific studies that support a role of these agents in altering the expression and activity of ACE2 and underscore that the robustness of the experimental data is associated with weak clinical long-term studies of the existence of a similar regulation of tissue or plasma ACE2 in human subjects. The virulence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and the aggressive nature of the disease has transformed the universal pace of research in the desperate attempt to seek effective therapies to halt the morbidity and mortality of this pandemic. The rapid sequencing of the SARS-CoV-2 virus facilitated identification of the receptor for angiotensin converting enzyme 2 (ACE2) as the high affinity binding site that allows virus endocytosis. Parallel evidence that coronavirus disease 2019 (COVID-19) disease evolution shows greater lethality in patients with antecedent cardiovascular disease, diabetes, or even obesity questioned the potential unfavorable contribution of angiotensin converting enzyme (ACE) inhibitors or angiotensin II (Ang II) receptor blockers as facilitators of adverse outcomes due to the ability of these therapies to augment the transcription of Ace2 with consequent increase in protein formation and enzymatic activity. We review, here, the specific studies that support a role of these agents in altering the expression and activity of ACE2 and underscore that the robustness of the experimental data is associated with weak clinical long-term studies of the existence of a similar regulation of tissue or plasma ACE2 in human subjects.The virulence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and the aggressive nature of the disease has transformed the universal pace of research in the desperate attempt to seek effective therapies to halt the morbidity and mortality of this pandemic. The rapid sequencing of the SARS-CoV-2 virus facilitated identification of the receptor for angiotensin converting enzyme 2 (ACE2) as the high affinity binding site that allows virus endocytosis. Parallel evidence that coronavirus disease 2019 (COVID-19) disease evolution shows greater lethality in patients with antecedent cardiovascular disease, diabetes, or even obesity questioned the potential unfavorable contribution of angiotensin converting enzyme (ACE) inhibitors or angiotensin II (Ang II) receptor blockers as facilitators of adverse outcomes due to the ability of these therapies to augment the transcription of Ace2 with consequent increase in protein formation and enzymatic activity. We review, here, the specific studies that support a role of these agents in altering the expression and activity of ACE2 and underscore that the robustness of the experimental data is associated with weak clinical long-term studies of the existence of a similar regulation of tissue or plasma ACE2 in human subjects. The virulence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and the aggressive nature of the disease has transformed the universal pace of research in the desperate attempt to seek effective therapies to halt the morbidity and mortality of this pandemic. The rapid sequencing of the SARS-CoV-2 virus facilitated identification of the receptor for angiotensin converting enzyme 2 (ACE2) as the high affinity binding site that allows virus endocytosis. Parallel evidence that coronavirus disease 2019 (COVID-19) disease evolution shows greater lethality in patients with antecedent cardiovascular disease, diabetes, or even obesity questioned the potential unfavorable contribution of angiotensin converting enzyme (ACE) inhibitors or angiotensin II (Ang II) receptor blockers as facilitators of adverse outcomes due to the ability of these therapies to augment the transcription of Ace2 with consequent increase in protein formation and enzymatic activity. We review, here, the specific studies that support a role of these agents in altering the expression and activity of ACE2 and underscore that the robustness of the experimental data is associated with weak clinical long-term studies of the existence of a similar regulation of tissue or plasma ACE2 in human subjects. |
Author | Ferrario, Carlos M. Groban, Leanne Ahmad, Sarfaraz |
AuthorAffiliation | 2 Department of Surgery, Wake Forest School of Medicine, Winston-Salem, NC 27157, U.S.A 3 Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC 27157, U.S.A 1 Departments of Surgery and Physiology-Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27157, U.S.A |
AuthorAffiliation_xml | – name: 3 Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC 27157, U.S.A – name: 1 Departments of Surgery and Physiology-Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27157, U.S.A – name: 2 Department of Surgery, Wake Forest School of Medicine, Winston-Salem, NC 27157, U.S.A |
Author_xml | – sequence: 1 givenname: Carlos M. orcidid: 0000-0003-0792-6239 surname: Ferrario fullname: Ferrario, Carlos M. organization: Departments of Surgery and Physiology-Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27157, U.S.A – sequence: 2 givenname: Sarfaraz surname: Ahmad fullname: Ahmad, Sarfaraz organization: Department of Surgery, Wake Forest School of Medicine, Winston-Salem, NC 27157, U.S.A – sequence: 3 givenname: Leanne surname: Groban fullname: Groban, Leanne organization: Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC 27157, U.S.A |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33063823$$D View this record in MEDLINE/PubMed |
BookMark | eNptkVtLXDEQx0NR6mr70g9Q8lgKp04u5_ZSkEXbgiC42seGnJzJNvZssk2ylvXTG9HaKjIPMzC_-c9tn-z44JGQdww-MZD8cL7gwAF6YK_IjMkWqq4VzQ6ZAZOiqjlne2Q_pSsALoq9JntCQCM6Lmbkx8Uf9HlLt6hjosHSdQzLiClR56n2Sxcy-lRiE_w1xuz8kqK_2a6Q8pIfqcuJTs7_ojnQxdH5opqH7xWno0uoE74hu1ZPCd8--ANyeXJ8Mf9anZ59-TY_Oq2MaLtcGWvQDoPoed0MsuZWdtL0I-8Fjo0eutGIegTTIYx2QMOkbfq-bGoMFwi2FQfk873uejOscDRlp6gntY5upeNWBe3U04x3P9UyXKse6rrhsgh8eBCI4fcGU1YrlwxOk_YYNklxWbOu7qHtCvr-_16PTf4etQAf7wETQ0oR7SPCQN19TP37WIHhGWxc1tmFuznd9FLJLdyMmIo |
CitedBy_id | crossref_primary_10_1016_j_omtm_2022_07_003 crossref_primary_10_1161_HYPERTENSIONAHA_124_22064 crossref_primary_10_1371_journal_pone_0288178 crossref_primary_10_1016_j_biopha_2022_113201 crossref_primary_10_1042_CS20201493 crossref_primary_10_1016_j_kisu_2021_11_002 crossref_primary_10_1016_j_trsl_2021_04_004 |
Cites_doi | 10.1016/j.bbrc.2016.07.100 10.1038/nm1267 10.1371/journal.pone.0028501 10.1371/journal.pone.0213096 10.1007/s11906-014-0429-9 10.1097/MNH.0b013e3283406f57 10.1038/nature00786 10.2337/db09-1218 10.1177/1753944708098691 10.1007/978-0-387-33012-9_48 10.1152/ajprenal.00139.2006 10.1096/fj.202001020R 10.1016/j.freeradbiomed.2013.08.183 10.1007/s11064-018-2679-4 10.1152/ajpheart.01198.2006 10.1161/HYPERTENSIONAHA.110.163576 10.2217/14796678.2.3.335 10.1074/jbc.M200581200 10.1073/pnas.85.11.4095 10.1152/ajpheart.00068.2005 10.1001/jama.2020.1585 10.1111/bph.12159 10.1161/01.HYP.0000237862.94083.45 10.1097/MNH.0b013e328341164a 10.1097/FJC.0000000000000374 10.1093/ehjcvp/pvaa062 10.1161/HYPERTENSIONAHA.112.201889 10.1093/ajh/hps090 10.1042/CS20120162 10.2174/1573406410666140318111328 10.1152/ajpcell.00145.2008 10.1016/S0165-6147(00)01994-5 10.1038/s41569-020-0360-5 10.1152/ajpheart.00426.2008 10.1681/ASN.2006070707 10.1007/s12471-020-01439-5 10.1161/01.RES.87.5.e1 10.1038/ajh.2010.51 10.1042/CS20200492 10.1111/j.1749-6632.1994.tb12036.x 10.1016/j.actatropica.2019.03.020 10.1016/j.taap.2010.02.009 10.1042/CS20200163 10.1111/j.1440-1681.2009.05302.x 10.1007/s11906-002-0042-1 10.1016/j.lfs.2005.07.026 10.1097/00004872-199107000-00008 10.1111/j.1440-1681.2007.04643.x 10.1152/physrev.00023.2016 10.1056/NEJMc2021225 10.1161/ATVBAHA.110.221614 10.1016/j.jash.2012.12.003 10.1093/eurheartj/ehaa487 10.1016/j.cardfail.2009.09.005 10.1002/path.1570 10.1291/hypres.29.865 10.1161/01.HYP.0000196268.08909.fb 10.1681/ASN.V991716 10.1007/s11886-008-0073-6 10.1371/journal.pone.0067868 10.1016/S0140-6736(20)31131-4 10.1001/jama.2020.11301 10.1161/01.CIR.91.4.1129 10.1161/HYPERTENSIONAHA.107.106922 10.1016/j.cardfail.2009.01.014 10.1007/s11695-020-04741-8 10.14309/ajg.0000000000000620 10.1038/nature02145 10.1038/ki.2008.497 10.1152/ajpcell.00409.2004 10.1016/j.regpep.2010.09.005 10.1016/j.peptides.2012.01.020 10.1152/ajprenal.00426.2009 10.1161/01.HYP.0000124667.34652.1a 10.3109/00365513.2015.1054871 10.1161/01.HYP.30.3.535 10.1016/j.placenta.2005.02.015 10.1001/jama.2020.5394 10.1016/j.kint.2016.09.032 10.2174/1871528113666140713164506 10.1113/expphysiol.2007.040386 10.1152/ajpheart.00618.2005 10.1159/000365093 10.3949/ccjm.87a.ccc039 10.1161/01.HYP.31.1.362 10.1007/978-0-387-33012-9_93 10.1042/CS20090318 10.1042/CS20070169 10.1161/HYPERTENSIONAHA.120.15622 10.1038/s41569-020-0369-9 10.1042/CS20110668 10.1016/j.compbiolchem.2005.04.008 10.1016/j.jpain.2020.01.001 10.1089/ars.2006.8.1443 10.2174/138161207780618911 10.1152/ajprenal.00383.2009 10.1161/HYPERTENSIONAHA.110.164244 10.1007/978-1-4939-6625-7_8 10.1016/j.taap.2016.06.026 10.1139/y02-021 10.1291/hypres.31.553 10.1007/s00436-019-06485-6 10.1097/SHK.0000000000000633 10.1042/BJ20040634 10.1113/expphysiol.2005.031096 10.1161/01.HYP.19.2_Suppl.II49 10.1042/CS20130400 10.1161/01.HYP.37.4.1141 10.1096/fasebj.31.1_supplement.820.2 10.1161/HYPERTENSIONAHA.120.15360 10.1161/CIRCULATIONAHA.110.955369 10.1007/s11906-013-0361-4 10.1016/S2213-2600(20)30116-8 10.1097/SHK.0000000000000302 10.1161/CIRCULATIONAHA.117.029589 10.1186/1471-2164-8-194 10.1016/j.coph.2010.12.002 10.1161/CIRCRESAHA.120.317134 10.1159/000179322 10.1016/j.virol.2006.01.029 10.1097/00005344-200007000-00015 10.1007/s11906-020-01073-x 10.1007/s11357-020-00198-w 10.1111/jth.14844 10.1093/qjmed/hcz206 10.1016/0196-9781(87)90084-2 10.1186/1743-422X-2-73 10.1016/j.jacc.2020.05.008 10.1152/ajprenal.00144.2004 10.2174/0929866524666170818160809 10.1038/s41591-019-0675-0 10.1093/eurheartj/ehi114 10.1152/ajpheart.00061.2006 10.1016/S0021-9258(19)84737-3 10.1073/pnas.0506735102 10.1161/01.HYP.11.2_Pt_2.I153 10.1371/journal.pone.0040110 10.1111/j.1365-2141.2004.04998.x 10.1074/jbc.M505111200 10.1097/FJC.0000000000000307 10.1291/hypres.21.267 10.1161/HYPERTENSIONAHA.119.13754 10.1084/jem.20070657 10.2174/1566524019666191028122559 10.1074/jbc.M002615200 10.1161/01.HYP.0000090322.55782.30 10.1111/j.1440-1797.2011.01467.x 10.1161/01.HYP.0000085220.53285.11 10.1016/j.atherosclerosis.2016.08.032 10.1093/cvr/cvaa078 10.1111/j.1523-1755.2002.kid559.x 10.1161/HYPERTENSIONAHA.120.15082 10.1152/ajprenal.00633.2014 10.1136/hrt.2003.029397 10.1371/journal.pone.0015759 10.1007/s11427-020-1643-8 10.1016/S1054-3589(10)59007-0 10.1097/MNH.0b013e3282f945c2 10.1161/01.HYP.35.1.480 10.3390/jcdd6020014 10.1371/journal.pone.0103909 10.1016/j.cardiores.2007.04.007 10.1097/00045391-200401000-00010 10.1161/CIRCULATIONAHA.104.510461 10.1113/expphysiol.2007.041855 10.1016/j.cellimm.2014.12.001 10.1007/s00726-014-1889-6 10.1016/j.bbadis.2004.05.005 10.1152/ajprenal.90488.2008 10.1136/bmj.m2094 10.1681/ASN.2020050667 10.3892/mmr.2017.6848 10.2807/1560-7917.ES.2020.25.22.2001010 10.1161/CIRCRESAHA.117.310978 10.1093/jtm/taaa041 10.1097/HJH.0000000000000042 10.1007/s00018-004-4240-7 10.1152/ajprenal.00656.2011 10.2217/14796678.4.4.357 10.1161/CIRCRESAHA.120.317015 10.1093/ajh/hpu086 |
ContentType | Journal Article |
Copyright | 2020 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society. |
Copyright_xml | – notice: 2020 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1042/CS20200901 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1470-8736 |
EndPage | 2664 |
ExternalDocumentID | PMC9055624 33063823 10_1042_CS20200901 |
Genre | Journal Article Review Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIA NIH HHS grantid: R01 AG033727 – fundername: NHLBI NIH HHS grantid: P01 HL051952 – fundername: NIA NIH HHS grantid: R03 AG042758 – fundername: NIA NIH HHS grantid: R21 AG070371 |
GroupedDBID | --- 0R~ 29B 2WC 4.4 5GY 5RE 6J9 AAHRG AAYXX ABCQX ABJNI ACGFO ACGFS ADBBV AEGXH AENEX AIAGR AIZAD ALMA_UNASSIGNED_HOLDINGS BAWUL CITATION CS3 DU5 E3Z EBD EBS EMOBN F5P GX1 H13 HZ~ L7B MV1 NTEUP O9- P2P P6G RHI RPO SV3 TR2 WH7 AABGO CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c378t-cfcefbb39256b452f484c9d293ed6ab8dc35d0c8e0dfbec14f699147cc23e0f73 |
ISSN | 0143-5221 1470-8736 |
IngestDate | Thu Aug 21 18:27:08 EDT 2025 Thu Jul 10 19:17:53 EDT 2025 Thu Jan 02 22:35:24 EST 2025 Thu Apr 24 23:03:05 EDT 2025 Tue Jul 01 01:19:44 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 19 |
Keywords | cardiovascular disease angiotensin-(1-7) coronavirus innate immunity angiotensin II chymase |
Language | English |
License | 2020 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c378t-cfcefbb39256b452f484c9d293ed6ab8dc35d0c8e0dfbec14f699147cc23e0f73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-0792-6239 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/9055624 |
PMID | 33063823 |
PQID | 2451859078 |
PQPubID | 23479 |
PageCount | 20 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9055624 proquest_miscellaneous_2451859078 pubmed_primary_33063823 crossref_primary_10_1042_CS20200901 crossref_citationtrail_10_1042_CS20200901 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20201016 |
PublicationDateYYYYMMDD | 2020-10-16 |
PublicationDate_xml | – month: 10 year: 2020 text: 20201016 day: 16 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Clinical science (1979) |
PublicationTitleAlternate | Clin Sci (Lond) |
PublicationYear | 2020 |
References | Warner (2021113011163418200_B58) 2004; 61 Wang (2021113011163418200_B98) 2017; 16 Wang (2021113011163418200_B156) 2020; 34 Oudit (2021113011163418200_B73) 2010; 59 Danser (2021113011163418200_B111) 2020; 75 Ruilope (2021113011163418200_B162) 2020; 41 Reddy (2021113011163418200_B122) 2019; 14 Lambert (2021113011163418200_B56) 2005; 280 Moore (2021113011163418200_B91) 2013; 65 Chakraborti (2021113011163418200_B1) 2005; 2 Clark (2021113011163418200_B183) 2001; 37 Ferrario (2021113011163418200_B32) 2005; 289 Burchill (2021113011163418200_B165) 2008; 93 Mizuiri (2021113011163418200_B79) 2011; 16 Ferrario (2021113011163418200_B37) 2011; 20 Ahmad (2021113011163418200_B170) 2014; 16 Dolhnikoff (2021113011163418200_B27) 2020; 18 Wei (2021113011163418200_B181) 2012; 7 Sartori-Valinotti (2021113011163418200_B21) 2007; 34 Wysocki (2021113011163418200_B109) 2020; 31 Prestes (2021113011163418200_B190) 2016; 18 Reckelhoff (2021113011163418200_B20) 2000; 35 Oudit (2021113011163418200_B189) 2007; 75 Sandberg (2021113011163418200_B192) 2015; 294 Rice (2021113011163418200_B10) 2004; 383 Sapio (2021113011163418200_B62) 2020 Smith (2021113011163418200_B5) 2006; 581 Lai (2021113011163418200_B195) 2013; 8 Chen (2021113011163418200_B15) 2020; 6 Jia (2021113011163418200_B157) 2016; 46 Griendling (2021113011163418200_B148) 2004; 90 White (2021113011163418200_B142) 1964; 1 Dilauro (2021113011163418200_B105) 2010; 298 Schiffrin (2021113011163418200_B135) 2014; 32 Gollob (2021113011163418200_B28) 2020; 75 Yamashita (2021113011163418200_B145) 2020; 75 Hughes (2021113011163418200_B123) 2020 Nakamoto (2021113011163418200_B114) 1998; 21 Zamoto (2021113011163418200_B7) 2006; 581 Xiao (2021113011163418200_B53) 2017; 1527 Lau (2021113011163418200_B13) 2005; 102 Toubiana (2021113011163418200_B25) 2020; 369 Zheng (2021113011163418200_B42) 2020 Wang (2021113011163418200_B120) 2006; 18 Rella (2021113011163418200_B19) 2007; 8 Fosbol (2021113011163418200_B164) 2020 Schindler (2021113011163418200_B112) 2008; 4 Olsen (2021113011163418200_B139) 1973; 81 McCollum (2021113011163418200_B90) 2012; 34 Lu (2021113011163418200_B4) 2005; 19 Tostes (2021113011163418200_B23) 2008; 114 Harrison (2021113011163418200_B134) 2011; 57 Ferrario (2021113011163418200_B177) 1998; 9 Dong (2021113011163418200_B124) 2020; 30 Strawn (2021113011163418200_B144) 2004; 126 Tipnis (2021113011163418200_B9) 2000; 275 de Vries (2021113011163418200_B78) 2020; 28 Shaltout (2021113011163418200_B116) 2007; 292 Schindler (2021113011163418200_B113) 2014; 9 Tsounis (2021113011163418200_B150) 2014; 10 Trask (2021113011163418200_B71) 2010; 23 Hamming (2021113011163418200_B65) 2004; 203 Li (2021113011163418200_B102) 2015; 43 Zhong (2021113011163418200_B155) 2011; 57 Lazartigues (2021113011163418200_B66) 2007; 13 Zheng (2021113011163418200_B41) 2020; 17 Moccia (2021113011163418200_B14) 2020; 4 Lin (2021113011163418200_B57) 2004; 1689 Huang (2021113011163418200_B100) 2010; 37 Santos (2021113011163418200_B38) 2018; 98 Agata (2021113011163418200_B97) 2006; 29 Santos (2021113011163418200_B46) 1988; 11 Gallagher (2021113011163418200_B88) 2008; 295 Simoes e Silva (2021113011163418200_B40) 2013; 169 Huentelman (2021113011163418200_B69) 2005; 90 Gallagher (2021113011163418200_B87) 2006; 290 Nehme (2021113011163418200_B179) 2019; 6 Kitazono (2021113011163418200_B147) 1995; 91 Dell’Italia (2021113011163418200_B200) 2018; 122 Mehra (2021113011163418200_B129) 2020; 382 Prieto (2021113011163418200_B80) 2011; 300 Furman (2021113011163418200_B131) 2019; 25 Schiavone (2021113011163418200_B47) 1988; 85 Crackower (2021113011163418200_B64) 2002; 417 Harrison (2021113011163418200_B133) 2008; 10 Santisteban (2021113011163418200_B193) 2013; 15 Reich (2021113011163418200_B81) 2008; 74 Ahmad (2021113011163418200_B171) 2016; 478 Diaz (2021113011163418200_B30) 2020; 37 Burrell (2021113011163418200_B52) 2005; 26 Wang (2021113011163418200_B82) 2010; 16 Gaddam (2021113011163418200_B34) 2014; 13 Abe (2021113011163418200_B76) 2015; 75 Trask (2021113011163418200_B70) 2007; 292 Ferrario (2021113011163418200_B196) 2004; 11 Saito (2021113011163418200_B182) 2002; 4 Jurewicz (2021113011163418200_B197) 2007; 18 Donoghue (2021113011163418200_B48) 2000; 87 Tikellis (2021113011163418200_B74) 2012; 123 Cole-Jeffrey (2021113011163418200_B85) 2015; 66 Grasselli (2021113011163418200_B17) 2020; 323 Ferrario (2021113011163418200_B33) 1997; 30 Ocaranza (2021113011163418200_B51) 2006; 48 Welches (2021113011163418200_B178) 1991; 9 Epelman (2021113011163418200_B117) 2009; 15 Yang (2021113011163418200_B6) 2007; 57 Shenoy (2021113011163418200_B72) 2011; 11 Kuba (2021113011163418200_B152) 2005; 11 Svendsen (2021113011163418200_B141) 1977; 85 Batlle (2021113011163418200_B29) 2020; 134 Dhawale (2021113011163418200_B59) 2016; 306 Kaiqiang (2021113011163418200_B166) 2009; 3 Thatcher (2021113011163418200_B198) 2011; 31 Hu (2021113011163418200_B119) 2007; 35 Ahmad (2021113011163418200_B172) 2011; 6 Tallant (2021113011163418200_B188) 2006; 2 Ishiyama (2021113011163418200_B92) 2004; 43 Ferrario (2021113011163418200_B180) 2014; 126 Anguiano (2021113011163418200_B77) 2016; 253 Saldanha da Silva (2021113011163418200_B191) 2017; 24 Ferrario (2021113011163418200_B54) 2005; 111 Zhang (2021113011163418200_B125) 2020; 126 Liabeuf (2021113011163418200_B130) 2020 Varagic (2021113011163418200_B168) 2013; 26 Williams (2021113011163418200_B163) 2020; 395 Burchill (2021113011163418200_B106) 2012; 123 Belot (2021113011163418200_B24) 2020; 25 Guzik (2021113011163418200_B143) 2007; 204 Fang (2021113011163418200_B153) 2019; 112 Moniwa (2021113011163418200_B94) 2013; 61 Batlle (2021113011163418200_B158) 2008; 17 Han (2021113011163418200_B167) 2010; 245 Wang (2021113011163418200_B16) 2020; 323 Ahmad (2021113011163418200_B173) 2013; 7 Cissom (2021113011163418200_B61) 2020; 20 Gheblawi (2021113011163418200_B132) 2020; 126 Ferrario (2021113011163418200_B36) 2006; 47 Chappell (2021113011163418200_B44) 1987; 8 Ahmad (2021113011163418200_B169) 2011; 6 Griendling (2021113011163418200_B149) 2006; 8 Turner (2021113011163418200_B11) 2002; 23 Brosnihan (2021113011163418200_B68) 2003; 42 Jessup (2021113011163418200_B93) 2006; 291 Schindler (2021113011163418200_B39) 2007; 3 Furuhashi (2021113011163418200_B118) 2015; 28 Miranda (2021113011163418200_B83) 2020; 119 Chappell (2021113011163418200_B174) 1998; 31 Jaiswal (2021113011163418200_B186) 1991; 260 Chappell (2021113011163418200_B43) 1989; 264 Zhang (2021113011163418200_B8) 2005; 29 Tallant (2021113011163418200_B187) 2003; 42 Zhong (2021113011163418200_B154) 2010; 122 Valdes (2021113011163418200_B67) 2006; 27 Fang (2021113011163418200_B31) 2020; 8 Chatelain (2021113011163418200_B136) 1978; 55 Zhou (2021113011163418200_B127) 2020; 76 Liu (2021113011163418200_B121) 2020; 63 Jaiswal (2021113011163418200_B185) 1992; 19 Tanno (2021113011163418200_B103) 2016; 67 Flores-Monroy (2021113011163418200_B107) 2014; 94 Ocaranza (2021113011163418200_B50) 2006; 78 Panupattanapong (2021113011163418200_B26) 2020 Dholakia (2021113011163418200_B60) 2017; 31 Yang (2021113011163418200_B86) 2020; 76 Soler (2021113011163418200_B104) 2009; 296 Vuille-dit-Bille (2021113011163418200_B159) 2015; 47 Lanza (2021113011163418200_B151) 2020; 134 Igase (2021113011163418200_B96) 2005; 289 Ferrario (2021113011163418200_B176) 2002; 62 Iyer (2021113011163418200_B184) 2000; 36 Groban (2021113011163418200_B18) 2020; 22 Llau (2021113011163418200_B161) 2020; S0210-569 Itani (2021113011163418200_B194) 2015; 308 Tikellis (2021113011163418200_B55) 2011; 20 Miranda (2021113011163418200_B84) 2019; 194 Ferrario (2021113011163418200_B175) 2010; 59 Ferrario (2021113011163418200_B45) 1988; 10 Olsen (2021113011163418200_B138) 1973; 81 Butts (2021113011163418200_B199) 2017; 136 Velkoska (2021113011163418200_B101) 2010; 118 Zhang (2021113011163418200_B126) 2020; 126 Mehra (2021113011163418200_B128) 2020; 382 Zhong (2021113011163418200_B99) 2011; 166 Chatelain (2021113011163418200_B137) 1980; 95 Emami (2021113011163418200_B63) 2020; 8 Igase (2021113011163418200_B95) 2008; 31 Sartori-Valinotti (2021113011163418200_B22) 2008; 51 Alenina (2021113011163418200_B35) 2019; 44 Wysocki (2021113011163418200_B110) 2017; 91 Vickers (2021113011163418200_B49) 2002; 277 Yamaleyeva (2021113011163418200_B75) 2012; 302 Li (2021113011163418200_B115) 2005; 288 Pan (2021113011163418200_B160) 2020; 115 Kaul (2021113011163418200_B146) 1994; 714 Han (2021113011163418200_B2) 2006; 350 Li (2021113011163418200_B3) 2003; 426 Rojo-Ortega (2021113011163418200_B140) 1973; 45 Turner (2021113011163418200_B12) 2002; 80 Hamming (2021113011163418200_B108) 2008; 93 Gallagher (2021113011163418200_B89) 2008; 295 |
References_xml | – volume: 478 start-page: 559 year: 2016 ident: 2021113011163418200_B171 article-title: Primacy of cardiac chymase over angiotensin converting enzyme as an angiotensin-(1-12) metabolizing enzyme publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2016.07.100 – volume: 11 start-page: 875 year: 2005 ident: 2021113011163418200_B152 article-title: A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury publication-title: Nat. Med. doi: 10.1038/nm1267 – volume: 6 start-page: e28501 year: 2011 ident: 2021113011163418200_B169 article-title: Chymase-dependent generation of angiotensin II from angiotensin-(1-12) in human atrial tissue publication-title: PLoS ONE doi: 10.1371/journal.pone.0028501 – volume: 14 start-page: e0213096 issue: 3 year: 2019 ident: 2021113011163418200_B122 article-title: Circulating angiotensin peptides levels in Acute Respiratory Distress Syndrome correlate with clinical outcomes: a pilot study publication-title: PLoS ONE doi: 10.1371/journal.pone.0213096 – volume: 16 start-page: 429 year: 2014 ident: 2021113011163418200_B170 article-title: Angiotensin-: a chymase-mediated cellular angiotensin II substrate publication-title: Curr. Hypertens. Rep. doi: 10.1007/s11906-014-0429-9 – volume: 20 start-page: 1 year: 2011 ident: 2021113011163418200_B37 article-title: ACE2: more of Ang-(1-7) or less Ang II? publication-title: Curr. Opin. Nephrol. Hypertens. doi: 10.1097/MNH.0b013e3283406f57 – volume: 417 start-page: 822 year: 2002 ident: 2021113011163418200_B64 article-title: Angiotensin-converting enzyme 2 is an essential regulator of heart function publication-title: Nature doi: 10.1038/nature00786 – volume: 59 start-page: 529 year: 2010 ident: 2021113011163418200_B73 article-title: Human recombinant ACE2 reduces the progression of diabetic nephropathy publication-title: Diabetes doi: 10.2337/db09-1218 – volume: 3 start-page: 103 year: 2009 ident: 2021113011163418200_B166 article-title: Olmesartan improves left ventricular function in pressure-overload hypertrophied rat heart by blocking angiotensin II receptor with synergic effects of upregulation of angiotensin converting enzyme 2 publication-title: Ther. Adv. Cardiovasc. Dis. doi: 10.1177/1753944708098691 – volume: 581 start-page: 285 year: 2006 ident: 2021113011163418200_B5 article-title: Human angiotensin-converting enzyme 2 (ACE2) is a receptor for human respiratory coronavirus NL63 publication-title: Adv. Exp. Med. Biol. doi: 10.1007/978-0-387-33012-9_48 – volume: 3 start-page: 125 year: 2007 ident: 2021113011163418200_B39 article-title: Role of the vasodilator peptide angiotensin-(1-7) in cardiovascular drug therapy publication-title: Vasc. Health Risk Manag. – volume: 292 start-page: F82 year: 2007 ident: 2021113011163418200_B116 article-title: Angiotensin metabolism in renal proximal tubules, urine, and serum of sheep: evidence for ACE2-dependent processing of angiotensin II publication-title: Am. J. Physiol. Renal Physiol. doi: 10.1152/ajprenal.00139.2006 – volume: 57 start-page: 450 year: 2007 ident: 2021113011163418200_B6 article-title: Mice transgenic for human angiotensin-converting enzyme 2 provide a model for SARS coronavirus infection publication-title: Comp. Med. – volume: 34 start-page: 10505 year: 2020 ident: 2021113011163418200_B156 article-title: The ACE2-deficient mouse: a model for a cytokine storm-driven inflammation publication-title: FASEB J. doi: 10.1096/fj.202001020R – volume: 18 start-page: 1301 year: 2016 ident: 2021113011163418200_B190 article-title: The anti-inflammatory potential of ACE2/Angiotensin-(1-7)/Mas receptor axis: evidence from basic and clinical research publication-title: Curr. Drug Targets – volume: 65 start-page: 1060 year: 2013 ident: 2021113011163418200_B91 article-title: Angiotensin-(1-7) prevents radiation-induced inflammation in rat primary astrocytes through regulation of MAP kinase signaling publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2013.08.183 – volume: 44 start-page: 1323 year: 2019 ident: 2021113011163418200_B35 article-title: ACE2 in brain physiology and pathophysiology: evidence from transgenic animal models publication-title: Neurochem. Res. doi: 10.1007/s11064-018-2679-4 – volume: 292 start-page: H3019 year: 2007 ident: 2021113011163418200_B70 article-title: Primary role of angiotensin-converting enzyme-2 in cardiac production of angiotensin-(1-7) in transgenic Ren-2 hypertensive rats publication-title: Am. J. Physiol. Heart Circ. Physiol. doi: 10.1152/ajpheart.01198.2006 – volume: 260 start-page: R1000 year: 1991 ident: 2021113011163418200_B186 article-title: Characterization of angiotensin receptors mediating prostaglandin synthesis in C6 glioma cells publication-title: Am. J. Physiol. – volume: 57 start-page: 132 year: 2011 ident: 2021113011163418200_B134 article-title: Inflammation, immunity, and hypertension publication-title: Hypertension doi: 10.1161/HYPERTENSIONAHA.110.163576 – volume: 2 start-page: 335 year: 2006 ident: 2021113011163418200_B188 article-title: Cardioprotective role for angiotensin-(1-7) and angiotensin converting enzyme 2 in the heart publication-title: Future Cardiol. doi: 10.2217/14796678.2.3.335 – volume: 277 start-page: 14838 year: 2002 ident: 2021113011163418200_B49 article-title: Hydrolysis of biological peptides by human angiotensin-converting enzyme-related carboxypeptidase publication-title: J. Biol. Chem. doi: 10.1074/jbc.M200581200 – volume: 85 start-page: 4095 year: 1988 ident: 2021113011163418200_B47 article-title: Release of vasopressin from the rat hypothalamo-neurohypophysial system by angiotensin-(1-7) heptapeptide publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.85.11.4095 – volume: 289 start-page: H1013 year: 2005 ident: 2021113011163418200_B96 article-title: Angiotensin II AT1 receptors regulate ACE2 and angiotensin-(1-7) expression in the aorta of spontaneously hypertensive rats publication-title: Am. J. Physiol. Heart Circ. Physiol. doi: 10.1152/ajpheart.00068.2005 – volume: 323 start-page: 1061 issue: 11 year: 2020 ident: 2021113011163418200_B16 article-title: Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China publication-title: JAMA doi: 10.1001/jama.2020.1585 – volume: 169 start-page: 477 year: 2013 ident: 2021113011163418200_B40 article-title: ACE2, angiotensin-(1-7) and Mas receptor axis in inflammation and fibrosis publication-title: Br. J. Pharmacol. doi: 10.1111/bph.12159 – volume: 48 start-page: 572 year: 2006 ident: 2021113011163418200_B51 article-title: Enalapril attenuates downregulation of Angiotensin-converting enzyme 2 in the late phase of ventricular dysfunction in myocardial infarcted rat publication-title: Hypertension doi: 10.1161/01.HYP.0000237862.94083.45 – volume: 20 start-page: 62 year: 2011 ident: 2021113011163418200_B55 article-title: Angiotensin-converting enzyme 2 is a key modulator of the renin-angiotensin system in cardiovascular and renal disease publication-title: Curr. Opin. Nephrol. Hypertens. doi: 10.1097/MNH.0b013e328341164a – volume: 67 start-page: 503 year: 2016 ident: 2021113011163418200_B103 article-title: Olmesartan inhibits cardiac hypertrophy in mice overexpressing renin independently of blood pressure: its beneficial effects on ACE2/Ang(1-7)/Mas axis and NADPH oxidase expression publication-title: J. Cardiovasc. Pharmacol. doi: 10.1097/FJC.0000000000000374 – year: 2020 ident: 2021113011163418200_B130 article-title: Association between renin-angiotensin system inhibitors and COVID-19 complications publication-title: Eur. Heart J. Cardiovasc. Pharmacother. doi: 10.1093/ehjcvp/pvaa062 – volume: 61 start-page: 417 year: 2013 ident: 2021113011163418200_B94 article-title: Hemodynamic and hormonal changes to dual renin-angiotensin system inhibition in experimental hypertension publication-title: Hypertension doi: 10.1161/HYPERTENSIONAHA.112.201889 – volume: 26 start-page: 583 year: 2013 ident: 2021113011163418200_B168 article-title: Predominance of AT(1) blockade over mas-mediated angiotensin-(1-7) mechanisms in the regulation of blood pressure and renin-angiotensin system in mRen2.Lewis rats publication-title: Am. J. Hypertens. doi: 10.1093/ajh/hps090 – volume: 81 start-page: 498 year: 1973 ident: 2021113011163418200_B139 article-title: Delayed hypersensitivity directed against arterial antigens in the hypertensive disease in man publication-title: Acta Pathol. Microbiol. Scand. A – volume: 123 start-page: 649 year: 2012 ident: 2021113011163418200_B106 article-title: Combination renin-angiotensin system blockade and angiotensin-converting enzyme 2 in experimental myocardial infarction: implications for future therapeutic directions publication-title: Clin. Sci. (Lond.) doi: 10.1042/CS20120162 – volume: 10 start-page: 672 year: 2014 ident: 2021113011163418200_B150 article-title: Inflammation markers in essential hypertension publication-title: Med. Chem. doi: 10.2174/1573406410666140318111328 – volume: 295 start-page: C1169 year: 2008 ident: 2021113011163418200_B89 article-title: MAP kinase/phosphatase pathway mediates the regulation of ACE2 by angiotensin peptides publication-title: Am. J. Physiol. Cell Physiol. doi: 10.1152/ajpcell.00145.2008 – volume: 23 start-page: 177 year: 2002 ident: 2021113011163418200_B11 article-title: The angiotensin-converting enzyme gene family: genomics and pharmacology publication-title: Trends Pharmacol. Sci. doi: 10.1016/S0165-6147(00)01994-5 – year: 2020 ident: 2021113011163418200_B42 article-title: COVID-19 and the cardiovascular system publication-title: Nat. Rev. Cardiol. doi: 10.1038/s41569-020-0360-5 – volume: 295 start-page: H2373 year: 2008 ident: 2021113011163418200_B88 article-title: Regulation of ACE2 in cardiac myocytes and fibroblasts publication-title: Am. J. Physiol. Heart Circ. Physiol. doi: 10.1152/ajpheart.00426.2008 – volume: 18 start-page: 1093 year: 2007 ident: 2021113011163418200_B197 article-title: Human T and natural killer cells possess a functional renin-angiotensin system: further mechanisms of angiotensin II-induced inflammation publication-title: J. Am. Soc. Nephrol. doi: 10.1681/ASN.2006070707 – volume: 28 start-page: 366 issue: 7-8 year: 2020 ident: 2021113011163418200_B78 article-title: Renin-angiotensin system inhibition in COVID-19 patients publication-title: Neth. Heart J. doi: 10.1007/s12471-020-01439-5 – volume: 87 start-page: E1 year: 2000 ident: 2021113011163418200_B48 article-title: A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9 publication-title: Circ. Res. doi: 10.1161/01.RES.87.5.e1 – volume: 23 start-page: 687 year: 2010 ident: 2021113011163418200_B71 article-title: Inhibition of angiotensin-converting enzyme 2 exacerbates cardiac hypertrophy and fibrosis in Ren-2 hypertensive rats publication-title: Am. J. Hypertens. doi: 10.1038/ajh.2010.51 – volume: 134 start-page: 1259 year: 2020 ident: 2021113011163418200_B151 article-title: Covid-19: the renin-angiotensin system imbalance hypothesis publication-title: Clin. Sci. (Lond.) doi: 10.1042/CS20200492 – volume: 714 start-page: 122 year: 1994 ident: 2021113011163418200_B146 article-title: Role of platelets and leukocytes in modulation of vascular tone publication-title: Ann. N.Y. Acad. Sci. doi: 10.1111/j.1749-6632.1994.tb12036.x – volume: 194 start-page: 36 year: 2019 ident: 2021113011163418200_B84 article-title: Interactions between local renin angiotensin system and nitric oxide in the brain of Trypanosoma cruzi infected rats publication-title: Acta Trop. doi: 10.1016/j.actatropica.2019.03.020 – volume: 245 start-page: 100 year: 2010 ident: 2021113011163418200_B167 article-title: Losartan attenuates chronic cigarette smoke exposure-induced pulmonary arterial hypertension in rats: possible involvement of angiotensin-converting enzyme-2 publication-title: Toxicol. Appl. Pharmacol. doi: 10.1016/j.taap.2010.02.009 – volume: 134 start-page: 543 year: 2020 ident: 2021113011163418200_B29 article-title: Soluble angiotensin-converting enzyme 2: a potential approach for coronavirus infection therapy? publication-title: Clin. Sci. (Lond.) doi: 10.1042/CS20200163 – volume: 37 start-page: e1 year: 2010 ident: 2021113011163418200_B100 article-title: Upregulation of angiotensin-converting enzyme (ACE) 2 in hepatic fibrosis by ACE inhibitors publication-title: Clin. Exp. Pharmacol. Physiol. doi: 10.1111/j.1440-1681.2009.05302.x – volume: 55 start-page: 149 year: 1978 ident: 2021113011163418200_B136 article-title: Biphasic changes in thymus structure during evolving renal hypertension publication-title: Clin. Sci. Mol. Med. – volume: 4 start-page: 167 year: 2002 ident: 2021113011163418200_B182 article-title: Angiotensin II-mediated signal transduction pathways publication-title: Curr. Hypertens. Rep. doi: 10.1007/s11906-002-0042-1 – volume: 78 start-page: 1535 year: 2006 ident: 2021113011163418200_B50 article-title: Effect of hypertension on angiotensin-(1-7) levels in rats with different angiotensin-I converting enzyme polymorphism publication-title: Life Sci. doi: 10.1016/j.lfs.2005.07.026 – volume: 9 start-page: 631 year: 1991 ident: 2021113011163418200_B178 article-title: Evidence that prolyl endopeptidase participates in the processing of brain angiotensin publication-title: J. Hypertens. doi: 10.1097/00004872-199107000-00008 – volume: 34 start-page: 938 year: 2007 ident: 2021113011163418200_B21 article-title: Sex differences in oxidative stress and the impact on blood pressure control and cardiovascular disease publication-title: Clin. Exp. Pharmacol. Physiol. doi: 10.1111/j.1440-1681.2007.04643.x – volume: 98 start-page: 505 year: 2018 ident: 2021113011163418200_B38 article-title: The ACE2/Angiotensin-(1-7)/MAS axis of the renin-angiotensin system: focus on Angiotensin-(1-7) publication-title: Physiol. Rev. doi: 10.1152/physrev.00023.2016 – volume: 382 start-page: 2582 year: 2020 ident: 2021113011163418200_B129 article-title: Retraction: cardiovascular disease, drug therapy, and mortality in Covid-19 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMc2021225 – volume: 31 start-page: 758 year: 2011 ident: 2021113011163418200_B198 article-title: Angiotensin-converting enzyme 2 deficiency in whole body or bone marrow-derived cells increases atherosclerosis in low-density lipoprotein receptor-/- mice publication-title: Arterioscler. Thromb. Vasc. Biol. doi: 10.1161/ATVBAHA.110.221614 – volume: 7 start-page: 128 year: 2013 ident: 2021113011163418200_B173 article-title: Chymase mediates angiotensin-(1-12) metabolism in normal human hearts publication-title: J. Am. Soc. Hypertens. doi: 10.1016/j.jash.2012.12.003 – volume: 41 start-page: 2067 year: 2020 ident: 2021113011163418200_B162 article-title: Renin-angiotensin system inhibitors in the COVID-19 pandemic: consequences of antihypertensive drugs publication-title: Eur. Heart J. doi: 10.1093/eurheartj/ehaa487 – volume: 16 start-page: 157 year: 2010 ident: 2021113011163418200_B82 article-title: Plasma ACE2 activity is an independent prognostic marker in Chagas’ disease and equally potent as BNP publication-title: J. Card. Fail. doi: 10.1016/j.cardfail.2009.09.005 – volume: 203 start-page: 631 year: 2004 ident: 2021113011163418200_B65 article-title: Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis publication-title: J. Pathol. doi: 10.1002/path.1570 – volume: 29 start-page: 865 year: 2006 ident: 2021113011163418200_B97 article-title: Olmesartan is an angiotensin II receptor blocker with an inhibitory effect on angiotensin-converting enzyme publication-title: Hypertens. Res. doi: 10.1291/hypres.29.865 – volume: 47 start-page: 515 year: 2006 ident: 2021113011163418200_B36 article-title: Angiotensin-converting enzyme 2 and angiotensin-: an evolving story in cardiovascular regulation publication-title: Hypertension doi: 10.1161/01.HYP.0000196268.08909.fb – volume: 9 start-page: 1716 year: 1998 ident: 2021113011163418200_B177 article-title: Novel angiotensin peptides regulate blood pressure, endothelial function, and natriuresis publication-title: J. Am. Soc. Nephrol. doi: 10.1681/ASN.V991716 – volume: 10 start-page: 464 year: 2008 ident: 2021113011163418200_B133 article-title: Is hypertension an immunologic disease? publication-title: Curr. Cardiol. Rep. doi: 10.1007/s11886-008-0073-6 – volume: 8 start-page: e67868 year: 2013 ident: 2021113011163418200_B195 article-title: Interleukin-6 mediates angiotensinogen gene expression during liver regeneration publication-title: PLoS ONE doi: 10.1371/journal.pone.0067868 – volume: 395 start-page: 1671 year: 2020 ident: 2021113011163418200_B163 article-title: Hypertension, renin-angiotensin-aldosterone system inhibition, and COVID-19 publication-title: Lancet doi: 10.1016/S0140-6736(20)31131-4 – year: 2020 ident: 2021113011163418200_B164 article-title: Association of angiotensin-converting enzyme inhibitor or angiotensin receptor blocker use with COVID-19 diagnosis and mortality publication-title: JAMA doi: 10.1001/jama.2020.11301 – volume: 91 start-page: 1129 year: 1995 ident: 2021113011163418200_B147 article-title: Evidence that angiotensin II is present in human monocytes publication-title: Circulation doi: 10.1161/01.CIR.91.4.1129 – volume: 51 start-page: 1170 year: 2008 ident: 2021113011163418200_B22 article-title: Sex differences in the pressor response to angiotensin II when the endogenous renin-angiotensin system is blocked publication-title: Hypertension doi: 10.1161/HYPERTENSIONAHA.107.106922 – volume: 15 start-page: 565 year: 2009 ident: 2021113011163418200_B117 article-title: Soluble angiotensin-converting enzyme 2 in human heart failure: relation with myocardial function and clinical outcomes publication-title: J. Card. Fail. doi: 10.1016/j.cardfail.2009.01.014 – volume: 30 start-page: 4623 issue: 11 year: 2020 ident: 2021113011163418200_B124 article-title: Recommendations to manage patients for bariatric surgery in the COVID-19 pandemic: experience from China publication-title: Obes. Surg. doi: 10.1007/s11695-020-04741-8 – volume: 115 start-page: 766 year: 2020 ident: 2021113011163418200_B160 article-title: Clinical characteristics of COVID-19 patients with digestive symptoms in Hubei, China: a descriptive, cross-sectional, multicenter study publication-title: Am. J. Gastroenterol. doi: 10.14309/ajg.0000000000000620 – volume: 426 start-page: 450 year: 2003 ident: 2021113011163418200_B3 article-title: Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus publication-title: Nature doi: 10.1038/nature02145 – volume: 74 start-page: 1610 year: 2008 ident: 2021113011163418200_B81 article-title: Decreased glomerular and tubular expression of ACE2 in patients with type 2 diabetes and kidney disease publication-title: Kidney Int. doi: 10.1038/ki.2008.497 – volume: 290 start-page: C420 year: 2006 ident: 2021113011163418200_B87 article-title: Distinct roles for ANG II and ANG-(1-7) in the regulation of angiotensin-converting enzyme 2 in rat astrocytes publication-title: Am. J. Physiol. Cell Physiol. doi: 10.1152/ajpcell.00409.2004 – volume: 166 start-page: 90 year: 2011 ident: 2021113011163418200_B99 article-title: Telmisartan attenuates aortic hypertrophy in hypertensive rats by the modulation of ACE2 and profilin-1 expression publication-title: Regul. Pept. doi: 10.1016/j.regpep.2010.09.005 – volume: 34 start-page: 380 year: 2012 ident: 2021113011163418200_B90 article-title: Angiotensin-(1-7) abrogates mitogen-stimulated proliferation of cardiac fibroblasts publication-title: Peptides doi: 10.1016/j.peptides.2012.01.020 – volume: 298 start-page: F1523 year: 2010 ident: 2021113011163418200_B105 article-title: Effect of ACE2 and angiotensin-(1-7) in a mouse model of early chronic kidney disease publication-title: Am. J. Physiol. Renal Physiol. doi: 10.1152/ajprenal.00426.2009 – volume: 43 start-page: 970 year: 2004 ident: 2021113011163418200_B92 article-title: Upregulation of angiotensin-converting enzyme 2 after myocardial infarction by blockade of angiotensin II receptors publication-title: Hypertension doi: 10.1161/01.HYP.0000124667.34652.1a – volume: 75 start-page: 421 year: 2015 ident: 2021113011163418200_B76 article-title: Urinary ACE2 is associated with urinary L-FABP and albuminuria in patients with chronic kidney disease publication-title: Scand. J. Clin. Lab. Invest. doi: 10.3109/00365513.2015.1054871 – volume: 30 start-page: 535 year: 1997 ident: 2021113011163418200_B33 article-title: Counterregulatory actions of angiotensin-(1-7) publication-title: Hypertension doi: 10.1161/01.HYP.30.3.535 – volume: 27 start-page: 200 year: 2006 ident: 2021113011163418200_B67 article-title: Distribution of angiotensin-(1-7) and ACE2 in human placentas of normal and pathological pregnancies publication-title: Placenta doi: 10.1016/j.placenta.2005.02.015 – volume: 323 start-page: 1574 year: 2020 ident: 2021113011163418200_B17 article-title: Baseline characteristics and outcomes of 1591 patients infected with SARS-CoV-2 admitted to ICUs of the Lombardy region, Italy publication-title: JAMA doi: 10.1001/jama.2020.5394 – volume: 91 start-page: 1336 year: 2017 ident: 2021113011163418200_B110 article-title: Angiotensin-converting enzyme 2 amplification limited to the circulation does not protect mice from development of diabetic nephropathy publication-title: Kidney Int. doi: 10.1016/j.kint.2016.09.032 – volume: 18 start-page: 224 year: 2006 ident: 2021113011163418200_B120 article-title: Study on up-regulation of the expression of angiotensin-converting enzyme-2 in human umbilical vein endothelial cells by telmisartan publication-title: Zhongguo Wei Zhong Bing Ji Jiu Yi Xue – volume: 13 start-page: 224 year: 2014 ident: 2021113011163418200_B34 article-title: ACE and ACE2 in inflammation: a tale of two enzymes publication-title: Inflamm. Allergy Drug Targets doi: 10.2174/1871528113666140713164506 – volume: 93 start-page: 622 year: 2008 ident: 2021113011163418200_B165 article-title: Acute kidney injury in the rat causes cardiac remodelling and increases angiotensin-converting enzyme 2 expression publication-title: Exp. Physiol. doi: 10.1113/expphysiol.2007.040386 – volume: 289 start-page: H2281 year: 2005 ident: 2021113011163418200_B32 article-title: Advances in biochemical and functional roles of angiotensin-converting enzyme 2 and angiotensin-(1-7) in regulation of cardiovascular function publication-title: Am. J. Physiol. Heart Circ. Physiol. doi: 10.1152/ajpheart.00618.2005 – volume: 94 start-page: 21 year: 2014 ident: 2021113011163418200_B107 article-title: Comparative effects of a novel angiotensin-converting enzyme inhibitor versus captopril on plasma angiotensins after myocardial infarction publication-title: Pharmacology doi: 10.1159/000365093 – year: 2020 ident: 2021113011163418200_B26 article-title: New spectrum of COVID-19 manifestations in children: Kawasaki-like syndrome and hyperinflammatory response publication-title: Cleve. Clin. J. Med. doi: 10.3949/ccjm.87a.ccc039 – volume: 31 start-page: 362 year: 1998 ident: 2021113011163418200_B174 article-title: Metabolism of angiotensin-(1-7) by angiotensin-converting enzyme publication-title: Hypertension doi: 10.1161/01.HYP.31.1.362 – volume: 581 start-page: 519 year: 2006 ident: 2021113011163418200_B7 article-title: Identification of ferret ACE2 and its receptor function for SARS-coronavirus publication-title: Adv. Exp. Med. Biol. doi: 10.1007/978-0-387-33012-9_93 – volume: 118 start-page: 269 year: 2010 ident: 2021113011163418200_B101 article-title: Reduction in renal ACE2 expression in subtotal nephrectomy in rats is ameliorated with ACE inhibition publication-title: Clin. Sci. (Lond.) doi: 10.1042/CS20090318 – volume: 114 start-page: 85 year: 2008 ident: 2021113011163418200_B23 article-title: Endothelin, sex and hypertension publication-title: Clin. Sci. (Lond.) doi: 10.1042/CS20070169 – volume: 76 start-page: 389 issue: 2 year: 2020 ident: 2021113011163418200_B127 article-title: Comparative impacts of angiotensin converting enzyme inhibitors versus angiotensin II receptor blockers on the risk of COVID-19 mortality publication-title: Hypertension doi: 10.1161/HYPERTENSIONAHA.120.15622 – volume: 17 start-page: 313 issue: 5 year: 2020 ident: 2021113011163418200_B41 article-title: Reply to: ‘Interaction between RAAS inhibitors and ACE2 in the context of COVID-19’ publication-title: Nat. Rev. Cardiol. doi: 10.1038/s41569-020-0369-9 – volume: 123 start-page: 519 year: 2012 ident: 2021113011163418200_B74 article-title: Interaction of diabetes and ACE2 in the pathogenesis of cardiovascular disease in experimental diabetes publication-title: Clin. Sci. (Lond.) doi: 10.1042/CS20110668 – volume: 19 start-page: 260 year: 2005 ident: 2021113011163418200_B4 article-title: Cloning of ACE-2 gene encoding the functional receptor for the SARS coronavirus and its expression in eukaryotic cells publication-title: Zhonghua Shi Yan He Lin Chuang Bing Du Xue Za Zhi – volume: 29 start-page: 254 year: 2005 ident: 2021113011163418200_B8 article-title: A molecular docking model of SARS-CoV S1 protein in complex with its receptor, human ACE2 publication-title: Comput. Biol. Chem. doi: 10.1016/j.compbiolchem.2005.04.008 – year: 2020 ident: 2021113011163418200_B62 article-title: Dynorphin and Enkephalin opioid peptides and transcripts in spinal cord and dorsal root ganglion during peripheral inflammatory hyperalgesia and allodynia publication-title: J. Pain doi: 10.1016/j.jpain.2020.01.001 – volume: 8 start-page: 1443 year: 2006 ident: 2021113011163418200_B149 article-title: NADPH oxidases: new regulators of old functions publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2006.8.1443 – volume: 13 start-page: 1231 year: 2007 ident: 2021113011163418200_B66 article-title: The two fACEs of the tissue renin-angiotensin systems: implication in cardiovascular diseases publication-title: Curr. Pharm. Des. doi: 10.2174/138161207780618911 – volume: 300 start-page: F749 year: 2011 ident: 2021113011163418200_B80 article-title: Reciprocal changes in renal ACE/ANG II and ACE2/ANG 1-7 are associated with enhanced collecting duct renin in Goldblatt hypertensive rats publication-title: Am. J. Physiol. Renal Physiol. doi: 10.1152/ajprenal.00383.2009 – volume: 57 start-page: 314 year: 2011 ident: 2021113011163418200_B155 article-title: Prevention of angiotensin II-mediated renal oxidative stress, inflammation, and fibrosis by angiotensin-converting enzyme 2 publication-title: Hypertension doi: 10.1161/HYPERTENSIONAHA.110.164244 – volume: 1527 start-page: 101 year: 2017 ident: 2021113011163418200_B53 article-title: Measurement of angiotensin converting enzyme 2 activity in biological fluid (ACE2) publication-title: Methods Mol. Biol. doi: 10.1007/978-1-4939-6625-7_8 – volume: 306 start-page: 17 year: 2016 ident: 2021113011163418200_B59 article-title: Activation of angiotensin-converting enzyme 2 (ACE2) attenuates allergic airway inflammation in rat asthma model publication-title: Toxicol. Appl. Pharmacol. doi: 10.1016/j.taap.2016.06.026 – volume: 35 start-page: 625 year: 2007 ident: 2021113011163418200_B119 article-title: Effects of angiotensin converting enzyme inhibitor on the expression of angiotensin converting enzyme 2 in atrium of patients with atrial fibrillation publication-title: Zhonghua Xin Xue Guan Bing Za Zhi – volume: 80 start-page: 346 year: 2002 ident: 2021113011163418200_B12 article-title: ACEH/ACE2 is a novel mammalian metallocarboxypeptidase and a homologue of angiotensin-converting enzyme insensitive to ACE inhibitors publication-title: Can. J. Physiol. Pharmacol. doi: 10.1139/y02-021 – volume: 31 start-page: 553 year: 2008 ident: 2021113011163418200_B95 article-title: Increased expression of angiotensin converting enzyme 2 in conjunction with reduction of neointima by angiotensin II type 1 receptor blockade publication-title: Hypertens. Res. doi: 10.1291/hypres.31.553 – volume: 119 start-page: 333 year: 2020 ident: 2021113011163418200_B83 article-title: Renin angiotensin system molecules and nitric oxide local interactions in the adrenal gland of Trypanosoma cruzi infected rats publication-title: Parasitol. Res. doi: 10.1007/s00436-019-06485-6 – volume: 46 start-page: 239 year: 2016 ident: 2021113011163418200_B157 article-title: Pulmonary angiotensin-converting enzyme 2 (ACE2) and inflammatory lung disease publication-title: Shock doi: 10.1097/SHK.0000000000000633 – volume: 383 start-page: 45 year: 2004 ident: 2021113011163418200_B10 article-title: Evaluation of angiotensin-converting enzyme (ACE), its homologue ACE2 and neprilysin in angiotensin peptide metabolism publication-title: Biochem. J. doi: 10.1042/BJ20040634 – volume: 90 start-page: 783 year: 2005 ident: 2021113011163418200_B69 article-title: Protection from angiotensin II-induced cardiac hypertrophy and fibrosis by systemic lentiviral delivery of ACE2 in rats publication-title: Exp. Physiol. doi: 10.1113/expphysiol.2005.031096 – volume: 382 start-page: e102 year: 2020 ident: 2021113011163418200_B128 article-title: Cardiovascular disease, drug therapy, and mortality in Covid-19 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMc2021225 – volume: 19 start-page: II49 year: 1992 ident: 2021113011163418200_B185 article-title: Stimulation of endothelial cell prostaglandin production by angiotensin peptides. Characterization of receptors publication-title: Hypertension doi: 10.1161/01.HYP.19.2_Suppl.II49 – volume: 126 start-page: 461 year: 2014 ident: 2021113011163418200_B180 article-title: An evolving story of angiotensin-II-forming pathways in rodents and humans publication-title: Clin. Sci. (Lond.) doi: 10.1042/CS20130400 – volume: 37 start-page: 1141 year: 2001 ident: 2021113011163418200_B183 article-title: Angiotensin-(1-7) downregulates the angiotensin II type 1 receptor in vascular smooth muscle cells publication-title: Hypertension doi: 10.1161/01.HYP.37.4.1141 – volume: 31 start-page: 820.2 year: 2017 ident: 2021113011163418200_B60 article-title: Apelin increases airway reactivity and inflammation in a mouse model of asthma publication-title: FASEB J. doi: 10.1096/fasebj.31.1_supplement.820.2 – volume: 76 start-page: e1 year: 2020 ident: 2021113011163418200_B86 article-title: Gnotobiotic rats reveal that gut microbiota regulates colonic mRNA of Ace2, the receptor for SARS-CoV-2 infectivity publication-title: Hypertension doi: 10.1161/HYPERTENSIONAHA.120.15360 – volume: 122 start-page: 717 year: 2010 ident: 2021113011163418200_B154 article-title: Angiotensin-converting enzyme 2 suppresses pathological hypertrophy, myocardial fibrosis, and cardiac dysfunction publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.110.955369 – volume: 15 start-page: 377 year: 2013 ident: 2021113011163418200_B193 article-title: Dysfunctional brain-bone marrow communication: a paradigm shift in the pathophysiology of hypertension publication-title: Curr. Hypertens. Rep. doi: 10.1007/s11906-013-0361-4 – volume: 8 start-page: e21 issue: 4 year: 2020 ident: 2021113011163418200_B31 article-title: Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? publication-title: Lancet Respir. Med. doi: 10.1016/S2213-2600(20)30116-8 – volume: 43 start-page: 395 year: 2015 ident: 2021113011163418200_B102 article-title: Angiotensin-converting enzyme inhibition attenuates lipopolysaccharide-induced lung injury by regulating the balance between angiotensin-converting enzyme and angiotensin-converting enzyme 2 and inhibiting mitogen-activated protein kinase activation publication-title: Shock doi: 10.1097/SHK.0000000000000302 – volume: 136 start-page: 2284 year: 2017 ident: 2021113011163418200_B199 article-title: Increased inflammation in pericardial fluid persists 48 hours after cardiac surgery publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.117.029589 – volume: 8 start-page: 194 year: 2007 ident: 2021113011163418200_B19 article-title: Identification and characterisation of the angiotensin converting enzyme-3 (ACE3) gene: a novel mammalian homologue of ACE publication-title: BMC Genomics doi: 10.1186/1471-2164-8-194 – volume: 11 start-page: 150 year: 2011 ident: 2021113011163418200_B72 article-title: ACE2, a promising therapeutic target for pulmonary hypertension publication-title: Curr. Opin. Pharmacol. doi: 10.1016/j.coph.2010.12.002 – volume: 126 start-page: 1671 year: 2020 ident: 2021113011163418200_B126 article-title: Association of inpatient use of angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers with mortality among patients with hypertension hospitalized with COVID-19 publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.120.317134 – volume: 1 start-page: 93 year: 1964 ident: 2021113011163418200_B142 article-title: Autoimmune factors associated with infarction of the kidney publication-title: Nephron doi: 10.1159/000179322 – volume: 350 start-page: 15 year: 2006 ident: 2021113011163418200_B2 article-title: Identification of critical determinants on ACE2 for SARS-CoV entry and development of a potent entry inhibitor publication-title: Virology doi: 10.1016/j.virol.2006.01.029 – volume: 36 start-page: 109 year: 2000 ident: 2021113011163418200_B184 article-title: Evidence that prostaglandins mediate the antihypertensive actions of angiotensin-(1-7) during chronic blockade of the renin-angiotensin system publication-title: J. Cardiovasc. Pharmacol. doi: 10.1097/00005344-200007000-00015 – volume: 22 start-page: 62 year: 2020 ident: 2021113011163418200_B18 article-title: Is sex a determinant of COVID-19 infection? Truth or myth? publication-title: Curr. Hypertens. Rep. doi: 10.1007/s11906-020-01073-x – volume: 4 start-page: 1021 year: 2020 ident: 2021113011163418200_B14 article-title: COVID-19-associated cardiovascular morbidity in older adults: a position paper from the Italian Society of Cardiovascular Researches publication-title: Geroscience doi: 10.1007/s11357-020-00198-w – volume: 18 start-page: 1517 year: 2020 ident: 2021113011163418200_B27 article-title: Pathological evidence of pulmonary thrombotic phenomena in severe COVID-19 publication-title: J. Thromb. Haemost. doi: 10.1111/jth.14844 – volume: 112 start-page: 914 year: 2019 ident: 2021113011163418200_B153 article-title: Angiotensin-converting enzyme 2 attenuates inflammatory response and oxidative stress in hyperoxic lung injury by regulating NF-kappaB and Nrf2 pathways publication-title: QJM doi: 10.1093/qjmed/hcz206 – volume: 8 start-page: 939 year: 1987 ident: 2021113011163418200_B44 article-title: Characterization by high performance liquid chromatography of angiotensin peptides in the plasma and cerebrospinal fluid of the dog publication-title: Peptides doi: 10.1016/0196-9781(87)90084-2 – volume: 2 start-page: 73 year: 2005 ident: 2021113011163418200_B1 article-title: The SARS coronavirus S glycoprotein receptor binding domain: fine mapping and functional characterization publication-title: Virol. J doi: 10.1186/1743-422X-2-73 – volume: 75 start-page: 3184 year: 2020 ident: 2021113011163418200_B28 article-title: COVID-19, clinical trials and QT-prolonging prophylactic therapy in healthy subjects: first, do no harm publication-title: J. Am. Coll. Cardiol. doi: 10.1016/j.jacc.2020.05.008 – volume: 288 start-page: F353 year: 2005 ident: 2021113011163418200_B115 article-title: The role of angiotensin converting enzyme 2 in the generation of angiotensin 1-7 by rat proximal tubules publication-title: Am. J. Physiol. Renal Physiol. doi: 10.1152/ajprenal.00144.2004 – volume: 24 start-page: 799 year: 2017 ident: 2021113011163418200_B191 article-title: Renin angiotensin system and cytokines in chronic kidney disease: clinical and experimental evidence publication-title: Protein Pept. Lett. doi: 10.2174/0929866524666170818160809 – volume: 25 start-page: 1822 year: 2019 ident: 2021113011163418200_B131 article-title: Chronic inflammation in the etiology of disease across the life span publication-title: Nat. Med. doi: 10.1038/s41591-019-0675-0 – volume: S0210-569 start-page: 30272 year: 2020 ident: 2021113011163418200_B161 article-title: SEDAR-SEMICYUC consensus recommendations on the management of haemostasis disorders in severely ill patients with COVID-19 infection publication-title: Rev. Esp. Anestesiol. Reanim. – volume: 26 start-page: 369 year: 2005 ident: 2021113011163418200_B52 article-title: Myocardial infarction increases ACE2 expression in rat and humans publication-title: Eur. Heart J. doi: 10.1093/eurheartj/ehi114 – volume: 291 start-page: H2166 year: 2006 ident: 2021113011163418200_B93 article-title: Effect of angiotensin II blockade on a new congenic model of hypertension derived from transgenic Ren-2 rats publication-title: Am. J. Physiol. Heart Circ. Physiol. doi: 10.1152/ajpheart.00061.2006 – volume: 264 start-page: 16518 year: 1989 ident: 2021113011163418200_B43 article-title: Identification of angiotensin-(1-7) in rat brain. Evidence for differential processing of angiotensin peptides publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)84737-3 – volume: 102 start-page: 14040 year: 2005 ident: 2021113011163418200_B13 article-title: Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0506735102 – volume: 11 start-page: I153 year: 1988 ident: 2021113011163418200_B46 article-title: Converting enzyme activity and angiotensin metabolism in the dog brainstem publication-title: Hypertension doi: 10.1161/01.HYP.11.2_Pt_2.I153 – volume: 7 start-page: e40110 year: 2012 ident: 2021113011163418200_B181 article-title: Cardiac kallikrein-kinin system is upregulated in chronic volume overload and mediates an inflammatory induced collagen loss publication-title: PLoS ONE doi: 10.1371/journal.pone.0040110 – volume: 126 start-page: 120 year: 2004 ident: 2021113011163418200_B144 article-title: Renin-angiotensin system expression in rat bone marrow haematopoietic and stromal cells publication-title: Br. J. Haematol. doi: 10.1111/j.1365-2141.2004.04998.x – volume: 280 start-page: 30113 year: 2005 ident: 2021113011163418200_B56 article-title: Tumor necrosis factor-alpha convertase (ADAM17) mediates regulated ectodomain shedding of the severe-acute respiratory syndrome-coronavirus (SARS-CoV) receptor, angiotensin-converting enzyme-2 (ACE2) publication-title: J. Biol. Chem. doi: 10.1074/jbc.M505111200 – volume: 66 start-page: 540 year: 2015 ident: 2021113011163418200_B85 article-title: ACE2 and microbiota: emerging targets for cardiopulmonary disease therapy publication-title: J. Cardiovasc. Pharmacol. doi: 10.1097/FJC.0000000000000307 – volume: 21 start-page: 267 year: 1998 ident: 2021113011163418200_B114 article-title: Role of nitric oxide in the evolution of renal ischemia in two-kidney, one-clip renovascular hypertension publication-title: Hypertens. Res. doi: 10.1291/hypres.21.267 – volume: 75 start-page: 500 year: 2020 ident: 2021113011163418200_B145 article-title: Noncanonical mechanisms for direct bone marrow generating Ang II (Angiotensin II) predominate in CD68 positive myeloid lineage cells publication-title: Hypertension doi: 10.1161/HYPERTENSIONAHA.119.13754 – volume: 95 start-page: 737 year: 1980 ident: 2021113011163418200_B137 article-title: Lymphoid alterations and impaired T lymphocyte reactivity in experimental renal hypertension publication-title: J. Lab. Clin. Med. – volume: 204 start-page: 2449 year: 2007 ident: 2021113011163418200_B143 article-title: Role of the T cell in the genesis of angiotensin II induced hypertension and vascular dysfunction publication-title: J. Exp. Med. doi: 10.1084/jem.20070657 – volume: 20 start-page: 259 year: 2020 ident: 2021113011163418200_B61 article-title: Dynorphins in development and disease: implications for cardiovascular disease publication-title: Curr. Mol. Med. doi: 10.2174/1566524019666191028122559 – volume: 10 start-page: 107 year: 1988 ident: 2021113011163418200_B45 article-title: A hypothesis regarding the function of angiotensin peptides in the brain publication-title: Clin. Exp. Hypertens. A – volume: 45 start-page: 141s year: 1973 ident: 2021113011163418200_B140 article-title: The thymus of spontaneously hypertensive rats: light-and electron-microscopic studies publication-title: Clin. Sci. Mol. Med. Suppl. – volume: 275 start-page: 33238 year: 2000 ident: 2021113011163418200_B9 article-title: A human homolog of angiotensin-converting enzyme. Cloning and functional expression as a captopril-insensitive carboxypeptidase publication-title: J. Biol. Chem. doi: 10.1074/jbc.M002615200 – volume: 42 start-page: 574 year: 2003 ident: 2021113011163418200_B187 article-title: Molecular mechanisms of inhibition of vascular growth by angiotensin-(1-7) publication-title: Hypertension doi: 10.1161/01.HYP.0000090322.55782.30 – volume: 16 start-page: 567 year: 2011 ident: 2021113011163418200_B79 article-title: Urinary angiotensin-converting enzyme 2 in patients with CKD publication-title: Nephrology (Carlton) doi: 10.1111/j.1440-1797.2011.01467.x – volume: 8 start-page: e35 year: 2020 ident: 2021113011163418200_B63 article-title: Prevalence of underlying diseases in hospitalized patients with COVID-19: a systematic review and meta-analysis publication-title: Arch. Acad. Emerg. Med. – volume: 42 start-page: 749 year: 2003 ident: 2021113011163418200_B68 article-title: Enhanced renal immunocytochemical expression of ANG-(1-7) and ACE2 during pregnancy publication-title: Hypertension doi: 10.1161/01.HYP.0000085220.53285.11 – volume: 253 start-page: 135 year: 2016 ident: 2021113011163418200_B77 article-title: Circulating angiotensin converting enzyme 2 activity as a biomarker of silent atherosclerosis in patients with chronic kidney disease publication-title: Atherosclerosis doi: 10.1016/j.atherosclerosis.2016.08.032 – volume: 6 start-page: 1097 year: 2020 ident: 2021113011163418200_B15 article-title: The ACE2 expression in human heart indicates new potential mechanism of heart injury among patients infected with SARS-CoV-2 publication-title: Cardiovasc. Res. doi: 10.1093/cvr/cvaa078 – volume: 62 start-page: 1349 year: 2002 ident: 2021113011163418200_B176 article-title: Vasopeptidase inhibition and Ang-(1-7) in the spontaneously hypertensive rat publication-title: Kidney Int. doi: 10.1111/j.1523-1755.2002.kid559.x – volume: 75 start-page: 1382 issue: 6 year: 2020 ident: 2021113011163418200_B111 article-title: Renin-angiotensin system blockers and the COVID-19 pandemic: at present there is no evidence to abandon renin-angiotensin system blockers publication-title: Hypertension doi: 10.1161/HYPERTENSIONAHA.120.15082 – volume: 308 start-page: F1197 year: 2015 ident: 2021113011163418200_B194 article-title: Memories that last in hypertension publication-title: Am. J. Physiol. Renal Physiol. doi: 10.1152/ajprenal.00633.2014 – volume: 90 start-page: 491 year: 2004 ident: 2021113011163418200_B148 article-title: Novel NAD(P)H oxidases in the cardiovascular system publication-title: Heart doi: 10.1136/hrt.2003.029397 – volume: 6 start-page: e15759 year: 2011 ident: 2021113011163418200_B172 article-title: Uptake and metabolism of the novel peptide angiotensin-(1-12) by neonatal cardiac myocytes publication-title: PLoS ONE doi: 10.1371/journal.pone.0015759 – volume: 63 start-page: 364 year: 2020 ident: 2021113011163418200_B121 article-title: Clinical and biochemical indexes from 2019-nCoV infected patients linked to viral loads and lung injury publication-title: Sci. China Life Sci. doi: 10.1007/s11427-020-1643-8 – volume: 59 start-page: 197 year: 2010 ident: 2021113011163418200_B175 article-title: Advances in the renin angiotensin system focus on angiotensin-converting enzyme 2 and angiotensin-(1-7) publication-title: Adv. Pharmacol. doi: 10.1016/S1054-3589(10)59007-0 – volume: 17 start-page: 250 year: 2008 ident: 2021113011163418200_B158 article-title: New aspects of the renin-angiotensin system: angiotensin-converting enzyme 2 - a potential target for treatment of hypertension and diabetic nephropathy publication-title: Curr. Opin. Nephrol. Hypertens. doi: 10.1097/MNH.0b013e3282f945c2 – volume: 35 start-page: 480 year: 2000 ident: 2021113011163418200_B20 article-title: Gender differences in development of hypertension in spontaneously hypertensive rats: role of the renin-angiotensin system publication-title: Hypertension doi: 10.1161/01.HYP.35.1.480 – volume: 6 start-page: 14 issue: 2 year: 2019 ident: 2021113011163418200_B179 article-title: An update on the tissue renin angiotensin system and its role in physiology and pathology publication-title: J. Cardiovasc. Dev. Dis. doi: 10.3390/jcdd6020014 – volume: 9 start-page: e103909 year: 2014 ident: 2021113011163418200_B113 article-title: Statin treatment in hypercholesterolemic men does not attenuate angiotensin II-induced venoconstriction publication-title: PLoS ONE doi: 10.1371/journal.pone.0103909 – volume: 81 start-page: 775 year: 1973 ident: 2021113011163418200_B138 article-title: Raised levels of immunoglobulins in serum of hypertensive patients publication-title: Acta Pathol. Microbiol. Scand. B Microbiol. Immunol. – volume: 75 start-page: 29 year: 2007 ident: 2021113011163418200_B189 article-title: Angiotensin II-mediated oxidative stress and inflammation mediate the age-dependent cardiomyopathy in ACE2 null mice publication-title: Cardiovasc. Res. doi: 10.1016/j.cardiores.2007.04.007 – volume: 11 start-page: 44 year: 2004 ident: 2021113011163418200_B196 article-title: Renin-angiotensin system as a therapeutic target in managing atherosclerosis publication-title: Am. J. Ther. doi: 10.1097/00045391-200401000-00010 – volume: 111 start-page: 2605 year: 2005 ident: 2021113011163418200_B54 article-title: Effect of angiotensin-converting enzyme inhibition and angiotensin II receptor blockers on cardiac angiotensin-converting enzyme 2 publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.104.510461 – volume: 93 start-page: 631 year: 2008 ident: 2021113011163418200_B108 article-title: Differential regulation of renal angiotensin-converting enzyme (ACE) and ACE2 during ACE inhibition and dietary sodium restriction in healthy rats publication-title: Exp. Physiol. doi: 10.1113/expphysiol.2007.041855 – volume: 294 start-page: 95 year: 2015 ident: 2021113011163418200_B192 article-title: Sex-specific immune modulation of primary hypertension publication-title: Cell. Immunol. doi: 10.1016/j.cellimm.2014.12.001 – volume: 47 start-page: 693 year: 2015 ident: 2021113011163418200_B159 article-title: Human intestine luminal ACE2 and amino acid transporter expression increased by ACE-inhibitors publication-title: Amino Acids doi: 10.1007/s00726-014-1889-6 – volume: 1689 start-page: 175 year: 2004 ident: 2021113011163418200_B57 article-title: Interaction of ACE2 and integrin beta1 in failing human heart publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbadis.2004.05.005 – volume: 296 start-page: F398 year: 2009 ident: 2021113011163418200_B104 article-title: Localization of ACE2 in the renal vasculature: amplification by angiotensin II type 1 receptor blockade using telmisartan publication-title: Am. J. Physiol. Renal Physiol. doi: 10.1152/ajprenal.90488.2008 – volume: 369 start-page: m2094 year: 2020 ident: 2021113011163418200_B25 article-title: Kawasaki-like multisystem inflammatory syndrome in children during the covid-19 pandemic in Paris, France: prospective observational study publication-title: BMJ doi: 10.1136/bmj.m2094 – volume: 31 start-page: 1941 year: 2020 ident: 2021113011163418200_B109 article-title: Kidney and lung ACE2 expression after an ACE inhibitor or an Ang II receptor blocker: implications for COVID-19 publication-title: J. Am. Soc. Nephrol. doi: 10.1681/ASN.2020050667 – volume: 16 start-page: 1973 year: 2017 ident: 2021113011163418200_B98 article-title: The ACE2-Ang (1-7)-Mas receptor axis attenuates cardiac remodeling and fibrosis in post-myocardial infarction publication-title: Mol. Med. Rep. doi: 10.3892/mmr.2017.6848 – volume: 85 start-page: 539 year: 1977 ident: 2021113011163418200_B141 article-title: The importance of thymus in the pathogenesis of the chronic phase of hypertension in mice following partial infarction of the kidney publication-title: Acta Pathol. Microbiol. Scand. A – year: 2020 ident: 2021113011163418200_B123 article-title: COVID-19: AHA Guidance on Hypertension, Latest on Angiotensin Link 2020 publication-title: Medscape Medical News – volume: 25 year: 2020 ident: 2021113011163418200_B24 article-title: SARS-CoV-2-related paediatric inflammatory multisystem syndrome, an epidemiological study, France, 1 March to 17 May 2020 publication-title: Euro Surveill. doi: 10.2807/1560-7917.ES.2020.25.22.2001010 – volume: 126 start-page: e142 year: 2020 ident: 2021113011163418200_B125 article-title: Response by Zhang et al to Letter regarding article, “Association of Inpatient Use of Angiotensin-Converting Enzyme Inhibitors and Angiotensin II Receptor Blockers With Mortality Among Patients With Hypertension Hospitalized With COVID-19” publication-title: Circ. Res. – volume: 122 start-page: 319 year: 2018 ident: 2021113011163418200_B200 article-title: Multifunctional role of chymase in acute and chronic tissue injury and remodeling publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.117.310978 – volume: 37 issue: 3 year: 2020 ident: 2021113011163418200_B30 article-title: Hypothesis: angiotensin-converting enzyme inhibitors and angiotensin receptor blockers may increase the risk of severe COVID-19 publication-title: J. Travel Med. doi: 10.1093/jtm/taaa041 – volume: 32 start-page: 228 year: 2014 ident: 2021113011163418200_B135 article-title: Inflammation, immunity and development of essential hypertension publication-title: J. Hypertens. doi: 10.1097/HJH.0000000000000042 – volume: 61 start-page: 2704 year: 2004 ident: 2021113011163418200_B58 article-title: Angiotensin-converting enzyme-2: a molecular and cellular perspective publication-title: Cell. Mol. Life Sci. doi: 10.1007/s00018-004-4240-7 – volume: 302 start-page: F1374 year: 2012 ident: 2021113011163418200_B75 article-title: Differential regulation of circulating and renal ACE2 and ACE in hypertensive mRen2.Lewis rats with early-onset diabetes publication-title: Am. J. Physiol. Renal Physiol. doi: 10.1152/ajprenal.00656.2011 – volume: 4 start-page: 357 year: 2008 ident: 2021113011163418200_B112 article-title: Olmesartan for the treatment of arterial hypertension publication-title: Future Cardiol. doi: 10.2217/14796678.4.4.357 – volume: 126 start-page: 1456 year: 2020 ident: 2021113011163418200_B132 article-title: Angiotensin-converting enzyme 2: SARS-CoV-2 receptor and regulator of the renin-angiotensin system: celebrating the 20th anniversary of the discovery of ACE2 publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.120.317015 – volume: 28 start-page: 15 year: 2015 ident: 2021113011163418200_B118 article-title: Urinary angiotensin-converting enzyme 2 in hypertensive patients may be increased by olmesartan, an angiotensin II receptor blocker publication-title: Am. J. Hypertens. doi: 10.1093/ajh/hpu086 |
SSID | ssj0023232 |
Score | 2.38676 |
SecondaryResourceType | review_article |
Snippet | The virulence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and the aggressive nature of the disease has transformed the... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 2645 |
SubjectTerms | Angiotensin-Converting Enzyme 2 Angiotensin-Converting Enzyme Inhibitors - pharmacology Betacoronavirus - pathogenicity Coronavirus Infections - drug therapy Coronavirus Infections - enzymology Coronavirus Infections - virology COVID-19 Humans Pandemics Peptidyl-Dipeptidase A - drug effects Peptidyl-Dipeptidase A - metabolism Pneumonia, Viral - drug therapy Pneumonia, Viral - enzymology Pneumonia, Viral - virology SARS-CoV-2 Time Factors |
Title | Twenty years of progress in angiotensin converting enzyme 2 and its link to SARS-CoV-2 disease |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33063823 https://www.proquest.com/docview/2451859078 https://pubmed.ncbi.nlm.nih.gov/PMC9055624 |
Volume | 134 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FIiEuiDehgBZBDwg5rHfXr2MUUVVI4UBalBORvbumllobpY6q5Ncz-_CrzaFwsSI_Vk7my-w3s9_MIvRRAoUXkkQez3wJB0a8WATESxXxhRQkjc1eh_Pv4ckZ_7YMlqNRX7W0qbOJ2O2tK_kfq8I5sKuukv0Hy7aDwgn4DPaFI1gYjnez8TVMGdvPW0CrUWQYsZV2XYWWGP8uKiNPL620fG0EzqrcbS910rVZNNAruJqALqY_Ft6s-unRwaJN08RgUEApDDH1kyjpJRKOld4xvqicjOSiujqa0aMpmU9aUJ1fpk0aOk_X6a4T_4BXsTUQKi3dQr9LRUDcqZUd4SA7ySCytSXPE2U9Ko_A_La-oHO5LoHpsJX0PWho20u62Rj4A9_r6cHZ6A7CC_0eJHEJkUE77RvTXCs-NMvunK66Z--h-xSiDFMrvmwVQsA1zf527bdqutty-qV7dshnbgUpN7W2PfJy-hg9clEHnloIPUEjVT5FD-ZOV_EM_bJIwgZJuMpxgyRclLiHJNwhCVskYQrXJQYkYY0kXFe4QxJ2SHqOzo6_ns5OPLfzhidYFNeeyIXKswy4cxBmPKA5j7lIJFBDJcM0i6VggSQiVkTm4AR8nocQZ_BICMoUySP2Ah2UValeIRzlwKFTBWExD3nOVCIJy8ABpJmSPgw-Rp-a328lXFt6vTvKxeq2ncboQ3vvH9uMZe9d7xszrMBX6gWwtFTV5mpFeQD0NAFWPEYvrVnacRjT5J2yMYoGBmtv0H3Yh1fK4tz0Y090QyrKX9_p7Q7Rw-6v8wYd1OuNegu8ts7eGfT9BRiBn3Q |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Twenty+years+of+progress+in+angiotensin+converting+enzyme+2+and+its+link+to+SARS-CoV-2+disease&rft.jtitle=Clinical+science+%281979%29&rft.au=Ferrario%2C+Carlos%C2%A0M.&rft.au=Ahmad%2C+Sarfaraz&rft.au=Groban%2C+Leanne&rft.date=2020-10-16&rft.issn=0143-5221&rft.eissn=1470-8736&rft.volume=134&rft.issue=19&rft.spage=2645&rft.epage=2664&rft_id=info:doi/10.1042%2FCS20200901&rft.externalDBID=n%2Fa&rft.externalDocID=10_1042_CS20200901 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0143-5221&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0143-5221&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0143-5221&client=summon |