Benchmarking brain–computer interface algorithms: Riemannian approaches vs convolutional neural networks
Objective. To date, a comprehensive comparison of Riemannian decoding methods with deep convolutional neural networks for EEG-based brain–computer interfaces remains absent from published work. We address this research gap by using MOABB, The Mother Of All BCI Benchmarks, to compare novel convolutio...
Saved in:
Published in | Journal of neural engineering Vol. 21; no. 4; pp. 44002 - 44017 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
IOP Publishing
01.08.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Objective.
To date, a comprehensive comparison of Riemannian decoding methods with deep convolutional neural networks for EEG-based brain–computer interfaces remains absent from published work. We address this research gap by using MOABB, The Mother Of All BCI Benchmarks, to compare novel convolutional neural networks to state-of-the-art Riemannian approaches across a broad range of EEG datasets, including motor imagery, P300, and steady-state visual evoked potentials paradigms.
Approach.
We systematically evaluated the performance of convolutional neural networks, specifically EEGNet, shallow ConvNet, and deep ConvNet, against well-established Riemannian decoding methods using MOABB processing pipelines. This evaluation included within-session, cross-session, and cross-subject methods, to provide a practical analysis of model effectiveness and to find an overall solution that performs well across different experimental settings.
Main results.
We find no significant differences in decoding performance between convolutional neural networks and Riemannian methods for within-session, cross-session, and cross-subject analyses.
Significance.
The results show that, when using traditional Brain-Computer Interface paradigms, the choice between CNNs and Riemannian methods may not heavily impact decoding performances in many experimental settings. These findings provide researchers with flexibility in choosing decoding approaches based on factors such as ease of implementation, computational efficiency or individual preferences. |
---|---|
AbstractList | Objective.
To date, a comprehensive comparison of Riemannian decoding methods with deep convolutional neural networks for EEG-based brain–computer interfaces remains absent from published work. We address this research gap by using MOABB, The Mother Of All BCI Benchmarks, to compare novel convolutional neural networks to state-of-the-art Riemannian approaches across a broad range of EEG datasets, including motor imagery, P300, and steady-state visual evoked potentials paradigms.
Approach.
We systematically evaluated the performance of convolutional neural networks, specifically EEGNet, shallow ConvNet, and deep ConvNet, against well-established Riemannian decoding methods using MOABB processing pipelines. This evaluation included within-session, cross-session, and cross-subject methods, to provide a practical analysis of model effectiveness and to find an overall solution that performs well across different experimental settings.
Main results.
We find no significant differences in decoding performance between convolutional neural networks and Riemannian methods for within-session, cross-session, and cross-subject analyses.
Significance.
The results show that, when using traditional Brain-Computer Interface paradigms, the choice between CNNs and Riemannian methods may not heavily impact decoding performances in many experimental settings. These findings provide researchers with flexibility in choosing decoding approaches based on factors such as ease of implementation, computational efficiency or individual preferences. To date, a comprehensive comparison of Riemannian decoding methods with deep convolutional neural networks for EEG-based brain-computer interfaces remains absent from published work. We address this research gap by using MOABB, The Mother Of All BCI Benchmarks, to compare novel convolutional neural networks to state-of-the-art Riemannian approaches across a broad range of EEG datasets, including motor imagery, P300, and steady-state visual evoked potentials paradigms. We systematically evaluated the performance of convolutional neural networks, specifically EEGNet, shallow ConvNet, and deep ConvNet, against well-established Riemannian decoding methods using MOABB processing pipelines. This evaluation included within-session, cross-session, and cross-subject methods, to provide a practical analysis of model effectiveness and to find an overall solution that performs well across different experimental settings. We find no significant differences in decoding performance between convolutional neural networks and Riemannian methods for within-session, cross-session, and cross-subject analyses. The results show that, when using traditional Brain-Computer Interface paradigms, the choice between CNNs and Riemannian methods may not heavily impact decoding performances in many experimental settings. These findings provide researchers with flexibility in choosing decoding approaches based on factors such as ease of implementation, computational efficiency or individual preferences. Objective.To date, a comprehensive comparison of Riemannian decoding methods with deep convolutional neural networks for EEG-based brain-computer interfaces remains absent from published work. We address this research gap by using MOABB, The Mother Of All BCI Benchmarks, to compare novel convolutional neural networks to state-of-the-art Riemannian approaches across a broad range of EEG datasets, including motor imagery, P300, and steady-state visual evoked potentials paradigms.Approach.We systematically evaluated the performance of convolutional neural networks, specifically EEGNet, shallow ConvNet, and deep ConvNet, against well-established Riemannian decoding methods using MOABB processing pipelines. This evaluation included within-session, cross-session, and cross-subject methods, to provide a practical analysis of model effectiveness and to find an overall solution that performs well across different experimental settings.Main results.We find no significant differences in decoding performance between convolutional neural networks and Riemannian methods for within-session, cross-session, and cross-subject analyses.Significance.The results show that, when using traditional Brain-Computer Interface paradigms, the choice between CNNs and Riemannian methods may not heavily impact decoding performances in many experimental settings. These findings provide researchers with flexibility in choosing decoding approaches based on factors such as ease of implementation, computational efficiency or individual preferences.Objective.To date, a comprehensive comparison of Riemannian decoding methods with deep convolutional neural networks for EEG-based brain-computer interfaces remains absent from published work. We address this research gap by using MOABB, The Mother Of All BCI Benchmarks, to compare novel convolutional neural networks to state-of-the-art Riemannian approaches across a broad range of EEG datasets, including motor imagery, P300, and steady-state visual evoked potentials paradigms.Approach.We systematically evaluated the performance of convolutional neural networks, specifically EEGNet, shallow ConvNet, and deep ConvNet, against well-established Riemannian decoding methods using MOABB processing pipelines. This evaluation included within-session, cross-session, and cross-subject methods, to provide a practical analysis of model effectiveness and to find an overall solution that performs well across different experimental settings.Main results.We find no significant differences in decoding performance between convolutional neural networks and Riemannian methods for within-session, cross-session, and cross-subject analyses.Significance.The results show that, when using traditional Brain-Computer Interface paradigms, the choice between CNNs and Riemannian methods may not heavily impact decoding performances in many experimental settings. These findings provide researchers with flexibility in choosing decoding approaches based on factors such as ease of implementation, computational efficiency or individual preferences. |
Author | Xu, Jiachen Grosse-Wentrup, Moritz Eder, Manuel |
Author_xml | – sequence: 1 givenname: Manuel orcidid: 0009-0005-2799-082X surname: Eder fullname: Eder, Manuel organization: University of Vienna Research Group Neuroinformatics, Faculty of Computer Science, Vienna, Austria – sequence: 2 givenname: Jiachen orcidid: 0000-0002-9985-7447 surname: Xu fullname: Xu, Jiachen organization: University of Vienna Research Group Neuroinformatics, Faculty of Computer Science, Vienna, Austria – sequence: 3 givenname: Moritz orcidid: 0000-0001-9787-2291 surname: Grosse-Wentrup fullname: Grosse-Wentrup, Moritz organization: University of Vienna Vienna Cognitive Science Hub, Vienna, Austria |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39053485$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kbtOwzAUhi1URC-wM6GMDJTacWI7bFBxkyohoe6W6zit28QOdlLExjvwhjwJLm0ZkGDxsY6-_8j-Th90jDUKgFMELxFkbIRogoZxmsYjkROa4QPQ-2l1fu4EdkHf-yWEGNEMHoEuzmCKE5b2wPJGGbmohFtpM49mTmjz-f4hbVW3jXKRNuEshFSRKOfW6WZR-avoWatKGKOFiURdOyvkQvlo7SNpzdqWbaOtEWVkVOu-S_Nq3cofg8NClF6d7OoATO9up-OH4eTp_nF8PRlKTFkzlCpPZwklcRILnBQEsoxRTGhMSVKEjqSQyhjLDM-QJLlgKYMMFbkgEmcxxgNwvh0bHvbSKt_wSnupylIYZVvPMWQJpQjSJKBnO7SdVSrntdPBxBvf6wkA2QLSWe-dKrjUjdh8rwmmSo4g3-yBb0TzjXS-3UMIwl_B_ex_IhfbiLY1X9rWBYX-b_wL8dKZ3Q |
CODEN | JNEOBH |
CitedBy_id | crossref_primary_10_1016_j_neunet_2025_107124 |
Cites_doi | 10.1371/journal.pone.0140703 10.1007/978-3-642-15995-4_78 10.1080/2326263X.2021.2009654 10.1088/1741-2552/aaf12e 10.1109/iembs.1988.95357 10.5281/zenodo.3266930 10.1186/1471-2202-10-S1-P84 10.3389/fnhum.2013.00732 10.1088/1741-2560/8/3/036005 10.1016/j.neulet.2009.06.045 10.1088/1741-2552/ab5bb5 10.1038/nature04970 10.1016/j.neucom.2012.12.039 10.1109/TBME.2004.827072 10.1002/hbm.23730 10.1109/PROC.1977.10542 10.1038/s41586-019-1119-1 10.1109/5.939829 10.1088/1741-2552/aadea0 10.48550/arXiv.2212.10426 10.1088/1741-2552/aab2f2 10.1088/1741-2560/11/3/035008 10.3389/fnins.2012.00055 10.1109/TNSRE.2016.2628057 10.1109/TBME.2008.2009768 10.48550/arXiv.2202.12950 10.5281/zenodo.3266223 10.1109/TNSRE.2007.906956 10.48550/arXiv.1201.0490 10.48550/arXiv.2206.01323 10.48550/arXiv.1608.04233 10.1016/j.neucom.2016.01.007 10.1038/s41592-019-0470-3 10.1088/1741-2552/aace8c 10.1109/TBME.2017.2742541 |
ContentType | Journal Article |
Copyright | 2024 The Author(s). Published by IOP Publishing Ltd Creative Commons Attribution license. |
Copyright_xml | – notice: 2024 The Author(s). Published by IOP Publishing Ltd – notice: Creative Commons Attribution license. |
DBID | O3W TSCCA AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1088/1741-2552/ad6793 |
DatabaseName | Institute of Physics Open Access Journal Titles IOPscience (Open Access) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: O3W name: Institute of Physics Open Access Journal Titles url: http://iopscience.iop.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1741-2552 |
ExternalDocumentID | 39053485 10_1088_1741_2552_ad6793 jnead6793 |
Genre | Journal Article Comparative Study |
GroupedDBID | --- 1JI 4.4 53G 5B3 5GY 5VS 5ZH 7.M 7.Q AAGCD AAJIO AAJKP AATNI ABHWH ABJNI ABQJV ABVAM ACAFW ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CEBXE CJUJL CRLBU CS3 DU5 EBS EDWGO EMSAF EPQRW EQZZN F5P HAK IHE IJHAN IOP IZVLO KOT LAP N5L N9A O3W P2P PJBAE RIN RO9 ROL RPA SY9 TSCCA W28 XPP AAYXX ADEQX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c378t-ced5b476242a34f6089873672764fa34c707c23c93b1c6da858081fda6c39233 |
IEDL.DBID | IOP |
ISSN | 1741-2560 1741-2552 |
IngestDate | Thu Jul 10 18:12:46 EDT 2025 Tue Jul 01 05:30:45 EDT 2025 Thu Apr 24 23:00:37 EDT 2025 Tue Jul 01 01:48:13 EDT 2025 Wed Aug 28 02:33:28 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Riemannian geometry electroencephalography benchmarking brain-computer interface convolutional neural network classification machine learning |
Language | English |
License | Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Creative Commons Attribution license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c378t-ced5b476242a34f6089873672764fa34c707c23c93b1c6da858081fda6c39233 |
Notes | JNE-107434.R1 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-9985-7447 0009-0005-2799-082X 0000-0001-9787-2291 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://iopscience.iop.org/article/10.1088/1741-2552/ad6793 |
PMID | 39053485 |
PQID | 3084771074 |
PQPubID | 23479 |
PageCount | 16 |
ParticipantIDs | iop_journals_10_1088_1741_2552_ad6793 crossref_citationtrail_10_1088_1741_2552_ad6793 proquest_miscellaneous_3084771074 pubmed_primary_39053485 crossref_primary_10_1088_1741_2552_ad6793 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-08-01 |
PublicationDateYYYYMMDD | 2024-08-01 |
PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Journal of neural engineering |
PublicationTitleAbbrev | JNE |
PublicationTitleAlternate | J. Neural Eng |
PublicationYear | 2024 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | Huggins (jnead6793bib13) 2022; 9 Pedregosa (jnead6793bib20) 2011; 12 Grosse-Wentrup (jnead6793bib28) 2009; 56 Pfurtscheller (jnead6793bib7) 2001; 89 Lotte (jnead6793bib8) 2018; 15 Barachant (jnead6793bib15) 2014 Tangermann (jnead6793bib24) 2012; 6 Schirrmeister (jnead6793bib11) 2017; 38 Barachant (jnead6793bib23) 2013; 112 Oikonomou (jnead6793bib36) 2016 Anumanchipalli (jnead6793bib5) 2019; 568 Korczowski (jnead6793bib32) 2019 Kobler (jnead6793bib41) 2022; vol 35 Vidal (jnead6793bib1) 1977; 65 Lawhern (jnead6793bib12) 2016; 15 pyRiemann Contributors (jnead6793bib19) 2022 Wilson (jnead6793bib40) 2023 Hochberg (jnead6793bib3) 2006; 442 Gomez-Rodriguez (jnead6793bib4) 2011; 8 Barachant (jnead6793bib10) 2010 Shin (jnead6793bib27) 2017; 25 Barachant (jnead6793bib17) 2022 Joses (jnead6793bib21) 2019; 16 Kalunga (jnead6793bib34) 2016; 191 Chevallier (jnead6793bib16) 2018 Zanini (jnead6793bib38) 2018; 65 Aricó (jnead6793bib30) 2014; 11 Wei (jnead6793bib37) 2022 Huang (jnead6793bib39) 2017 Guger (jnead6793bib31) 2009; 462 Abiri (jnead6793bib6) 2019; 16 Dickhaus (jnead6793bib42) 2009; 10 Joses (jnead6793bib22) 2022 Riccio (jnead6793bib29) 2013; 7 Congedo (jnead6793bib14) 2013 Jayaram (jnead6793bib9) 2018; 15 Vernon (jnead6793bib18) 2023 Krol (jnead6793bib43) 2020; 17 Bozinovski (jnead6793bib2) 1988; vol 3 Nakanishi (jnead6793bib35) 2015; 10 Leeb (jnead6793bib25) 2007; 15 Schalk (jnead6793bib26) 2004; 51 Korczowski (jnead6793bib33) 2019 |
References_xml | – volume: 10 year: 2015 ident: jnead6793bib35 article-title: A Comparison study of canonical correlation analysis based methods for detecting steady-state visual evoked potentials publication-title: PLoS One doi: 10.1371/journal.pone.0140703 – year: 2010 ident: jnead6793bib10 article-title: Riemannian geometry applied to bci classification doi: 10.1007/978-3-642-15995-4_78 – volume: 9 start-page: 69 year: 2022 ident: jnead6793bib13 article-title: Workshops of the eighth international brain–computer interface meeting: bcis: the next frontier publication-title: Brain-Computer Interfaces doi: 10.1080/2326263X.2021.2009654 – volume: 16 year: 2019 ident: jnead6793bib6 article-title: A comprehensive review of EEG-based brain–computer interface paradigms publication-title: J. Neural Eng. doi: 10.1088/1741-2552/aaf12e – year: 2014 ident: jnead6793bib15 – volume: vol 3 start-page: 1515 year: 1988 ident: jnead6793bib2 article-title: Using EEG alpha rhythm to control a mobile robot doi: 10.1109/iembs.1988.95357 – year: 2022 ident: jnead6793bib19 article-title: pyRiemann: biosignals classification with Riemannian geometry – year: 2019 ident: jnead6793bib33 article-title: Brain invaders calibration-less P300-based BCI with modulation of flash duration dataset (bi2015a) doi: 10.5281/zenodo.3266930 – volume: 10 start-page: 84 year: 2009 ident: jnead6793bib42 article-title: Predicting bci performance to study bci illiteracy publication-title: BMC Neuroscience doi: 10.1186/1471-2202-10-S1-P84 – year: 2023 ident: jnead6793bib18 article-title: Army Research Laboratory (ARL) EEGModels Project – year: 2022 ident: jnead6793bib17 article-title: MOABB: tutorials – volume: 7 start-page: 732 year: 2013 ident: jnead6793bib29 article-title: Attention and P300-based BCI performance in people with amyotrophic lateral sclerosis publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2013.00732 – volume: 8 year: 2011 ident: jnead6793bib4 article-title: Closing the sensorimotor loop: haptic feedback facilitates decoding of motor imagery publication-title: J. Neural Eng. doi: 10.1088/1741-2560/8/3/036005 – volume: 462 start-page: 94 year: 2009 ident: jnead6793bib31 article-title: How many people are able to control a P300-based brain–computer interface (BCI)? publication-title: Neurosci. Lett. doi: 10.1016/j.neulet.2009.06.045 – volume: 17 year: 2020 ident: jnead6793bib43 article-title: Cognitive and affective probing: a tutorial and review of active learning for neuroadaptive technology publication-title: J. Neural Eng. doi: 10.1088/1741-2552/ab5bb5 – volume: 442 start-page: 164 year: 2006 ident: jnead6793bib3 article-title: Neuronal ensemble control of prosthetic devices by a human with tetraplegia publication-title: Nature doi: 10.1038/nature04970 – volume: 112 start-page: 172 year: 2013 ident: jnead6793bib23 article-title: Classification of covariance matrices using a riemannian-based kernel for bci applications publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.12.039 – volume: 51 start-page: 1034 year: 2004 ident: jnead6793bib26 article-title: BCI2000: a general-purpose brain-computer interface (BCI) system publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2004.827072 – volume: 38 start-page: 5391 year: 2017 ident: jnead6793bib11 article-title: Deep learning with convolutional neural networks for eeg decoding and visualization publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.23730 – year: 2016 ident: jnead6793bib36 article-title: Comparative evaluation of state-of-the-art algorithms for SSVEP-based BCIs – volume: 65 start-page: 633 year: 1977 ident: jnead6793bib1 article-title: Real-time detection of brain events in EEG publication-title: Proc. IEEE doi: 10.1109/PROC.1977.10542 – volume: 568 start-page: 493 year: 2019 ident: jnead6793bib5 article-title: Speech synthesis from neural decoding of spoken sentences publication-title: Nature doi: 10.1038/s41586-019-1119-1 – start-page: 371 year: 2018 ident: jnead6793bib16 article-title: Riemannian classification for SSVEP-based BCI: Offline versus online implementations – volume: 89 start-page: 1123 year: 2001 ident: jnead6793bib7 article-title: Motor imagery and direct brain-computer communication publication-title: Proc. IEEE doi: 10.1109/5.939829 – volume: 15 year: 2018 ident: jnead6793bib9 article-title: MOABB: trustworthy algorithm benchmarking for BCIs publication-title: J. Neural Eng. doi: 10.1088/1741-2552/aadea0 – year: 2013 ident: jnead6793bib14 article-title: A new generation of brain-computer interface based on riemannian geometry – year: 2023 ident: jnead6793bib40 article-title: Deep riemannian networks for eeg decoding doi: 10.48550/arXiv.2212.10426 – volume: 15 year: 2018 ident: jnead6793bib8 article-title: A review of classification algorithms for EEG-based brain–computer interfaces: a 10 year update publication-title: J. Neural Eng. doi: 10.1088/1741-2552/aab2f2 – volume: 11 year: 2014 ident: jnead6793bib30 article-title: Influence of P300 latency jitter on event related potential-based brain–computer interface performance publication-title: J. Neural Eng. doi: 10.1088/1741-2560/11/3/035008 – volume: 6 start-page: 55 year: 2012 ident: jnead6793bib24 article-title: Review of the BCI Competition IV publication-title: Front. Neurosci. doi: 10.3389/fnins.2012.00055 – volume: 25 start-page: 1735 year: 2017 ident: jnead6793bib27 article-title: Open access dataset for EEG+NIRS single-trial classification publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2016.2628057 – volume: 56 start-page: 1209 year: 2009 ident: jnead6793bib28 article-title: Beamforming in noninvasive brain–computer interfaces publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2008.2009768 – start-page: 205 year: 2022 ident: jnead6793bib37 article-title: 2021 BEETL Competition: advancing transfer learning for subject independence and heterogenous EEG data sets doi: 10.48550/arXiv.2202.12950 – year: 2019 ident: jnead6793bib32 article-title: Brain invaders calibration-less P300-based BCI using dry EEG electrodes dataset (bi2014a) doi: 10.5281/zenodo.3266223 – volume: 15 start-page: 473 year: 2007 ident: jnead6793bib25 article-title: Brain–Computer Communication: motivation, aim and impact of exploring a virtual apartment publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2007.906956 – volume: 12 start-page: 2825 year: 2011 ident: jnead6793bib20 article-title: Scikit-learn: machine learning in Python publication-title: J. Mach. Learn. Res. doi: 10.48550/arXiv.1201.0490 – volume: vol 35 start-page: 6219 year: 2022 ident: jnead6793bib41 article-title: Spd domain-specific batch normalization to crack interpretable unsupervised domain adaptation in eeg doi: 10.48550/arXiv.2206.01323 – year: 2017 ident: jnead6793bib39 article-title: A riemannian network for spd matrix learning doi: 10.48550/arXiv.1608.04233 – volume: 191 start-page: 55 year: 2016 ident: jnead6793bib34 article-title: Online SSVEP-based BCI using Riemannian geometry publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.01.007 – volume: 16 start-page: 565 year: 2019 ident: jnead6793bib21 article-title: Moving beyond p values: data analysis with estimation graphics publication-title: Nat. Methods doi: 10.1038/s41592-019-0470-3 – year: 2022 ident: jnead6793bib22 article-title: DABEST: data analysis with bootstrap-coupled ESTimation – volume: 15 start-page: 5 year: 2016 ident: jnead6793bib12 article-title: EEGNet: a compact convolutional network for EEG-based brain-computer interfaces publication-title: J. Neural Eng. doi: 10.1088/1741-2552/aace8c – volume: 65 start-page: 1107 year: 2018 ident: jnead6793bib38 article-title: Transfer Learning: a riemannian geometry framework with applications to brain–computer interfaces publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2017.2742541 |
SSID | ssj0031790 |
Score | 2.4043412 |
SecondaryResourceType | review_article |
Snippet | Objective.
To date, a comprehensive comparison of Riemannian decoding methods with deep convolutional neural networks for EEG-based brain–computer interfaces... To date, a comprehensive comparison of Riemannian decoding methods with deep convolutional neural networks for EEG-based brain-computer interfaces remains... Objective.To date, a comprehensive comparison of Riemannian decoding methods with deep convolutional neural networks for EEG-based brain-computer interfaces... |
SourceID | proquest pubmed crossref iop |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 44002 |
SubjectTerms | Algorithms benchmarking Benchmarking - methods brain-computer interface Brain-Computer Interfaces classification convolutional neural network electroencephalography Electroencephalography - methods Evoked Potentials, Visual - physiology Humans Imagination - physiology machine learning Neural Networks, Computer Riemannian geometry |
Title | Benchmarking brain–computer interface algorithms: Riemannian approaches vs convolutional neural networks |
URI | https://iopscience.iop.org/article/10.1088/1741-2552/ad6793 https://www.ncbi.nlm.nih.gov/pubmed/39053485 https://www.proquest.com/docview/3084771074 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB615cKFv_KzUJCRChKH7GbjxHHKqVStKiRahIroASmyHYcWutlqk0Wip75D37BPwoztrERFK8QlsaJJ7IzHnrFn_A3AurW4RpYVLkuMlRFqPBxSsYgjm0gzTvMkzZ0r5sOe2P2cvj_MDpfg7eIszPQ0TP1DLHqgYM_CEBAnR2hDjyO0hJORqgSK1zLc4hIVJ53e2__YT8OcoKf8aUiiFnHwUf7tC3_opGWs93pz06mdnbvwtW-wjzb5MZx3emjOrmA5_ucf3YM7wRxlm570PizZ5gGsbja4FJ_8Yq-ZCxB1O--r8P0dfv5ootzuOtOUW-Ly_MKEtBCMgCdmtTKWqZNv09lxdzRpN9inYzuhtEiqYT18uW3Zz5ZRuHsQe2wAwWq6mwtKbx_Cwc72wdZuFFI1RIbnsouMrTKd5nTYRPG0FrEsZM7JyyvSGp-YPM5Nwk3B9diISsmMMn7UlRIGDTTOH8FKM23sE2AkOjKpikwXBku60Jxntc4U2qqZ1mIAo76vShNgzCmbxknp3OlSlsTNkrhZem4O4M3ijVMP4XED7SvspDKM4_YGupe9gJQ4HsnJoho7nbclj1Hf5xTmOoDHXnIWtfICp7xUZk__sZZncDtBG8rHG67BSjeb2-doA3X6hZN1vO7zL78Bc-z-KQ |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Rb9MwELbWIiFeprEC6wbMSDCJh5A0jh2Ht8FWlQ06hIrom2U7ztapTaumReJt_4F_uF_C2XErIW3VnmJFduzcnX2ffec7hN4aA3tknsO2RBsegMaDKRWxKDAx150kjZPUmWK-9VnvZ3I2pEOf59TdhZnO_NL_AYp1oOCahN4hjoeAoTsBIOE4lDkD8QpnedFAjygBVQMCfUF-rZZiYsNP1TcibQsWeTvlXV_5Ty81oO_7IadTPd0dtO0xIz6uR_gUbZlyF7WOS9gvT_7gI-y8ON3xeAtdf4K_uppIdwSOlU0AcXvzV_vcDdhGh5gXUhssx5fT-WhxNak-4h8jM7G5i2SJVzHGTYV_V9j6pHvZhAHY2Jfu4TzHq2do0D0dfO4FPp9CoEnKF4E2OVVJam-ESJIULOIZT4k1xbKkgDc6jVIdE50R1dEsl5zatBxFLpkGFEXIc9Qsp6XZQ9jyl8d5RlWmoaQyRQgtFJUAKKlSrI3CFTGF9rHGbcqLsXA2b86FJb-w5Bc1-dvo_brFrI6zsaHuO-CP8JOt2lDvzYqDAiaNtYTI0kyXlSARKOXU-qK20YuateteSQbrUsLp_gN7OUSPv590xdcv_fMD9CQGzFP7B75EzcV8aV4BZlmo104u_wFoPeIb |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Benchmarking+brain-computer+interface+algorithms%3A+Riemannian+approaches+vs+convolutional+neural+networks&rft.jtitle=Journal+of+neural+engineering&rft.au=Eder%2C+Manuel&rft.au=Xu%2C+Jiachen&rft.au=Grosse-Wentrup%2C+Moritz&rft.date=2024-08-01&rft.issn=1741-2552&rft.eissn=1741-2552&rft.volume=21&rft.issue=4&rft_id=info:doi/10.1088%2F1741-2552%2Fad6793&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1741-2560&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1741-2560&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1741-2560&client=summon |