Benchmarking brain–computer interface algorithms: Riemannian approaches vs convolutional neural networks

Objective. To date, a comprehensive comparison of Riemannian decoding methods with deep convolutional neural networks for EEG-based brain–computer interfaces remains absent from published work. We address this research gap by using MOABB, The Mother Of All BCI Benchmarks, to compare novel convolutio...

Full description

Saved in:
Bibliographic Details
Published inJournal of neural engineering Vol. 21; no. 4; pp. 44002 - 44017
Main Authors Eder, Manuel, Xu, Jiachen, Grosse-Wentrup, Moritz
Format Journal Article
LanguageEnglish
Published England IOP Publishing 01.08.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Objective. To date, a comprehensive comparison of Riemannian decoding methods with deep convolutional neural networks for EEG-based brain–computer interfaces remains absent from published work. We address this research gap by using MOABB, The Mother Of All BCI Benchmarks, to compare novel convolutional neural networks to state-of-the-art Riemannian approaches across a broad range of EEG datasets, including motor imagery, P300, and steady-state visual evoked potentials paradigms. Approach. We systematically evaluated the performance of convolutional neural networks, specifically EEGNet, shallow ConvNet, and deep ConvNet, against well-established Riemannian decoding methods using MOABB processing pipelines. This evaluation included within-session, cross-session, and cross-subject methods, to provide a practical analysis of model effectiveness and to find an overall solution that performs well across different experimental settings. Main results. We find no significant differences in decoding performance between convolutional neural networks and Riemannian methods for within-session, cross-session, and cross-subject analyses. Significance. The results show that, when using traditional Brain-Computer Interface paradigms, the choice between CNNs and Riemannian methods may not heavily impact decoding performances in many experimental settings. These findings provide researchers with flexibility in choosing decoding approaches based on factors such as ease of implementation, computational efficiency or individual preferences.
AbstractList Objective. To date, a comprehensive comparison of Riemannian decoding methods with deep convolutional neural networks for EEG-based brain–computer interfaces remains absent from published work. We address this research gap by using MOABB, The Mother Of All BCI Benchmarks, to compare novel convolutional neural networks to state-of-the-art Riemannian approaches across a broad range of EEG datasets, including motor imagery, P300, and steady-state visual evoked potentials paradigms. Approach. We systematically evaluated the performance of convolutional neural networks, specifically EEGNet, shallow ConvNet, and deep ConvNet, against well-established Riemannian decoding methods using MOABB processing pipelines. This evaluation included within-session, cross-session, and cross-subject methods, to provide a practical analysis of model effectiveness and to find an overall solution that performs well across different experimental settings. Main results. We find no significant differences in decoding performance between convolutional neural networks and Riemannian methods for within-session, cross-session, and cross-subject analyses. Significance. The results show that, when using traditional Brain-Computer Interface paradigms, the choice between CNNs and Riemannian methods may not heavily impact decoding performances in many experimental settings. These findings provide researchers with flexibility in choosing decoding approaches based on factors such as ease of implementation, computational efficiency or individual preferences.
To date, a comprehensive comparison of Riemannian decoding methods with deep convolutional neural networks for EEG-based brain-computer interfaces remains absent from published work. We address this research gap by using MOABB, The Mother Of All BCI Benchmarks, to compare novel convolutional neural networks to state-of-the-art Riemannian approaches across a broad range of EEG datasets, including motor imagery, P300, and steady-state visual evoked potentials paradigms. We systematically evaluated the performance of convolutional neural networks, specifically EEGNet, shallow ConvNet, and deep ConvNet, against well-established Riemannian decoding methods using MOABB processing pipelines. This evaluation included within-session, cross-session, and cross-subject methods, to provide a practical analysis of model effectiveness and to find an overall solution that performs well across different experimental settings. We find no significant differences in decoding performance between convolutional neural networks and Riemannian methods for within-session, cross-session, and cross-subject analyses. The results show that, when using traditional Brain-Computer Interface paradigms, the choice between CNNs and Riemannian methods may not heavily impact decoding performances in many experimental settings. These findings provide researchers with flexibility in choosing decoding approaches based on factors such as ease of implementation, computational efficiency or individual preferences.
Objective.To date, a comprehensive comparison of Riemannian decoding methods with deep convolutional neural networks for EEG-based brain-computer interfaces remains absent from published work. We address this research gap by using MOABB, The Mother Of All BCI Benchmarks, to compare novel convolutional neural networks to state-of-the-art Riemannian approaches across a broad range of EEG datasets, including motor imagery, P300, and steady-state visual evoked potentials paradigms.Approach.We systematically evaluated the performance of convolutional neural networks, specifically EEGNet, shallow ConvNet, and deep ConvNet, against well-established Riemannian decoding methods using MOABB processing pipelines. This evaluation included within-session, cross-session, and cross-subject methods, to provide a practical analysis of model effectiveness and to find an overall solution that performs well across different experimental settings.Main results.We find no significant differences in decoding performance between convolutional neural networks and Riemannian methods for within-session, cross-session, and cross-subject analyses.Significance.The results show that, when using traditional Brain-Computer Interface paradigms, the choice between CNNs and Riemannian methods may not heavily impact decoding performances in many experimental settings. These findings provide researchers with flexibility in choosing decoding approaches based on factors such as ease of implementation, computational efficiency or individual preferences.Objective.To date, a comprehensive comparison of Riemannian decoding methods with deep convolutional neural networks for EEG-based brain-computer interfaces remains absent from published work. We address this research gap by using MOABB, The Mother Of All BCI Benchmarks, to compare novel convolutional neural networks to state-of-the-art Riemannian approaches across a broad range of EEG datasets, including motor imagery, P300, and steady-state visual evoked potentials paradigms.Approach.We systematically evaluated the performance of convolutional neural networks, specifically EEGNet, shallow ConvNet, and deep ConvNet, against well-established Riemannian decoding methods using MOABB processing pipelines. This evaluation included within-session, cross-session, and cross-subject methods, to provide a practical analysis of model effectiveness and to find an overall solution that performs well across different experimental settings.Main results.We find no significant differences in decoding performance between convolutional neural networks and Riemannian methods for within-session, cross-session, and cross-subject analyses.Significance.The results show that, when using traditional Brain-Computer Interface paradigms, the choice between CNNs and Riemannian methods may not heavily impact decoding performances in many experimental settings. These findings provide researchers with flexibility in choosing decoding approaches based on factors such as ease of implementation, computational efficiency or individual preferences.
Author Xu, Jiachen
Grosse-Wentrup, Moritz
Eder, Manuel
Author_xml – sequence: 1
  givenname: Manuel
  orcidid: 0009-0005-2799-082X
  surname: Eder
  fullname: Eder, Manuel
  organization: University of Vienna Research Group Neuroinformatics, Faculty of Computer Science, Vienna, Austria
– sequence: 2
  givenname: Jiachen
  orcidid: 0000-0002-9985-7447
  surname: Xu
  fullname: Xu, Jiachen
  organization: University of Vienna Research Group Neuroinformatics, Faculty of Computer Science, Vienna, Austria
– sequence: 3
  givenname: Moritz
  orcidid: 0000-0001-9787-2291
  surname: Grosse-Wentrup
  fullname: Grosse-Wentrup, Moritz
  organization: University of Vienna Vienna Cognitive Science Hub, Vienna, Austria
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39053485$$D View this record in MEDLINE/PubMed
BookMark eNp9kbtOwzAUhi1URC-wM6GMDJTacWI7bFBxkyohoe6W6zit28QOdlLExjvwhjwJLm0ZkGDxsY6-_8j-Th90jDUKgFMELxFkbIRogoZxmsYjkROa4QPQ-2l1fu4EdkHf-yWEGNEMHoEuzmCKE5b2wPJGGbmohFtpM49mTmjz-f4hbVW3jXKRNuEshFSRKOfW6WZR-avoWatKGKOFiURdOyvkQvlo7SNpzdqWbaOtEWVkVOu-S_Nq3cofg8NClF6d7OoATO9up-OH4eTp_nF8PRlKTFkzlCpPZwklcRILnBQEsoxRTGhMSVKEjqSQyhjLDM-QJLlgKYMMFbkgEmcxxgNwvh0bHvbSKt_wSnupylIYZVvPMWQJpQjSJKBnO7SdVSrntdPBxBvf6wkA2QLSWe-dKrjUjdh8rwmmSo4g3-yBb0TzjXS-3UMIwl_B_ex_IhfbiLY1X9rWBYX-b_wL8dKZ3Q
CODEN JNEOBH
CitedBy_id crossref_primary_10_1016_j_neunet_2025_107124
Cites_doi 10.1371/journal.pone.0140703
10.1007/978-3-642-15995-4_78
10.1080/2326263X.2021.2009654
10.1088/1741-2552/aaf12e
10.1109/iembs.1988.95357
10.5281/zenodo.3266930
10.1186/1471-2202-10-S1-P84
10.3389/fnhum.2013.00732
10.1088/1741-2560/8/3/036005
10.1016/j.neulet.2009.06.045
10.1088/1741-2552/ab5bb5
10.1038/nature04970
10.1016/j.neucom.2012.12.039
10.1109/TBME.2004.827072
10.1002/hbm.23730
10.1109/PROC.1977.10542
10.1038/s41586-019-1119-1
10.1109/5.939829
10.1088/1741-2552/aadea0
10.48550/arXiv.2212.10426
10.1088/1741-2552/aab2f2
10.1088/1741-2560/11/3/035008
10.3389/fnins.2012.00055
10.1109/TNSRE.2016.2628057
10.1109/TBME.2008.2009768
10.48550/arXiv.2202.12950
10.5281/zenodo.3266223
10.1109/TNSRE.2007.906956
10.48550/arXiv.1201.0490
10.48550/arXiv.2206.01323
10.48550/arXiv.1608.04233
10.1016/j.neucom.2016.01.007
10.1038/s41592-019-0470-3
10.1088/1741-2552/aace8c
10.1109/TBME.2017.2742541
ContentType Journal Article
Copyright 2024 The Author(s). Published by IOP Publishing Ltd
Creative Commons Attribution license.
Copyright_xml – notice: 2024 The Author(s). Published by IOP Publishing Ltd
– notice: Creative Commons Attribution license.
DBID O3W
TSCCA
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1088/1741-2552/ad6793
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1741-2552
ExternalDocumentID 39053485
10_1088_1741_2552_ad6793
jnead6793
Genre Journal Article
Comparative Study
GroupedDBID ---
1JI
4.4
53G
5B3
5GY
5VS
5ZH
7.M
7.Q
AAGCD
AAJIO
AAJKP
AATNI
ABHWH
ABJNI
ABQJV
ABVAM
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
F5P
HAK
IHE
IJHAN
IOP
IZVLO
KOT
LAP
N5L
N9A
O3W
P2P
PJBAE
RIN
RO9
ROL
RPA
SY9
TSCCA
W28
XPP
AAYXX
ADEQX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c378t-ced5b476242a34f6089873672764fa34c707c23c93b1c6da858081fda6c39233
IEDL.DBID IOP
ISSN 1741-2560
1741-2552
IngestDate Thu Jul 10 18:12:46 EDT 2025
Tue Jul 01 05:30:45 EDT 2025
Thu Apr 24 23:00:37 EDT 2025
Tue Jul 01 01:48:13 EDT 2025
Wed Aug 28 02:33:28 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Riemannian geometry
electroencephalography
benchmarking
brain-computer interface
convolutional neural network
classification
machine learning
Language English
License Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
Creative Commons Attribution license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c378t-ced5b476242a34f6089873672764fa34c707c23c93b1c6da858081fda6c39233
Notes JNE-107434.R1
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9985-7447
0009-0005-2799-082X
0000-0001-9787-2291
OpenAccessLink https://proxy.k.utb.cz/login?url=https://iopscience.iop.org/article/10.1088/1741-2552/ad6793
PMID 39053485
PQID 3084771074
PQPubID 23479
PageCount 16
ParticipantIDs iop_journals_10_1088_1741_2552_ad6793
crossref_citationtrail_10_1088_1741_2552_ad6793
proquest_miscellaneous_3084771074
pubmed_primary_39053485
crossref_primary_10_1088_1741_2552_ad6793
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-08-01
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of neural engineering
PublicationTitleAbbrev JNE
PublicationTitleAlternate J. Neural Eng
PublicationYear 2024
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Huggins (jnead6793bib13) 2022; 9
Pedregosa (jnead6793bib20) 2011; 12
Grosse-Wentrup (jnead6793bib28) 2009; 56
Pfurtscheller (jnead6793bib7) 2001; 89
Lotte (jnead6793bib8) 2018; 15
Barachant (jnead6793bib15) 2014
Tangermann (jnead6793bib24) 2012; 6
Schirrmeister (jnead6793bib11) 2017; 38
Barachant (jnead6793bib23) 2013; 112
Oikonomou (jnead6793bib36) 2016
Anumanchipalli (jnead6793bib5) 2019; 568
Korczowski (jnead6793bib32) 2019
Kobler (jnead6793bib41) 2022; vol 35
Vidal (jnead6793bib1) 1977; 65
Lawhern (jnead6793bib12) 2016; 15
pyRiemann Contributors (jnead6793bib19) 2022
Wilson (jnead6793bib40) 2023
Hochberg (jnead6793bib3) 2006; 442
Gomez-Rodriguez (jnead6793bib4) 2011; 8
Barachant (jnead6793bib10) 2010
Shin (jnead6793bib27) 2017; 25
Barachant (jnead6793bib17) 2022
Joses (jnead6793bib21) 2019; 16
Kalunga (jnead6793bib34) 2016; 191
Chevallier (jnead6793bib16) 2018
Zanini (jnead6793bib38) 2018; 65
Aricó (jnead6793bib30) 2014; 11
Wei (jnead6793bib37) 2022
Huang (jnead6793bib39) 2017
Guger (jnead6793bib31) 2009; 462
Abiri (jnead6793bib6) 2019; 16
Dickhaus (jnead6793bib42) 2009; 10
Joses (jnead6793bib22) 2022
Riccio (jnead6793bib29) 2013; 7
Congedo (jnead6793bib14) 2013
Jayaram (jnead6793bib9) 2018; 15
Vernon (jnead6793bib18) 2023
Krol (jnead6793bib43) 2020; 17
Bozinovski (jnead6793bib2) 1988; vol 3
Nakanishi (jnead6793bib35) 2015; 10
Leeb (jnead6793bib25) 2007; 15
Schalk (jnead6793bib26) 2004; 51
Korczowski (jnead6793bib33) 2019
References_xml – volume: 10
  year: 2015
  ident: jnead6793bib35
  article-title: A Comparison study of canonical correlation analysis based methods for detecting steady-state visual evoked potentials
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0140703
– year: 2010
  ident: jnead6793bib10
  article-title: Riemannian geometry applied to bci classification
  doi: 10.1007/978-3-642-15995-4_78
– volume: 9
  start-page: 69
  year: 2022
  ident: jnead6793bib13
  article-title: Workshops of the eighth international brain–computer interface meeting: bcis: the next frontier
  publication-title: Brain-Computer Interfaces
  doi: 10.1080/2326263X.2021.2009654
– volume: 16
  year: 2019
  ident: jnead6793bib6
  article-title: A comprehensive review of EEG-based brain–computer interface paradigms
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/aaf12e
– year: 2014
  ident: jnead6793bib15
– volume: vol 3
  start-page: 1515
  year: 1988
  ident: jnead6793bib2
  article-title: Using EEG alpha rhythm to control a mobile robot
  doi: 10.1109/iembs.1988.95357
– year: 2022
  ident: jnead6793bib19
  article-title: pyRiemann: biosignals classification with Riemannian geometry
– year: 2019
  ident: jnead6793bib33
  article-title: Brain invaders calibration-less P300-based BCI with modulation of flash duration dataset (bi2015a)
  doi: 10.5281/zenodo.3266930
– volume: 10
  start-page: 84
  year: 2009
  ident: jnead6793bib42
  article-title: Predicting bci performance to study bci illiteracy
  publication-title: BMC Neuroscience
  doi: 10.1186/1471-2202-10-S1-P84
– year: 2023
  ident: jnead6793bib18
  article-title: Army Research Laboratory (ARL) EEGModels Project
– year: 2022
  ident: jnead6793bib17
  article-title: MOABB: tutorials
– volume: 7
  start-page: 732
  year: 2013
  ident: jnead6793bib29
  article-title: Attention and P300-based BCI performance in people with amyotrophic lateral sclerosis
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2013.00732
– volume: 8
  year: 2011
  ident: jnead6793bib4
  article-title: Closing the sensorimotor loop: haptic feedback facilitates decoding of motor imagery
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/8/3/036005
– volume: 462
  start-page: 94
  year: 2009
  ident: jnead6793bib31
  article-title: How many people are able to control a P300-based brain–computer interface (BCI)?
  publication-title: Neurosci. Lett.
  doi: 10.1016/j.neulet.2009.06.045
– volume: 17
  year: 2020
  ident: jnead6793bib43
  article-title: Cognitive and affective probing: a tutorial and review of active learning for neuroadaptive technology
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/ab5bb5
– volume: 442
  start-page: 164
  year: 2006
  ident: jnead6793bib3
  article-title: Neuronal ensemble control of prosthetic devices by a human with tetraplegia
  publication-title: Nature
  doi: 10.1038/nature04970
– volume: 112
  start-page: 172
  year: 2013
  ident: jnead6793bib23
  article-title: Classification of covariance matrices using a riemannian-based kernel for bci applications
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.12.039
– volume: 51
  start-page: 1034
  year: 2004
  ident: jnead6793bib26
  article-title: BCI2000: a general-purpose brain-computer interface (BCI) system
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2004.827072
– volume: 38
  start-page: 5391
  year: 2017
  ident: jnead6793bib11
  article-title: Deep learning with convolutional neural networks for eeg decoding and visualization
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.23730
– year: 2016
  ident: jnead6793bib36
  article-title: Comparative evaluation of state-of-the-art algorithms for SSVEP-based BCIs
– volume: 65
  start-page: 633
  year: 1977
  ident: jnead6793bib1
  article-title: Real-time detection of brain events in EEG
  publication-title: Proc. IEEE
  doi: 10.1109/PROC.1977.10542
– volume: 568
  start-page: 493
  year: 2019
  ident: jnead6793bib5
  article-title: Speech synthesis from neural decoding of spoken sentences
  publication-title: Nature
  doi: 10.1038/s41586-019-1119-1
– start-page: 371
  year: 2018
  ident: jnead6793bib16
  article-title: Riemannian classification for SSVEP-based BCI: Offline versus online implementations
– volume: 89
  start-page: 1123
  year: 2001
  ident: jnead6793bib7
  article-title: Motor imagery and direct brain-computer communication
  publication-title: Proc. IEEE
  doi: 10.1109/5.939829
– volume: 15
  year: 2018
  ident: jnead6793bib9
  article-title: MOABB: trustworthy algorithm benchmarking for BCIs
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/aadea0
– year: 2013
  ident: jnead6793bib14
  article-title: A new generation of brain-computer interface based on riemannian geometry
– year: 2023
  ident: jnead6793bib40
  article-title: Deep riemannian networks for eeg decoding
  doi: 10.48550/arXiv.2212.10426
– volume: 15
  year: 2018
  ident: jnead6793bib8
  article-title: A review of classification algorithms for EEG-based brain–computer interfaces: a 10 year update
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/aab2f2
– volume: 11
  year: 2014
  ident: jnead6793bib30
  article-title: Influence of P300 latency jitter on event related potential-based brain–computer interface performance
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/11/3/035008
– volume: 6
  start-page: 55
  year: 2012
  ident: jnead6793bib24
  article-title: Review of the BCI Competition IV
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2012.00055
– volume: 25
  start-page: 1735
  year: 2017
  ident: jnead6793bib27
  article-title: Open access dataset for EEG+NIRS single-trial classification
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2016.2628057
– volume: 56
  start-page: 1209
  year: 2009
  ident: jnead6793bib28
  article-title: Beamforming in noninvasive brain–computer interfaces
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2008.2009768
– start-page: 205
  year: 2022
  ident: jnead6793bib37
  article-title: 2021 BEETL Competition: advancing transfer learning for subject independence and heterogenous EEG data sets
  doi: 10.48550/arXiv.2202.12950
– year: 2019
  ident: jnead6793bib32
  article-title: Brain invaders calibration-less P300-based BCI using dry EEG electrodes dataset (bi2014a)
  doi: 10.5281/zenodo.3266223
– volume: 15
  start-page: 473
  year: 2007
  ident: jnead6793bib25
  article-title: Brain–Computer Communication: motivation, aim and impact of exploring a virtual apartment
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2007.906956
– volume: 12
  start-page: 2825
  year: 2011
  ident: jnead6793bib20
  article-title: Scikit-learn: machine learning in Python
  publication-title: J. Mach. Learn. Res.
  doi: 10.48550/arXiv.1201.0490
– volume: vol 35
  start-page: 6219
  year: 2022
  ident: jnead6793bib41
  article-title: Spd domain-specific batch normalization to crack interpretable unsupervised domain adaptation in eeg
  doi: 10.48550/arXiv.2206.01323
– year: 2017
  ident: jnead6793bib39
  article-title: A riemannian network for spd matrix learning
  doi: 10.48550/arXiv.1608.04233
– volume: 191
  start-page: 55
  year: 2016
  ident: jnead6793bib34
  article-title: Online SSVEP-based BCI using Riemannian geometry
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.01.007
– volume: 16
  start-page: 565
  year: 2019
  ident: jnead6793bib21
  article-title: Moving beyond p values: data analysis with estimation graphics
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0470-3
– year: 2022
  ident: jnead6793bib22
  article-title: DABEST: data analysis with bootstrap-coupled ESTimation
– volume: 15
  start-page: 5
  year: 2016
  ident: jnead6793bib12
  article-title: EEGNet: a compact convolutional network for EEG-based brain-computer interfaces
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/aace8c
– volume: 65
  start-page: 1107
  year: 2018
  ident: jnead6793bib38
  article-title: Transfer Learning: a riemannian geometry framework with applications to brain–computer interfaces
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2017.2742541
SSID ssj0031790
Score 2.4043412
SecondaryResourceType review_article
Snippet Objective. To date, a comprehensive comparison of Riemannian decoding methods with deep convolutional neural networks for EEG-based brain–computer interfaces...
To date, a comprehensive comparison of Riemannian decoding methods with deep convolutional neural networks for EEG-based brain-computer interfaces remains...
Objective.To date, a comprehensive comparison of Riemannian decoding methods with deep convolutional neural networks for EEG-based brain-computer interfaces...
SourceID proquest
pubmed
crossref
iop
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 44002
SubjectTerms Algorithms
benchmarking
Benchmarking - methods
brain-computer interface
Brain-Computer Interfaces
classification
convolutional neural network
electroencephalography
Electroencephalography - methods
Evoked Potentials, Visual - physiology
Humans
Imagination - physiology
machine learning
Neural Networks, Computer
Riemannian geometry
Title Benchmarking brain–computer interface algorithms: Riemannian approaches vs convolutional neural networks
URI https://iopscience.iop.org/article/10.1088/1741-2552/ad6793
https://www.ncbi.nlm.nih.gov/pubmed/39053485
https://www.proquest.com/docview/3084771074
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB615cKFv_KzUJCRChKH7GbjxHHKqVStKiRahIroASmyHYcWutlqk0Wip75D37BPwoztrERFK8QlsaJJ7IzHnrFn_A3AurW4RpYVLkuMlRFqPBxSsYgjm0gzTvMkzZ0r5sOe2P2cvj_MDpfg7eIszPQ0TP1DLHqgYM_CEBAnR2hDjyO0hJORqgSK1zLc4hIVJ53e2__YT8OcoKf8aUiiFnHwUf7tC3_opGWs93pz06mdnbvwtW-wjzb5MZx3emjOrmA5_ucf3YM7wRxlm570PizZ5gGsbja4FJ_8Yq-ZCxB1O--r8P0dfv5ootzuOtOUW-Ly_MKEtBCMgCdmtTKWqZNv09lxdzRpN9inYzuhtEiqYT18uW3Zz5ZRuHsQe2wAwWq6mwtKbx_Cwc72wdZuFFI1RIbnsouMrTKd5nTYRPG0FrEsZM7JyyvSGp-YPM5Nwk3B9diISsmMMn7UlRIGDTTOH8FKM23sE2AkOjKpikwXBku60Jxntc4U2qqZ1mIAo76vShNgzCmbxknp3OlSlsTNkrhZem4O4M3ijVMP4XED7SvspDKM4_YGupe9gJQ4HsnJoho7nbclj1Hf5xTmOoDHXnIWtfICp7xUZk__sZZncDtBG8rHG67BSjeb2-doA3X6hZN1vO7zL78Bc-z-KQ
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Rb9MwELbWIiFeprEC6wbMSDCJh5A0jh2Ht8FWlQ06hIrom2U7ztapTaumReJt_4F_uF_C2XErIW3VnmJFduzcnX2ffec7hN4aA3tknsO2RBsegMaDKRWxKDAx150kjZPUmWK-9VnvZ3I2pEOf59TdhZnO_NL_AYp1oOCahN4hjoeAoTsBIOE4lDkD8QpnedFAjygBVQMCfUF-rZZiYsNP1TcibQsWeTvlXV_5Ty81oO_7IadTPd0dtO0xIz6uR_gUbZlyF7WOS9gvT_7gI-y8ON3xeAtdf4K_uppIdwSOlU0AcXvzV_vcDdhGh5gXUhssx5fT-WhxNak-4h8jM7G5i2SJVzHGTYV_V9j6pHvZhAHY2Jfu4TzHq2do0D0dfO4FPp9CoEnKF4E2OVVJam-ESJIULOIZT4k1xbKkgDc6jVIdE50R1dEsl5zatBxFLpkGFEXIc9Qsp6XZQ9jyl8d5RlWmoaQyRQgtFJUAKKlSrI3CFTGF9rHGbcqLsXA2b86FJb-w5Bc1-dvo_brFrI6zsaHuO-CP8JOt2lDvzYqDAiaNtYTI0kyXlSARKOXU-qK20YuateteSQbrUsLp_gN7OUSPv590xdcv_fMD9CQGzFP7B75EzcV8aV4BZlmo104u_wFoPeIb
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Benchmarking+brain-computer+interface+algorithms%3A+Riemannian+approaches+vs+convolutional+neural+networks&rft.jtitle=Journal+of+neural+engineering&rft.au=Eder%2C+Manuel&rft.au=Xu%2C+Jiachen&rft.au=Grosse-Wentrup%2C+Moritz&rft.date=2024-08-01&rft.issn=1741-2552&rft.eissn=1741-2552&rft.volume=21&rft.issue=4&rft_id=info:doi/10.1088%2F1741-2552%2Fad6793&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1741-2560&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1741-2560&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1741-2560&client=summon