Layered NiFe-LDH/MXene nanocomposite electrode for high-performance supercapacitor

Layered double hydroxide (LDH) is potentially excellent supercapacitor (SC) materials, but the low conductivity and easy agglomeration limit the further improvement of their electrochemical properties. Therefore, LDHs are requisite to grow on some conductive substrates to produce high-performance SC...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of hydrogen energy Vol. 45; no. 23; pp. 13080 - 13089
Main Authors Zhou, Hua, Wu, Fang, Fang, Liang, Hu, Jia, Luo, Haijun, Guan, Ting, Hu, BaoShan, Zhou, Miao
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 28.04.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Layered double hydroxide (LDH) is potentially excellent supercapacitor (SC) materials, but the low conductivity and easy agglomeration limit the further improvement of their electrochemical properties. Therefore, LDHs are requisite to grow on some conductive substrates to produce high-performance SC. In this paper, the conductive two-dimensional (2D) transition metal carbides, nitrides and carbonitrides (called MXene) were explored as the substrate to directly deposit NiFe-LDH nanosheets by a one-step hydrothermal method, then a three-dimensional (3D) porous NiFe-LDH/MXene electrode was obtained. The morphology and electrochemical performance of the composite electrodes were analyzed and investigated. The results show that the NiFe-LDH/MXene electrode has larger specific capacitance (720.2 F/g) than NiFe-LDH (465 F/g), and the capacitance of the composite electrode retained 86% after 1000 cycles (only 24% for NiFe-LDH), showing excellent cycle stability. The improved electrochemical performance of the composites is caused by the stable sheet-like structure of NiFe-LDH during charge-discharge time and the conductive network formed by the MXene, which can accelerates electron transport. In addition, the asymmetric SC based on NiFe-LDH/MXene positive electrode display a power density of 758.27 W/kg at an energy density of 42.4 Wh/Kg. These results indicate the NiFe-LDH/MXene composites can be applied as the novel candidate of high-performance SC electrodes. •The LDH/MXene synergistic hybrid structure is developed with MXene nanosheets as the substrate.•Prominent electrical performance is attributed to MXene providing a fast charge transfer path for LDH.•The anchoring of LDH on MXene surface provides the material with enhanced cyclic stability.
AbstractList Layered double hydroxide (LDH) is potentially excellent supercapacitor (SC) materials, but the low conductivity and easy agglomeration limit the further improvement of their electrochemical properties. Therefore, LDHs are requisite to grow on some conductive substrates to produce high-performance SC. In this paper, the conductive two-dimensional (2D) transition metal carbides, nitrides and carbonitrides (called MXene) were explored as the substrate to directly deposit NiFe-LDH nanosheets by a one-step hydrothermal method, then a three-dimensional (3D) porous NiFe-LDH/MXene electrode was obtained. The morphology and electrochemical performance of the composite electrodes were analyzed and investigated. The results show that the NiFe-LDH/MXene electrode has larger specific capacitance (720.2 F/g) than NiFe-LDH (465 F/g), and the capacitance of the composite electrode retained 86% after 1000 cycles (only 24% for NiFe-LDH), showing excellent cycle stability. The improved electrochemical performance of the composites is caused by the stable sheet-like structure of NiFe-LDH during charge-discharge time and the conductive network formed by the MXene, which can accelerates electron transport. In addition, the asymmetric SC based on NiFe-LDH/MXene positive electrode display a power density of 758.27 W/kg at an energy density of 42.4 Wh/Kg. These results indicate the NiFe-LDH/MXene composites can be applied as the novel candidate of high-performance SC electrodes. •The LDH/MXene synergistic hybrid structure is developed with MXene nanosheets as the substrate.•Prominent electrical performance is attributed to MXene providing a fast charge transfer path for LDH.•The anchoring of LDH on MXene surface provides the material with enhanced cyclic stability.
Author Hu, BaoShan
Hu, Jia
Zhou, Hua
Zhou, Miao
Guan, Ting
Wu, Fang
Fang, Liang
Luo, Haijun
Author_xml – sequence: 1
  givenname: Hua
  surname: Zhou
  fullname: Zhou, Hua
  organization: State Key Laboratory of Power Transimission Equipment &System security and New Technology, Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing 400044, PR China
– sequence: 2
  givenname: Fang
  orcidid: 0000-0002-4684-3391
  surname: Wu
  fullname: Wu, Fang
  email: wufang@cqu.edu.cn
  organization: State Key Laboratory of Power Transimission Equipment &System security and New Technology, Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing 400044, PR China
– sequence: 3
  givenname: Liang
  surname: Fang
  fullname: Fang, Liang
  email: lfang@cqu.edu.cn
  organization: State Key Laboratory of Power Transimission Equipment &System security and New Technology, Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing 400044, PR China
– sequence: 4
  givenname: Jia
  surname: Hu
  fullname: Hu, Jia
  organization: State Key Laboratory of Power Transimission Equipment &System security and New Technology, Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing 400044, PR China
– sequence: 5
  givenname: Haijun
  surname: Luo
  fullname: Luo, Haijun
  email: luohaijun@cqnu.edu.cn
  organization: Key Laboratory of Optoelectronic Functional Materials, College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing, 401331, China
– sequence: 6
  givenname: Ting
  surname: Guan
  fullname: Guan, Ting
  organization: Shanxi Institute of Energy, No. 63, Yuci District, Jinzhong, ShanXi Province, 030600, PR China
– sequence: 7
  givenname: BaoShan
  surname: Hu
  fullname: Hu, BaoShan
  organization: College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, China
– sequence: 8
  givenname: Miao
  surname: Zhou
  fullname: Zhou, Miao
  organization: Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China, College of Optoelectronic Engineering, Chongqing University, Chongqing, 400044, PR China
BookMark eNqFkN1KAzEQhYNUsK2-guwL7DbZZH8CXijVWmFVEAXvwpjM2pR2sySr0Lc3pXrjTa9mhplzhvNNyKhzHRJyyWjGKCtn68yuVzuDHWY5zWlGeUYpOyFjVlcy5aKuRmRMeUlTzqQ8I5MQ1vGgokKOyUsDO_Rokie7wLS5Xc4e36NT0kHntNv2LtgBE9ygHrwzmLTOJyv7uUp79LHfQqcxCV9x0tCDtoPz5-S0hU3Ai986JW-Lu9f5Mm2e7x_mN02qeVUPqUZeFDSHAgwrpGQ1w5rpQvCSQU4llEjjuq0FA1kYAdDWRlR1IQT_qEpd8im5Ovhq70Lw2Kr4HgbrusGD3ShG1Z6PWqs_PmrPR1GuYvwoL__Je2-34HfHhdcHIcZw3xa9Ctpi5GCsj5iUcfaYxQ_Hx4Zs
CitedBy_id crossref_primary_10_1016_j_cej_2023_146995
crossref_primary_10_1016_j_chemosphere_2021_131976
crossref_primary_10_1016_j_jpowsour_2025_236685
crossref_primary_10_1016_j_chemosphere_2022_136191
crossref_primary_10_1016_j_cej_2022_135066
crossref_primary_10_3390_en16083520
crossref_primary_10_1016_j_apsusc_2021_150049
crossref_primary_10_1007_s00604_024_06549_0
crossref_primary_10_1016_j_coche_2021_100710
crossref_primary_10_1016_j_jallcom_2020_156787
crossref_primary_10_1016_j_mtchem_2024_101935
crossref_primary_10_1016_j_apenergy_2024_122944
crossref_primary_10_1016_j_electacta_2022_140939
crossref_primary_10_1016_j_rineng_2024_103045
crossref_primary_10_1016_j_jallcom_2022_165805
crossref_primary_10_1021_acsaem_3c00010
crossref_primary_10_1002_smll_202411641
crossref_primary_10_1039_D3QI01131C
crossref_primary_10_1007_s10008_024_05899_2
crossref_primary_10_1016_j_ijhydene_2024_11_039
crossref_primary_10_3390_en13184616
crossref_primary_10_1016_j_diamond_2023_110474
crossref_primary_10_1039_D1TA07919K
crossref_primary_10_1016_j_ccr_2024_216103
crossref_primary_10_1007_s11581_025_06100_y
crossref_primary_10_1016_j_electacta_2021_139645
crossref_primary_10_1016_j_cej_2024_159149
crossref_primary_10_1021_acsanm_2c01236
crossref_primary_10_1016_j_jallcom_2021_159649
crossref_primary_10_1016_j_est_2023_107473
crossref_primary_10_1016_j_electacta_2020_136679
crossref_primary_10_1016_j_jpowsour_2021_230744
crossref_primary_10_1016_j_est_2023_108844
crossref_primary_10_1016_j_est_2022_104599
crossref_primary_10_1021_acs_langmuir_4c04099
crossref_primary_10_1016_j_gee_2021_01_019
crossref_primary_10_1016_j_apsusc_2020_148305
crossref_primary_10_1016_j_est_2023_110393
crossref_primary_10_1016_j_est_2024_112455
crossref_primary_10_1016_j_apsusc_2021_151432
crossref_primary_10_1016_j_electacta_2022_140959
crossref_primary_10_1016_j_est_2023_106691
crossref_primary_10_1016_j_scenv_2025_100217
crossref_primary_10_1016_j_bios_2021_113620
crossref_primary_10_1016_j_susmat_2022_e00439
crossref_primary_10_1021_acs_langmuir_3c02140
crossref_primary_10_1002_celc_202101329
crossref_primary_10_1016_j_vacuum_2022_110914
crossref_primary_10_3390_en17051035
crossref_primary_10_1002_smll_202200586
crossref_primary_10_1002_adsu_202300098
crossref_primary_10_1016_j_ccr_2023_215494
crossref_primary_10_1016_j_nxener_2024_100183
crossref_primary_10_3390_ma15227983
crossref_primary_10_1016_j_electacta_2022_140148
crossref_primary_10_1016_j_est_2024_113954
crossref_primary_10_1021_acssuschemeng_2c06441
crossref_primary_10_1016_j_solidstatesciences_2024_107452
crossref_primary_10_1039_D3DT01242E
crossref_primary_10_1016_j_est_2024_113554
crossref_primary_10_1016_j_est_2024_114126
crossref_primary_10_1039_D1QM00556A
crossref_primary_10_1016_j_ijhydene_2020_12_085
crossref_primary_10_1016_j_mssp_2022_106835
crossref_primary_10_1007_s11581_022_04520_8
crossref_primary_10_1016_j_matchemphys_2025_130357
crossref_primary_10_1016_j_ces_2024_119813
crossref_primary_10_1021_acsanm_4c03583
crossref_primary_10_1016_j_jechem_2020_10_031
crossref_primary_10_1016_j_est_2024_113969
crossref_primary_10_1021_acsaem_0c00863
crossref_primary_10_1021_acsaelm_4c01381
crossref_primary_10_1021_acsmaterialslett_3c00223
crossref_primary_10_1016_j_ceramint_2020_08_237
crossref_primary_10_1002_adsu_202100371
crossref_primary_10_1016_j_jcis_2024_01_105
crossref_primary_10_3390_inorganics12040112
crossref_primary_10_3390_ma18030653
crossref_primary_10_1016_j_apsusc_2025_162641
crossref_primary_10_3390_batteries9050259
crossref_primary_10_1016_j_est_2021_103805
crossref_primary_10_1016_j_ceramint_2021_10_174
crossref_primary_10_1016_j_est_2023_109983
crossref_primary_10_1002_adfm_202110267
crossref_primary_10_1039_D2RA05036F
crossref_primary_10_1016_j_mtchem_2023_101578
crossref_primary_10_1002_aesr_202100183
crossref_primary_10_1007_s11581_023_04975_3
crossref_primary_10_1016_j_jallcom_2023_169809
crossref_primary_10_1007_s40843_022_2170_6
crossref_primary_10_1016_j_ijhydene_2024_05_367
crossref_primary_10_1016_j_est_2021_102380
crossref_primary_10_1016_j_apsusc_2023_158265
crossref_primary_10_1002_batt_202400451
crossref_primary_10_1021_acs_energyfuels_3c01634
crossref_primary_10_1016_j_est_2024_114949
crossref_primary_10_1021_acsami_2c19985
crossref_primary_10_3390_polym15020454
crossref_primary_10_1016_j_surfin_2024_105070
crossref_primary_10_2139_ssrn_3999177
crossref_primary_10_1021_acs_energyfuels_0c01637
crossref_primary_10_1016_j_jallcom_2023_170268
crossref_primary_10_1007_s11581_023_04987_z
crossref_primary_10_1016_j_matchemphys_2024_130076
crossref_primary_10_1016_j_apmt_2023_101908
crossref_primary_10_1016_j_mtnano_2023_100337
crossref_primary_10_1016_j_est_2022_105839
crossref_primary_10_1016_j_ijhydene_2022_12_265
crossref_primary_10_1016_j_est_2022_105765
crossref_primary_10_1007_s10853_024_09430_w
crossref_primary_10_1016_j_jhazmat_2021_126893
crossref_primary_10_1007_s10854_024_12332_x
crossref_primary_10_1016_j_jallcom_2021_163019
crossref_primary_10_1016_j_jallcom_2022_164185
crossref_primary_10_1016_j_ijoes_2024_100590
crossref_primary_10_1021_acs_energyfuels_4c01437
crossref_primary_10_1016_j_jcis_2023_06_061
crossref_primary_10_1007_s10854_022_09395_z
crossref_primary_10_1016_j_apsusc_2020_147780
crossref_primary_10_1016_j_est_2023_108433
crossref_primary_10_1016_j_jcis_2023_11_139
crossref_primary_10_1039_D3QI00819C
crossref_primary_10_4028_www_scientific_net_MSF_1035_1089
crossref_primary_10_1016_j_ceramint_2021_12_149
crossref_primary_10_1039_D4TA00328D
crossref_primary_10_1021_acsomega_3c06674
crossref_primary_10_1039_D3TA01992F
crossref_primary_10_1016_j_est_2022_106102
crossref_primary_10_1002_cnma_202200137
crossref_primary_10_1002_ente_202300749
crossref_primary_10_1007_s10854_022_08768_8
crossref_primary_10_1021_acs_inorgchem_3c04266
crossref_primary_10_1016_j_electacta_2025_146026
crossref_primary_10_1016_j_ijhydene_2020_07_006
crossref_primary_10_1016_j_jpowsour_2024_234940
crossref_primary_10_1021_acs_langmuir_3c00154
crossref_primary_10_1039_D2QM00275B
crossref_primary_10_1002_slct_202203288
crossref_primary_10_1016_j_apmt_2023_101841
crossref_primary_10_1016_j_est_2023_108305
crossref_primary_10_1021_acs_energyfuels_2c01752
crossref_primary_10_2139_ssrn_4074375
crossref_primary_10_1016_j_ijhydene_2022_03_227
crossref_primary_10_1039_D4TA00299G
Cites_doi 10.1016/j.ijhydene.2019.01.075
10.1002/adma.201102306
10.1016/j.nanoen.2017.08.002
10.1016/j.electacta.2017.12.139
10.1038/nature13970
10.1021/nl102661q
10.1016/j.electacta.2019.05.122
10.1039/C6RA07419G
10.1021/cm203831p
10.1126/science.aag2421
10.1016/j.nanoen.2017.06.009
10.1016/j.jallcom.2019.06.173
10.1002/adma.201404140
10.1039/C7TA07999K
10.1016/j.ijhydene.2019.09.190
10.1021/nn204153h
10.1016/j.jpowsour.2015.12.097
10.1016/j.ijhydene.2018.10.015
10.1016/j.ijhydene.2017.09.144
10.1021/acsnano.7b01409
10.1016/j.jallcom.2019.05.305
10.1016/j.jallcom.2017.04.197
10.1016/j.ijhydene.2019.01.011
10.1016/j.jpowsour.2016.07.062
10.1021/acsami.6b04767
10.1016/j.ijhydene.2016.04.050
10.1021/cr200434v
10.1002/adfm.201701264
10.1039/C4CP02020K
10.1016/j.jpowsour.2015.06.082
10.1016/j.ijhydene.2018.05.172
10.1126/science.1241488
10.1021/acsenergylett.7b01063
10.1016/j.ijhydene.2019.10.119
10.1021/acsenergylett.8b00718
10.1016/j.ijhydene.2018.11.221
10.1039/C6RA15384D
10.1016/j.jallcom.2018.05.358
10.1016/j.ijhydene.2019.04.267
10.1016/j.electacta.2017.05.152
10.1016/j.nanoen.2015.12.020
ContentType Journal Article
Copyright 2020 Hydrogen Energy Publications LLC
Copyright_xml – notice: 2020 Hydrogen Energy Publications LLC
DBID AAYXX
CITATION
DOI 10.1016/j.ijhydene.2020.03.001
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-3487
EndPage 13089
ExternalDocumentID 10_1016_j_ijhydene_2020_03_001
S0360319920308776
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AARLI
AAXUO
ABFNM
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADECG
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
HZ~
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SDF
SDG
SES
SPC
SPCBC
SSK
SSM
SSR
SSZ
T5K
TN5
XPP
ZMT
~G-
29J
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
R2-
RIG
SAC
SCB
SEW
SSH
T9H
WUQ
ID FETCH-LOGICAL-c378t-ce35502a5ad1599181e81c54361a209a6e0502f841a95d4aaf8d4785443b76c63
IEDL.DBID .~1
ISSN 0360-3199
IngestDate Tue Jul 01 02:01:35 EDT 2025
Thu Apr 24 23:12:17 EDT 2025
Fri Feb 23 02:46:34 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 23
Keywords Nanocomposite structure
Supercapacitor
LDH
MXene
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c378t-ce35502a5ad1599181e81c54361a209a6e0502f841a95d4aaf8d4785443b76c63
ORCID 0000-0002-4684-3391
PageCount 10
ParticipantIDs crossref_citationtrail_10_1016_j_ijhydene_2020_03_001
crossref_primary_10_1016_j_ijhydene_2020_03_001
elsevier_sciencedirect_doi_10_1016_j_ijhydene_2020_03_001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-04-28
PublicationDateYYYYMMDD 2020-04-28
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-28
  day: 28
PublicationDecade 2020
PublicationTitle International journal of hydrogen energy
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Peng, Xu, Wei, Liu, Guo, Wu, Zhang, Cao, Wang, Yu, Peng, Yan (bib27) 2019; 44
Liu, Guan, Fang, Wu, Lu, Luo, Song, Zhou, Hu, Wei, Shi (bib14) 2018; 763
Li, Musharavati, Zalenezhad, Chen, Hui, Hui (bib30) 2018; 261
Zhao, Ren, Ling, Lukatskaya, Zhang, Van Aken, Barsoum, Gogotsi (bib34) 2015; 27
Cevik, Gunday, Akhtar, Bozkurt (bib42) 2019; 44
Lin, Zhang (bib6) 2015; 294
Shabani-Nooshabadi, Zahedi (bib8) 2017; 245
Zhong, Su, Li (bib44) 2015; 44
Yan, Ren, Maleski, Hatter, Anasori, Urbankowski, Sarycheva, Gogotsi (bib23) 2017; 27
Lukatskaya, Mashtalir, Ren, Dall'Agnese, Rozier, Taberna, Naguib, Simon, Barsoum, Gogotsi (bib24) 2013; 341
Zhao, Ren, Ling, Lukatskaya, Zhang, Van Aken, Barsoum, Gogotsi (bib10) 2015; 27
Ge, Gu, Yin, Wang, Tu, Li (bib41) 2016; 20
Lu, Jiang, Fang, Ling, Wu, Hu, Meng, Niu, Lin, Zheng (bib16) 2017; 714
Lian, Dong, Wu, Zheng, Wang, Wang, Sun, Qin, Shi, Bao (bib25) 2017; 40
Masikhwa, Madito, Momodu, Dangbegnon, Guellati, Harat, Guerioune, Barzegar, Manyala (bib33) 2016; 6
Senthil, Pan, Yang, Sun (bib37) 2018; 43
Wang, Dou, Wang, Ding, Xu, Chang, Hao (bib22) 2016; 327
Naguib, Mashtalir, Carle, Presser, Lu, Hultman, Gogotsi, Barsoum (bib28) 2012; 6
Shao, Ning, Zhao, Zhao, Wei, Evans, Duan (bib38) 2012; 24
Naguib, Kurtoglu, Presser, Lu, Niu, Heon, Hultman, Gogotsi, Barsoum (bib18) 2011; 23
Yu, Wang, Yin, Zhang (bib19) 2019; 44
Shahzad, Alhabeb, Hatter, Anasori, Man Hong, Koo, Gogotsi (bib26) 2016; 353
Zhou, Song, Liu, Li, Li, Chang (bib35) 2018; 43
Sangsefidi, Salavati-Niasari, Varshoy, Shabani-Nooshabadi (bib1) 2017; 42
Pourfarzad, Shabani-Nooshabadi, Ganjali, Kashani (bib3) 2019; 317
Yang, Xu, Fang, Huang, Cai, Chen, Liu, Gopalsamy, Gao, Gao (bib12) 2017; 5
Yu, Shi, Liu, Wang, Yang, Wang, Yan, Sun, Jing (bib40) 2014; 16
Yu, Hu, Anasori, Liu, Zhu, Zhang, Gogotsi, Xu (bib21) 2018; 3
Zhao, Wang, Zhang, Passerini, Qian (bib4) 2016; 8
Su, Wu, Fang, Hu, Liu, Guan, Long, Luo, Zhou (bib11) 2019; 799
Liu, Yu, Neff, Zhamu, Jang (bib9) 2010; 10
Wu, Zhao, Yu, Song, Chen, Liu, Li, Fan (bib7) 2019; 44
Fan, Chen, Liu, Fan, Liu (bib17) 2019; 44
Wen, Rufford, Chen, Li, Lyu, Dai, Wang (bib20) 2017; 38
Cao, Ma, Song, Bai, Zhang, Li, Shao (bib31) 2019; 44
Zhao, Dong, Li, Zhou, Lai, Wang, Zhao, Han, Gao, Lu, Xie, Chen, Liu, Wang, Zhang, Li, Liu, Zhang, Huang, Huang (bib32) 2017; 11
Zhang, Hui, Hui, Chen, Chen, Lee (bib5) 2016; 41
Wang, O Hare (bib13) 2012; 112
Zhao, Wang, Zhao, Li, Wang, Yin (bib15) 2017; 3
Ghidiu, Lukatskaya, Zhao, Gogotsi, Barsoum (bib29) 2014; 516
Wang, Cao, Qin, Zhu, Wang, Tang (bib43) 2016; 6
Ge, Zhang, Xu, Lei, Li (bib2) 2015
Zhou, Lu, Wu, Fang, Luo, Zhang, Zhou (bib39) 2019; 802
Jagadale, Guan, Li, Du, Ma, Hao, Abudula (bib36) 2016; 306
Zhang (10.1016/j.ijhydene.2020.03.001_bib5) 2016; 41
Wen (10.1016/j.ijhydene.2020.03.001_bib20) 2017; 38
Zhao (10.1016/j.ijhydene.2020.03.001_bib10) 2015; 27
Lian (10.1016/j.ijhydene.2020.03.001_bib25) 2017; 40
Zhong (10.1016/j.ijhydene.2020.03.001_bib44) 2015; 44
Yu (10.1016/j.ijhydene.2020.03.001_bib19) 2019; 44
Zhou (10.1016/j.ijhydene.2020.03.001_bib39) 2019; 802
Li (10.1016/j.ijhydene.2020.03.001_bib30) 2018; 261
Wang (10.1016/j.ijhydene.2020.03.001_bib13) 2012; 112
Naguib (10.1016/j.ijhydene.2020.03.001_bib18) 2011; 23
Su (10.1016/j.ijhydene.2020.03.001_bib11) 2019; 799
Naguib (10.1016/j.ijhydene.2020.03.001_bib28) 2012; 6
Yu (10.1016/j.ijhydene.2020.03.001_bib40) 2014; 16
Shahzad (10.1016/j.ijhydene.2020.03.001_bib26) 2016; 353
Jagadale (10.1016/j.ijhydene.2020.03.001_bib36) 2016; 306
Pourfarzad (10.1016/j.ijhydene.2020.03.001_bib3) 2019; 317
Zhao (10.1016/j.ijhydene.2020.03.001_bib34) 2015; 27
Zhao (10.1016/j.ijhydene.2020.03.001_bib4) 2016; 8
Senthil (10.1016/j.ijhydene.2020.03.001_bib37) 2018; 43
Cevik (10.1016/j.ijhydene.2020.03.001_bib42) 2019; 44
Zhou (10.1016/j.ijhydene.2020.03.001_bib35) 2018; 43
Liu (10.1016/j.ijhydene.2020.03.001_bib9) 2010; 10
Cao (10.1016/j.ijhydene.2020.03.001_bib31) 2019; 44
Wang (10.1016/j.ijhydene.2020.03.001_bib43) 2016; 6
Lu (10.1016/j.ijhydene.2020.03.001_bib16) 2017; 714
Wu (10.1016/j.ijhydene.2020.03.001_bib7) 2019; 44
Ge (10.1016/j.ijhydene.2020.03.001_bib41) 2016; 20
Ge (10.1016/j.ijhydene.2020.03.001_bib2) 2015
Wang (10.1016/j.ijhydene.2020.03.001_bib22) 2016; 327
Lin (10.1016/j.ijhydene.2020.03.001_bib6) 2015; 294
Zhao (10.1016/j.ijhydene.2020.03.001_bib32) 2017; 11
Fan (10.1016/j.ijhydene.2020.03.001_bib17) 2019; 44
Shabani-Nooshabadi (10.1016/j.ijhydene.2020.03.001_bib8) 2017; 245
Zhao (10.1016/j.ijhydene.2020.03.001_bib15) 2017; 3
Sangsefidi (10.1016/j.ijhydene.2020.03.001_bib1) 2017; 42
Peng (10.1016/j.ijhydene.2020.03.001_bib27) 2019; 44
Liu (10.1016/j.ijhydene.2020.03.001_bib14) 2018; 763
Lukatskaya (10.1016/j.ijhydene.2020.03.001_bib24) 2013; 341
Yu (10.1016/j.ijhydene.2020.03.001_bib21) 2018; 3
Ghidiu (10.1016/j.ijhydene.2020.03.001_bib29) 2014; 516
Masikhwa (10.1016/j.ijhydene.2020.03.001_bib33) 2016; 6
Shao (10.1016/j.ijhydene.2020.03.001_bib38) 2012; 24
Yan (10.1016/j.ijhydene.2020.03.001_bib23) 2017; 27
Yang (10.1016/j.ijhydene.2020.03.001_bib12) 2017; 5
References_xml – volume: 6
  start-page: 46723
  year: 2016
  end-page: 46732
  ident: bib33
  article-title: High performance asymmetric supercapacitor based on CoAl-LDH/GF and activated carbon from expanded graphite
  publication-title: RSC Adv
– volume: 43
  start-page: 21824
  year: 2018
  end-page: 21834
  ident: bib37
  article-title: Nickel foam-supported NiFe layered double hydroxides nanoflakes array as a greatly enhanced electrocatalyst for oxygen evolution reaction
  publication-title: Int J Hydrogen Energy
– volume: 353
  start-page: 1137
  year: 2016
  end-page: 1140
  ident: bib26
  article-title: Electromagnetic interference shielding with 2D transition metal carbides (MXenes)
  publication-title: Science (New York, N.Y.)
– volume: 6
  start-page: 1322
  year: 2012
  end-page: 1331
  ident: bib28
  article-title: Two-Dimensional transition metal carbides
  publication-title: ACS Nano
– volume: 5
  start-page: 22113
  year: 2017
  end-page: 22119
  ident: bib12
  article-title: MXene/graphene hybrid fibers for high performance flexible supercapacitors
  publication-title: J Mater Chem
– volume: 3
  start-page: 132
  year: 2017
  end-page: 140
  ident: bib15
  article-title: Molecular-Level heterostructures assembled from titanium carbide MXene and ni–co–al layered Double-Hydroxide nanosheets for All-Solid-State flexible asymmetric High-Energy supercapacitors
  publication-title: ACS Energy Lett
– volume: 23
  start-page: 4248
  year: 2011
  end-page: 4253
  ident: bib18
  article-title: Two-Dimensional nanocrystals produced by exfoliation of Ti
  publication-title: Adv Mater
– volume: 16
  start-page: 17936
  year: 2014
  end-page: 17942
  ident: bib40
  article-title: Facile synthesis of exfoliated Co-Al LDH-carbon nanotube composites with high performance as supercapacitor electrodes
  publication-title: Phys Chem Chem Phys: Phys Chem Chem Phys
– volume: 27
  start-page: 339
  year: 2015
  end-page: 345
  ident: bib10
  article-title: Flexible MXene/Carbon nanotube composite paper with high volumetric capacitance
  publication-title: Adv Mater
– volume: 24
  start-page: 1192
  year: 2012
  end-page: 1197
  ident: bib38
  article-title: Core–shell layered double hydroxide microspheres with tunable interior architecture for supercapacitors
  publication-title: Chem Mater
– volume: 802
  start-page: 259
  year: 2019
  end-page: 268
  ident: bib39
  article-title: MnO
  publication-title: J Alloys Compd
– volume: 8
  start-page: 15661
  year: 2016
  end-page: 15667
  ident: bib4
  article-title: Two-Dimensional titanium Carbide/RGO composite for High-Performance supercapacitors
  publication-title: ACS Appl Mater Interfaces
– volume: 43
  start-page: 14328
  year: 2018
  end-page: 14336
  ident: bib35
  article-title: Fabrication of CdS/Ni Fe LDH heterostructure for improved photocatalytic hydrogen evolution from aqueous methanol solution
  publication-title: Int J Hydrogen Energy
– volume: 40
  start-page: 1
  year: 2017
  end-page: 8
  ident: bib25
  article-title: Alkalized Ti
  publication-title: Nano Energy
– volume: 42
  start-page: 28473
  year: 2017
  end-page: 28484
  ident: bib1
  article-title: Investigation of Mn
  publication-title: Int J Hydrogen Energy
– volume: 44
  start-page: 29975
  year: 2019
  end-page: 29985
  ident: bib27
  article-title: Manipulating photocatalytic pathway and activity of ternary Cu
  publication-title: Int J Hydrogen Energy
– volume: 20
  start-page: 185
  year: 2016
  end-page: 193
  ident: bib41
  article-title: Periodic stacking of 2D charged sheets: self-assembled superlattice of Ni–Al layered double hydroxide (LDH) and reduced graphene oxide
  publication-title: Nano Energy
– volume: 317
  start-page: 83
  year: 2019
  end-page: 92
  ident: bib3
  article-title: Synthesis of Ni–Co-Fe layered double hydroxide and Fe
  publication-title: Electrochim Acta
– volume: 341
  start-page: 1502
  year: 2013
  end-page: 1505
  ident: bib24
  article-title: Cation intercalation and high volumetric capacitance of Two-Dimensional titanium carbide
  publication-title: Science
– volume: 44
  start-page: 31780
  year: 2019
  end-page: 31789
  ident: bib7
  article-title: Controlled growth of hierarchical FeCo
  publication-title: Int J Hydrogen Energy
– volume: 44
  start-page: 2704
  year: 2019
  end-page: 2710
  ident: bib19
  article-title: Ti
  publication-title: Int J Hydrogen Energy
– volume: 294
  start-page: 354
  year: 2015
  end-page: 359
  ident: bib6
  article-title: Two-dimensional titanium carbide electrode with large mass loading for supercapacitor
  publication-title: J Power Sources
– volume: 27
  start-page: 1701264
  year: 2017
  ident: bib23
  article-title: Flexible MXene/Graphene films for ultrafast supercapacitors with outstanding volumetric capacitance
  publication-title: Adv Funct Mater
– volume: 261
  start-page: 178
  year: 2018
  end-page: 187
  ident: bib30
  article-title: Electrodeposited Ni Co layered double hydroxides on titanium carbide as a binder-free electrode for supercapacitors
  publication-title: Electrochim Acta
– volume: 6
  start-page: 88934
  year: 2016
  end-page: 88942
  ident: bib43
  article-title: ZnO nanoparticle-decorated two-dimensional titanium carbide with enhanced supercapacitive performance
  publication-title: RSC Adv
– volume: 44
  start-page: 29297
  year: 2019
  end-page: 29303
  ident: bib17
  article-title: Improving the hydrogen storage performance of lithium borohydride by Ti
  publication-title: Int J Hydrogen Energy
– start-page: 10
  year: 2015
  ident: bib2
  article-title: In-situ fabrication of self-collected Ni(OH)
  publication-title: Surf Technol
– volume: 44
  start-page: 5912
  year: 2019
  end-page: 5920
  ident: bib31
  article-title: Stable composite of flower-like NiFe-layered double hydroxide nucleated on graphene oxide as an effective catalyst for oxygen reduction reaction
  publication-title: Int J Hydrogen Energy
– volume: 10
  start-page: 4863
  year: 2010
  end-page: 4868
  ident: bib9
  article-title: Graphene-Based supercapacitor with an ultrahigh energy density
  publication-title: Nano Lett
– volume: 38
  start-page: 368
  year: 2017
  end-page: 376
  ident: bib20
  article-title: Nitrogen-doped Ti
  publication-title: Nano Energy
– volume: 11
  start-page: 5800
  year: 2017
  end-page: 5807
  ident: bib32
  article-title: Interdiffusion Reaction-Assisted hybridization of Two-Dimensional metal–organic frameworks and Ti
  publication-title: ACS Nano
– volume: 245
  start-page: 575
  year: 2017
  end-page: 586
  ident: bib8
  article-title: Electrochemical reduced graphene oxide-polyaniline as effective nanocomposite film for high-performance supercapacitor applications
  publication-title: Electrochim Acta
– volume: 112
  start-page: 4124
  year: 2012
  end-page: 4155
  ident: bib13
  article-title: Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets
  publication-title: Chem Rev
– volume: 44
  start-page: 51
  year: 2015
  end-page: 55
  ident: bib44
  article-title: Preparation and supercapacitor performance of a flexible nitrogen-doped graphene film
  publication-title: Surf Technol
– volume: 306
  start-page: 526
  year: 2016
  end-page: 534
  ident: bib36
  article-title: Ultrathin nanoflakes of cobalt–manganese layered double hydroxide with high reversibility for asymmetric supercapacitor
  publication-title: J Power Sources
– volume: 327
  start-page: 221
  year: 2016
  end-page: 228
  ident: bib22
  article-title: Three-dimensional porous MXene/layered double hydroxide composite for high performance supercapacitors
  publication-title: J Power Sources
– volume: 714
  start-page: 63
  year: 2017
  end-page: 70
  ident: bib16
  article-title: An investigation of ultrathin nickel-iron layered double hydroxide nanosheets grown on nickel foam for high-performance supercapacitor electrodes
  publication-title: J Alloys Compd
– volume: 27
  start-page: 339
  year: 2015
  end-page: 345
  ident: bib34
  article-title: Flexible MXene/Carbon nanotube composite paper with high volumetric capacitance
  publication-title: Adv Mater
– volume: 41
  start-page: 9443
  year: 2016
  end-page: 9453
  ident: bib5
  article-title: Role of graphene on hierarchical flower-like NiAl layered double hydroxide-nickel foam-graphene as binder-free electrode for high-rate hybrid supercapacitor
  publication-title: Int J Hydrogen Energy
– volume: 799
  start-page: 15
  year: 2019
  end-page: 25
  ident: bib11
  article-title: NiCo-LDH nanowires@nanosheets core-shell structure grown on carbon fiber cloth for high performance flexible supercapacitor electrode
  publication-title: J Alloys Compd
– volume: 763
  start-page: 926
  year: 2018
  end-page: 934
  ident: bib14
  article-title: Self-supported 3D NiCo-LDH/Gr composite nanosheets array electrode for high-performance supercapacitor
  publication-title: J Alloys Compd
– volume: 3
  start-page: 1597
  year: 2018
  end-page: 1603
  ident: bib21
  article-title: MXene-Bonded activated carbon as a flexible electrode for high-performance supercapacitors
  publication-title: ACS Energy Lett
– volume: 516
  start-page: 78
  year: 2014
  end-page: 81
  ident: bib29
  article-title: Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance
  publication-title: Nature
– volume: 44
  start-page: 16099
  year: 2019
  end-page: 16109
  ident: bib42
  article-title: A comparative study of various polyelectrolyte/nanocomposite electrode combinations in symmetric supercapacitors
  publication-title: Int J Hydrogen Energy
– volume: 44
  start-page: 5912
  year: 2019
  ident: 10.1016/j.ijhydene.2020.03.001_bib31
  article-title: Stable composite of flower-like NiFe-layered double hydroxide nucleated on graphene oxide as an effective catalyst for oxygen reduction reaction
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.01.075
– volume: 23
  start-page: 4248
  year: 2011
  ident: 10.1016/j.ijhydene.2020.03.001_bib18
  article-title: Two-Dimensional nanocrystals produced by exfoliation of Ti3AlC2
  publication-title: Adv Mater
  doi: 10.1002/adma.201102306
– volume: 40
  start-page: 1
  year: 2017
  ident: 10.1016/j.ijhydene.2020.03.001_bib25
  article-title: Alkalized Ti3C2 MXene nanoribbons with expanded interlayer spacing for high-capacity sodium and potassium ion batteries
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.08.002
– volume: 261
  start-page: 178
  year: 2018
  ident: 10.1016/j.ijhydene.2020.03.001_bib30
  article-title: Electrodeposited Ni Co layered double hydroxides on titanium carbide as a binder-free electrode for supercapacitors
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2017.12.139
– volume: 516
  start-page: 78
  year: 2014
  ident: 10.1016/j.ijhydene.2020.03.001_bib29
  article-title: Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance
  publication-title: Nature
  doi: 10.1038/nature13970
– volume: 10
  start-page: 4863
  year: 2010
  ident: 10.1016/j.ijhydene.2020.03.001_bib9
  article-title: Graphene-Based supercapacitor with an ultrahigh energy density
  publication-title: Nano Lett
  doi: 10.1021/nl102661q
– volume: 317
  start-page: 83
  year: 2019
  ident: 10.1016/j.ijhydene.2020.03.001_bib3
  article-title: Synthesis of Ni–Co-Fe layered double hydroxide and Fe2O3/Graphene nanocomposites as actively materials for high electrochemical performance supercapacitors
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2019.05.122
– volume: 6
  start-page: 46723
  year: 2016
  ident: 10.1016/j.ijhydene.2020.03.001_bib33
  article-title: High performance asymmetric supercapacitor based on CoAl-LDH/GF and activated carbon from expanded graphite
  publication-title: RSC Adv
  doi: 10.1039/C6RA07419G
– volume: 24
  start-page: 1192
  year: 2012
  ident: 10.1016/j.ijhydene.2020.03.001_bib38
  article-title: Core–shell layered double hydroxide microspheres with tunable interior architecture for supercapacitors
  publication-title: Chem Mater
  doi: 10.1021/cm203831p
– volume: 353
  start-page: 1137
  year: 2016
  ident: 10.1016/j.ijhydene.2020.03.001_bib26
  article-title: Electromagnetic interference shielding with 2D transition metal carbides (MXenes)
  publication-title: Science (New York, N.Y.)
  doi: 10.1126/science.aag2421
– volume: 38
  start-page: 368
  year: 2017
  ident: 10.1016/j.ijhydene.2020.03.001_bib20
  article-title: Nitrogen-doped Ti3C2Tx MXene electrodes for high-performance supercapacitors
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.06.009
– volume: 802
  start-page: 259
  year: 2019
  ident: 10.1016/j.ijhydene.2020.03.001_bib39
  article-title: MnO2 nanorods/MXene/CC composite electrode for flexible supercapacitors with enhanced electrochemical performance
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2019.06.173
– volume: 27
  start-page: 339
  year: 2015
  ident: 10.1016/j.ijhydene.2020.03.001_bib10
  article-title: Flexible MXene/Carbon nanotube composite paper with high volumetric capacitance
  publication-title: Adv Mater
  doi: 10.1002/adma.201404140
– volume: 5
  start-page: 22113
  year: 2017
  ident: 10.1016/j.ijhydene.2020.03.001_bib12
  article-title: MXene/graphene hybrid fibers for high performance flexible supercapacitors
  publication-title: J Mater Chem
  doi: 10.1039/C7TA07999K
– volume: 44
  start-page: 29975
  year: 2019
  ident: 10.1016/j.ijhydene.2020.03.001_bib27
  article-title: Manipulating photocatalytic pathway and activity of ternary Cu2O/(001)TiO2@Ti3C2Tx catalysts for H2 evolution: effect of surface coverage
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.09.190
– volume: 6
  start-page: 1322
  year: 2012
  ident: 10.1016/j.ijhydene.2020.03.001_bib28
  article-title: Two-Dimensional transition metal carbides
  publication-title: ACS Nano
  doi: 10.1021/nn204153h
– volume: 306
  start-page: 526
  year: 2016
  ident: 10.1016/j.ijhydene.2020.03.001_bib36
  article-title: Ultrathin nanoflakes of cobalt–manganese layered double hydroxide with high reversibility for asymmetric supercapacitor
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2015.12.097
– volume: 43
  start-page: 21824
  year: 2018
  ident: 10.1016/j.ijhydene.2020.03.001_bib37
  article-title: Nickel foam-supported NiFe layered double hydroxides nanoflakes array as a greatly enhanced electrocatalyst for oxygen evolution reaction
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2018.10.015
– volume: 42
  start-page: 28473
  year: 2017
  ident: 10.1016/j.ijhydene.2020.03.001_bib1
  article-title: Investigation of Mn2O3 as impurity on the electrochemical hydrogen storage performance of MnO2CeO2 nanocomposites
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2017.09.144
– volume: 11
  start-page: 5800
  year: 2017
  ident: 10.1016/j.ijhydene.2020.03.001_bib32
  article-title: Interdiffusion Reaction-Assisted hybridization of Two-Dimensional metal–organic frameworks and Ti3C2Tx nanosheets for electrocatalytic oxygen evolution
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b01409
– volume: 799
  start-page: 15
  year: 2019
  ident: 10.1016/j.ijhydene.2020.03.001_bib11
  article-title: NiCo-LDH nanowires@nanosheets core-shell structure grown on carbon fiber cloth for high performance flexible supercapacitor electrode
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2019.05.305
– volume: 714
  start-page: 63
  year: 2017
  ident: 10.1016/j.ijhydene.2020.03.001_bib16
  article-title: An investigation of ultrathin nickel-iron layered double hydroxide nanosheets grown on nickel foam for high-performance supercapacitor electrodes
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2017.04.197
– volume: 44
  start-page: 29297
  year: 2019
  ident: 10.1016/j.ijhydene.2020.03.001_bib17
  article-title: Improving the hydrogen storage performance of lithium borohydride by Ti3C2 MXene
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.01.011
– volume: 327
  start-page: 221
  year: 2016
  ident: 10.1016/j.ijhydene.2020.03.001_bib22
  article-title: Three-dimensional porous MXene/layered double hydroxide composite for high performance supercapacitors
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2016.07.062
– volume: 8
  start-page: 15661
  year: 2016
  ident: 10.1016/j.ijhydene.2020.03.001_bib4
  article-title: Two-Dimensional titanium Carbide/RGO composite for High-Performance supercapacitors
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.6b04767
– start-page: 10
  issue: 1
  year: 2015
  ident: 10.1016/j.ijhydene.2020.03.001_bib2
  article-title: In-situ fabrication of self-collected Ni(OH)2 supercapacitor electrode materials by hydrothermal treatment of Ni foam in H2O2 solution
  publication-title: Surf Technol
– volume: 41
  start-page: 9443
  year: 2016
  ident: 10.1016/j.ijhydene.2020.03.001_bib5
  article-title: Role of graphene on hierarchical flower-like NiAl layered double hydroxide-nickel foam-graphene as binder-free electrode for high-rate hybrid supercapacitor
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2016.04.050
– volume: 112
  start-page: 4124
  year: 2012
  ident: 10.1016/j.ijhydene.2020.03.001_bib13
  article-title: Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets
  publication-title: Chem Rev
  doi: 10.1021/cr200434v
– volume: 27
  start-page: 1701264
  year: 2017
  ident: 10.1016/j.ijhydene.2020.03.001_bib23
  article-title: Flexible MXene/Graphene films for ultrafast supercapacitors with outstanding volumetric capacitance
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.201701264
– volume: 16
  start-page: 17936
  year: 2014
  ident: 10.1016/j.ijhydene.2020.03.001_bib40
  article-title: Facile synthesis of exfoliated Co-Al LDH-carbon nanotube composites with high performance as supercapacitor electrodes
  publication-title: Phys Chem Chem Phys: Phys Chem Chem Phys
  doi: 10.1039/C4CP02020K
– volume: 44
  start-page: 51
  year: 2015
  ident: 10.1016/j.ijhydene.2020.03.001_bib44
  article-title: Preparation and supercapacitor performance of a flexible nitrogen-doped graphene film
  publication-title: Surf Technol
– volume: 294
  start-page: 354
  year: 2015
  ident: 10.1016/j.ijhydene.2020.03.001_bib6
  article-title: Two-dimensional titanium carbide electrode with large mass loading for supercapacitor
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2015.06.082
– volume: 43
  start-page: 14328
  year: 2018
  ident: 10.1016/j.ijhydene.2020.03.001_bib35
  article-title: Fabrication of CdS/Ni Fe LDH heterostructure for improved photocatalytic hydrogen evolution from aqueous methanol solution
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2018.05.172
– volume: 341
  start-page: 1502
  year: 2013
  ident: 10.1016/j.ijhydene.2020.03.001_bib24
  article-title: Cation intercalation and high volumetric capacitance of Two-Dimensional titanium carbide
  publication-title: Science
  doi: 10.1126/science.1241488
– volume: 3
  start-page: 132
  year: 2017
  ident: 10.1016/j.ijhydene.2020.03.001_bib15
  article-title: Molecular-Level heterostructures assembled from titanium carbide MXene and ni–co–al layered Double-Hydroxide nanosheets for All-Solid-State flexible asymmetric High-Energy supercapacitors
  publication-title: ACS Energy Lett
  doi: 10.1021/acsenergylett.7b01063
– volume: 44
  start-page: 31780
  year: 2019
  ident: 10.1016/j.ijhydene.2020.03.001_bib7
  article-title: Controlled growth of hierarchical FeCo2O4 ultrathin nanosheets and Co3O4 nanowires on nickle foam for supercapacitors
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.10.119
– volume: 3
  start-page: 1597
  year: 2018
  ident: 10.1016/j.ijhydene.2020.03.001_bib21
  article-title: MXene-Bonded activated carbon as a flexible electrode for high-performance supercapacitors
  publication-title: ACS Energy Lett
  doi: 10.1021/acsenergylett.8b00718
– volume: 27
  start-page: 339
  year: 2015
  ident: 10.1016/j.ijhydene.2020.03.001_bib34
  article-title: Flexible MXene/Carbon nanotube composite paper with high volumetric capacitance
  publication-title: Adv Mater
  doi: 10.1002/adma.201404140
– volume: 44
  start-page: 2704
  year: 2019
  ident: 10.1016/j.ijhydene.2020.03.001_bib19
  article-title: Ti3C2 MXene nanoparticles modified metal oxide composites for enhanced photoelectrochemical water splitting
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2018.11.221
– volume: 6
  start-page: 88934
  year: 2016
  ident: 10.1016/j.ijhydene.2020.03.001_bib43
  article-title: ZnO nanoparticle-decorated two-dimensional titanium carbide with enhanced supercapacitive performance
  publication-title: RSC Adv
  doi: 10.1039/C6RA15384D
– volume: 763
  start-page: 926
  year: 2018
  ident: 10.1016/j.ijhydene.2020.03.001_bib14
  article-title: Self-supported 3D NiCo-LDH/Gr composite nanosheets array electrode for high-performance supercapacitor
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2018.05.358
– volume: 44
  start-page: 16099
  year: 2019
  ident: 10.1016/j.ijhydene.2020.03.001_bib42
  article-title: A comparative study of various polyelectrolyte/nanocomposite electrode combinations in symmetric supercapacitors
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.04.267
– volume: 245
  start-page: 575
  year: 2017
  ident: 10.1016/j.ijhydene.2020.03.001_bib8
  article-title: Electrochemical reduced graphene oxide-polyaniline as effective nanocomposite film for high-performance supercapacitor applications
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2017.05.152
– volume: 20
  start-page: 185
  year: 2016
  ident: 10.1016/j.ijhydene.2020.03.001_bib41
  article-title: Periodic stacking of 2D charged sheets: self-assembled superlattice of Ni–Al layered double hydroxide (LDH) and reduced graphene oxide
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2015.12.020
SSID ssj0017049
Score 2.6344845
Snippet Layered double hydroxide (LDH) is potentially excellent supercapacitor (SC) materials, but the low conductivity and easy agglomeration limit the further...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 13080
SubjectTerms LDH
MXene
Nanocomposite structure
Supercapacitor
Title Layered NiFe-LDH/MXene nanocomposite electrode for high-performance supercapacitor
URI https://dx.doi.org/10.1016/j.ijhydene.2020.03.001
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09b8IwELUQXdqh6qf6iTJ0NUkcx0lGRIvSFhjaIrFFxjZqUBUQhYGlv713xKFUqsTQ0YlPiZ7Od0_y3TtC7oSWId4fUY8HkkLA86g0ITb4eEzGbBxzjv3Ovb5IB_xpGA5rpF31wmBZpY39ZUxfR2v7xLVourM8d18h9mILTsJKVTuU3eY8Qi9vfm3KPPzIUmDYTHH3VpfwpJlP3ldwvFEuk3ml2Kn_d4LaSjqdI3Jo2aLTKn_omNRMcUIOtjQET8lLV65w3qbTzzuGdu9TtzeEbzmFLKZYL45FWcax0260cYCkOqhRTGc_LQPO5xJWCvKmggM-PyODzsNbO6V2UAJVQRQvqDLAGgDbUGpgJwkkbRP7KuSB8CXzEimMB68Bd18moeZSjmPNoxil70aRUCI4J_ViWpgL4uhAjDlQAhPh_aknpBGRDrRKNANmNWKXJKzQyZRVEcdhFh9ZVS42ySpUM0Q18wKsm7sk7sZuVupo7LRIKvCzXx6RQbDfYXv1D9trso8rvDFi8Q2pL-ZLcwvEYzFqrD2rQfZaj89p_xsirNcY
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZKGYAB8RTlmYHVzctxkhEVqgBpB2ilbpYbuyIVSqvSDl347dw1TikSEgNjYp8SffLdfZLvviPklisZ4P0RdZgvKQQ8h0odYIOP48nIG0WMYb9zp8uTPnsaBIMaaVW9MFhWaWJ_GdNX0dq8sQ2a9jTP7VeIvdiCE3ulqh3fItsM3BfHGDQ_13Uebmg4MOymuH2jTXjczMdvS_Bv1Mv0nFLt1P09Q21knfYB2Td00bor_-iQ1HRxRPY2RASPyUsqlzhw0-rmbU3T-8TuDOBbViGLCRaMY1WWtsy4G6UtYKkWihTT6XfPgPWxgKcMEmcGHj47If32Q6-VUDMpgWZ-GM1ppoE2ALiBVEBPYsjaOnKzgPnclZ4TS64dWAbgXRkHikk5ihQLI9S-G4Y84_4pqReTQp8RS_l8xIAT6BAvUB0uNQ-Vr7JYeUCthl6DBBU6IjMy4jjN4l1U9WJjUaEqEFXh-Fg41yD22m5aCmn8aRFX4IsfR0JAtP_D9vwftjdkJ-l1UpE-dp8vyC6u4PWRF12S-ny20FfAQubD69Up-wIxHNim
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Layered+NiFe-LDH%2FMXene+nanocomposite+electrode+for+high-performance+supercapacitor&rft.jtitle=International+journal+of+hydrogen+energy&rft.au=Zhou%2C+Hua&rft.au=Wu%2C+Fang&rft.au=Fang%2C+Liang&rft.au=Hu%2C+Jia&rft.date=2020-04-28&rft.pub=Elsevier+Ltd&rft.issn=0360-3199&rft.eissn=1879-3487&rft.volume=45&rft.issue=23&rft.spage=13080&rft.epage=13089&rft_id=info:doi/10.1016%2Fj.ijhydene.2020.03.001&rft.externalDocID=S0360319920308776
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-3199&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-3199&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-3199&client=summon