Layered NiFe-LDH/MXene nanocomposite electrode for high-performance supercapacitor
Layered double hydroxide (LDH) is potentially excellent supercapacitor (SC) materials, but the low conductivity and easy agglomeration limit the further improvement of their electrochemical properties. Therefore, LDHs are requisite to grow on some conductive substrates to produce high-performance SC...
Saved in:
Published in | International journal of hydrogen energy Vol. 45; no. 23; pp. 13080 - 13089 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
28.04.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Layered double hydroxide (LDH) is potentially excellent supercapacitor (SC) materials, but the low conductivity and easy agglomeration limit the further improvement of their electrochemical properties. Therefore, LDHs are requisite to grow on some conductive substrates to produce high-performance SC. In this paper, the conductive two-dimensional (2D) transition metal carbides, nitrides and carbonitrides (called MXene) were explored as the substrate to directly deposit NiFe-LDH nanosheets by a one-step hydrothermal method, then a three-dimensional (3D) porous NiFe-LDH/MXene electrode was obtained. The morphology and electrochemical performance of the composite electrodes were analyzed and investigated. The results show that the NiFe-LDH/MXene electrode has larger specific capacitance (720.2 F/g) than NiFe-LDH (465 F/g), and the capacitance of the composite electrode retained 86% after 1000 cycles (only 24% for NiFe-LDH), showing excellent cycle stability. The improved electrochemical performance of the composites is caused by the stable sheet-like structure of NiFe-LDH during charge-discharge time and the conductive network formed by the MXene, which can accelerates electron transport. In addition, the asymmetric SC based on NiFe-LDH/MXene positive electrode display a power density of 758.27 W/kg at an energy density of 42.4 Wh/Kg. These results indicate the NiFe-LDH/MXene composites can be applied as the novel candidate of high-performance SC electrodes.
•The LDH/MXene synergistic hybrid structure is developed with MXene nanosheets as the substrate.•Prominent electrical performance is attributed to MXene providing a fast charge transfer path for LDH.•The anchoring of LDH on MXene surface provides the material with enhanced cyclic stability. |
---|---|
AbstractList | Layered double hydroxide (LDH) is potentially excellent supercapacitor (SC) materials, but the low conductivity and easy agglomeration limit the further improvement of their electrochemical properties. Therefore, LDHs are requisite to grow on some conductive substrates to produce high-performance SC. In this paper, the conductive two-dimensional (2D) transition metal carbides, nitrides and carbonitrides (called MXene) were explored as the substrate to directly deposit NiFe-LDH nanosheets by a one-step hydrothermal method, then a three-dimensional (3D) porous NiFe-LDH/MXene electrode was obtained. The morphology and electrochemical performance of the composite electrodes were analyzed and investigated. The results show that the NiFe-LDH/MXene electrode has larger specific capacitance (720.2 F/g) than NiFe-LDH (465 F/g), and the capacitance of the composite electrode retained 86% after 1000 cycles (only 24% for NiFe-LDH), showing excellent cycle stability. The improved electrochemical performance of the composites is caused by the stable sheet-like structure of NiFe-LDH during charge-discharge time and the conductive network formed by the MXene, which can accelerates electron transport. In addition, the asymmetric SC based on NiFe-LDH/MXene positive electrode display a power density of 758.27 W/kg at an energy density of 42.4 Wh/Kg. These results indicate the NiFe-LDH/MXene composites can be applied as the novel candidate of high-performance SC electrodes.
•The LDH/MXene synergistic hybrid structure is developed with MXene nanosheets as the substrate.•Prominent electrical performance is attributed to MXene providing a fast charge transfer path for LDH.•The anchoring of LDH on MXene surface provides the material with enhanced cyclic stability. |
Author | Hu, BaoShan Hu, Jia Zhou, Hua Zhou, Miao Guan, Ting Wu, Fang Fang, Liang Luo, Haijun |
Author_xml | – sequence: 1 givenname: Hua surname: Zhou fullname: Zhou, Hua organization: State Key Laboratory of Power Transimission Equipment &System security and New Technology, Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing 400044, PR China – sequence: 2 givenname: Fang orcidid: 0000-0002-4684-3391 surname: Wu fullname: Wu, Fang email: wufang@cqu.edu.cn organization: State Key Laboratory of Power Transimission Equipment &System security and New Technology, Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing 400044, PR China – sequence: 3 givenname: Liang surname: Fang fullname: Fang, Liang email: lfang@cqu.edu.cn organization: State Key Laboratory of Power Transimission Equipment &System security and New Technology, Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing 400044, PR China – sequence: 4 givenname: Jia surname: Hu fullname: Hu, Jia organization: State Key Laboratory of Power Transimission Equipment &System security and New Technology, Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing 400044, PR China – sequence: 5 givenname: Haijun surname: Luo fullname: Luo, Haijun email: luohaijun@cqnu.edu.cn organization: Key Laboratory of Optoelectronic Functional Materials, College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing, 401331, China – sequence: 6 givenname: Ting surname: Guan fullname: Guan, Ting organization: Shanxi Institute of Energy, No. 63, Yuci District, Jinzhong, ShanXi Province, 030600, PR China – sequence: 7 givenname: BaoShan surname: Hu fullname: Hu, BaoShan organization: College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, China – sequence: 8 givenname: Miao surname: Zhou fullname: Zhou, Miao organization: Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China, College of Optoelectronic Engineering, Chongqing University, Chongqing, 400044, PR China |
BookMark | eNqFkN1KAzEQhYNUsK2-guwL7DbZZH8CXijVWmFVEAXvwpjM2pR2sySr0Lc3pXrjTa9mhplzhvNNyKhzHRJyyWjGKCtn68yuVzuDHWY5zWlGeUYpOyFjVlcy5aKuRmRMeUlTzqQ8I5MQ1vGgokKOyUsDO_Rokie7wLS5Xc4e36NT0kHntNv2LtgBE9ygHrwzmLTOJyv7uUp79LHfQqcxCV9x0tCDtoPz5-S0hU3Ai986JW-Lu9f5Mm2e7x_mN02qeVUPqUZeFDSHAgwrpGQ1w5rpQvCSQU4llEjjuq0FA1kYAdDWRlR1IQT_qEpd8im5Ovhq70Lw2Kr4HgbrusGD3ShG1Z6PWqs_PmrPR1GuYvwoL__Je2-34HfHhdcHIcZw3xa9Ctpi5GCsj5iUcfaYxQ_Hx4Zs |
CitedBy_id | crossref_primary_10_1016_j_cej_2023_146995 crossref_primary_10_1016_j_chemosphere_2021_131976 crossref_primary_10_1016_j_jpowsour_2025_236685 crossref_primary_10_1016_j_chemosphere_2022_136191 crossref_primary_10_1016_j_cej_2022_135066 crossref_primary_10_3390_en16083520 crossref_primary_10_1016_j_apsusc_2021_150049 crossref_primary_10_1007_s00604_024_06549_0 crossref_primary_10_1016_j_coche_2021_100710 crossref_primary_10_1016_j_jallcom_2020_156787 crossref_primary_10_1016_j_mtchem_2024_101935 crossref_primary_10_1016_j_apenergy_2024_122944 crossref_primary_10_1016_j_electacta_2022_140939 crossref_primary_10_1016_j_rineng_2024_103045 crossref_primary_10_1016_j_jallcom_2022_165805 crossref_primary_10_1021_acsaem_3c00010 crossref_primary_10_1002_smll_202411641 crossref_primary_10_1039_D3QI01131C crossref_primary_10_1007_s10008_024_05899_2 crossref_primary_10_1016_j_ijhydene_2024_11_039 crossref_primary_10_3390_en13184616 crossref_primary_10_1016_j_diamond_2023_110474 crossref_primary_10_1039_D1TA07919K crossref_primary_10_1016_j_ccr_2024_216103 crossref_primary_10_1007_s11581_025_06100_y crossref_primary_10_1016_j_electacta_2021_139645 crossref_primary_10_1016_j_cej_2024_159149 crossref_primary_10_1021_acsanm_2c01236 crossref_primary_10_1016_j_jallcom_2021_159649 crossref_primary_10_1016_j_est_2023_107473 crossref_primary_10_1016_j_electacta_2020_136679 crossref_primary_10_1016_j_jpowsour_2021_230744 crossref_primary_10_1016_j_est_2023_108844 crossref_primary_10_1016_j_est_2022_104599 crossref_primary_10_1021_acs_langmuir_4c04099 crossref_primary_10_1016_j_gee_2021_01_019 crossref_primary_10_1016_j_apsusc_2020_148305 crossref_primary_10_1016_j_est_2023_110393 crossref_primary_10_1016_j_est_2024_112455 crossref_primary_10_1016_j_apsusc_2021_151432 crossref_primary_10_1016_j_electacta_2022_140959 crossref_primary_10_1016_j_est_2023_106691 crossref_primary_10_1016_j_scenv_2025_100217 crossref_primary_10_1016_j_bios_2021_113620 crossref_primary_10_1016_j_susmat_2022_e00439 crossref_primary_10_1021_acs_langmuir_3c02140 crossref_primary_10_1002_celc_202101329 crossref_primary_10_1016_j_vacuum_2022_110914 crossref_primary_10_3390_en17051035 crossref_primary_10_1002_smll_202200586 crossref_primary_10_1002_adsu_202300098 crossref_primary_10_1016_j_ccr_2023_215494 crossref_primary_10_1016_j_nxener_2024_100183 crossref_primary_10_3390_ma15227983 crossref_primary_10_1016_j_electacta_2022_140148 crossref_primary_10_1016_j_est_2024_113954 crossref_primary_10_1021_acssuschemeng_2c06441 crossref_primary_10_1016_j_solidstatesciences_2024_107452 crossref_primary_10_1039_D3DT01242E crossref_primary_10_1016_j_est_2024_113554 crossref_primary_10_1016_j_est_2024_114126 crossref_primary_10_1039_D1QM00556A crossref_primary_10_1016_j_ijhydene_2020_12_085 crossref_primary_10_1016_j_mssp_2022_106835 crossref_primary_10_1007_s11581_022_04520_8 crossref_primary_10_1016_j_matchemphys_2025_130357 crossref_primary_10_1016_j_ces_2024_119813 crossref_primary_10_1021_acsanm_4c03583 crossref_primary_10_1016_j_jechem_2020_10_031 crossref_primary_10_1016_j_est_2024_113969 crossref_primary_10_1021_acsaem_0c00863 crossref_primary_10_1021_acsaelm_4c01381 crossref_primary_10_1021_acsmaterialslett_3c00223 crossref_primary_10_1016_j_ceramint_2020_08_237 crossref_primary_10_1002_adsu_202100371 crossref_primary_10_1016_j_jcis_2024_01_105 crossref_primary_10_3390_inorganics12040112 crossref_primary_10_3390_ma18030653 crossref_primary_10_1016_j_apsusc_2025_162641 crossref_primary_10_3390_batteries9050259 crossref_primary_10_1016_j_est_2021_103805 crossref_primary_10_1016_j_ceramint_2021_10_174 crossref_primary_10_1016_j_est_2023_109983 crossref_primary_10_1002_adfm_202110267 crossref_primary_10_1039_D2RA05036F crossref_primary_10_1016_j_mtchem_2023_101578 crossref_primary_10_1002_aesr_202100183 crossref_primary_10_1007_s11581_023_04975_3 crossref_primary_10_1016_j_jallcom_2023_169809 crossref_primary_10_1007_s40843_022_2170_6 crossref_primary_10_1016_j_ijhydene_2024_05_367 crossref_primary_10_1016_j_est_2021_102380 crossref_primary_10_1016_j_apsusc_2023_158265 crossref_primary_10_1002_batt_202400451 crossref_primary_10_1021_acs_energyfuels_3c01634 crossref_primary_10_1016_j_est_2024_114949 crossref_primary_10_1021_acsami_2c19985 crossref_primary_10_3390_polym15020454 crossref_primary_10_1016_j_surfin_2024_105070 crossref_primary_10_2139_ssrn_3999177 crossref_primary_10_1021_acs_energyfuels_0c01637 crossref_primary_10_1016_j_jallcom_2023_170268 crossref_primary_10_1007_s11581_023_04987_z crossref_primary_10_1016_j_matchemphys_2024_130076 crossref_primary_10_1016_j_apmt_2023_101908 crossref_primary_10_1016_j_mtnano_2023_100337 crossref_primary_10_1016_j_est_2022_105839 crossref_primary_10_1016_j_ijhydene_2022_12_265 crossref_primary_10_1016_j_est_2022_105765 crossref_primary_10_1007_s10853_024_09430_w crossref_primary_10_1016_j_jhazmat_2021_126893 crossref_primary_10_1007_s10854_024_12332_x crossref_primary_10_1016_j_jallcom_2021_163019 crossref_primary_10_1016_j_jallcom_2022_164185 crossref_primary_10_1016_j_ijoes_2024_100590 crossref_primary_10_1021_acs_energyfuels_4c01437 crossref_primary_10_1016_j_jcis_2023_06_061 crossref_primary_10_1007_s10854_022_09395_z crossref_primary_10_1016_j_apsusc_2020_147780 crossref_primary_10_1016_j_est_2023_108433 crossref_primary_10_1016_j_jcis_2023_11_139 crossref_primary_10_1039_D3QI00819C crossref_primary_10_4028_www_scientific_net_MSF_1035_1089 crossref_primary_10_1016_j_ceramint_2021_12_149 crossref_primary_10_1039_D4TA00328D crossref_primary_10_1021_acsomega_3c06674 crossref_primary_10_1039_D3TA01992F crossref_primary_10_1016_j_est_2022_106102 crossref_primary_10_1002_cnma_202200137 crossref_primary_10_1002_ente_202300749 crossref_primary_10_1007_s10854_022_08768_8 crossref_primary_10_1021_acs_inorgchem_3c04266 crossref_primary_10_1016_j_electacta_2025_146026 crossref_primary_10_1016_j_ijhydene_2020_07_006 crossref_primary_10_1016_j_jpowsour_2024_234940 crossref_primary_10_1021_acs_langmuir_3c00154 crossref_primary_10_1039_D2QM00275B crossref_primary_10_1002_slct_202203288 crossref_primary_10_1016_j_apmt_2023_101841 crossref_primary_10_1016_j_est_2023_108305 crossref_primary_10_1021_acs_energyfuels_2c01752 crossref_primary_10_2139_ssrn_4074375 crossref_primary_10_1016_j_ijhydene_2022_03_227 crossref_primary_10_1039_D4TA00299G |
Cites_doi | 10.1016/j.ijhydene.2019.01.075 10.1002/adma.201102306 10.1016/j.nanoen.2017.08.002 10.1016/j.electacta.2017.12.139 10.1038/nature13970 10.1021/nl102661q 10.1016/j.electacta.2019.05.122 10.1039/C6RA07419G 10.1021/cm203831p 10.1126/science.aag2421 10.1016/j.nanoen.2017.06.009 10.1016/j.jallcom.2019.06.173 10.1002/adma.201404140 10.1039/C7TA07999K 10.1016/j.ijhydene.2019.09.190 10.1021/nn204153h 10.1016/j.jpowsour.2015.12.097 10.1016/j.ijhydene.2018.10.015 10.1016/j.ijhydene.2017.09.144 10.1021/acsnano.7b01409 10.1016/j.jallcom.2019.05.305 10.1016/j.jallcom.2017.04.197 10.1016/j.ijhydene.2019.01.011 10.1016/j.jpowsour.2016.07.062 10.1021/acsami.6b04767 10.1016/j.ijhydene.2016.04.050 10.1021/cr200434v 10.1002/adfm.201701264 10.1039/C4CP02020K 10.1016/j.jpowsour.2015.06.082 10.1016/j.ijhydene.2018.05.172 10.1126/science.1241488 10.1021/acsenergylett.7b01063 10.1016/j.ijhydene.2019.10.119 10.1021/acsenergylett.8b00718 10.1016/j.ijhydene.2018.11.221 10.1039/C6RA15384D 10.1016/j.jallcom.2018.05.358 10.1016/j.ijhydene.2019.04.267 10.1016/j.electacta.2017.05.152 10.1016/j.nanoen.2015.12.020 |
ContentType | Journal Article |
Copyright | 2020 Hydrogen Energy Publications LLC |
Copyright_xml | – notice: 2020 Hydrogen Energy Publications LLC |
DBID | AAYXX CITATION |
DOI | 10.1016/j.ijhydene.2020.03.001 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-3487 |
EndPage | 13089 |
ExternalDocumentID | 10_1016_j_ijhydene_2020_03_001 S0360319920308776 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AARLI AAXUO ABFNM ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADECG ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHIDL AIEXJ AIKHN AITUG AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA HZ~ IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SDF SDG SES SPC SPCBC SSK SSM SSR SSZ T5K TN5 XPP ZMT ~G- 29J AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF R2- RIG SAC SCB SEW SSH T9H WUQ |
ID | FETCH-LOGICAL-c378t-ce35502a5ad1599181e81c54361a209a6e0502f841a95d4aaf8d4785443b76c63 |
IEDL.DBID | .~1 |
ISSN | 0360-3199 |
IngestDate | Tue Jul 01 02:01:35 EDT 2025 Thu Apr 24 23:12:17 EDT 2025 Fri Feb 23 02:46:34 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Keywords | Nanocomposite structure Supercapacitor LDH MXene |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c378t-ce35502a5ad1599181e81c54361a209a6e0502f841a95d4aaf8d4785443b76c63 |
ORCID | 0000-0002-4684-3391 |
PageCount | 10 |
ParticipantIDs | crossref_citationtrail_10_1016_j_ijhydene_2020_03_001 crossref_primary_10_1016_j_ijhydene_2020_03_001 elsevier_sciencedirect_doi_10_1016_j_ijhydene_2020_03_001 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-04-28 |
PublicationDateYYYYMMDD | 2020-04-28 |
PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-28 day: 28 |
PublicationDecade | 2020 |
PublicationTitle | International journal of hydrogen energy |
PublicationYear | 2020 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Peng, Xu, Wei, Liu, Guo, Wu, Zhang, Cao, Wang, Yu, Peng, Yan (bib27) 2019; 44 Liu, Guan, Fang, Wu, Lu, Luo, Song, Zhou, Hu, Wei, Shi (bib14) 2018; 763 Li, Musharavati, Zalenezhad, Chen, Hui, Hui (bib30) 2018; 261 Zhao, Ren, Ling, Lukatskaya, Zhang, Van Aken, Barsoum, Gogotsi (bib34) 2015; 27 Cevik, Gunday, Akhtar, Bozkurt (bib42) 2019; 44 Lin, Zhang (bib6) 2015; 294 Shabani-Nooshabadi, Zahedi (bib8) 2017; 245 Zhong, Su, Li (bib44) 2015; 44 Yan, Ren, Maleski, Hatter, Anasori, Urbankowski, Sarycheva, Gogotsi (bib23) 2017; 27 Lukatskaya, Mashtalir, Ren, Dall'Agnese, Rozier, Taberna, Naguib, Simon, Barsoum, Gogotsi (bib24) 2013; 341 Zhao, Ren, Ling, Lukatskaya, Zhang, Van Aken, Barsoum, Gogotsi (bib10) 2015; 27 Ge, Gu, Yin, Wang, Tu, Li (bib41) 2016; 20 Lu, Jiang, Fang, Ling, Wu, Hu, Meng, Niu, Lin, Zheng (bib16) 2017; 714 Lian, Dong, Wu, Zheng, Wang, Wang, Sun, Qin, Shi, Bao (bib25) 2017; 40 Masikhwa, Madito, Momodu, Dangbegnon, Guellati, Harat, Guerioune, Barzegar, Manyala (bib33) 2016; 6 Senthil, Pan, Yang, Sun (bib37) 2018; 43 Wang, Dou, Wang, Ding, Xu, Chang, Hao (bib22) 2016; 327 Naguib, Mashtalir, Carle, Presser, Lu, Hultman, Gogotsi, Barsoum (bib28) 2012; 6 Shao, Ning, Zhao, Zhao, Wei, Evans, Duan (bib38) 2012; 24 Naguib, Kurtoglu, Presser, Lu, Niu, Heon, Hultman, Gogotsi, Barsoum (bib18) 2011; 23 Yu, Wang, Yin, Zhang (bib19) 2019; 44 Shahzad, Alhabeb, Hatter, Anasori, Man Hong, Koo, Gogotsi (bib26) 2016; 353 Zhou, Song, Liu, Li, Li, Chang (bib35) 2018; 43 Sangsefidi, Salavati-Niasari, Varshoy, Shabani-Nooshabadi (bib1) 2017; 42 Pourfarzad, Shabani-Nooshabadi, Ganjali, Kashani (bib3) 2019; 317 Yang, Xu, Fang, Huang, Cai, Chen, Liu, Gopalsamy, Gao, Gao (bib12) 2017; 5 Yu, Shi, Liu, Wang, Yang, Wang, Yan, Sun, Jing (bib40) 2014; 16 Yu, Hu, Anasori, Liu, Zhu, Zhang, Gogotsi, Xu (bib21) 2018; 3 Zhao, Wang, Zhang, Passerini, Qian (bib4) 2016; 8 Su, Wu, Fang, Hu, Liu, Guan, Long, Luo, Zhou (bib11) 2019; 799 Liu, Yu, Neff, Zhamu, Jang (bib9) 2010; 10 Wu, Zhao, Yu, Song, Chen, Liu, Li, Fan (bib7) 2019; 44 Fan, Chen, Liu, Fan, Liu (bib17) 2019; 44 Wen, Rufford, Chen, Li, Lyu, Dai, Wang (bib20) 2017; 38 Cao, Ma, Song, Bai, Zhang, Li, Shao (bib31) 2019; 44 Zhao, Dong, Li, Zhou, Lai, Wang, Zhao, Han, Gao, Lu, Xie, Chen, Liu, Wang, Zhang, Li, Liu, Zhang, Huang, Huang (bib32) 2017; 11 Zhang, Hui, Hui, Chen, Chen, Lee (bib5) 2016; 41 Wang, O Hare (bib13) 2012; 112 Zhao, Wang, Zhao, Li, Wang, Yin (bib15) 2017; 3 Ghidiu, Lukatskaya, Zhao, Gogotsi, Barsoum (bib29) 2014; 516 Wang, Cao, Qin, Zhu, Wang, Tang (bib43) 2016; 6 Ge, Zhang, Xu, Lei, Li (bib2) 2015 Zhou, Lu, Wu, Fang, Luo, Zhang, Zhou (bib39) 2019; 802 Jagadale, Guan, Li, Du, Ma, Hao, Abudula (bib36) 2016; 306 Zhang (10.1016/j.ijhydene.2020.03.001_bib5) 2016; 41 Wen (10.1016/j.ijhydene.2020.03.001_bib20) 2017; 38 Zhao (10.1016/j.ijhydene.2020.03.001_bib10) 2015; 27 Lian (10.1016/j.ijhydene.2020.03.001_bib25) 2017; 40 Zhong (10.1016/j.ijhydene.2020.03.001_bib44) 2015; 44 Yu (10.1016/j.ijhydene.2020.03.001_bib19) 2019; 44 Zhou (10.1016/j.ijhydene.2020.03.001_bib39) 2019; 802 Li (10.1016/j.ijhydene.2020.03.001_bib30) 2018; 261 Wang (10.1016/j.ijhydene.2020.03.001_bib13) 2012; 112 Naguib (10.1016/j.ijhydene.2020.03.001_bib18) 2011; 23 Su (10.1016/j.ijhydene.2020.03.001_bib11) 2019; 799 Naguib (10.1016/j.ijhydene.2020.03.001_bib28) 2012; 6 Yu (10.1016/j.ijhydene.2020.03.001_bib40) 2014; 16 Shahzad (10.1016/j.ijhydene.2020.03.001_bib26) 2016; 353 Jagadale (10.1016/j.ijhydene.2020.03.001_bib36) 2016; 306 Pourfarzad (10.1016/j.ijhydene.2020.03.001_bib3) 2019; 317 Zhao (10.1016/j.ijhydene.2020.03.001_bib34) 2015; 27 Zhao (10.1016/j.ijhydene.2020.03.001_bib4) 2016; 8 Senthil (10.1016/j.ijhydene.2020.03.001_bib37) 2018; 43 Cevik (10.1016/j.ijhydene.2020.03.001_bib42) 2019; 44 Zhou (10.1016/j.ijhydene.2020.03.001_bib35) 2018; 43 Liu (10.1016/j.ijhydene.2020.03.001_bib9) 2010; 10 Cao (10.1016/j.ijhydene.2020.03.001_bib31) 2019; 44 Wang (10.1016/j.ijhydene.2020.03.001_bib43) 2016; 6 Lu (10.1016/j.ijhydene.2020.03.001_bib16) 2017; 714 Wu (10.1016/j.ijhydene.2020.03.001_bib7) 2019; 44 Ge (10.1016/j.ijhydene.2020.03.001_bib41) 2016; 20 Ge (10.1016/j.ijhydene.2020.03.001_bib2) 2015 Wang (10.1016/j.ijhydene.2020.03.001_bib22) 2016; 327 Lin (10.1016/j.ijhydene.2020.03.001_bib6) 2015; 294 Zhao (10.1016/j.ijhydene.2020.03.001_bib32) 2017; 11 Fan (10.1016/j.ijhydene.2020.03.001_bib17) 2019; 44 Shabani-Nooshabadi (10.1016/j.ijhydene.2020.03.001_bib8) 2017; 245 Zhao (10.1016/j.ijhydene.2020.03.001_bib15) 2017; 3 Sangsefidi (10.1016/j.ijhydene.2020.03.001_bib1) 2017; 42 Peng (10.1016/j.ijhydene.2020.03.001_bib27) 2019; 44 Liu (10.1016/j.ijhydene.2020.03.001_bib14) 2018; 763 Lukatskaya (10.1016/j.ijhydene.2020.03.001_bib24) 2013; 341 Yu (10.1016/j.ijhydene.2020.03.001_bib21) 2018; 3 Ghidiu (10.1016/j.ijhydene.2020.03.001_bib29) 2014; 516 Masikhwa (10.1016/j.ijhydene.2020.03.001_bib33) 2016; 6 Shao (10.1016/j.ijhydene.2020.03.001_bib38) 2012; 24 Yan (10.1016/j.ijhydene.2020.03.001_bib23) 2017; 27 Yang (10.1016/j.ijhydene.2020.03.001_bib12) 2017; 5 |
References_xml | – volume: 6 start-page: 46723 year: 2016 end-page: 46732 ident: bib33 article-title: High performance asymmetric supercapacitor based on CoAl-LDH/GF and activated carbon from expanded graphite publication-title: RSC Adv – volume: 43 start-page: 21824 year: 2018 end-page: 21834 ident: bib37 article-title: Nickel foam-supported NiFe layered double hydroxides nanoflakes array as a greatly enhanced electrocatalyst for oxygen evolution reaction publication-title: Int J Hydrogen Energy – volume: 353 start-page: 1137 year: 2016 end-page: 1140 ident: bib26 article-title: Electromagnetic interference shielding with 2D transition metal carbides (MXenes) publication-title: Science (New York, N.Y.) – volume: 6 start-page: 1322 year: 2012 end-page: 1331 ident: bib28 article-title: Two-Dimensional transition metal carbides publication-title: ACS Nano – volume: 5 start-page: 22113 year: 2017 end-page: 22119 ident: bib12 article-title: MXene/graphene hybrid fibers for high performance flexible supercapacitors publication-title: J Mater Chem – volume: 3 start-page: 132 year: 2017 end-page: 140 ident: bib15 article-title: Molecular-Level heterostructures assembled from titanium carbide MXene and ni–co–al layered Double-Hydroxide nanosheets for All-Solid-State flexible asymmetric High-Energy supercapacitors publication-title: ACS Energy Lett – volume: 23 start-page: 4248 year: 2011 end-page: 4253 ident: bib18 article-title: Two-Dimensional nanocrystals produced by exfoliation of Ti publication-title: Adv Mater – volume: 16 start-page: 17936 year: 2014 end-page: 17942 ident: bib40 article-title: Facile synthesis of exfoliated Co-Al LDH-carbon nanotube composites with high performance as supercapacitor electrodes publication-title: Phys Chem Chem Phys: Phys Chem Chem Phys – volume: 27 start-page: 339 year: 2015 end-page: 345 ident: bib10 article-title: Flexible MXene/Carbon nanotube composite paper with high volumetric capacitance publication-title: Adv Mater – volume: 24 start-page: 1192 year: 2012 end-page: 1197 ident: bib38 article-title: Core–shell layered double hydroxide microspheres with tunable interior architecture for supercapacitors publication-title: Chem Mater – volume: 802 start-page: 259 year: 2019 end-page: 268 ident: bib39 article-title: MnO publication-title: J Alloys Compd – volume: 8 start-page: 15661 year: 2016 end-page: 15667 ident: bib4 article-title: Two-Dimensional titanium Carbide/RGO composite for High-Performance supercapacitors publication-title: ACS Appl Mater Interfaces – volume: 43 start-page: 14328 year: 2018 end-page: 14336 ident: bib35 article-title: Fabrication of CdS/Ni Fe LDH heterostructure for improved photocatalytic hydrogen evolution from aqueous methanol solution publication-title: Int J Hydrogen Energy – volume: 40 start-page: 1 year: 2017 end-page: 8 ident: bib25 article-title: Alkalized Ti publication-title: Nano Energy – volume: 42 start-page: 28473 year: 2017 end-page: 28484 ident: bib1 article-title: Investigation of Mn publication-title: Int J Hydrogen Energy – volume: 44 start-page: 29975 year: 2019 end-page: 29985 ident: bib27 article-title: Manipulating photocatalytic pathway and activity of ternary Cu publication-title: Int J Hydrogen Energy – volume: 20 start-page: 185 year: 2016 end-page: 193 ident: bib41 article-title: Periodic stacking of 2D charged sheets: self-assembled superlattice of Ni–Al layered double hydroxide (LDH) and reduced graphene oxide publication-title: Nano Energy – volume: 317 start-page: 83 year: 2019 end-page: 92 ident: bib3 article-title: Synthesis of Ni–Co-Fe layered double hydroxide and Fe publication-title: Electrochim Acta – volume: 341 start-page: 1502 year: 2013 end-page: 1505 ident: bib24 article-title: Cation intercalation and high volumetric capacitance of Two-Dimensional titanium carbide publication-title: Science – volume: 44 start-page: 31780 year: 2019 end-page: 31789 ident: bib7 article-title: Controlled growth of hierarchical FeCo publication-title: Int J Hydrogen Energy – volume: 44 start-page: 2704 year: 2019 end-page: 2710 ident: bib19 article-title: Ti publication-title: Int J Hydrogen Energy – volume: 294 start-page: 354 year: 2015 end-page: 359 ident: bib6 article-title: Two-dimensional titanium carbide electrode with large mass loading for supercapacitor publication-title: J Power Sources – volume: 27 start-page: 1701264 year: 2017 ident: bib23 article-title: Flexible MXene/Graphene films for ultrafast supercapacitors with outstanding volumetric capacitance publication-title: Adv Funct Mater – volume: 261 start-page: 178 year: 2018 end-page: 187 ident: bib30 article-title: Electrodeposited Ni Co layered double hydroxides on titanium carbide as a binder-free electrode for supercapacitors publication-title: Electrochim Acta – volume: 6 start-page: 88934 year: 2016 end-page: 88942 ident: bib43 article-title: ZnO nanoparticle-decorated two-dimensional titanium carbide with enhanced supercapacitive performance publication-title: RSC Adv – volume: 44 start-page: 29297 year: 2019 end-page: 29303 ident: bib17 article-title: Improving the hydrogen storage performance of lithium borohydride by Ti publication-title: Int J Hydrogen Energy – start-page: 10 year: 2015 ident: bib2 article-title: In-situ fabrication of self-collected Ni(OH) publication-title: Surf Technol – volume: 44 start-page: 5912 year: 2019 end-page: 5920 ident: bib31 article-title: Stable composite of flower-like NiFe-layered double hydroxide nucleated on graphene oxide as an effective catalyst for oxygen reduction reaction publication-title: Int J Hydrogen Energy – volume: 10 start-page: 4863 year: 2010 end-page: 4868 ident: bib9 article-title: Graphene-Based supercapacitor with an ultrahigh energy density publication-title: Nano Lett – volume: 38 start-page: 368 year: 2017 end-page: 376 ident: bib20 article-title: Nitrogen-doped Ti publication-title: Nano Energy – volume: 11 start-page: 5800 year: 2017 end-page: 5807 ident: bib32 article-title: Interdiffusion Reaction-Assisted hybridization of Two-Dimensional metal–organic frameworks and Ti publication-title: ACS Nano – volume: 245 start-page: 575 year: 2017 end-page: 586 ident: bib8 article-title: Electrochemical reduced graphene oxide-polyaniline as effective nanocomposite film for high-performance supercapacitor applications publication-title: Electrochim Acta – volume: 112 start-page: 4124 year: 2012 end-page: 4155 ident: bib13 article-title: Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets publication-title: Chem Rev – volume: 44 start-page: 51 year: 2015 end-page: 55 ident: bib44 article-title: Preparation and supercapacitor performance of a flexible nitrogen-doped graphene film publication-title: Surf Technol – volume: 306 start-page: 526 year: 2016 end-page: 534 ident: bib36 article-title: Ultrathin nanoflakes of cobalt–manganese layered double hydroxide with high reversibility for asymmetric supercapacitor publication-title: J Power Sources – volume: 327 start-page: 221 year: 2016 end-page: 228 ident: bib22 article-title: Three-dimensional porous MXene/layered double hydroxide composite for high performance supercapacitors publication-title: J Power Sources – volume: 714 start-page: 63 year: 2017 end-page: 70 ident: bib16 article-title: An investigation of ultrathin nickel-iron layered double hydroxide nanosheets grown on nickel foam for high-performance supercapacitor electrodes publication-title: J Alloys Compd – volume: 27 start-page: 339 year: 2015 end-page: 345 ident: bib34 article-title: Flexible MXene/Carbon nanotube composite paper with high volumetric capacitance publication-title: Adv Mater – volume: 41 start-page: 9443 year: 2016 end-page: 9453 ident: bib5 article-title: Role of graphene on hierarchical flower-like NiAl layered double hydroxide-nickel foam-graphene as binder-free electrode for high-rate hybrid supercapacitor publication-title: Int J Hydrogen Energy – volume: 799 start-page: 15 year: 2019 end-page: 25 ident: bib11 article-title: NiCo-LDH nanowires@nanosheets core-shell structure grown on carbon fiber cloth for high performance flexible supercapacitor electrode publication-title: J Alloys Compd – volume: 763 start-page: 926 year: 2018 end-page: 934 ident: bib14 article-title: Self-supported 3D NiCo-LDH/Gr composite nanosheets array electrode for high-performance supercapacitor publication-title: J Alloys Compd – volume: 3 start-page: 1597 year: 2018 end-page: 1603 ident: bib21 article-title: MXene-Bonded activated carbon as a flexible electrode for high-performance supercapacitors publication-title: ACS Energy Lett – volume: 516 start-page: 78 year: 2014 end-page: 81 ident: bib29 article-title: Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance publication-title: Nature – volume: 44 start-page: 16099 year: 2019 end-page: 16109 ident: bib42 article-title: A comparative study of various polyelectrolyte/nanocomposite electrode combinations in symmetric supercapacitors publication-title: Int J Hydrogen Energy – volume: 44 start-page: 5912 year: 2019 ident: 10.1016/j.ijhydene.2020.03.001_bib31 article-title: Stable composite of flower-like NiFe-layered double hydroxide nucleated on graphene oxide as an effective catalyst for oxygen reduction reaction publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2019.01.075 – volume: 23 start-page: 4248 year: 2011 ident: 10.1016/j.ijhydene.2020.03.001_bib18 article-title: Two-Dimensional nanocrystals produced by exfoliation of Ti3AlC2 publication-title: Adv Mater doi: 10.1002/adma.201102306 – volume: 40 start-page: 1 year: 2017 ident: 10.1016/j.ijhydene.2020.03.001_bib25 article-title: Alkalized Ti3C2 MXene nanoribbons with expanded interlayer spacing for high-capacity sodium and potassium ion batteries publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.08.002 – volume: 261 start-page: 178 year: 2018 ident: 10.1016/j.ijhydene.2020.03.001_bib30 article-title: Electrodeposited Ni Co layered double hydroxides on titanium carbide as a binder-free electrode for supercapacitors publication-title: Electrochim Acta doi: 10.1016/j.electacta.2017.12.139 – volume: 516 start-page: 78 year: 2014 ident: 10.1016/j.ijhydene.2020.03.001_bib29 article-title: Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance publication-title: Nature doi: 10.1038/nature13970 – volume: 10 start-page: 4863 year: 2010 ident: 10.1016/j.ijhydene.2020.03.001_bib9 article-title: Graphene-Based supercapacitor with an ultrahigh energy density publication-title: Nano Lett doi: 10.1021/nl102661q – volume: 317 start-page: 83 year: 2019 ident: 10.1016/j.ijhydene.2020.03.001_bib3 article-title: Synthesis of Ni–Co-Fe layered double hydroxide and Fe2O3/Graphene nanocomposites as actively materials for high electrochemical performance supercapacitors publication-title: Electrochim Acta doi: 10.1016/j.electacta.2019.05.122 – volume: 6 start-page: 46723 year: 2016 ident: 10.1016/j.ijhydene.2020.03.001_bib33 article-title: High performance asymmetric supercapacitor based on CoAl-LDH/GF and activated carbon from expanded graphite publication-title: RSC Adv doi: 10.1039/C6RA07419G – volume: 24 start-page: 1192 year: 2012 ident: 10.1016/j.ijhydene.2020.03.001_bib38 article-title: Core–shell layered double hydroxide microspheres with tunable interior architecture for supercapacitors publication-title: Chem Mater doi: 10.1021/cm203831p – volume: 353 start-page: 1137 year: 2016 ident: 10.1016/j.ijhydene.2020.03.001_bib26 article-title: Electromagnetic interference shielding with 2D transition metal carbides (MXenes) publication-title: Science (New York, N.Y.) doi: 10.1126/science.aag2421 – volume: 38 start-page: 368 year: 2017 ident: 10.1016/j.ijhydene.2020.03.001_bib20 article-title: Nitrogen-doped Ti3C2Tx MXene electrodes for high-performance supercapacitors publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.06.009 – volume: 802 start-page: 259 year: 2019 ident: 10.1016/j.ijhydene.2020.03.001_bib39 article-title: MnO2 nanorods/MXene/CC composite electrode for flexible supercapacitors with enhanced electrochemical performance publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2019.06.173 – volume: 27 start-page: 339 year: 2015 ident: 10.1016/j.ijhydene.2020.03.001_bib10 article-title: Flexible MXene/Carbon nanotube composite paper with high volumetric capacitance publication-title: Adv Mater doi: 10.1002/adma.201404140 – volume: 5 start-page: 22113 year: 2017 ident: 10.1016/j.ijhydene.2020.03.001_bib12 article-title: MXene/graphene hybrid fibers for high performance flexible supercapacitors publication-title: J Mater Chem doi: 10.1039/C7TA07999K – volume: 44 start-page: 29975 year: 2019 ident: 10.1016/j.ijhydene.2020.03.001_bib27 article-title: Manipulating photocatalytic pathway and activity of ternary Cu2O/(001)TiO2@Ti3C2Tx catalysts for H2 evolution: effect of surface coverage publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2019.09.190 – volume: 6 start-page: 1322 year: 2012 ident: 10.1016/j.ijhydene.2020.03.001_bib28 article-title: Two-Dimensional transition metal carbides publication-title: ACS Nano doi: 10.1021/nn204153h – volume: 306 start-page: 526 year: 2016 ident: 10.1016/j.ijhydene.2020.03.001_bib36 article-title: Ultrathin nanoflakes of cobalt–manganese layered double hydroxide with high reversibility for asymmetric supercapacitor publication-title: J Power Sources doi: 10.1016/j.jpowsour.2015.12.097 – volume: 43 start-page: 21824 year: 2018 ident: 10.1016/j.ijhydene.2020.03.001_bib37 article-title: Nickel foam-supported NiFe layered double hydroxides nanoflakes array as a greatly enhanced electrocatalyst for oxygen evolution reaction publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2018.10.015 – volume: 42 start-page: 28473 year: 2017 ident: 10.1016/j.ijhydene.2020.03.001_bib1 article-title: Investigation of Mn2O3 as impurity on the electrochemical hydrogen storage performance of MnO2CeO2 nanocomposites publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2017.09.144 – volume: 11 start-page: 5800 year: 2017 ident: 10.1016/j.ijhydene.2020.03.001_bib32 article-title: Interdiffusion Reaction-Assisted hybridization of Two-Dimensional metal–organic frameworks and Ti3C2Tx nanosheets for electrocatalytic oxygen evolution publication-title: ACS Nano doi: 10.1021/acsnano.7b01409 – volume: 799 start-page: 15 year: 2019 ident: 10.1016/j.ijhydene.2020.03.001_bib11 article-title: NiCo-LDH nanowires@nanosheets core-shell structure grown on carbon fiber cloth for high performance flexible supercapacitor electrode publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2019.05.305 – volume: 714 start-page: 63 year: 2017 ident: 10.1016/j.ijhydene.2020.03.001_bib16 article-title: An investigation of ultrathin nickel-iron layered double hydroxide nanosheets grown on nickel foam for high-performance supercapacitor electrodes publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2017.04.197 – volume: 44 start-page: 29297 year: 2019 ident: 10.1016/j.ijhydene.2020.03.001_bib17 article-title: Improving the hydrogen storage performance of lithium borohydride by Ti3C2 MXene publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2019.01.011 – volume: 327 start-page: 221 year: 2016 ident: 10.1016/j.ijhydene.2020.03.001_bib22 article-title: Three-dimensional porous MXene/layered double hydroxide composite for high performance supercapacitors publication-title: J Power Sources doi: 10.1016/j.jpowsour.2016.07.062 – volume: 8 start-page: 15661 year: 2016 ident: 10.1016/j.ijhydene.2020.03.001_bib4 article-title: Two-Dimensional titanium Carbide/RGO composite for High-Performance supercapacitors publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.6b04767 – start-page: 10 issue: 1 year: 2015 ident: 10.1016/j.ijhydene.2020.03.001_bib2 article-title: In-situ fabrication of self-collected Ni(OH)2 supercapacitor electrode materials by hydrothermal treatment of Ni foam in H2O2 solution publication-title: Surf Technol – volume: 41 start-page: 9443 year: 2016 ident: 10.1016/j.ijhydene.2020.03.001_bib5 article-title: Role of graphene on hierarchical flower-like NiAl layered double hydroxide-nickel foam-graphene as binder-free electrode for high-rate hybrid supercapacitor publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2016.04.050 – volume: 112 start-page: 4124 year: 2012 ident: 10.1016/j.ijhydene.2020.03.001_bib13 article-title: Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets publication-title: Chem Rev doi: 10.1021/cr200434v – volume: 27 start-page: 1701264 year: 2017 ident: 10.1016/j.ijhydene.2020.03.001_bib23 article-title: Flexible MXene/Graphene films for ultrafast supercapacitors with outstanding volumetric capacitance publication-title: Adv Funct Mater doi: 10.1002/adfm.201701264 – volume: 16 start-page: 17936 year: 2014 ident: 10.1016/j.ijhydene.2020.03.001_bib40 article-title: Facile synthesis of exfoliated Co-Al LDH-carbon nanotube composites with high performance as supercapacitor electrodes publication-title: Phys Chem Chem Phys: Phys Chem Chem Phys doi: 10.1039/C4CP02020K – volume: 44 start-page: 51 year: 2015 ident: 10.1016/j.ijhydene.2020.03.001_bib44 article-title: Preparation and supercapacitor performance of a flexible nitrogen-doped graphene film publication-title: Surf Technol – volume: 294 start-page: 354 year: 2015 ident: 10.1016/j.ijhydene.2020.03.001_bib6 article-title: Two-dimensional titanium carbide electrode with large mass loading for supercapacitor publication-title: J Power Sources doi: 10.1016/j.jpowsour.2015.06.082 – volume: 43 start-page: 14328 year: 2018 ident: 10.1016/j.ijhydene.2020.03.001_bib35 article-title: Fabrication of CdS/Ni Fe LDH heterostructure for improved photocatalytic hydrogen evolution from aqueous methanol solution publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2018.05.172 – volume: 341 start-page: 1502 year: 2013 ident: 10.1016/j.ijhydene.2020.03.001_bib24 article-title: Cation intercalation and high volumetric capacitance of Two-Dimensional titanium carbide publication-title: Science doi: 10.1126/science.1241488 – volume: 3 start-page: 132 year: 2017 ident: 10.1016/j.ijhydene.2020.03.001_bib15 article-title: Molecular-Level heterostructures assembled from titanium carbide MXene and ni–co–al layered Double-Hydroxide nanosheets for All-Solid-State flexible asymmetric High-Energy supercapacitors publication-title: ACS Energy Lett doi: 10.1021/acsenergylett.7b01063 – volume: 44 start-page: 31780 year: 2019 ident: 10.1016/j.ijhydene.2020.03.001_bib7 article-title: Controlled growth of hierarchical FeCo2O4 ultrathin nanosheets and Co3O4 nanowires on nickle foam for supercapacitors publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2019.10.119 – volume: 3 start-page: 1597 year: 2018 ident: 10.1016/j.ijhydene.2020.03.001_bib21 article-title: MXene-Bonded activated carbon as a flexible electrode for high-performance supercapacitors publication-title: ACS Energy Lett doi: 10.1021/acsenergylett.8b00718 – volume: 27 start-page: 339 year: 2015 ident: 10.1016/j.ijhydene.2020.03.001_bib34 article-title: Flexible MXene/Carbon nanotube composite paper with high volumetric capacitance publication-title: Adv Mater doi: 10.1002/adma.201404140 – volume: 44 start-page: 2704 year: 2019 ident: 10.1016/j.ijhydene.2020.03.001_bib19 article-title: Ti3C2 MXene nanoparticles modified metal oxide composites for enhanced photoelectrochemical water splitting publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2018.11.221 – volume: 6 start-page: 88934 year: 2016 ident: 10.1016/j.ijhydene.2020.03.001_bib43 article-title: ZnO nanoparticle-decorated two-dimensional titanium carbide with enhanced supercapacitive performance publication-title: RSC Adv doi: 10.1039/C6RA15384D – volume: 763 start-page: 926 year: 2018 ident: 10.1016/j.ijhydene.2020.03.001_bib14 article-title: Self-supported 3D NiCo-LDH/Gr composite nanosheets array electrode for high-performance supercapacitor publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2018.05.358 – volume: 44 start-page: 16099 year: 2019 ident: 10.1016/j.ijhydene.2020.03.001_bib42 article-title: A comparative study of various polyelectrolyte/nanocomposite electrode combinations in symmetric supercapacitors publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2019.04.267 – volume: 245 start-page: 575 year: 2017 ident: 10.1016/j.ijhydene.2020.03.001_bib8 article-title: Electrochemical reduced graphene oxide-polyaniline as effective nanocomposite film for high-performance supercapacitor applications publication-title: Electrochim Acta doi: 10.1016/j.electacta.2017.05.152 – volume: 20 start-page: 185 year: 2016 ident: 10.1016/j.ijhydene.2020.03.001_bib41 article-title: Periodic stacking of 2D charged sheets: self-assembled superlattice of Ni–Al layered double hydroxide (LDH) and reduced graphene oxide publication-title: Nano Energy doi: 10.1016/j.nanoen.2015.12.020 |
SSID | ssj0017049 |
Score | 2.6344845 |
Snippet | Layered double hydroxide (LDH) is potentially excellent supercapacitor (SC) materials, but the low conductivity and easy agglomeration limit the further... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 13080 |
SubjectTerms | LDH MXene Nanocomposite structure Supercapacitor |
Title | Layered NiFe-LDH/MXene nanocomposite electrode for high-performance supercapacitor |
URI | https://dx.doi.org/10.1016/j.ijhydene.2020.03.001 |
Volume | 45 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09b8IwELUQXdqh6qf6iTJ0NUkcx0lGRIvSFhjaIrFFxjZqUBUQhYGlv713xKFUqsTQ0YlPiZ7Od0_y3TtC7oSWId4fUY8HkkLA86g0ITb4eEzGbBxzjv3Ovb5IB_xpGA5rpF31wmBZpY39ZUxfR2v7xLVourM8d18h9mILTsJKVTuU3eY8Qi9vfm3KPPzIUmDYTHH3VpfwpJlP3ldwvFEuk3ml2Kn_d4LaSjqdI3Jo2aLTKn_omNRMcUIOtjQET8lLV65w3qbTzzuGdu9TtzeEbzmFLKZYL45FWcax0260cYCkOqhRTGc_LQPO5xJWCvKmggM-PyODzsNbO6V2UAJVQRQvqDLAGgDbUGpgJwkkbRP7KuSB8CXzEimMB68Bd18moeZSjmPNoxil70aRUCI4J_ViWpgL4uhAjDlQAhPh_aknpBGRDrRKNANmNWKXJKzQyZRVEcdhFh9ZVS42ySpUM0Q18wKsm7sk7sZuVupo7LRIKvCzXx6RQbDfYXv1D9trso8rvDFi8Q2pL-ZLcwvEYzFqrD2rQfZaj89p_xsirNcY |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZKGYAB8RTlmYHVzctxkhEVqgBpB2ilbpYbuyIVSqvSDl347dw1TikSEgNjYp8SffLdfZLvviPklisZ4P0RdZgvKQQ8h0odYIOP48nIG0WMYb9zp8uTPnsaBIMaaVW9MFhWaWJ_GdNX0dq8sQ2a9jTP7VeIvdiCE3ulqh3fItsM3BfHGDQ_13Uebmg4MOymuH2jTXjczMdvS_Bv1Mv0nFLt1P09Q21knfYB2Td00bor_-iQ1HRxRPY2RASPyUsqlzhw0-rmbU3T-8TuDOBbViGLCRaMY1WWtsy4G6UtYKkWihTT6XfPgPWxgKcMEmcGHj47If32Q6-VUDMpgWZ-GM1ppoE2ALiBVEBPYsjaOnKzgPnclZ4TS64dWAbgXRkHikk5ihQLI9S-G4Y84_4pqReTQp8RS_l8xIAT6BAvUB0uNQ-Vr7JYeUCthl6DBBU6IjMy4jjN4l1U9WJjUaEqEFXh-Fg41yD22m5aCmn8aRFX4IsfR0JAtP_D9vwftjdkJ-l1UpE-dp8vyC6u4PWRF12S-ny20FfAQubD69Up-wIxHNim |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Layered+NiFe-LDH%2FMXene+nanocomposite+electrode+for+high-performance+supercapacitor&rft.jtitle=International+journal+of+hydrogen+energy&rft.au=Zhou%2C+Hua&rft.au=Wu%2C+Fang&rft.au=Fang%2C+Liang&rft.au=Hu%2C+Jia&rft.date=2020-04-28&rft.pub=Elsevier+Ltd&rft.issn=0360-3199&rft.eissn=1879-3487&rft.volume=45&rft.issue=23&rft.spage=13080&rft.epage=13089&rft_id=info:doi/10.1016%2Fj.ijhydene.2020.03.001&rft.externalDocID=S0360319920308776 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-3199&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-3199&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-3199&client=summon |