Adapted block hybrid method for the numerical solution of Duffing equations and related problems
Problems of non-linear equations to model real-life phenomena have a long history in science and engineering. One of the popular of such non-linear equations is the Duffing equation. An adapted block hybrid numerical integrator that is dependent on a fixed frequency and fixed step length is proposed...
Saved in:
Published in | AIMS mathematics Vol. 6; no. 12; pp. 14013 - 14034 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
AIMS Press
01.01.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Problems of non-linear equations to model real-life phenomena have a long history in science and engineering. One of the popular of such non-linear equations is the Duffing equation. An adapted block hybrid numerical integrator that is dependent on a fixed frequency and fixed step length is proposed for the integration of Duffing equations. The stability and convergence of the method are demonstrated; its accuracy and efficiency are also established. |
---|---|
AbstractList | Problems of non-linear equations to model real-life phenomena have a long history in science and engineering. One of the popular of such non-linear equations is the Duffing equation. An adapted block hybrid numerical integrator that is dependent on a fixed frequency and fixed step length is proposed for the integration of Duffing equations. The stability and convergence of the method are demonstrated; its accuracy and efficiency are also established. |
Author | Wen, Shiping Tang, Ning Abdulganiy, Ridwanulahi Iyanda Zhang, Wei Feng, Yuming |
Author_xml | – sequence: 1 givenname: Ridwanulahi Iyanda surname: Abdulganiy fullname: Abdulganiy, Ridwanulahi Iyanda – sequence: 2 givenname: Shiping surname: Wen fullname: Wen, Shiping – sequence: 3 givenname: Yuming surname: Feng fullname: Feng, Yuming – sequence: 4 givenname: Wei surname: Zhang fullname: Zhang, Wei – sequence: 5 givenname: Ning surname: Tang fullname: Tang, Ning |
BookMark | eNptkE1OwzAQhS1UJAp0xwF8AFpsx42TZVX-KiGxgbUZ25PWJYmL4y64PQktEkKsZjR675uZd05GbWiRkCvOZlmZyZsG0mYmmOAFZydkLKTKpnlZFKNf_RmZdN2WsV4lpFByTN4WDnYJHTV1sO9082mid7TBtAmOViHStEHa7huM3kJNu1Dvkw8tDRW93VeVb9cUP_YwzDoKraMRaxh4uxhMjU13SU4rqDucHOsFeb2_e1k-Tp-eH1bLxdPUZqpIUwtOqrkwEjNrFGMKOZOmkCbPeYFWocq4MraSpWVClg5M7vLCMWvMHAVX2QVZHbguwFbvom8gfuoAXn8PQlxriMnbGnUFPGcWkYsSJe8xNuuXc8YFWAbIe5Y4sGwMXRex0tan7x9TBF9rzvQQuR4i18fIe9P1H9PPEf_KvwDx2oaZ |
CitedBy_id | crossref_primary_10_1016_j_matcom_2023_10_019 crossref_primary_10_37394_23206_2024_23_63 crossref_primary_10_55908_sdgs_v12i8_3827 |
Cites_doi | 10.1016/j.cam.2003.09.042 10.1155/2020/5108482 10.1016/j.jsv.2007.05.021 10.1016/j.matcom.2013.05.010 10.1002/mma.4386 10.1016/j.cam.2005.12.022 10.1016/S0377-0427(01)00474-5 10.1016/j.cam.2005.12.006 10.1137/0711029 10.1080/00207169108804026 10.1016/j.amc.2010.10.010 10.1080/00207169308804175 10.1093/imamat/18.2.189 10.9790/5728-0837580 10.1080/00029890.1967.12000056 10.1090/S0002-9939-1969-0245879-4 10.1016/j.cam.2014.09.008 10.1155/2015/343295 10.46481/jnsps.2020.33 10.1007/BF01386037 10.1007/s40819-017-0425-2 10.1007/s11075-012-9562-1 10.1186/2193-1801-3-304 10.1016/S0377-0427(99)00340-4 10.1016/j.nonrwa.2007.10.015 10.1016/0377-0427(84)90066-9 10.9734/JAMCS/2018/42774 10.1016/j.aml.2010.07.003 10.1080/00207160.2017.1303138 10.1007/s11075-008-9202-y 10.1016/S0096-3003(03)00341-2 10.1016/S0377-0427(02)00485-5 10.1016/j.cam.2008.07.053 10.1016/j.mcm.2010.09.011 10.1080/00207168608803532 10.1016/j.aej.2016.04.036 10.1016/B978-0-12-249930-2.50012-6 10.1016/j.apm.2015.04.027 10.1093/imanum/16.2.179 10.1080/00207160.2013.766329 10.1016/j.cam.2005.03.035 10.1080/00207169008803806 10.1016/j.amc.2014.10.113 10.1002/9780470977859 10.1016/S0898-1221(03)80036-6 10.1080/20421338.2018.1467859 10.1142/S0129183106009357 10.1016/j.apnum.2006.12.003 10.5899/2014/cna-00214 10.1007/s11075-016-0148-1 |
ContentType | Journal Article |
CorporateAuthor | Chongqing Engineering Research Center of Internet of Things and Intelligent Control Technology, Chongqing Three Gorges University, Wanzhou, Chongqing 404100, China Key Laboratory of Intelligent Information Processing and Control, Chongqing Three Gorges University, Wanzhou, Chongqing 404100, China School of Three Gorges Artificial Intelligence, Chongqing Three Gorges University, Wanzhou, Chongqing 404100, China Australian AI Institute, University of Technology Sydney, Ultimo NSW 2007, Australia Department of Education, Distance Learning Institute, University of Lagos, Akoka, Nigeria |
CorporateAuthor_xml | – name: Key Laboratory of Intelligent Information Processing and Control, Chongqing Three Gorges University, Wanzhou, Chongqing 404100, China – name: Australian AI Institute, University of Technology Sydney, Ultimo NSW 2007, Australia – name: Chongqing Engineering Research Center of Internet of Things and Intelligent Control Technology, Chongqing Three Gorges University, Wanzhou, Chongqing 404100, China – name: School of Three Gorges Artificial Intelligence, Chongqing Three Gorges University, Wanzhou, Chongqing 404100, China – name: Department of Education, Distance Learning Institute, University of Lagos, Akoka, Nigeria |
DBID | AAYXX CITATION DOA |
DOI | 10.3934/math.2021810 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2473-6988 |
EndPage | 14034 |
ExternalDocumentID | oai_doaj_org_article_fa160cee129e41d68c3d471012ac0ae1 10_3934_math_2021810 |
GroupedDBID | AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV CITATION EBS FRJ GROUPED_DOAJ IAO ITC M~E OK1 RAN |
ID | FETCH-LOGICAL-c378t-cad4752b4e3cb7007e104b84b6618ec7e7317bcf49c0249dab6d68d0cbb5e2173 |
IEDL.DBID | DOA |
ISSN | 2473-6988 |
IngestDate | Wed Aug 27 00:11:40 EDT 2025 Thu Apr 24 23:02:51 EDT 2025 Tue Jul 01 03:56:50 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c378t-cad4752b4e3cb7007e104b84b6618ec7e7317bcf49c0249dab6d68d0cbb5e2173 |
OpenAccessLink | https://doaj.org/article/fa160cee129e41d68c3d471012ac0ae1 |
PageCount | 22 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_fa160cee129e41d68c3d471012ac0ae1 crossref_citationtrail_10_3934_math_2021810 crossref_primary_10_3934_math_2021810 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-01 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | AIMS mathematics |
PublicationYear | 2021 |
Publisher | AIMS Press |
Publisher_xml | – name: AIMS Press |
References | key-10.3934/math.2021810-16 key-10.3934/math.2021810-15 key-10.3934/math.2021810-59 key-10.3934/math.2021810-14 key-10.3934/math.2021810-58 key-10.3934/math.2021810-13 key-10.3934/math.2021810-57 key-10.3934/math.2021810-12 key-10.3934/math.2021810-56 key-10.3934/math.2021810-11 key-10.3934/math.2021810-55 key-10.3934/math.2021810-10 key-10.3934/math.2021810-54 key-10.3934/math.2021810-53 key-10.3934/math.2021810-19 key-10.3934/math.2021810-18 key-10.3934/math.2021810-17 key-10.3934/math.2021810-52 key-10.3934/math.2021810-51 key-10.3934/math.2021810-50 key-10.3934/math.2021810-49 key-10.3934/math.2021810-48 key-10.3934/math.2021810-47 key-10.3934/math.2021810-46 key-10.3934/math.2021810-45 key-10.3934/math.2021810-44 key-10.3934/math.2021810-43 key-10.3934/math.2021810-42 key-10.3934/math.2021810-41 key-10.3934/math.2021810-40 key-10.3934/math.2021810-8 key-10.3934/math.2021810-38 key-10.3934/math.2021810-9 key-10.3934/math.2021810-37 key-10.3934/math.2021810-6 key-10.3934/math.2021810-36 key-10.3934/math.2021810-7 key-10.3934/math.2021810-35 key-10.3934/math.2021810-4 key-10.3934/math.2021810-34 key-10.3934/math.2021810-5 key-10.3934/math.2021810-33 key-10.3934/math.2021810-2 key-10.3934/math.2021810-32 key-10.3934/math.2021810-3 key-10.3934/math.2021810-31 key-10.3934/math.2021810-39 key-10.3934/math.2021810-30 key-10.3934/math.2021810-27 key-10.3934/math.2021810-26 key-10.3934/math.2021810-25 key-10.3934/math.2021810-24 key-10.3934/math.2021810-23 key-10.3934/math.2021810-22 key-10.3934/math.2021810-21 key-10.3934/math.2021810-20 key-10.3934/math.2021810-64 key-10.3934/math.2021810-29 key-10.3934/math.2021810-28 key-10.3934/math.2021810-63 key-10.3934/math.2021810-1 key-10.3934/math.2021810-62 key-10.3934/math.2021810-61 key-10.3934/math.2021810-60 |
References_xml | – ident: key-10.3934/math.2021810-9 doi: 10.1016/j.cam.2003.09.042 – ident: key-10.3934/math.2021810-14 – ident: key-10.3934/math.2021810-37 – ident: key-10.3934/math.2021810-59 doi: 10.1155/2020/5108482 – ident: key-10.3934/math.2021810-56 doi: 10.1016/j.jsv.2007.05.021 – ident: key-10.3934/math.2021810-24 doi: 10.1016/j.matcom.2013.05.010 – ident: key-10.3934/math.2021810-2 doi: 10.1002/mma.4386 – ident: key-10.3934/math.2021810-21 doi: 10.1016/j.cam.2005.12.022 – ident: key-10.3934/math.2021810-20 doi: 10.1016/S0377-0427(01)00474-5 – ident: key-10.3934/math.2021810-39 doi: 10.1016/j.cam.2005.12.006 – ident: key-10.3934/math.2021810-4 doi: 10.1137/0711029 – ident: key-10.3934/math.2021810-45 doi: 10.1080/00207169108804026 – ident: key-10.3934/math.2021810-7 doi: 10.1016/j.amc.2010.10.010 – ident: key-10.3934/math.2021810-33 doi: 10.1080/00207169308804175 – ident: key-10.3934/math.2021810-6 doi: 10.1093/imamat/18.2.189 – ident: key-10.3934/math.2021810-53 – ident: key-10.3934/math.2021810-34 – ident: key-10.3934/math.2021810-3 doi: 10.9790/5728-0837580 – ident: key-10.3934/math.2021810-48 doi: 10.1080/00029890.1967.12000056 – ident: key-10.3934/math.2021810-63 – ident: key-10.3934/math.2021810-47 doi: 10.1090/S0002-9939-1969-0245879-4 – ident: key-10.3934/math.2021810-36 doi: 10.1016/j.cam.2014.09.008 – ident: key-10.3934/math.2021810-35 doi: 10.1155/2015/343295 – ident: key-10.3934/math.2021810-28 – ident: key-10.3934/math.2021810-17 doi: 10.1016/j.cam.2003.09.042 – ident: key-10.3934/math.2021810-55 doi: 10.46481/jnsps.2020.33 – ident: key-10.3934/math.2021810-10 doi: 10.1007/BF01386037 – ident: key-10.3934/math.2021810-5 – ident: key-10.3934/math.2021810-1 doi: 10.1007/s40819-017-0425-2 – ident: key-10.3934/math.2021810-27 doi: 10.1007/s11075-012-9562-1 – ident: key-10.3934/math.2021810-29 doi: 10.1186/2193-1801-3-304 – ident: key-10.3934/math.2021810-15 doi: 10.1016/S0377-0427(99)00340-4 – ident: key-10.3934/math.2021810-38 doi: 10.1016/j.nonrwa.2007.10.015 – ident: key-10.3934/math.2021810-11 doi: 10.1016/0377-0427(84)90066-9 – ident: key-10.3934/math.2021810-54 doi: 10.9734/JAMCS/2018/42774 – ident: key-10.3934/math.2021810-64 – ident: key-10.3934/math.2021810-32 doi: 10.1016/j.aml.2010.07.003 – ident: key-10.3934/math.2021810-51 doi: 10.1080/00207160.2017.1303138 – ident: key-10.3934/math.2021810-22 doi: 10.1007/s11075-008-9202-y – ident: key-10.3934/math.2021810-43 doi: 10.1016/S0096-3003(03)00341-2 – ident: key-10.3934/math.2021810-8 doi: 10.1016/S0377-0427(02)00485-5 – ident: key-10.3934/math.2021810-41 – ident: key-10.3934/math.2021810-19 doi: 10.1016/j.cam.2008.07.053 – ident: key-10.3934/math.2021810-60 doi: 10.1016/j.mcm.2010.09.011 – ident: key-10.3934/math.2021810-12 doi: 10.1080/00207168608803532 – ident: key-10.3934/math.2021810-30 doi: 10.1016/j.aej.2016.04.036 – ident: key-10.3934/math.2021810-42 doi: 10.1016/B978-0-12-249930-2.50012-6 – ident: key-10.3934/math.2021810-61 doi: 10.1016/j.apm.2015.04.027 – ident: key-10.3934/math.2021810-25 doi: 10.1093/imanum/16.2.179 – ident: key-10.3934/math.2021810-40 doi: 10.1080/00207160.2013.766329 – ident: key-10.3934/math.2021810-16 doi: 10.1016/j.cam.2005.03.035 – ident: key-10.3934/math.2021810-13 doi: 10.1080/00207169008803806 – ident: key-10.3934/math.2021810-44 – ident: key-10.3934/math.2021810-23 – ident: key-10.3934/math.2021810-62 doi: 10.1016/j.amc.2014.10.113 – ident: key-10.3934/math.2021810-52 doi: 10.1002/9780470977859 – ident: key-10.3934/math.2021810-26 doi: 10.1016/S0898-1221(03)80036-6 – ident: key-10.3934/math.2021810-46 doi: 10.1080/20421338.2018.1467859 – ident: key-10.3934/math.2021810-57 doi: 10.1142/S0129183106009357 – ident: key-10.3934/math.2021810-58 – ident: key-10.3934/math.2021810-18 doi: 10.1016/j.apnum.2006.12.003 – ident: key-10.3934/math.2021810-49 doi: 10.5899/2014/cna-00214 – ident: key-10.3934/math.2021810-31 doi: 10.1007/s11075-016-0148-1 – ident: key-10.3934/math.2021810-50 |
SSID | ssj0002124274 |
Score | 2.1461706 |
Snippet | Problems of non-linear equations to model real-life phenomena have a long history in science and engineering. One of the popular of such non-linear equations... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
StartPage | 14013 |
SubjectTerms | adapted method convergence duffing equation hybrid non-linear equation |
Title | Adapted block hybrid method for the numerical solution of Duffing equations and related problems |
URI | https://doaj.org/article/fa160cee129e41d68c3d471012ac0ae1 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQEwyIpygveYAJRU1iJ3HG8qgqpDJRqVvwU0hUaaHtwL_nc5xWZUAsrNHJsu-s--6L7e8IuQbpkCyWMuJZaSKuEQtZMh0JHRtTGgUW4t87D5_zwYg_jbPxRqsvfycsyAMHx3WdTPIYmRy4ZHlicqGZQUJFXpU6lrYhPsC8DTLlczASMgffCjfdWcl4F_WfP3vwiBb_wKANqf4GU_r7ZK8tBmkvTOKAbNn6kOwO10qq8yPy2jNyhqqQKqDOO3378i-saOj7TFFwUtjSehnOXSZ0tZPo1NGHpXMAJmo_gpz3nMra0ObxCsZrO8nMj8mo__hyP4jargiRZoVYRFpi_VmquGVaFYB4C0alBFdAWmF1YQuUBEo7XmovB2ikyuE1E2ulMgsCwk7Idj2t7SmhYMZW2tSwzAkuXVpmwiY6SRXKiMQkokNuV36qdCsZ7jtXTCpQB-_Vynu1ar3aITdr61mQyvjF7s67fG3jBa6bDwh71Ya9-ivsZ_8xyDnZ8XMKf1QuyPbic2kvUWMs1FWznb4BPG3RYA |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adapted+block+hybrid+method+for+the+numerical+solution+of+Duffing+equations+and+related+problems&rft.jtitle=AIMS+mathematics&rft.au=Ridwanulahi+Iyanda+Abdulganiy&rft.au=Shiping+Wen&rft.au=Yuming+Feng&rft.au=Wei+Zhang&rft.date=2021-01-01&rft.pub=AIMS+Press&rft.eissn=2473-6988&rft.volume=6&rft.issue=12&rft.spage=14013&rft.epage=14034&rft_id=info:doi/10.3934%2Fmath.2021810&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_fa160cee129e41d68c3d471012ac0ae1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon |