Phase variable genes of Campylobacter jejuni exhibit high mutation rates and specific mutational patterns but mutability is not the major determinant of population structure during host colonization

Phase variation of surface structures occurs in diverse bacterial species due to stochastic, high frequency, reversible mutations. Multiple genes of Campylobacter jejuni are subject to phase variable gene expression due to mutations in polyC/G tracts. A modal length of nine repeats was detected for...

Full description

Saved in:
Bibliographic Details
Published inNucleic acids research Vol. 40; no. 13; pp. 5876 - 5889
Main Authors Bayliss, Christopher D., Bidmos, Fadil A., Anjum, Awais, Manchev, Vladimir T., Richards, Rebecca L ., Grossier, Jean-Philippe, Wooldridge, Karl G., Ketley, Julian M., Barrow, Paul A., Jones, Michael A., Tretyakov, Michael V.
Format Journal Article
LanguageEnglish
Published England Oxford University Press 01.07.2012
Subjects
Online AccessGet full text
ISSN0305-1048
1362-4962
1362-4962
DOI10.1093/nar/gks246

Cover

Loading…
Abstract Phase variation of surface structures occurs in diverse bacterial species due to stochastic, high frequency, reversible mutations. Multiple genes of Campylobacter jejuni are subject to phase variable gene expression due to mutations in polyC/G tracts. A modal length of nine repeats was detected for polyC/G tracts within C. jejuni genomes. Switching rates for these tracts were measured using chromosomally-located reporter constructs and high rates were observed for cj1139 (G8) and cj0031 (G9). Alteration of the cj1139 tract from G8 to G11 increased mutability 10-fold and changed the mutational pattern from predominantly insertions to mainly deletions. Using a multiplex PCR, major changes were detected in 'on/off' status for some phase variable genes during passage of C. jejuni in chickens. Utilization of observed switching rates in a stochastic, theoretical model of phase variation demonstrated links between mutability and genetic diversity but could not replicate observed population diversity. We propose that modal repeat numbers have evolved in C. jejuni genomes due to molecular drivers associated with the mutational patterns of these polyC/G repeats, rather than by selection for particular switching rates, and that factors other than mutational drift are responsible for generating genetic diversity during host colonization by this bacterial pathogen.
AbstractList Phase variation of surface structures occurs in diverse bacterial species due to stochastic, high frequency, reversible mutations. Multiple genes of Campylobacter jejuni are subject to phase variable gene expression due to mutations in polyC/G tracts. A modal length of nine repeats was detected for polyC/G tracts within C. jejuni genomes. Switching rates for these tracts were measured using chromosomally-located reporter constructs and high rates were observed for cj1139 (G8) and cj0031 (G9). Alteration of the cj1139 tract from G8 to G11 increased mutability 10-fold and changed the mutational pattern from predominantly insertions to mainly deletions. Using a multiplex PCR, major changes were detected in 'on/off' status for some phase variable genes during passage of C. jejuni in chickens. Utilization of observed switching rates in a stochastic, theoretical model of phase variation demonstrated links between mutability and genetic diversity but could not replicate observed population diversity. We propose that modal repeat numbers have evolved in C. jejuni genomes due to molecular drivers associated with the mutational patterns of these polyC/G repeats, rather than by selection for particular switching rates, and that factors other than mutational drift are responsible for generating genetic diversity during host colonization by this bacterial pathogen.
Phase variation of surface structures occurs in diverse bacterial species due to stochastic, high frequency, reversible mutations. Multiple genes of Campylobacter jejuni are subject to phase variable gene expression due to mutations in polyC/G tracts. A modal length of nine repeats was detected for polyC/G tracts within C. jejuni genomes. Switching rates for these tracts were measured using chromosomally-located reporter constructs and high rates were observed for cj1139 (G8) and cj0031 (G9). Alteration of the cj1139 tract from G8 to G11 increased mutability 10-fold and changed the mutational pattern from predominantly insertions to mainly deletions. Using a multiplex PCR, major changes were detected in ‘on/off’ status for some phase variable genes during passage of C. jejuni in chickens. Utilization of observed switching rates in a stochastic, theoretical model of phase variation demonstrated links between mutability and genetic diversity but could not replicate observed population diversity. We propose that modal repeat numbers have evolved in C. jejuni genomes due to molecular drivers associated with the mutational patterns of these polyC/G repeats, rather than by selection for particular switching rates, and that factors other than mutational drift are responsible for generating genetic diversity during host colonization by this bacterial pathogen.
Phase variation of surface structures occurs in diverse bacterial species due to stochastic, high frequency, reversible mutations. Multiple genes of Campylobacter jejuni are subject to phase variable gene expression due to mutations in polyC/G tracts. A modal length of nine repeats was detected for polyC/G tracts within C. jejuni genomes. Switching rates for these tracts were measured using chromosomally-located reporter constructs and high rates were observed for cj1139 (G8) and cj0031 (G9). Alteration of the cj1139 tract from G8 to G11 increased mutability 10-fold and changed the mutational pattern from predominantly insertions to mainly deletions. Using a multiplex PCR, major changes were detected in 'on/off' status for some phase variable genes during passage of C. jejuni in chickens. Utilization of observed switching rates in a stochastic, theoretical model of phase variation demonstrated links between mutability and genetic diversity but could not replicate observed population diversity. We propose that modal repeat numbers have evolved in C. jejuni genomes due to molecular drivers associated with the mutational patterns of these polyC/G repeats, rather than by selection for particular switching rates, and that factors other than mutational drift are responsible for generating genetic diversity during host colonization by this bacterial pathogen.Phase variation of surface structures occurs in diverse bacterial species due to stochastic, high frequency, reversible mutations. Multiple genes of Campylobacter jejuni are subject to phase variable gene expression due to mutations in polyC/G tracts. A modal length of nine repeats was detected for polyC/G tracts within C. jejuni genomes. Switching rates for these tracts were measured using chromosomally-located reporter constructs and high rates were observed for cj1139 (G8) and cj0031 (G9). Alteration of the cj1139 tract from G8 to G11 increased mutability 10-fold and changed the mutational pattern from predominantly insertions to mainly deletions. Using a multiplex PCR, major changes were detected in 'on/off' status for some phase variable genes during passage of C. jejuni in chickens. Utilization of observed switching rates in a stochastic, theoretical model of phase variation demonstrated links between mutability and genetic diversity but could not replicate observed population diversity. We propose that modal repeat numbers have evolved in C. jejuni genomes due to molecular drivers associated with the mutational patterns of these polyC/G repeats, rather than by selection for particular switching rates, and that factors other than mutational drift are responsible for generating genetic diversity during host colonization by this bacterial pathogen.
Author Grossier, Jean-Philippe
Tretyakov, Michael V.
Manchev, Vladimir T.
Anjum, Awais
Bayliss, Christopher D.
Jones, Michael A.
Bidmos, Fadil A.
Barrow, Paul A.
Wooldridge, Karl G.
Richards, Rebecca L .
Ketley, Julian M.
AuthorAffiliation 1 Department of Genetics, University of Leicester, Leicester, LE1 7RH, 2 School of Molecular Medical Sciences, University of Nottingham, Nottingham, NG7 2RD, 3 School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonnington, LE12 5RD and 4 Department of Mathematics, University of Leicester, Leicester, LE1 7RH, UK
AuthorAffiliation_xml – name: 1 Department of Genetics, University of Leicester, Leicester, LE1 7RH, 2 School of Molecular Medical Sciences, University of Nottingham, Nottingham, NG7 2RD, 3 School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonnington, LE12 5RD and 4 Department of Mathematics, University of Leicester, Leicester, LE1 7RH, UK
Author_xml – sequence: 1
  givenname: Christopher D.
  surname: Bayliss
  fullname: Bayliss, Christopher D.
  organization: Department of Genetics, University of Leicester, Leicester, LE1 7RH, 2School of Molecular Medical Sciences, University of Nottingham, Nottingham, NG7 2RD, 3School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonnington, LE12 5RD and 4Department of Mathematics, University of Leicester, Leicester, LE1 7RH, UK
– sequence: 2
  givenname: Fadil A.
  surname: Bidmos
  fullname: Bidmos, Fadil A.
  organization: Department of Genetics, University of Leicester, Leicester, LE1 7RH, 2School of Molecular Medical Sciences, University of Nottingham, Nottingham, NG7 2RD, 3School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonnington, LE12 5RD and 4Department of Mathematics, University of Leicester, Leicester, LE1 7RH, UK
– sequence: 3
  givenname: Awais
  surname: Anjum
  fullname: Anjum, Awais
  organization: Department of Genetics, University of Leicester, Leicester, LE1 7RH, 2School of Molecular Medical Sciences, University of Nottingham, Nottingham, NG7 2RD, 3School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonnington, LE12 5RD and 4Department of Mathematics, University of Leicester, Leicester, LE1 7RH, UK
– sequence: 4
  givenname: Vladimir T.
  surname: Manchev
  fullname: Manchev, Vladimir T.
  organization: Department of Genetics, University of Leicester, Leicester, LE1 7RH, 2School of Molecular Medical Sciences, University of Nottingham, Nottingham, NG7 2RD, 3School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonnington, LE12 5RD and 4Department of Mathematics, University of Leicester, Leicester, LE1 7RH, UK
– sequence: 5
  givenname: Rebecca L .
  surname: Richards
  fullname: Richards, Rebecca L .
  organization: Department of Genetics, University of Leicester, Leicester, LE1 7RH, 2School of Molecular Medical Sciences, University of Nottingham, Nottingham, NG7 2RD, 3School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonnington, LE12 5RD and 4Department of Mathematics, University of Leicester, Leicester, LE1 7RH, UK
– sequence: 6
  givenname: Jean-Philippe
  surname: Grossier
  fullname: Grossier, Jean-Philippe
  organization: Department of Genetics, University of Leicester, Leicester, LE1 7RH, 2School of Molecular Medical Sciences, University of Nottingham, Nottingham, NG7 2RD, 3School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonnington, LE12 5RD and 4Department of Mathematics, University of Leicester, Leicester, LE1 7RH, UK
– sequence: 7
  givenname: Karl G.
  surname: Wooldridge
  fullname: Wooldridge, Karl G.
  organization: Department of Genetics, University of Leicester, Leicester, LE1 7RH, 2School of Molecular Medical Sciences, University of Nottingham, Nottingham, NG7 2RD, 3School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonnington, LE12 5RD and 4Department of Mathematics, University of Leicester, Leicester, LE1 7RH, UK
– sequence: 8
  givenname: Julian M.
  surname: Ketley
  fullname: Ketley, Julian M.
  organization: Department of Genetics, University of Leicester, Leicester, LE1 7RH, 2School of Molecular Medical Sciences, University of Nottingham, Nottingham, NG7 2RD, 3School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonnington, LE12 5RD and 4Department of Mathematics, University of Leicester, Leicester, LE1 7RH, UK
– sequence: 9
  givenname: Paul A.
  surname: Barrow
  fullname: Barrow, Paul A.
  organization: Department of Genetics, University of Leicester, Leicester, LE1 7RH, 2School of Molecular Medical Sciences, University of Nottingham, Nottingham, NG7 2RD, 3School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonnington, LE12 5RD and 4Department of Mathematics, University of Leicester, Leicester, LE1 7RH, UK
– sequence: 10
  givenname: Michael A.
  surname: Jones
  fullname: Jones, Michael A.
  organization: Department of Genetics, University of Leicester, Leicester, LE1 7RH, 2School of Molecular Medical Sciences, University of Nottingham, Nottingham, NG7 2RD, 3School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonnington, LE12 5RD and 4Department of Mathematics, University of Leicester, Leicester, LE1 7RH, UK
– sequence: 11
  givenname: Michael V.
  surname: Tretyakov
  fullname: Tretyakov, Michael V.
  organization: Department of Genetics, University of Leicester, Leicester, LE1 7RH, 2School of Molecular Medical Sciences, University of Nottingham, Nottingham, NG7 2RD, 3School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonnington, LE12 5RD and 4Department of Mathematics, University of Leicester, Leicester, LE1 7RH, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22434884$$D View this record in MEDLINE/PubMed
BookMark eNptkt1u1DAQhS1URLeFGx4A-RIhhfovifcGCa34kyrBRe8tx5lsvDh2sJ2K5QF5LtymrABxZcnzzTmjmXOBznzwgNBzSl5TsuVXXser_dfERPMIbShvWCW2DTtDG8JJXVEi5Dm6SOlACBW0Fk_QOWOCCynFBv38MuoE-FZHqzsHeA8eEg4D3ulpPrrQaZMh4gMcFm8xfB9tZzMe7X7E05J1tsHjqHPp0b7HaQZjB2tONe3wrHNR8Al3S77_76yz-Yhtwj5knEfAkz6EiHso3GS99vlugDnMi1sNUo6LyUsE3C_R-j0eQ8rYBBe8_XGPPEWPB-0SPHt4L9HN-3c3u4_V9ecPn3ZvryvDW5kro2UrORvqjjW15JK1UjYNH0CwAphOkC0ldJCs5r1hpO8b0rJWcEZBNpTwS_RmlZ2XboLegM9ROzVHO-l4VEFb9XfF21Htw63iouye10Xg5YNADN8WSFlNNhlwTnsIS1KUsLZpJWVtQV_86XUy-X27ArxaARNDShGGE0KJuguGKsFQazAKTP6BjV1PVOa07n8tvwDWs8Nz
CitedBy_id crossref_primary_10_1016_j_resmic_2015_05_003
crossref_primary_10_1016_j_celrep_2021_109214
crossref_primary_10_3389_fcimb_2021_535757
crossref_primary_10_1128_mSphere_00011_20
crossref_primary_10_1038_s41576_018_0032_z
crossref_primary_10_1128_mBio_02311_16
crossref_primary_10_1186_s12864_016_3185_1
crossref_primary_10_1038_s41579_018_0037_9
crossref_primary_10_1128_mBio_00612_15
crossref_primary_10_1096_fj_201901536RR
crossref_primary_10_1099_mgen_0_000228
crossref_primary_10_3389_fimmu_2016_00586
crossref_primary_10_1007_s11538_018_0529_9
crossref_primary_10_1128_AEM_01523_17
crossref_primary_10_1111_1574_6976_12036
crossref_primary_10_1038_s41564_018_0133_7
crossref_primary_10_3389_fmicb_2020_00677
crossref_primary_10_1099_mic_0_001537
crossref_primary_10_1371_journal_pone_0101637
crossref_primary_10_1016_j_bbrc_2020_02_087
crossref_primary_10_1038_s41598_019_52429_6
crossref_primary_10_1111_mmi_14850
crossref_primary_10_1371_journal_pcbi_1009067
crossref_primary_10_3390_antibiotics11070915
crossref_primary_10_1042_BST20180633
crossref_primary_10_1128_IAI_01521_14
crossref_primary_10_1016_j_micpath_2017_01_042
crossref_primary_10_3389_fmicb_2016_01908
crossref_primary_10_1371_journal_pone_0106063
crossref_primary_10_3389_fmicb_2021_705139
crossref_primary_10_3390_biology11091305
crossref_primary_10_3390_pathogens3010164
crossref_primary_10_5803_jsfm_35_173
crossref_primary_10_1371_journal_pone_0159634
crossref_primary_10_1016_j_meegid_2013_03_009
crossref_primary_10_1128_mBio_01401_21
crossref_primary_10_1016_j_ijfoodmicro_2016_03_009
crossref_primary_10_1186_s12864_020_6704_z
crossref_primary_10_3389_fmicb_2021_780559
crossref_primary_10_3389_fmicb_2022_901192
crossref_primary_10_1186_1297_9716_44_56
crossref_primary_10_3389_fmicb_2020_579989
crossref_primary_10_1093_gbe_evy026
crossref_primary_10_1128_JCM_00017_17
crossref_primary_10_1021_acs_biochem_1c00439
crossref_primary_10_1111_mmi_13672
crossref_primary_10_1186_s12864_015_2317_3
crossref_primary_10_1073_pnas_1315152111
crossref_primary_10_1099_mic_0_000470
crossref_primary_10_1128_IAI_00093_19
crossref_primary_10_1007_s40588_021_00167_7
crossref_primary_10_1128_AEM_01221_16
crossref_primary_10_1021_acs_biochem_2c00365
crossref_primary_10_1093_nar_gkw019
crossref_primary_10_1093_nar_gky913
crossref_primary_10_1038_srep38303
crossref_primary_10_1099_mgen_0_000367
crossref_primary_10_1099_mic_0_000669
crossref_primary_10_1186_s13099_022_00520_1
crossref_primary_10_1021_acs_biochem_2c00633
crossref_primary_10_1371_journal_pone_0088043
crossref_primary_10_3389_fmicb_2024_1358909
crossref_primary_10_1111_1462_2920_13628
crossref_primary_10_1093_nar_gky192
crossref_primary_10_1016_j_fm_2019_03_009
crossref_primary_10_1128_AEM_01799_12
Cites_doi 10.1021/bi952178h
10.1111/j.1574-6968.2002.tb11248.x
10.1128/JB.01427-06
10.1093/molbev/msp182
10.1016/j.vaccine.2006.12.002
10.1111/j.1574-6976.2009.00162.x
10.1046/j.1365-2958.2000.01701.x
10.1371/journal.pbio.0030015
10.1099/mic.0.2008/019919-0
10.1099/13500872-145-2-379
10.1099/mic.0.27182-0
10.1128/MCB.22.24.8756-8762.2002
10.1098/rsif.2007.1015
10.1038/nrmicro1718
10.1186/1297-9716-42-82
10.1016/j.patbio.2005.06.006
10.1093/jac/dkm345
10.1111/j.1365-2958.2006.05336.x
10.1074/jbc.274.11.6957
10.1128/MCB.17.5.2859
10.1128/JB.180.20.5291-5298.1998
10.1038/35001088
10.1128/AEM.00184-06
10.1128/MCB.18.5.2779
10.1128/IAI.72.7.3769-3776.2004
10.1073/pnas.092568699
10.1371/journal.pone.0016399
10.1016/0092-8674(89)90011-1
10.1128/JB.01817-08
10.1128/CMR.17.3.581-611.2004
10.1038/nrmicro2145
10.1128/IAI.70.2.787-793.2002
10.1128/AEM.02835-07
10.1146/annurev.genet.40.110405.090442
10.1099/mic.0.035717-0
10.1128/JB.05276-11
10.1111/j.1365-2958.2004.04374.x
10.1073/pnas.88.16.7160
10.1046/j.1365-2958.2001.02408.x
10.1046/j.1365-2958.2000.02000.x
10.1046/j.1365-2958.2000.02020.x
10.1016/S0027-5107(02)00020-9
ContentType Journal Article
Copyright The Author(s) 2012. Published by Oxford University Press. 2012
Copyright_xml – notice: The Author(s) 2012. Published by Oxford University Press. 2012
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1093/nar/gks246
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1362-4962
EndPage 5889
ExternalDocumentID PMC3401435
22434884
10_1093_nar_gks246
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/G003416/1
GroupedDBID ---
-DZ
-~X
.I3
0R~
123
18M
1TH
29N
2WC
4.4
482
53G
5VS
5WA
70E
85S
A8Z
AAFWJ
AAHBH
AAMVS
AAOGV
AAPXW
AAUQX
AAVAP
AAYXX
ABEJV
ABGNP
ABPTD
ABQLI
ABXVV
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
ACUTJ
ADBBV
ADHZD
AEGXH
AENEX
AENZO
AFFNX
AFPKN
AFRAH
AFYAG
AHMBA
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ALUQC
AMNDL
AOIJS
BAWUL
BAYMD
BCNDV
C1A
CAG
CIDKT
CITATION
CS3
CZ4
DIK
DU5
D~K
E3Z
EBD
EBS
EJD
EMOBN
F5P
GROUPED_DOAJ
GX1
H13
HH5
HYE
HZ~
IH2
KAQDR
KQ8
KSI
OAWHX
OBC
OBS
OEB
OES
OJQWA
OVD
OVT
P2P
PEELM
PQQKQ
R44
RD5
RNS
ROL
ROZ
RPM
RXO
SJN
SV3
TEORI
TN5
TOX
TR2
WG7
WOQ
X7H
XSB
YSK
ZKX
~91
~D7
~KM
.55
.GJ
3O-
AAWDT
AAYJJ
ABIME
ABNGD
ABPIB
ABSMQ
ABZEO
ACFRR
ACIPB
ACPQN
ACUKT
ACVCV
ACZBC
AEHUL
AEKPW
AFSHK
AGKRT
AGMDO
AGQPQ
ANFBD
APJGH
AQDSO
ASAOO
ASPBG
ATDFG
ATTQO
AVWKF
AZFZN
BEYMZ
CGR
COF
CUY
CVF
CXTWN
D0S
DFGAJ
ECM
EIF
ELUNK
FEDTE
HVGLF
H~9
MBTAY
MVM
NPM
NTWIH
O~Y
PB-
QBD
RNI
RZF
RZO
TCN
UHB
X7M
XSW
ZXP
7X8
ESTFP
5PM
ID FETCH-LOGICAL-c378t-ca87832f5b2658382788663fe42c37cb409101f8253dc20dd607274321e86103
ISSN 0305-1048
1362-4962
IngestDate Thu Aug 21 14:14:41 EDT 2025
Fri Sep 05 12:48:47 EDT 2025
Mon Jul 21 05:52:54 EDT 2025
Tue Jul 01 01:41:11 EDT 2025
Thu Apr 24 23:12:55 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
License http://creativecommons.org/licenses/by-nc/3.0
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c378t-ca87832f5b2658382788663fe42c37cb409101f8253dc20dd607274321e86103
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Present address: Jean-Philippe Grossier, Department of Cell Biology, Institut Curie, Paris, France.
OpenAccessLink http://dx.doi.org/10.1093/nar/gks246
PMID 22434884
PQID 1027678127
PQPubID 23479
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3401435
proquest_miscellaneous_1027678127
pubmed_primary_22434884
crossref_primary_10_1093_nar_gks246
crossref_citationtrail_10_1093_nar_gks246
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-07-01
PublicationDateYYYYMMDD 2012-07-01
PublicationDate_xml – month: 07
  year: 2012
  text: 2012-07-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Nucleic acids research
PublicationTitleAlternate Nucleic Acids Res
PublicationYear 2012
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Hermans ( key 20180801052014_gks246-B14) 2011; 42
Gawel ( key 20180801052014_gks246-B33) 2002; 501
Hendrixson ( key 20180801052014_gks246-B21) 2006; 61
van Alphen ( key 20180801052014_gks246-B18) 2008; 154
Jones ( key 20180801052014_gks246-B24) 2004; 72
Bayliss ( key 20180801052014_gks246-B1) 2009; 33
van der Woude ( key 20180801052014_gks246-B4) 2004; 17
Parkhill ( key 20180801052014_gks246-B6) 2000; 403
Karlyshev ( key 20180801052014_gks246-B12) 2005; 55
Tran ( key 20180801052014_gks246-B36) 1997; 17
Weiser ( key 20180801052014_gks246-B27) 1989; 59
van Vliet ( key 20180801052014_gks246-B25) 1998; 180
Martin ( key 20180801052014_gks246-B10) 2004; 150
Linton ( key 20180801052014_gks246-B11) 2000; 37
Wood ( key 20180801052014_gks246-B26) 1999; 145
Sivadon ( key 20180801052014_gks246-B16) 2005; 53
Dornberger ( key 20180801052014_gks246-B32) 1999; 274
Crow ( key 20180801052014_gks246-B28) 1970
Jerome ( key 20180801052014_gks246-B22) 2011; 6
Drake ( key 20180801052014_gks246-B42) 1991; 88
Fouts ( key 20180801052014_gks246-B37) 2005; 3
Kroutil ( key 20180801052014_gks246-B35) 1996; 35
Ashgar ( key 20180801052014_gks246-B19) 2007; 189
Moxon ( key 20180801052014_gks246-B3) 2007; 40
Richardson ( key 20180801052014_gks246-B8) 2001; 40
Hardwick ( key 20180801052014_gks246-B29) 2009; 26
Coward ( key 20180801052014_gks246-B41) 2006; 72
Hanninen ( key 20180801052014_gks246-B31) 2007; 60
de Zoete ( key 20180801052014_gks246-B39) 2007; 25
Young ( key 20180801052014_gks246-B15) 2007; 5
Coward ( key 20180801052014_gks246-B20) 2008; 74
Richardson ( key 20180801052014_gks246-B9) 2002; 99
De Bolle ( key 20180801052014_gks246-B5) 2000; 35
Wilson ( key 20180801052014_gks246-B23) 2010; 156
Gragg ( key 20180801052014_gks246-B34) 2002; 22
Wassenaar ( key 20180801052014_gks246-B13) 2002; 212
Gaasbeek ( key 20180801052014_gks246-B30) 2009; 191
Conlan ( key 20180801052014_gks246-B38) 2007; 4
Sorensen ( key 20180801052014_gks246-B40) 2011; 193
Saunders ( key 20180801052014_gks246-B7) 2000; 37
Guerry ( key 20180801052014_gks246-B17) 2002; 70
Kokoska ( key 20180801052014_gks246-B43) 1998; 18
Deitsch ( key 20180801052014_gks246-B2) 2009; 7
19503065 - Nat Rev Microbiol. 2009 Jul;7(7):493-503
15612919 - Mol Microbiol. 2005 Jan;55(1):90-103
11934444 - Mutat Res. 2002 Apr 25;501(1-2):129-36
9765558 - J Bacteriol. 1998 Oct;180(20):5291-8
15660156 - PLoS Biol. 2005 Jan;3(1):e15
17172331 - J Bacteriol. 2007 Mar;189(5):1856-65
16899076 - Mol Microbiol. 2006 Sep;61(6):1646-59
17911389 - J Antimicrob Chemother. 2007 Dec;60(6):1251-7
10075420 - Microbiology. 1999 Feb;145 ( Pt 2):379-88
16084033 - Pathol Biol (Paris). 2005 Oct-Nov;53(8-9):536-8
9111358 - Mol Cell Biol. 1997 May;17(5):2859-65
9566897 - Mol Cell Biol. 1998 May;18(5):2779-88
17224215 - Vaccine. 2007 Jul 26;25(30):5548-57
17472905 - J R Soc Interface. 2007 Oct 22;4(16):819-29
10688204 - Nature. 2000 Feb 10;403(6770):665-8
21965558 - J Bacteriol. 2011 Dec;193(23):6742-9
15213117 - Infect Immun. 2004 Jul;72(7):3769-76
10632891 - Mol Microbiol. 2000 Jan;35(1):211-22
19376866 - J Bacteriol. 2009 Jun;191(12):3785-93
16820455 - Appl Environ Microbiol. 2006 Jul;72(7):4638-47
11983903 - Proc Natl Acad Sci U S A. 2002 Apr 30;99(9):6103-7
21283682 - PLoS One. 2011;6(1):e16399
10066749 - J Biol Chem. 1999 Mar 12;274(11):6957-62
19222587 - FEMS Microbiol Rev. 2009 May;33(3):504-20
12076791 - FEMS Microbiol Lett. 2002 Jun 18;212(1):77-85
19679753 - Mol Biol Evol. 2009 Nov;26(11):2647-54
10931317 - Mol Microbiol. 2000 Jul;37(1):207-15
17094739 - Annu Rev Genet. 2006;40:307-33
15347758 - Microbiology. 2004 Sep;150(Pt 9):3001-12
18957592 - Microbiology. 2008 Nov;154(Pt 11):3385-97
11359570 - Mol Microbiol. 2001 May;40(3):645-55
1831267 - Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):7160-4
17703225 - Nat Rev Microbiol. 2007 Sep;5(9):665-79
18424530 - Appl Environ Microbiol. 2008 Jun;74(12):3857-67
8547240 - Biochemistry. 1996 Jan 23;35(3):1046-53
10931344 - Mol Microbiol. 2000 Aug;37(3):501-14
15258095 - Clin Microbiol Rev. 2004 Jul;17(3):581-611, table of contents
20360176 - Microbiology. 2010 Jul;156(Pt 7):2046-57
11796612 - Infect Immun. 2002 Feb;70(2):787-93
2479481 - Cell. 1989 Nov 17;59(4):657-65
21714866 - Vet Res. 2011;42:82
12446792 - Mol Cell Biol. 2002 Dec;22(24):8756-62
References_xml – volume: 35
  start-page: 1046
  year: 1996
  ident: key 20180801052014_gks246-B35
  article-title: Exonucleolytic proofreading during replication of repetitive DNA
  publication-title: Biochemistry
  doi: 10.1021/bi952178h
– volume-title: An introduction to population genetic theory
  year: 1970
  ident: key 20180801052014_gks246-B28
– volume: 212
  start-page: 77
  year: 2002
  ident: key 20180801052014_gks246-B13
  article-title: Homonucleotide stretches in chromosomal DNA of Campylobacter jejuni display high frequency polymorphism as detected by direct PCR analysis
  publication-title: FEMS Microbiol. Lett.
  doi: 10.1111/j.1574-6968.2002.tb11248.x
– volume: 189
  start-page: 1856
  year: 2007
  ident: key 20180801052014_gks246-B19
  article-title: CapA, an autotransporter protein of Campylobacter jejuni, mediates association with human epithelial cells and colonization of the chicken gut
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.01427-06
– volume: 26
  start-page: 2647
  year: 2009
  ident: key 20180801052014_gks246-B29
  article-title: Age-related accumulation of mutations supports a replication-dependent mechanism of spontaneous mutation at tandem repeat DNA Loci in mice
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/molbev/msp182
– volume: 25
  start-page: 5548
  year: 2007
  ident: key 20180801052014_gks246-B39
  article-title: Vaccination of chickens against Campylobacter
  publication-title: Vaccine
  doi: 10.1016/j.vaccine.2006.12.002
– volume: 33
  start-page: 504
  year: 2009
  ident: key 20180801052014_gks246-B1
  article-title: Determinants of phase variation rate and the fitness implications of differing rates for bacterial pathogens and commensals
  publication-title: FEMS Microbiol. Rev.
  doi: 10.1111/j.1574-6976.2009.00162.x
– volume: 35
  start-page: 211
  year: 2000
  ident: key 20180801052014_gks246-B5
  article-title: The length of a tetranucleotide repeat tract in Haemophilus influenzae determines the phase variation rate of a gene with homology to type III DNA methyltransferases
  publication-title: Mol. Microbiol.
  doi: 10.1046/j.1365-2958.2000.01701.x
– volume: 3
  start-page: e15
  year: 2005
  ident: key 20180801052014_gks246-B37
  article-title: Major structural differences and novel potential virulence mechanisms from the genomes of multiple campylobacter species
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.0030015
– volume: 154
  start-page: 3385
  year: 2008
  ident: key 20180801052014_gks246-B18
  article-title: A functional Campylobacter jejuni maf4 gene results in novel glycoforms on flagellin and altered autoagglutination behaviour
  publication-title: Microbiology
  doi: 10.1099/mic.0.2008/019919-0
– volume: 145
  start-page: 379
  year: 1999
  ident: key 20180801052014_gks246-B26
  article-title: Cloning, mutation and distribution of a putative lipopolysaccharide biosynthesis locus in Campylobacter jejuni
  publication-title: Microbiology
  doi: 10.1099/13500872-145-2-379
– volume: 150
  start-page: 3001
  year: 2004
  ident: key 20180801052014_gks246-B10
  article-title: Involvement of genes of genome maintenance in the regulation of phase variation frequencies in Neisseria meningitidis
  publication-title: Microbiology
  doi: 10.1099/mic.0.27182-0
– volume: 22
  start-page: 8756
  year: 2002
  ident: key 20180801052014_gks246-B34
  article-title: Base composition of mononucleotide runs affects DNA polymerase slippage and removal of frameshift intermediates by mismatch repair in Saccharomyces cerevisiae
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.22.24.8756-8762.2002
– volume: 4
  start-page: 819
  year: 2007
  ident: key 20180801052014_gks246-B38
  article-title: Campylobacter jejuni colonization and transmission in broiler chickens: a modelling perspective
  publication-title: J R Soc. Interface
  doi: 10.1098/rsif.2007.1015
– volume: 5
  start-page: 665
  year: 2007
  ident: key 20180801052014_gks246-B15
  article-title: Campylobacter jejuni: molecular biology and pathogenesis
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro1718
– volume: 42
  start-page: 82
  year: 2011
  ident: key 20180801052014_gks246-B14
  article-title: Colonization factors of Campylobacter jejuni in the chicken gut
  publication-title: Vet. Res.
  doi: 10.1186/1297-9716-42-82
– volume: 53
  start-page: 536
  year: 2005
  ident: key 20180801052014_gks246-B16
  article-title: Prevalence and characteristics of Guillain-Barre syndromes associated with Campylobacter jejuni and cytomegalovirus in greater Paris
  publication-title: Pathol. Biol.
  doi: 10.1016/j.patbio.2005.06.006
– volume: 60
  start-page: 1251
  year: 2007
  ident: key 20180801052014_gks246-B31
  article-title: Spontaneous mutation frequency and emergence of ciprofloxacin resistance in Campylobacter jejuni and Campylobacter coli
  publication-title: J. Antimicrob. Chemother.
  doi: 10.1093/jac/dkm345
– volume: 61
  start-page: 1646
  year: 2006
  ident: key 20180801052014_gks246-B21
  article-title: A phase-variable mechanism controlling the Campylobacter jejuni FlgR response regulator influences commensalism
  publication-title: Mol. Microbiol.
  doi: 10.1111/j.1365-2958.2006.05336.x
– volume: 274
  start-page: 6957
  year: 1999
  ident: key 20180801052014_gks246-B32
  article-title: High base pair opening rates in tracts of GC base pairs
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.274.11.6957
– volume: 17
  start-page: 2859
  year: 1997
  ident: key 20180801052014_gks246-B36
  article-title: Hypermutability of homonucleotide runs in mismatch repair and DNA polymerase proofreading yeast mutants
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.17.5.2859
– volume: 180
  start-page: 5291
  year: 1998
  ident: key 20180801052014_gks246-B25
  article-title: Iron-responsive gene regulation in a Campylobacter jejuni fur mutant
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.180.20.5291-5298.1998
– volume: 403
  start-page: 665
  year: 2000
  ident: key 20180801052014_gks246-B6
  article-title: The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences
  publication-title: Nature
  doi: 10.1038/35001088
– volume: 72
  start-page: 4638
  year: 2006
  ident: key 20180801052014_gks246-B41
  article-title: Phase-variable surface structures are required for infection of Campylobacter jejuni by bacteriophages
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.00184-06
– volume: 18
  start-page: 2779
  year: 1998
  ident: key 20180801052014_gks246-B43
  article-title: Destabilization of yeast micro- and minisatellite DNA sequences by mutations affecting a nuclease involved in Okazaki fragment processing (rad27) and DNA polymerase delta (pol3-t)
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.18.5.2779
– volume: 72
  start-page: 3769
  year: 2004
  ident: key 20180801052014_gks246-B24
  article-title: Adaptation of Campylobacter jejuni NCTC11168 to high-level colonization of the avian gastrointestinal tract
  publication-title: Infect. Immun.
  doi: 10.1128/IAI.72.7.3769-3776.2004
– volume: 99
  start-page: 6103
  year: 2002
  ident: key 20180801052014_gks246-B9
  article-title: Mutator clones of Neisseria meningitidis in epidemic serogroup A disease
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.092568699
– volume: 6
  start-page: e16399
  year: 2011
  ident: key 20180801052014_gks246-B22
  article-title: Standing genetic variation in contingency loci drives the rapid adaptation of Campylobacter jejuni to a novel host
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0016399
– volume: 59
  start-page: 657
  year: 1989
  ident: key 20180801052014_gks246-B27
  article-title: The molecular mechanism of phase variation of H. influenzae lipopolysaccharide
  publication-title: Cell
  doi: 10.1016/0092-8674(89)90011-1
– volume: 191
  start-page: 3785
  year: 2009
  ident: key 20180801052014_gks246-B30
  article-title: Functional characterization of excision repair and RecA-dependent recombinational DNA repair in Campylobacter jejuni
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.01817-08
– volume: 17
  start-page: 581
  year: 2004
  ident: key 20180801052014_gks246-B4
  article-title: Phase and antigenic variation in bacteria
  publication-title: Clin. Microbiol. Rev.
  doi: 10.1128/CMR.17.3.581-611.2004
– volume: 7
  start-page: 493
  year: 2009
  ident: key 20180801052014_gks246-B2
  article-title: Common strategies for antigenic variation by bacterial, fungal and protozoan pathogens
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro2145
– volume: 70
  start-page: 787
  year: 2002
  ident: key 20180801052014_gks246-B17
  article-title: Phase variation of Campylobacter jejuni 81-176 lipooligosaccharide affects ganglioside mimicry and invasiveness in vitro
  publication-title: Infect. Immun.
  doi: 10.1128/IAI.70.2.787-793.2002
– volume: 74
  start-page: 3857
  year: 2008
  ident: key 20180801052014_gks246-B20
  article-title: Competing isogenic Campylobacter strains exhibit variable population structures in vivo
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.02835-07
– volume: 40
  start-page: 307
  year: 2007
  ident: key 20180801052014_gks246-B3
  article-title: Bacterial contingency loci: the role of simple sequence DNA repeats in bacterial adaptation
  publication-title: Ann. Rev. Genet.
  doi: 10.1146/annurev.genet.40.110405.090442
– volume: 156
  start-page: 2046
  year: 2010
  ident: key 20180801052014_gks246-B23
  article-title: Genetic diversity in Campylobacter jejuni is associated with differential colonization of broiler chickens and C57BL/6J IL10-deficient mice
  publication-title: Microbiology
  doi: 10.1099/mic.0.035717-0
– volume: 193
  start-page: 6742
  year: 2011
  ident: key 20180801052014_gks246-B40
  article-title: The F336 bacteriophage recognizes the capsular phosphoramidate modification of Campylobacter jejuni NCTC11168
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.05276-11
– volume: 55
  start-page: 90
  year: 2005
  ident: key 20180801052014_gks246-B12
  article-title: Analysis of Campylobacter jejuni capsular loci reveals multiple mechanisms for the generation of structural diversity and the ability to form complex heptoses
  publication-title: Mol. Microbiol.
  doi: 10.1111/j.1365-2958.2004.04374.x
– volume: 88
  start-page: 7160
  year: 1991
  ident: key 20180801052014_gks246-B42
  article-title: A constant rate of spontaneous mutation in DNA-based microbes
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.88.16.7160
– volume: 40
  start-page: 645
  year: 2001
  ident: key 20180801052014_gks246-B8
  article-title: Mismatch repair and the regulation of phase variation in Neisseria meningitidis
  publication-title: Mol. Micro.
  doi: 10.1046/j.1365-2958.2001.02408.x
– volume: 37
  start-page: 207
  year: 2000
  ident: key 20180801052014_gks246-B7
  article-title: Repeat-associated phase variable genes in the complete genome sequence of Neisseria meningitidis strain MC58
  publication-title: Mol. Micro.
  doi: 10.1046/j.1365-2958.2000.02000.x
– volume: 37
  start-page: 501
  year: 2000
  ident: key 20180801052014_gks246-B11
  article-title: Phase variation of a beta-1,3 galactosyltransferase involved in generation of the ganglioside GM1-like lipo-oligosaccharide of Campylobacter jejuni
  publication-title: Mol. Microbiol.
  doi: 10.1046/j.1365-2958.2000.02020.x
– volume: 501
  start-page: 129
  year: 2002
  ident: key 20180801052014_gks246-B33
  article-title: Asymmetry of frameshift mutagenesis during leading and lagging-strand replication in Escherichia coli
  publication-title: Mutat. Res.
  doi: 10.1016/S0027-5107(02)00020-9
– reference: 15612919 - Mol Microbiol. 2005 Jan;55(1):90-103
– reference: 15660156 - PLoS Biol. 2005 Jan;3(1):e15
– reference: 16820455 - Appl Environ Microbiol. 2006 Jul;72(7):4638-47
– reference: 17094739 - Annu Rev Genet. 2006;40:307-33
– reference: 19679753 - Mol Biol Evol. 2009 Nov;26(11):2647-54
– reference: 18424530 - Appl Environ Microbiol. 2008 Jun;74(12):3857-67
– reference: 9566897 - Mol Cell Biol. 1998 May;18(5):2779-88
– reference: 11796612 - Infect Immun. 2002 Feb;70(2):787-93
– reference: 16084033 - Pathol Biol (Paris). 2005 Oct-Nov;53(8-9):536-8
– reference: 2479481 - Cell. 1989 Nov 17;59(4):657-65
– reference: 10931317 - Mol Microbiol. 2000 Jul;37(1):207-15
– reference: 21965558 - J Bacteriol. 2011 Dec;193(23):6742-9
– reference: 17224215 - Vaccine. 2007 Jul 26;25(30):5548-57
– reference: 10075420 - Microbiology. 1999 Feb;145 ( Pt 2):379-88
– reference: 17703225 - Nat Rev Microbiol. 2007 Sep;5(9):665-79
– reference: 15213117 - Infect Immun. 2004 Jul;72(7):3769-76
– reference: 12446792 - Mol Cell Biol. 2002 Dec;22(24):8756-62
– reference: 20360176 - Microbiology. 2010 Jul;156(Pt 7):2046-57
– reference: 10066749 - J Biol Chem. 1999 Mar 12;274(11):6957-62
– reference: 15258095 - Clin Microbiol Rev. 2004 Jul;17(3):581-611, table of contents
– reference: 8547240 - Biochemistry. 1996 Jan 23;35(3):1046-53
– reference: 17911389 - J Antimicrob Chemother. 2007 Dec;60(6):1251-7
– reference: 18957592 - Microbiology. 2008 Nov;154(Pt 11):3385-97
– reference: 10688204 - Nature. 2000 Feb 10;403(6770):665-8
– reference: 15347758 - Microbiology. 2004 Sep;150(Pt 9):3001-12
– reference: 17472905 - J R Soc Interface. 2007 Oct 22;4(16):819-29
– reference: 10632891 - Mol Microbiol. 2000 Jan;35(1):211-22
– reference: 19503065 - Nat Rev Microbiol. 2009 Jul;7(7):493-503
– reference: 1831267 - Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):7160-4
– reference: 21283682 - PLoS One. 2011;6(1):e16399
– reference: 19376866 - J Bacteriol. 2009 Jun;191(12):3785-93
– reference: 10931344 - Mol Microbiol. 2000 Aug;37(3):501-14
– reference: 9765558 - J Bacteriol. 1998 Oct;180(20):5291-8
– reference: 11934444 - Mutat Res. 2002 Apr 25;501(1-2):129-36
– reference: 16899076 - Mol Microbiol. 2006 Sep;61(6):1646-59
– reference: 11359570 - Mol Microbiol. 2001 May;40(3):645-55
– reference: 9111358 - Mol Cell Biol. 1997 May;17(5):2859-65
– reference: 11983903 - Proc Natl Acad Sci U S A. 2002 Apr 30;99(9):6103-7
– reference: 12076791 - FEMS Microbiol Lett. 2002 Jun 18;212(1):77-85
– reference: 17172331 - J Bacteriol. 2007 Mar;189(5):1856-65
– reference: 19222587 - FEMS Microbiol Rev. 2009 May;33(3):504-20
– reference: 21714866 - Vet Res. 2011;42:82
SSID ssj0014154
Score 2.3404174
Snippet Phase variation of surface structures occurs in diverse bacterial species due to stochastic, high frequency, reversible mutations. Multiple genes of...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 5876
SubjectTerms Animals
Base Sequence
Campylobacter jejuni - genetics
Campylobacter jejuni - growth & development
Chickens - microbiology
Computational Biology
Conserved Sequence
Genes, Bacterial
Genome, Bacterial
Genotype
Mutation
Mutation Rate
Poly C - chemistry
Poly G - chemistry
Title Phase variable genes of Campylobacter jejuni exhibit high mutation rates and specific mutational patterns but mutability is not the major determinant of population structure during host colonization
URI https://www.ncbi.nlm.nih.gov/pubmed/22434884
https://www.proquest.com/docview/1027678127
https://pubmed.ncbi.nlm.nih.gov/PMC3401435
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1Lb9NAEMdXoRzggqDlER7VIBASskyd3XXsHEPVqEJqxSFIvUV-Nk5jOyIOKHxAvgHfh5ldr-20RQIuVmSv7Sjzy-7s7sx_GHuLLrQc8TS1Uy-MbDlyhD1K46HtDkWC7imOGIJyh8_Oh6df5KcL96LX-9WJWtpU4Yfox615Jf9jVTyHdqUs2X-wbPNQPIGf0b54RAvj8a9s_HmOY5D1Dae7KgHqkvotnXCVr7ak9EFKzNYiWWyKzEqoFHZWWSRQbOWbOsqQlCK0TDPlXFLcUHONcrSU-maxtsJNpc6rUNotVUEvSpUFaeXBoqQi401UjYqhbsqCWVqglrYp6oxISiuxSCvbpIB2_eNzklcmCdkoi2lDo7PWppZbt8tsfV0UoQ1a_pjFuQ4bnARxtmzXacfFQtdzHn8PsmYWcYbEz_E3p1DfJd6QZ1_rmPF6GWTQhsziKKa7bpX_Ndrt27UUlGFYdHpq19d1Z24MIVpeq6Dw9snl1ZrLnWYIwCpXOKHvI7D3k-1A2oQ3mkt32F2OsxeqKOI5J83mFvpM0ijljsQRvupIv4iUqetbd92kG3Of6yG8HZ9o-pA9qCczMNZkPmK9pNhnB-MiqMp8C-9AhRerfZt9du_YlBY8YD8VuGDABQUulCnsgAsaXKjBBQIXDJygwAUEFwy40IILBlxAcKEFF7I1ILiA4IICFzrg0hdowYUGXNDgAoELXXAfs-nkZHp8atcFRexIeH5lR4Hv4QiWuiEfUrgA93wfPe40kRwbRKEk53mQ-twVccSdOB466N5LwQeJj9MM8YTtFWWRPGMgsetLXeE5gRPLKAr9IAgjT7giTGIeObLP3hvzzaJabJ9qvixnOuhDzNDqM231PnvTtF1piZlbW702FMzQWrStFxRJuVljQ-6hyzngXp891VQ0zzE49Zm3w0vTgNTld68U2VypzAtJ0p_u8z8-8wW73_4RX7I9tEryCj30KjxUvB-q9a3f0eT6OQ
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phase+variable+genes+of+Campylobacter+jejuni+exhibit+high+mutation+rates+and+specific+mutational+patterns+but+mutability+is+not+the+major+determinant+of+population+structure+during+host+colonization&rft.jtitle=Nucleic+acids+research&rft.au=Bayliss%2C+Christopher+D&rft.au=Bidmos%2C+Fadil+A&rft.au=Anjum%2C+Awais&rft.au=Manchev%2C+Vladimir+T&rft.date=2012-07-01&rft.eissn=1362-4962&rft.volume=40&rft.issue=13&rft.spage=5876&rft_id=info:doi/10.1093%2Fnar%2Fgks246&rft_id=info%3Apmid%2F22434884&rft.externalDocID=22434884
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-1048&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-1048&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-1048&client=summon