Laser speckle simulation tool based on stochastic differential equations for bio imaging applications

Laser speckle-based blood flow imaging is a well-accepted and widely used method for pre-clinical and clinical applications. Although it was introduced as a method to measure only superficial blood flow (< 1mm depth), several recently introduced variants resulted in measuring deep tissue blood fl...

Full description

Saved in:
Bibliographic Details
Published inBiomedical optics express Vol. 13; no. 12; pp. 6745 - 6762
Main Authors K, Murali, Varma, Hari M.
Format Journal Article
LanguageEnglish
Published United States Optica Publishing Group 01.12.2022
Online AccessGet full text
ISSN2156-7085
2156-7085
DOI10.1364/BOE.470926

Cover

Loading…
Abstract Laser speckle-based blood flow imaging is a well-accepted and widely used method for pre-clinical and clinical applications. Although it was introduced as a method to measure only superficial blood flow (< 1mm depth), several recently introduced variants resulted in measuring deep tissue blood flow (a few cm) as well. A means of simulating laser speckles is often necessary for the analysis and development of these imaging modalities, as evident from many such attempts towards developing simulation tools in the past. Such methods often employ Fourier transforms or statistical tools to simulate speckles with desired statistical properties. We present the first method to use a stochastic differential equation to generate laser speckles with a pre-determined probability density function and a temporal auto-correlation. The method allows the choice of apriori gamma distribution along with simple exponential or more complex temporal auto-correlation statistics for simulated speckles, making it suitable for different blood flow profiles. In contrast to the existing methods that often generate speckles associated with superficial flow, we simulate both superficial and diffuse speckles leading to applications in deep tissue blood flow imaging. In addition, we have also incorporated appropriate models for noise associated with the detectors to simulate realistic speckles. We have validated our model by comparing the simulated speckles with those obtained from in-vivo studies in mice and healthy human subject.
AbstractList Laser speckle-based blood flow imaging is a well-accepted and widely used method for pre-clinical and clinical applications. Although it was introduced as a method to measure only superficial blood flow (< 1mm depth), several recently introduced variants resulted in measuring deep tissue blood flow (a few cm) as well. A means of simulating laser speckles is often necessary for the analysis and development of these imaging modalities, as evident from many such attempts towards developing simulation tools in the past. Such methods often employ Fourier transforms or statistical tools to simulate speckles with desired statistical properties. We present the first method to use a stochastic differential equation to generate laser speckles with a pre-determined probability density function and a temporal auto-correlation. The method allows the choice of apriori gamma distribution along with simple exponential or more complex temporal auto-correlation statistics for simulated speckles, making it suitable for different blood flow profiles. In contrast to the existing methods that often generate speckles associated with superficial flow, we simulate both superficial and diffuse speckles leading to applications in deep tissue blood flow imaging. In addition, we have also incorporated appropriate models for noise associated with the detectors to simulate realistic speckles. We have validated our model by comparing the simulated speckles with those obtained from in-vivo studies in mice and healthy human subject.
Laser speckle-based blood flow imaging is a well-accepted and widely used method for pre-clinical and clinical applications. Although it was introduced as a method to measure only superficial blood flow (< 1mm depth), several recently introduced variants resulted in measuring deep tissue blood flow (a few cm) as well. A means of simulating laser speckles is often necessary for the analysis and development of these imaging modalities, as evident from many such attempts towards developing simulation tools in the past. Such methods often employ Fourier transforms or statistical tools to simulate speckles with desired statistical properties. We present the first method to use a stochastic differential equation to generate laser speckles with a pre-determined probability density function and a temporal auto-correlation. The method allows the choice of apriori gamma distribution along with simple exponential or more complex temporal auto-correlation statistics for simulated speckles, making it suitable for different blood flow profiles. In contrast to the existing methods that often generate speckles associated with superficial flow, we simulate both superficial and diffuse speckles leading to applications in deep tissue blood flow imaging. In addition, we have also incorporated appropriate models for noise associated with the detectors to simulate realistic speckles. We have validated our model by comparing the simulated speckles with those obtained from in-vivo studies in mice and healthy human subject.Laser speckle-based blood flow imaging is a well-accepted and widely used method for pre-clinical and clinical applications. Although it was introduced as a method to measure only superficial blood flow (< 1mm depth), several recently introduced variants resulted in measuring deep tissue blood flow (a few cm) as well. A means of simulating laser speckles is often necessary for the analysis and development of these imaging modalities, as evident from many such attempts towards developing simulation tools in the past. Such methods often employ Fourier transforms or statistical tools to simulate speckles with desired statistical properties. We present the first method to use a stochastic differential equation to generate laser speckles with a pre-determined probability density function and a temporal auto-correlation. The method allows the choice of apriori gamma distribution along with simple exponential or more complex temporal auto-correlation statistics for simulated speckles, making it suitable for different blood flow profiles. In contrast to the existing methods that often generate speckles associated with superficial flow, we simulate both superficial and diffuse speckles leading to applications in deep tissue blood flow imaging. In addition, we have also incorporated appropriate models for noise associated with the detectors to simulate realistic speckles. We have validated our model by comparing the simulated speckles with those obtained from in-vivo studies in mice and healthy human subject.
Laser speckle-based blood flow imaging is a well-accepted and widely used method for pre-clinical and clinical applications. Although it was introduced as a method to measure only superficial blood flow (< 1mm depth), several recently introduced variants resulted in measuring deep tissue blood flow (a few cm) as well. A means of simulating laser speckles is often necessary for the analysis and development of these imaging modalities, as evident from many such attempts towards developing simulation tools in the past. Such methods often employ Fourier transforms or statistical tools to simulate speckles with desired statistical properties. We present the first method to use a stochastic differential equation to generate laser speckles with a pre-determined probability density function and a temporal auto-correlation. The method allows the choice of apriori gamma distribution along with simple exponential or more complex temporal auto-correlation statistics for simulated speckles, making it suitable for different blood flow profiles. In contrast to the existing methods that often generate speckles associated with superficial flow, we simulate both superficial and diffuse speckles leading to applications in deep tissue blood flow imaging. In addition, we have also incorporated appropriate models for noise associated with the detectors to simulate realistic speckles. We have validated our model by comparing the simulated speckles with those obtained from studies in mice and healthy human subject.
Author K, Murali
Varma, Hari M.
Author_xml – sequence: 1
  givenname: Murali
  orcidid: 0000-0002-4834-4991
  surname: K
  fullname: K, Murali
– sequence: 2
  givenname: Hari M.
  orcidid: 0000-0003-0664-1207
  surname: Varma
  fullname: Varma, Hari M.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36589556$$D View this record in MEDLINE/PubMed
BookMark eNptUU1LxDAQDaL4sXrxB0iOIqwmbZqkF0EXv2DBi55Dmk7WaLapSSv4742uiopzyYT35r1h3g5a70IHCO1TckxLzk7Oby-OmSB1wdfQdkErPhVEVus_-i20l9IjycUysZSbaKvklayrim8jmOsEEacezJMHnNxy9HpwocNDCB43GW1x_qUhmAedBmdw66yFCN3gtMfwPH7QE7Yh4sYF7JZ64boF1n3vnVmBu2jDap9g7_OdoPvLi7vZ9XR-e3UzO5tPTSnkMDXCWmYZEa2WoiGCSwOUVszWRdtK3RBtCqGrtuJWAm8lo8LwGmpBqSzrQpQTdLrS7cdmCa3JS0btVR_zUvFVBe3Ub6RzD2oRXlQtBJOcZYHDT4EYnkdIg1q6ZMB73UEYkyoEJ5TXRfaboIOfXt8mX7fNBLIimBhSimCVccPHPbK184oS9Z6gygmqVYJ55OjPyJfqP-Q3XICdoQ
CitedBy_id crossref_primary_10_1364_BOE_502421
crossref_primary_10_1364_BOE_528286
Cites_doi 10.1088/0031-9155/37/7/005
10.1038/s41598-019-39137-x
10.1364/BOE.400525
10.1103/PhysRevLett.75.1855
10.1117/1.JBO.27.8.083009
10.1103/PhysRevE.90.012303
10.1364/OPTICA.5.000595
10.1016/0030-4018(74)90067-4
10.1016/j.neuroimage.2013.06.017
10.1097/01.WCB.0000076703.71231.BB
10.1186/s13662-015-0699-9
10.1088/2057-1976/ac6909
10.1364/BRAIN.2021.BTh1B.4
10.1364/OL.397979
10.1364/BOE.449046
10.1088/0034-4885/73/7/076701
10.1364/BOE.5.001275
10.1364/OE.16.001975
10.1364/JOSAA.25.000009
10.1137/1119062
10.1364/OL.33.002886
10.1117/1.NPh.1.1.011009
10.3150/bj/1116340291
10.1364/BOE.10.005395
10.1016/j.cmpb.2022.106933
10.1117/1.3285504
10.1364/BOE.401702
10.1364/OE.14.001125
10.1364/BOE.7.000798
10.1364/OPTICA.5.000518
10.1364/JOSAA.25.000231
10.1126/sciadv.abc4628
10.1118/1.4922206
10.1016/j.renene.2016.03.026
10.1364/BOE.438303
10.1364/OE.16.015514
10.1364/BOE.469405
10.48550/arXiv.1412.4031
10.1364/OL.427746
10.1364/JOSAA.28.002322
10.1214/aoms/1177706731
10.1364/OL.435812
10.1063/5.0021988
10.1038/s41377-021-00682-8
10.1364/OE.17.020178
10.1137/S0036144500378302
10.1364/BOE.5.002769
10.1038/srep37949
10.1364/OL.38.001401
10.1002/jbio.201900091
10.1063/5.0031225
10.1364/BOE.6.002865
ContentType Journal Article
Copyright 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement.
2022 Optica Publishing Group under the terms of the 2022 Optica Publishing Group
Copyright_xml – notice: 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement.
– notice: 2022 Optica Publishing Group under the terms of the 2022 Optica Publishing Group
DBID AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1364/BOE.470926
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 2156-7085
EndPage 6762
ExternalDocumentID PMC9774864
36589556
10_1364_BOE_470926
Genre Journal Article
GrantInformation_xml – fundername: Department of Biotechnology, Ministry of Science and Technology, India
  grantid: Ramalingaswamy Fellowship-2016
– fundername: Science and Engineering Research Board
  grantid: Early Career Research Award -2016
– fundername: Indian Institute of Technology Bombay
  grantid: Seed Grant; Wadhwani Research Center for Bioengineering (WRCB)
GroupedDBID 4.4
53G
8SL
AAFWJ
AAWJZ
AAYXX
ADBBV
AEDJG
AENEX
AFPKN
AKGWG
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ATHME
AYPRP
AZSQR
AZYMN
BAWUL
BCNDV
CITATION
DIK
DSZJF
E3Z
EBS
GROUPED_DOAJ
GX1
HYE
KQ8
LPK
M~E
O5R
O5S
OFLFD
OK1
OPJBK
ROL
ROS
RPM
TR6
NPM
ROP
7X8
5PM
ID FETCH-LOGICAL-c378t-c7ff4f407da87b0768ce1154f92dd8ab0ac27a5d56f8e6d8417c69e9711839273
ISSN 2156-7085
IngestDate Thu Aug 21 18:40:20 EDT 2025
Fri Jul 11 14:17:37 EDT 2025
Wed Feb 19 02:13:00 EST 2025
Tue Jul 01 01:36:37 EDT 2025
Thu Apr 24 23:11:05 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement.
https://doi.org/10.1364/OA_License_v2#VOR-OA
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c378t-c7ff4f407da87b0768ce1154f92dd8ab0ac27a5d56f8e6d8417c69e9711839273
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-0664-1207
0000-0002-4834-4991
OpenAccessLink https://doi.org/10.1364/boe.470926
PMID 36589556
PQID 2760169218
PQPubID 23479
PageCount 18
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9774864
proquest_miscellaneous_2760169218
pubmed_primary_36589556
crossref_citationtrail_10_1364_BOE_470926
crossref_primary_10_1364_BOE_470926
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Biomedical optics express
PublicationTitleAlternate Biomed Opt Express
PublicationYear 2022
Publisher Optica Publishing Group
Publisher_xml – name: Optica Publishing Group
References Johansson (boe-13-12-6745-R7) 2019; 12
Murali (boe-13-12-6745-R16) 2020; 11
Chandran (boe-13-12-6745-R25) 2014; 90
Wu (boe-13-12-6745-R59) 2022; 13
James (boe-13-12-6745-R21) 2020; 11
Seong (boe-13-12-6745-R22) 2022; 222
Dainty (boe-13-12-6745-R51) 2013; 9
Parthasarathy (boe-13-12-6745-R4) 2008; 16
Duncan (boe-13-12-6745-R49) 2008; 25
Murali (boe-13-12-6745-R43) 2019; 10
Culver (boe-13-12-6745-R10) 2003; 23
Boas (boe-13-12-6745-R37) 1995; 75
Postnov (boe-13-12-6745-R6) 2020; 6
Konnik (boe-13-12-6745-R47) 2014
James (boe-13-12-6745-R30) 2021; 46
Huang (boe-13-12-6745-R15) 2015; 42
Duncan (boe-13-12-6745-R27) 2008; 25
Kirkpatrick (boe-13-12-6745-R26) 2008; 33
Cheng (boe-13-12-6745-R56) 2022; 27
Briers (boe-13-12-6745-R3) 1982; 22
Braumann (boe-13-12-6745-R31) 2019
Bibby (boe-13-12-6745-R41) 2005; 11
Buckley (boe-13-12-6745-R40) 2014; 1
Zhao (boe-13-12-6745-R58) 2021; 12
Rabal (boe-13-12-6745-R29) 2018
Dragojević (boe-13-12-6745-R8) 2015; 6
Paul (boe-13-12-6745-R17) 2022; 13
Song (boe-13-12-6745-R28) 2016; 7
Zhou (boe-13-12-6745-R18) 2021; 46
Mil’shtein (boe-13-12-6745-R34) 1974; 19
Fujii (boe-13-12-6745-R54) 1974; 12
Arridge (boe-13-12-6745-R48) 1992; 37
Boas (boe-13-12-6745-R1) 2010; 15
Varma (boe-13-12-6745-R13) 2014; 5
Parzen (boe-13-12-6745-R55) 1958; 29
Zhou (boe-13-12-6745-R52) 2006; 14
Bender (boe-13-12-6745-R60) 2018; 5
Varma (boe-13-12-6745-R24) 2011; 28
Bi (boe-13-12-6745-R11) 2013; 38
Durduran (boe-13-12-6745-R9) 2014; 85
Hajjarian (boe-13-12-6745-R23) 2016; 6
Goodman (boe-13-12-6745-R33) 2007
Paul (boe-13-12-6745-R45) 2022; 8
Ibe (boe-13-12-6745-R42) 2013
Valdes (boe-13-12-6745-R12) 2014; 5
Fang (boe-13-12-6745-R46) 2009; 17
Biswas (boe-13-12-6745-R20) 2021
Liu (boe-13-12-6745-R5) 2021; 6
Xu (boe-13-12-6745-R19) 2020; 5
Murali (boe-13-12-6745-R44) 2020; 45
Higham (boe-13-12-6745-R39) 2001; 43
Li (boe-13-12-6745-R61) 2021; 10
Durduran (boe-13-12-6745-R2) 2010; 73
Zárate-Mi nano (boe-13-12-6745-R38) 2016; 94
Postnov (boe-13-12-6745-R53) 2019; 9
Yin (boe-13-12-6745-R36) 2015; 2015
Zhou (boe-13-12-6745-R14) 2018; 5
Gagnon (boe-13-12-6745-R57) 2008; 16
Mil’shtejn (boe-13-12-6745-R35) 1975; 19
References_xml – volume: 37
  start-page: 1531
  year: 1992
  ident: boe-13-12-6745-R48
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/37/7/005
– volume: 9
  start-page: 2542
  year: 2019
  ident: boe-13-12-6745-R53
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-39137-x
– volume: 11
  start-page: 6755
  year: 2020
  ident: boe-13-12-6745-R21
  publication-title: Biomed. Opt. Express
  doi: 10.1364/BOE.400525
– volume: 75
  start-page: 1855
  year: 1995
  ident: boe-13-12-6745-R37
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.75.1855
– volume: 27
  start-page: 083009
  year: 2022
  ident: boe-13-12-6745-R56
  publication-title: J. Biomed. Opt.
  doi: 10.1117/1.JBO.27.8.083009
– volume: 90
  start-page: 012303
  year: 2014
  ident: boe-13-12-6745-R25
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.90.012303
– volume: 5
  start-page: 595
  year: 2018
  ident: boe-13-12-6745-R60
  publication-title: Optica
  doi: 10.1364/OPTICA.5.000595
– volume: 9
  year: 2013
  ident: boe-13-12-6745-R51
– volume: 12
  start-page: 32
  year: 1974
  ident: boe-13-12-6745-R54
  publication-title: Opt. Commun.
  doi: 10.1016/0030-4018(74)90067-4
– volume: 85
  start-page: 51
  year: 2014
  ident: boe-13-12-6745-R9
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.06.017
– volume: 23
  start-page: 911
  year: 2003
  ident: boe-13-12-6745-R10
  publication-title: J. Cereb. Blood Flow Metab.
  doi: 10.1097/01.WCB.0000076703.71231.BB
– volume: 2015
  start-page: 369
  year: 2015
  ident: boe-13-12-6745-R36
  publication-title: Adv. Differ. Eqs.
  doi: 10.1186/s13662-015-0699-9
– volume: 8
  start-page: 045001
  year: 2022
  ident: boe-13-12-6745-R45
  publication-title: Biomed. Phys. Eng. Express
  doi: 10.1088/2057-1976/ac6909
– year: 2021
  ident: boe-13-12-6745-R20
  article-title: A method for improving the dynamic range of integrated diffuse speckle contrast spectroscopy
  doi: 10.1364/BRAIN.2021.BTh1B.4
– volume: 45
  start-page: 3993
  year: 2020
  ident: boe-13-12-6745-R44
  publication-title: Opt. Lett.
  doi: 10.1364/OL.397979
– volume: 13
  start-page: 1131
  year: 2022
  ident: boe-13-12-6745-R59
  publication-title: Biomed. Opt. Express
  doi: 10.1364/BOE.449046
– volume: 73
  start-page: 076701
  year: 2010
  ident: boe-13-12-6745-R2
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/73/7/076701
– volume: 5
  start-page: 1275
  year: 2014
  ident: boe-13-12-6745-R13
  publication-title: Biomed. Opt. Express
  doi: 10.1364/BOE.5.001275
– volume: 16
  start-page: 1975
  year: 2008
  ident: boe-13-12-6745-R4
  publication-title: Opt. Express
  doi: 10.1364/OE.16.001975
– year: 2007
  ident: boe-13-12-6745-R33
– volume: 25
  start-page: 9
  year: 2008
  ident: boe-13-12-6745-R49
  publication-title: J. Opt. Soc. Am. A
  doi: 10.1364/JOSAA.25.000009
– volume: 19
  start-page: 557
  year: 1975
  ident: boe-13-12-6745-R35
  publication-title: Theory Probab. & Its Appl.
  doi: 10.1137/1119062
– year: 2018
  ident: boe-13-12-6745-R29
– year: 2019
  ident: boe-13-12-6745-R31
– volume: 33
  start-page: 2886
  year: 2008
  ident: boe-13-12-6745-R26
  publication-title: Opt. Lett.
  doi: 10.1364/OL.33.002886
– volume: 1
  start-page: 011009
  year: 2014
  ident: boe-13-12-6745-R40
  publication-title: Neurophotonics
  doi: 10.1117/1.NPh.1.1.011009
– volume: 11
  start-page: 191
  year: 2005
  ident: boe-13-12-6745-R41
  publication-title: Bernoulli
  doi: 10.3150/bj/1116340291
– volume: 10
  start-page: 5395
  year: 2019
  ident: boe-13-12-6745-R43
  publication-title: Biomed. Opt. Express
  doi: 10.1364/BOE.10.005395
– volume: 222
  start-page: 106933
  year: 2022
  ident: boe-13-12-6745-R22
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2022.106933
– volume: 15
  start-page: 011109
  year: 2010
  ident: boe-13-12-6745-R1
  publication-title: J. Biomed. Opt.
  doi: 10.1117/1.3285504
– volume: 11
  start-page: 6699
  year: 2020
  ident: boe-13-12-6745-R16
  publication-title: Biomed. Opt. Express
  doi: 10.1364/BOE.401702
– volume: 14
  start-page: 1125
  year: 2006
  ident: boe-13-12-6745-R52
  publication-title: Opt. Express
  doi: 10.1364/OE.14.001125
– volume: 7
  start-page: 798
  year: 2016
  ident: boe-13-12-6745-R28
  publication-title: Biomed. Opt. Express
  doi: 10.1364/BOE.7.000798
– volume: 5
  start-page: 518
  year: 2018
  ident: boe-13-12-6745-R14
  publication-title: Optica
  doi: 10.1364/OPTICA.5.000518
– volume: 25
  start-page: 231
  year: 2008
  ident: boe-13-12-6745-R27
  publication-title: J. Opt. Soc. Am. A
  doi: 10.1364/JOSAA.25.000231
– volume: 6
  start-page: eabc4628
  year: 2020
  ident: boe-13-12-6745-R6
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abc4628
– volume: 19
  start-page: 583
  year: 1974
  ident: boe-13-12-6745-R34
  publication-title: Teoriya veroyatnostei i ee primeneniya
– volume: 42
  start-page: 4000
  year: 2015
  ident: boe-13-12-6745-R15
  publication-title: Med. Phys.
  doi: 10.1118/1.4922206
– volume: 22
  start-page: 255
  year: 1982
  ident: boe-13-12-6745-R3
  publication-title: Investigative ophthalmology & visual science
– volume: 94
  start-page: 186
  year: 2016
  ident: boe-13-12-6745-R38
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2016.03.026
– volume: 12
  start-page: 7149
  year: 2021
  ident: boe-13-12-6745-R58
  publication-title: Biomed. Opt. Express
  doi: 10.1364/BOE.438303
– volume: 16
  start-page: 15514
  year: 2008
  ident: boe-13-12-6745-R57
  publication-title: Opt. Express
  doi: 10.1364/OE.16.015514
– volume: 13
  start-page: 6081
  year: 2022
  ident: boe-13-12-6745-R17
  publication-title: Biomed. Opt. Express
  doi: 10.1364/BOE.469405
– year: 2014
  ident: boe-13-12-6745-R47
  doi: 10.48550/arXiv.1412.4031
– volume: 46
  start-page: 4498
  year: 2021
  ident: boe-13-12-6745-R18
  publication-title: Opt. Lett.
  doi: 10.1364/OL.427746
– volume: 28
  start-page: 2322
  year: 2011
  ident: boe-13-12-6745-R24
  publication-title: J. Opt. Soc. Am. A
  doi: 10.1364/JOSAA.28.002322
– volume: 29
  start-page: 299
  year: 1958
  ident: boe-13-12-6745-R55
  publication-title: Ann. Math. Statist.
  doi: 10.1214/aoms/1177706731
– volume: 46
  start-page: 4390
  year: 2021
  ident: boe-13-12-6745-R30
  publication-title: Opt. Lett.
  doi: 10.1364/OL.435812
– volume: 5
  start-page: 126102
  year: 2020
  ident: boe-13-12-6745-R19
  publication-title: APL Photonics
  doi: 10.1063/5.0021988
– year: 2013
  ident: boe-13-12-6745-R42
– volume: 10
  start-page: 241
  year: 2021
  ident: boe-13-12-6745-R61
  publication-title: Light: Sci. Appl.
  doi: 10.1038/s41377-021-00682-8
– volume: 17
  start-page: 20178
  year: 2009
  ident: boe-13-12-6745-R46
  publication-title: Opt. Express
  doi: 10.1364/OE.17.020178
– volume: 43
  start-page: 525
  year: 2001
  ident: boe-13-12-6745-R39
  publication-title: SIAM Rev.
  doi: 10.1137/S0036144500378302
– volume: 5
  start-page: 2769
  year: 2014
  ident: boe-13-12-6745-R12
  publication-title: Biomed. Opt. Express
  doi: 10.1364/BOE.5.002769
– volume: 6
  start-page: 37949
  year: 2016
  ident: boe-13-12-6745-R23
  publication-title: Sci. Rep.
  doi: 10.1038/srep37949
– volume: 38
  start-page: 1401
  year: 2013
  ident: boe-13-12-6745-R11
  publication-title: Opt. Lett.
  doi: 10.1364/OL.38.001401
– volume: 12
  start-page: e201900091
  year: 2019
  ident: boe-13-12-6745-R7
  publication-title: J. Biophotonics
  doi: 10.1002/jbio.201900091
– volume: 6
  start-page: 026106
  year: 2021
  ident: boe-13-12-6745-R5
  publication-title: APL Photonics
  doi: 10.1063/5.0031225
– volume: 6
  start-page: 2865
  year: 2015
  ident: boe-13-12-6745-R8
  publication-title: Biomed. Opt. Express
  doi: 10.1364/BOE.6.002865
SSID ssj0000447038
Score 2.364531
Snippet Laser speckle-based blood flow imaging is a well-accepted and widely used method for pre-clinical and clinical applications. Although it was introduced as a...
Laser speckle-based blood flow imaging is a well-accepted and widely used method for pre-clinical and clinical applications. Although it was introduced as a...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 6745
Title Laser speckle simulation tool based on stochastic differential equations for bio imaging applications
URI https://www.ncbi.nlm.nih.gov/pubmed/36589556
https://www.proquest.com/docview/2760169218
https://pubmed.ncbi.nlm.nih.gov/PMC9774864
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5BkapyQFBe4VEtgguKnMb2etc-IlSoEIVLi3Kz9mXVIonT1pEqfj0z6_UjbZCAS5SsrXWU78vszOzsN4S8U0ZZIzIepImKA8Z1EUhuRSAlLj4QsGjXveHkGz8-Y19myazv3-lOl9Rqon9tPVfyP6jCGOCKp2T_AdluUhiA94AvvALC8PpXGH-FJehyjIclf87t-Kpc-F5c4FBW8zEuUAY3A8C_0-cSBZm7fig1JsrtxdoXwrmazbIal4umadFwW3tj29cd1ne4Visn8GyvV10RB9ptl2BFKY-yHfqBSXO3wkFY7pOvPs0QRYOSDWeNwDXggZg2_XUmdstYa07jIW2igXHkolGOvGW1Y86wFv370YSJadacoB_At1o4_GJwlrIkuSGc3SzF_tJdci-CcAEN9OdZ2OXapgzmdU3Nu2_slWrhyYf9c_fIbjvTpptyK_a4WUI78ElOH5IHPpigHxpmPCJ37HKf3B9ITO6T3RNfPPGYWEcX6ulCe7pQpAt1dKHwqacLHdKFdnShQBcKdKGeLnRIlyfk7NPR6cfjwHfZCHQs0jrQoihYAXG9kalQuDGrLWo0FVlkTCrVVOpIyMQkvEgtNykLheaZzUTonGsRPyU7y2ppnxOqILhXEIHCdJZJidqQYcRVpiNuTMbCEXnf_qi59hL02Allnrt9Vc5ywCJvsBiRt929q0Z4Zetdb1pscrCLuNkll7ZaX-WRcEJD4MGOyLMGq26eFuQRERsodjeg5vrmlWV57rTXMVxKOXvxxzlfkr3-7_OK7NSXa_sa_NZaHbh8z4Gj5m8WkZpf
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Laser+speckle+simulation+tool+based+on+stochastic+differential+equations+for+bio+imaging+applications&rft.jtitle=Biomedical+optics+express&rft.au=K%2C+Murali&rft.au=Varma%2C+Hari+M&rft.date=2022-12-01&rft.issn=2156-7085&rft.eissn=2156-7085&rft.volume=13&rft.issue=12&rft.spage=6745&rft_id=info:doi/10.1364%2FBOE.470926&rft_id=info%3Apmid%2F36589556&rft.externalDocID=36589556
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2156-7085&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2156-7085&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2156-7085&client=summon