Insight of surface treatments for CMOS compatibility of InAs nanowires

A CMOS compatible process is presented in order to grow self-catalyzed InAs nanowires on silicon by molecular beam epitaxy. The crucial step of this process is a new in-situ surface preparation under hydrogen (gas or plasma) during the substrate degassing combined with an in-situ arsenic annealing p...

Full description

Saved in:
Bibliographic Details
Published inNano research Vol. 12; no. 3; pp. 581 - 586
Main Authors Dhungana, Daya S., Hemeryck, Anne, Sartori, Nicolo, Fazzini, Pier-Francesco, Cristiano, Filadelfo, Plissard, Sébastien R.
Format Journal Article
LanguageEnglish
Published Beijing Tsinghua University Press 01.03.2019
Springer Nature B.V
Springer
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A CMOS compatible process is presented in order to grow self-catalyzed InAs nanowires on silicon by molecular beam epitaxy. The crucial step of this process is a new in-situ surface preparation under hydrogen (gas or plasma) during the substrate degassing combined with an in-situ arsenic annealing prior to growth. Morphological and structural characterizations of the InAs nanowires are presented and growth mechanisms are discussed in detail. The major influence of surface termination is exposed both experimentally and theoretically using statistics on ensemble of nanowires and density functional theory (DFT) calculations. The differences observed between Molecular Beam Epitaxy (MBE) and Metal Organic Vapor Phase Epitaxy (MOVPE) growth of InAs nanowires can be explained by these different surfaces terminations. The transition between a vapor solid (VS) and a vapor liquid solid (VLS) growth mechanism is presented. Optimized growth conditions lead to very high aspect ratio nanowires (up to 50 nm in diameter and 3 micron in length) without passing the 410 °C thermal limit, which makes the whole process CMOS compatible. Overall, our results suggest a new method for surface preparation and a possible tuning of the growth mechanism using different surface terminations.
AbstractList A CMOS compatible process is presented in order to grow self-catalyzed InAs nanowires on silicon by molecular beam epitaxy. The crucial step of this process is a new in-situ surface preparation under hydrogen (gas or plasma) during the substrate degassing combined with an in-situ arsenic annealing prior to growth. Morphological and structural characterizations of the InAs nanowires are presented and growth mechanisms are discussed in detail. The major influence of surface termination is exposed both experimentally and theoretically using statistics on ensemble of nanowires and density functional theory (DFT) calculations. The differences observed between Molecular Beam Epitaxy (MBE) and Metal Organic Vapor Phase Epitaxy (MOVPE) growth of InAs nanowires can be explained by these different surfaces terminations. The transition between a vapor solid (VS) and a vapor liquid solid (VLS) growth mechanism is presented. Optimized growth conditions lead to very high aspect ratio nanowires (up to 50 nm in diameter and 3 micron in length) without passing the 410 °C thermal limit, which makes the whole process CMOS compatible. Overall, our results suggest a new method for surface preparation and a possible tuning of the growth mechanism using different surface terminations.
A CMOS compatible process is presented in order to grow self-catalyzed InAs nanowires on silicon by molecular beam epitaxy. The crucial step of this process is a new in-situ surface preparation under hydrogen (gas or plasma) during the substrate degassing combined with an in-situ arsenic annealing prior to growth. Morphological and structural characterizations of the InAs nanowires are presented and growth mechanisms are discussed in detail. The major influence of surface termination is exposed both experimentally and theoretically using statistics on ensemble of nanowires and density functional theory (DFT) calculations. The differences observed between Molecular Beam Epitaxy (MBE) and Metal Organic Vapor Phase Epitaxy (MOVPE) growth of InAs nanowires can be explained by these different surfaces terminations. The transition between a vapor solid (VS) and a vapor liquid solid (VLS) growth mechanism is presented. Optimized growth conditions lead to very high aspect ratio nanowires (up to 50 nm in diameter and 3 micron in length) without passing the 410 °C thermal limit, which makes the whole process CMOS compatible. Overall, our results suggest a new method for surface preparation and a possible tuning of the growth mechanism using different surface terminations.
Author Dhungana, Daya S.
Sartori, Nicolo
Fazzini, Pier-Francesco
Plissard, Sébastien R.
Cristiano, Filadelfo
Hemeryck, Anne
Author_xml – sequence: 1
  givenname: Daya S.
  surname: Dhungana
  fullname: Dhungana, Daya S.
  organization: CNRS, LAAS-CNRS, Université de Toulouse
– sequence: 2
  givenname: Anne
  surname: Hemeryck
  fullname: Hemeryck, Anne
  organization: CNRS, LAAS-CNRS, Université de Toulouse
– sequence: 3
  givenname: Nicolo
  surname: Sartori
  fullname: Sartori, Nicolo
  organization: CNRS, LAAS-CNRS, Université de Toulouse
– sequence: 4
  givenname: Pier-Francesco
  surname: Fazzini
  fullname: Fazzini, Pier-Francesco
  organization: LPCNO, INSA, Université de Toulouse
– sequence: 5
  givenname: Filadelfo
  surname: Cristiano
  fullname: Cristiano, Filadelfo
  organization: CNRS, LAAS-CNRS, Université de Toulouse
– sequence: 6
  givenname: Sébastien R.
  surname: Plissard
  fullname: Plissard, Sébastien R.
  email: sebastien.plissard@laas.fr
  organization: CNRS, LAAS-CNRS, Université de Toulouse
BackLink https://laas.hal.science/hal-02017661$$DView record in HAL
BookMark eNp9kU1LAzEQhoNUsH78AG8LnjysZmbzsXssRW2h4kE9hzRN6kqb1GSr9N-bsn6cdA4zw_C8MwPvMRn44C0h50CvgFJ5nQBRspJCXSJyWdYHZAhNU5c0x-C7B2RH5DilV0oFAquH5HbqU7t86YrgirSNThtbdNHqbm19lwoXYjG-f3gsTFhvdNfO21Xb7fbw1I9S4bUPH2206ZQcOr1K9uyrnpDn25un8aScPdxNx6NZaSpZd6WhjIpGgAaGjV1oJlAK1Ew29YJJU3HtmKsXkqOcC0dNVS2Mabh1FCwI3lQn5LLf-6JXahPbtY47FXSrJqOZ2s8oUpBCwDtk9qJnNzG8bW3q1GvYRp_fU8hpxSvEnP6jgHOOSAXLFPSUiSGlaN3PcaBqb4DqDVDZALU3QNVZg70mZdYvbfzd_LfoE1OAhs8
CitedBy_id crossref_primary_10_1016_j_vacuum_2024_113445
crossref_primary_10_1021_acs_jpcc_2c01060
crossref_primary_10_1088_1361_6528_ac8bdb
crossref_primary_10_1109_JQE_2022_3151082
crossref_primary_10_1039_D2NA00546H
crossref_primary_10_3389_fmats_2024_1375200
Cites_doi 10.1021/nl203846g
10.1021/nl401404w
10.1103/PhysRevB.36.7715
10.1038/nnano.2009.234
10.1021/acs.nanolett.5b02165
10.1021/nl504437v
10.1021/nl1041512
10.1063/1.3525610
10.1109/JEDS.2017.2787202
10.1021/nl802398j
10.1016/j.jcrysgro.2014.07.034
10.1088/0957-4484/20/49/495606
10.1111/j.1365-2818.1988.tb01374.x
10.1016/j.jcrysgro.2014.03.011
10.1186/1556-276X-6-463
10.1088/0957-4484/26/26/265302
10.1016/j.jcrysgro.2011.08.023
10.1038/nnano.2008.359
10.1103/PhysRevB.82.035302
10.1063/1.2837191
10.1063/1.4726037
10.1143/JJAP.30.3567
10.1063/1.4868133
10.1016/S0304-3991(98)00035-7
10.1021/acs.nanolett.5b02454
10.1016/0039-6028(96)00722-4
10.1063/1.3558729
10.1103/PhysRevB.39.1372
10.1088/0957-4484/24/22/225304
10.1088/1361-6528/aa5252
10.1088/0957-4484/23/23/235602
10.1021/nl402447h
10.1021/nl102308k
10.1021/acs.cgd.5b00131
10.1021/cg400701w
10.1088/0957-4484/21/38/385602
10.1016/S1369-7021(06)71651-0
10.1088/0957-4484/26/41/415604
10.1021/acs.nanolett.6b01461
10.1103/PhysRevB.34.6041
10.1021/nl900191w
10.1038/nature11293
10.1021/nl404376m
10.1088/0957-4484/22/42/425704
10.1088/0957-4484/22/27/275602
10.1088/0957-4484/21/36/365602
10.1039/C7RA01117B
ContentType Journal Article
Copyright Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018
Nano Research is a copyright of Springer, (2018). All Rights Reserved.
Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018
– notice: Nano Research is a copyright of Springer, (2018). All Rights Reserved.
– notice: Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
3V.
7QF
7QO
7QQ
7SE
7SR
7U5
7X7
7XB
8AO
8BQ
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H8G
HCIFZ
JG9
K9.
KB.
L7M
LK8
M0S
M7P
P64
PDBOC
PQEST
PQQKQ
PQUKI
1XC
DOI 10.1007/s12274-018-2257-8
DatabaseName CrossRef
ProQuest Central (Corporate)
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Corrosion Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ProQuest Pharma Collection
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
Biological Science Collection
AUTh Library subscriptions: ProQuest Central
Technology Collection
ProQuest Natural Science Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Advanced Technologies Database with Aerospace
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Biological Science Database
Biotechnology and BioEngineering Abstracts
Materials Science Collection
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
Materials Research Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest Central Essentials
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
Copper Technical Reference Library
Engineered Materials Abstracts
Health Research Premium Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
Materials Science Database
Advanced Technologies Database with Aerospace
ProQuest Materials Science Collection
Aluminium Industry Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Ceramic Abstracts
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
METADEX
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
Corrosion Abstracts
ProQuest Central (Alumni)
DatabaseTitleList
Materials Research Database
Materials Research Database

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1998-0000
EndPage 586
ExternalDocumentID oai_HAL_hal_02017661v1
10_1007_s12274_018_2257_8
GroupedDBID -58
-5G
-BR
-EM
-~C
06C
06D
0R~
0VY
123
1N0
29M
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
3V.
4.4
406
408
40D
6NX
7X7
8AO
8FE
8FG
8FH
8FI
8FJ
95-
95~
96X
AAAVM
AABHQ
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AAPBV
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABDZT
ABECU
ABFGW
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUWG
ABWNU
ABXPI
ACBMV
ACBRV
ACBYP
ACCUX
ACGFO
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPRK
ACREN
ACTTH
ACVWB
ACWMK
ADBBV
ADFRT
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFTE
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AESTI
AEVLU
AEVTX
AEXYK
AFKRA
AFLOW
AFNRJ
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGBP
AGJBK
AGMZJ
AGQMX
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ASPBG
AVWKF
AXYYD
AZFZN
BBNVY
BENPR
BGLVJ
BGNMA
BHPHI
BPHCQ
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
CW9
D1I
DDRTE
DNIVK
DPUIP
DU5
E3Z
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRP
FRRFC
FSGXE
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
HCIFZ
HF~
HG6
HH5
HMCUK
HMJXF
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
J-C
JBSCW
JZLTJ
KB.
KOV
LK8
LLZTM
M4Y
M7P
N2Q
NPVJJ
NQJWS
NU0
O9-
O9J
OK1
P2P
P9N
PDBOC
PQQKQ
PROAC
PT4
Q2X
QOR
R89
R9I
RNS
ROL
RSV
S1Z
S27
S3B
SCL
SCM
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SQXTU
SRMVM
SSLCW
STPWE
SZN
T13
TSG
U2A
UG4
UKHRP
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z83
Z85
Z88
ZMTXR
~A9
AACDK
AAJBT
AASML
AAYXX
ABAKF
ACAOD
ACDTI
ACZOJ
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
ALIPV
CITATION
H13
7QF
7QO
7QQ
7SE
7SR
7U5
7XB
8BQ
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
H8G
JG9
K9.
L7M
P64
PQEST
PQUKI
1XC
ID FETCH-LOGICAL-c378t-c0406961a1429eda462762a4798d47c35af4f8d7527b6f0c33dcc95ef01e16593
IEDL.DBID 7X7
ISSN 1998-0124
IngestDate Fri Sep 06 13:23:46 EDT 2024
Tue Oct 08 05:00:03 EDT 2024
Sat Oct 05 15:29:28 EDT 2024
Thu Sep 12 18:36:46 EDT 2024
Sat Dec 16 12:12:07 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords III-V semiconductors on silicon
density functional theory (DFT) modeling
InAs
nanowires
self-catalyzed growth
growth modeling
hydrogen preparation
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c378t-c0406961a1429eda462762a4798d47c35af4f8d7527b6f0c33dcc95ef01e16593
ORCID 0000-0002-0201-1171
0000-0002-0769-5429
0000-0003-1839-9972
0000-0002-4307-6481
PQID 2155522064
PQPubID 326270
PageCount 6
ParticipantIDs hal_primary_oai_HAL_hal_02017661v1
proquest_journals_2503532235
proquest_journals_2155522064
crossref_primary_10_1007_s12274_018_2257_8
springer_journals_10_1007_s12274_018_2257_8
PublicationCentury 2000
PublicationDate 2019-03-01
PublicationDateYYYYMMDD 2019-03-01
PublicationDate_xml – month: 03
  year: 2019
  text: 2019-03-01
  day: 01
PublicationDecade 2010
PublicationPlace Beijing
PublicationPlace_xml – name: Beijing
PublicationTitle Nano research
PublicationTitleAbbrev Nano Res
PublicationYear 2019
Publisher Tsinghua University Press
Springer Nature B.V
Springer
Publisher_xml – name: Tsinghua University Press
– name: Springer Nature B.V
– name: Springer
References Ermez, Jones, Crawford, Gradecak (CR21) 2015; 15
Yasaka, Kanda, Sawara, Miyazaki, Hirose (CR43) 1991; 30
CR34
Dayeh, Yu, Wang (CR7) 2009; 9
Caroff, Dick, Johansson, Messing, Deppert, Samuelson (CR40) 2009; 4
Thelander, Caroff, Plissard, Dick (CR12) 2012; 100
Becker, Klitsner, Vickers (CR45) 1988; 152
Koblmüller, Hertenberger, Vizbaras, Bichler, Bao, Zhang, Abstreiter (CR9) 2010; 21
Patel, Golovchenko, Freeland, Gossmann (CR46) 1987; 36
Tomioka, Yoshimura, Fukui (CR1) 2013; 13
Cirlin, Dubrovskii, Samsonenko, Bouravleuv, Durose, Proskuryakov, Mendes, Bowen, Kaliteevski, Abram (CR13) 2010; 82
Matteini, Tütüncüoglu, Rüffer, Alarcón-Lladó, Morral (CR31) 2014; 404
Tomioka, Fukui (CR28) 2011; 98
Fontcuberta i Morral, Colombo, Abstreiter, Arbiol, Morante (CR6) 2008; 92
Shi, Wang, Wang, Wang, Yang, Yang, Chen, Xu, Xu, Yang (CR26) 2015; 26
Renard, Jublot, Gergaud, Cherns, Rouchon, Chabli, Jousseaume (CR5) 2009; 4
Cheng, Kunc (CR47) 1996; 365
Choi, Lee, Pin, Jang, Hong, Cho, Lee, Jeong, Yi, Kim (CR42) 2017; 7
Hertenberger, Rudolph, Becker, Bichler, Finley, Abstreiter, Koblmüller (CR20) 2012; 23
Tomioka, Izhizaka, Fukui (CR36) 2015; 15
Gao, Dubrovskii, Caroff, Wong-Leung, Li, Guo, Fu, Tan, Jagadish (CR49) 2016; 16
Plissard, Dick, Larrieu, Godey, Addad, Wallart, Caroff (CR15) 2010; 21
Somaschini, Bietti, Trampert, Jahn, Hauswald, Riechert, Sanguinetti, Geelhaar (CR17) 2013; 13
Tomioka, Motohisa, Hara, Fukui (CR22) 2008; 8
Wang, Yang, Wang, Ji, Xu, Wang, Chen, Yang (CR32) 2017; 60
Priante, Ambrosini, Dubrovskii, Franciosi, Rubini (CR16) 2013; 13
Lee, Wang, Wang, Zhang, Sasangka, Goh, Bao, Lee, Fitzgerald, Tan (CR3) 2017; 6
Wang, Yang, Du, Ji, Luo, Yang (CR25) 2014; 395
Li, Wei, Xu, Ning, Shu, Wang, Pan, Zhao, Yang, Chen (CR41) 2014; 104
Liu, Yang, Yuan, Liu, Shi, Jiang, Zhang, Staedler, Jiang (CR38) 2015; 15
Plissard, Larrieu, Wallart, Caroff (CR8) 2011; 22
Krogstrup, Popovitz-Biro, Johnson, Madsen, Nygård, Shtrikman (CR14) 2010; 10
Mandl, Dey, Stangl, Cantoro, Wernersson, Bauer, Samuelson, Deppert, Thelander (CR37) 2011; 334
Gomes, Ercolani, Sibirev, Gemmi, Dubrovskii, Beltram, Sorba (CR27) 2015; 26
Gomes, Ercolani, Zannier, Battiato, Ubyivovk, Mikhailovskii, Murata, Heun, Beltram, Sorba (CR39) 2017; 28
Kriegner, Panse, Mandl, Dick, Keplinger, Persson, Caroff, Ercolani, Sorba, Bechstedt (CR33) 2011; 11
Olmstead, Bringans, Uhrberg, Bachrach (CR44) 1986; 34
Caroff, Messing, Borg, Dick, Deppert, Wernersson (CR10) 2009; 20
Munshi, Dheeraj, Fauske, Kim, Huh, Reinertsen, Ahtapodov, Lee, Heidari, van Helvoort (CR18) 2014; 14
Plissard, Slapak, Verheijen, Hocevar, Immink, Weperen, Nadj-Perge, Frolov, Kouwenhoven, Bakkers (CR11) 2012; 12
Tomioka, Yoshimura, Fukui (CR29) 2012; 488
Hertenberger, Rudolph, Bichler, Finley, Abstreiter, Koblmüller (CR30) 2010; 108
Russo-Averchi, Plestina, Tütüncüoglu, Matteini, Dalmau-Mallorquí, Mata, Rüffer, Potts, Arbiol, Conesa-Boj (CR19) 2015; 15
Hÿtch, Snoeck, Kilaas (CR35) 1998; 74
Kanungo, Schmid, Björk, Gignac, Breslin, Bruley, Bessire, Riel (CR2) 2013; 24
Thelander, Agarwal, Brongersma, Eymery, Feiner, Forchel, Scheffler, Riess, Ohlsson, Gösele (CR4) 2006; 9
Kriegner, Wintersberger, Kawaguchi, Wallentin, Borgström, Stangl (CR23) 2011; 22
Patterson, Messmer (CR48) 1989; 39
Li, Chen, Lei, Zhou, Luo, Hu, Wang, Yang, Wang (CR24) 2011; 6
B. D. Liu (2257_CR38) 2015; 15
M. J. Hÿtch (2257_CR35) 1998; 74
K. Tomioka (2257_CR28) 2011; 98
S. A. Dayeh (2257_CR7) 2009; 9
S. R. Plissard (2257_CR11) 2012; 12
V. T. Renard (2257_CR5) 2009; 4
E. V. Russo-Averchi (2257_CR19) 2015; 15
M. A. Olmstead (2257_CR44) 1986; 34
P. Caroff (2257_CR10) 2009; 20
D. Kriegner (2257_CR23) 2011; 22
X. Y. Wang (2257_CR25) 2014; 395
C. Thelander (2257_CR12) 2012; 100
T. Yasaka (2257_CR43) 1991; 30
T. W. Shi (2257_CR26) 2015; 26
D. Kriegner (2257_CR33) 2011; 11
K. H. Lee (2257_CR3) 2017; 6
J. R. Patel (2257_CR46) 1987; 36
C. Somaschini (2257_CR17) 2013; 13
G. Koblmüller (2257_CR9) 2010; 21
Q. Gao (2257_CR49) 2016; 16
K. Tomioka (2257_CR36) 2015; 15
F. Matteini (2257_CR31) 2014; 404
R. S. Becker (2257_CR45) 1988; 152
K. Tomioka (2257_CR22) 2008; 8
T. F. Li (2257_CR24) 2011; 6
C. Thelander (2257_CR4) 2006; 9
S. Hertenberger (2257_CR30) 2010; 108
X. Li (2257_CR41) 2014; 104
P. Krogstrup (2257_CR14) 2010; 10
B. Mandl (2257_CR37) 2011; 334
P. Caroff (2257_CR40) 2009; 4
C. H. Patterson (2257_CR48) 1989; 39
P. D. Kanungo (2257_CR2) 2013; 24
G. E. Cirlin (2257_CR13) 2010; 82
A. M. Munshi (2257_CR18) 2014; 14
S. Ermez (2257_CR21) 2015; 15
S. Hertenberger (2257_CR20) 2012; 23
K. Tomioka (2257_CR29) 2012; 488
G. Priante (2257_CR16) 2013; 13
X. Y. Wang (2257_CR32) 2017; 60
K. Tomioka (2257_CR1) 2013; 13
S. Plissard (2257_CR15) 2010; 21
S. Choi (2257_CR42) 2017; 7
U. P. Gomes (2257_CR27) 2015; 26
A. Fontcuberta i Morral (2257_CR6) 2008; 92
2257_CR34
U. P. Gomes (2257_CR39) 2017; 28
C. Cheng (2257_CR47) 1996; 365
S. Plissard (2257_CR8) 2011; 22
References_xml – volume: 12
  start-page: 1794
  year: 2012
  end-page: 1798
  ident: CR11
  article-title: From InSb nanowires to nanocubes: Looking for the sweet spot
  publication-title: Nano Lett.
  doi: 10.1021/nl203846g
  contributor:
    fullname: Bakkers
– volume: 13
  start-page: 3607
  year: 2013
  end-page: 3613
  ident: CR17
  article-title: Control over the number density and diameter of GaAs nanowires on Si(111) mediated by droplet epitaxy
  publication-title: Nano Lett.
  doi: 10.1021/nl401404w
  contributor:
    fullname: Geelhaar
– volume: 36
  start-page: 7715
  year: 1987
  ident: CR46
  article-title: Arsenic atom location on passivated silicon (111) surfaces
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.36.7715
  contributor:
    fullname: Gossmann
– volume: 4
  start-page: 654
  year: 2009
  end-page: 657
  ident: CR5
  article-title: Catalyst preparation for CMOS-compatible silicon nanowire synthesis
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2009.234
  contributor:
    fullname: Jousseaume
– volume: 15
  start-page: 7253
  year: 2015
  end-page: 7257
  ident: CR36
  article-title: Selective-area growth of InAs nanowires on Ge and vertical transistor application
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b02165
  contributor:
    fullname: Fukui
– volume: 15
  start-page: 2869
  year: 2015
  end-page: 2874
  ident: CR19
  article-title: High yield of GaAs nanowire arrays on Si mediated by the pinning and contact angle of Ga
  publication-title: Nano Lett.
  doi: 10.1021/nl504437v
  contributor:
    fullname: Conesa-Boj
– volume: 11
  start-page: 1483
  year: 2011
  end-page: 1489
  ident: CR33
  article-title: Unit cell structure of crystal polytypes in InAs and InSb nanowires
  publication-title: Nano Lett.
  doi: 10.1021/nl1041512
  contributor:
    fullname: Bechstedt
– volume: 108
  start-page: 114316
  year: 2010
  ident: CR30
  article-title: Growth kinetics in position-controlled and catalyst-free InAs nanowire arrays on Si(111) grown by selective area molecular beam epitaxy
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3525610
  contributor:
    fullname: Koblmüller
– volume: 6
  start-page: 571
  year: 2017
  end-page: 578
  ident: CR3
  article-title: Monolithic integration of Si-CMOS and III-V-on-Si through direct wafer bonding process
  publication-title: IEEE J. Electron Devices Soc.
  doi: 10.1109/JEDS.2017.2787202
  contributor:
    fullname: Tan
– volume: 8
  start-page: 3475
  year: 2008
  end-page: 3480
  ident: CR22
  article-title: Control of InAs nanowire growth directions on Si
  publication-title: Nano Lett.
  doi: 10.1021/nl802398j
  contributor:
    fullname: Fukui
– volume: 404
  start-page: 246
  year: 2014
  end-page: 255
  ident: CR31
  article-title: Ga-assisted growth of GaAs nanowires on silicon, comparison of surface SiOx of different nature
  publication-title: J. Cryst. Growth
  doi: 10.1016/j.jcrysgro.2014.07.034
  contributor:
    fullname: Morral
– volume: 20
  start-page: 495606
  year: 2009
  ident: CR10
  article-title: InSb heterostructure nanowires: MOVPE growth under extreme lattice mismatch
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/20/49/495606
  contributor:
    fullname: Wernersson
– volume: 152
  start-page: 157
  year: 1988
  end-page: 165
  ident: CR45
  article-title: Arsenic-terminated silicon and germanium surfaces studied by scanning tunnelling microscopy
  publication-title: J. Microsc.
  doi: 10.1111/j.1365-2818.1988.tb01374.x
  contributor:
    fullname: Vickers
– volume: 395
  start-page: 55
  year: 2014
  end-page: 60
  ident: CR25
  article-title: Thickness influence of thermal oxide layers on the formation of self-catalyzed InAs nanowires on Si(111) by MOCVD
  publication-title: J. Cryst. Growth
  doi: 10.1016/j.jcrysgro.2014.03.011
  contributor:
    fullname: Yang
– volume: 6
  start-page: 463
  year: 2011
  ident: CR24
  article-title: Effect of growth temperature on the morphology and phonon properties of InAs nanowires on Si substrates
  publication-title: Nanoscale Res. Lett.
  doi: 10.1186/1556-276X-6-463
  contributor:
    fullname: Wang
– volume: 26
  start-page: 265302
  year: 2015
  ident: CR26
  article-title: Nanoscale opening fabrication on Si (111) surface from SiO2 Barrier for vertical growth of III-V nanowire arrays
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/26/26/265302
  contributor:
    fullname: Yang
– volume: 334
  start-page: 51
  year: 2011
  end-page: 56
  ident: CR37
  article-title: Self-seeded, position-controlled InAs nanowire growth on Si: A growth parameter study
  publication-title: J. Cryst. Growth
  doi: 10.1016/j.jcrysgro.2011.08.023
  contributor:
    fullname: Thelander
– volume: 4
  start-page: 50
  year: 2009
  end-page: 55
  ident: CR40
  article-title: Controlled polytypic and twin-plane superlattices in III-V nanowires
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2008.359
  contributor:
    fullname: Samuelson
– volume: 82
  start-page: 035302
  year: 2010
  ident: CR13
  article-title: Self-catalyzed, pure zincblende GaAs nanowires grown on Si(111) by molecular beam epitaxy
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.82.035302
  contributor:
    fullname: Abram
– volume: 92
  start-page: 063112
  year: 2008
  ident: CR6
  article-title: Nucleation mechanism of gallium-assisted molecular beam epitaxy growth of gallium arsenide nanowires
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2837191
  contributor:
    fullname: Morante
– volume: 100
  start-page: 232105
  year: 2012
  ident: CR12
  article-title: Electrical properties of InAs1-xSbx and InSb nanowires grown by molecular beam epitaxy
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4726037
  contributor:
    fullname: Dick
– volume: 30
  start-page: 3567
  year: 1991
  end-page: 3569
  ident: CR43
  article-title: Chemical stability of HF-treated SI(111) surfaces
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.1143/JJAP.30.3567
  contributor:
    fullname: Hirose
– volume: 104
  start-page: 103110
  year: 2014
  ident: CR41
  article-title: Mechanical properties of individual InAs nanowires studied by tensile tests
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4868133
  contributor:
    fullname: Chen
– volume: 74
  start-page: 131
  year: 1998
  end-page: 146
  ident: CR35
  article-title: Quantitative measurement of displacement and strain fields from HREM micrographs
  publication-title: Ultramicroscopy
  doi: 10.1016/S0304-3991(98)00035-7
  contributor:
    fullname: Kilaas
– volume: 15
  start-page: 7837
  year: 2015
  end-page: 7846
  ident: CR38
  article-title: Defect-induced nucleation and epitaxy: A new strategy toward the rational synthesis of WZ-GaN/3C-SiC core-shell heterostructures
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b02454
  contributor:
    fullname: Jiang
– volume: 60
  start-page: 1
  year: 2017
  end-page: 4
  ident: CR32
  article-title: Effect of nanohole size on selective area growth of InAs nanowire arrays on Si substrates
  publication-title: J. Cryst. Growth
  contributor:
    fullname: Yang
– volume: 365
  start-page: 383
  year: 1996
  end-page: 393
  ident: CR47
  article-title: Arsenic adatom structures for Ge(111) and Si(111) surfaces: First-principles calculations
  publication-title: Surf. Sci.
  doi: 10.1016/0039-6028(96)00722-4
  contributor:
    fullname: Kunc
– volume: 98
  start-page: 083114
  year: 2011
  ident: CR28
  article-title: Tunnel field-effect transistor using InAs nanowire/si heterojunction
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3558729
  contributor:
    fullname: Fukui
– volume: 39
  start-page: 1372
  year: 1989
  end-page: 1374
  ident: CR48
  article-title: Structural compromise of the arsenicterminated silicon (111) surface
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.39.1372
  contributor:
    fullname: Messmer
– volume: 24
  start-page: 225304
  year: 2013
  ident: CR2
  article-title: Selective area growth of III-V nanowires and their heterostructures on silicon in a nanotube template: Towards monolithic integration of nano-devices
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/24/22/225304
  contributor:
    fullname: Riel
– volume: 28
  start-page: 065603
  year: 2017
  ident: CR39
  article-title: Heterogeneous nucleation of catalyst-free InAs nanowires on silicon
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/aa5252
  contributor:
    fullname: Sorba
– volume: 23
  start-page: 235602
  year: 2012
  ident: CR20
  article-title: Rate-limiting mechanisms in high-temperature growth of catalyst-free InAs nanowires with large thermal stability
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/23/23/235602
  contributor:
    fullname: Koblmüller
– volume: 13
  start-page: 5822
  year: 2013
  end-page: 5826
  ident: CR1
  article-title: Sub 60 mV/decade switch using an InAs nanowire-Si heterojunction and turn-on voltage shift with a pulsed doping technique
  publication-title: Nano Lett.
  doi: 10.1021/nl402447h
  contributor:
    fullname: Fukui
– volume: 10
  start-page: 4475
  year: 2010
  end-page: 4482
  ident: CR14
  article-title: Structural phase control in self-catalyzed growth of GaAs nanowires on Silicon (111)
  publication-title: Nano Lett.
  doi: 10.1021/nl102308k
  contributor:
    fullname: Shtrikman
– volume: 15
  start-page: 2768
  year: 2015
  end-page: 2774
  ident: CR21
  article-title: Self-seeded growth of GaAs nanowires by metal–organic chemical vapor deposition
  publication-title: Cryst. Growth Des.
  doi: 10.1021/acs.cgd.5b00131
  contributor:
    fullname: Gradecak
– volume: 13
  start-page: 3976
  year: 2013
  end-page: 3984
  ident: CR16
  article-title: Stopping and resuming at will the growth of GaAs nanowires
  publication-title: Cryst. Growth Des.
  doi: 10.1021/cg400701w
  contributor:
    fullname: Rubini
– volume: 21
  start-page: 385602
  year: 2010
  ident: CR15
  article-title: Gold-free growth of GaAs nanowires on silicon: Arrays and polytypism
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/21/38/385602
  contributor:
    fullname: Caroff
– volume: 9
  start-page: 28
  year: 2006
  end-page: 35
  ident: CR4
  article-title: Nanowire-based one-dimensional electronics
  publication-title: Mater. Today
  doi: 10.1016/S1369-7021(06)71651-0
  contributor:
    fullname: Gösele
– volume: 26
  start-page: 415604
  year: 2015
  ident: CR27
  article-title: Catalyst-free growth of InAs nanowires on Si (111) by CBE
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/26/41/415604
  contributor:
    fullname: Sorba
– volume: 16
  start-page: 4361
  year: 2016
  end-page: 4367
  ident: CR49
  article-title: Simultaneous selective-area and vapor-liquid-solid growth of InP nanowire arrays
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b01461
  contributor:
    fullname: Jagadish
– volume: 34
  start-page: 6041
  year: 1986
  end-page: 6044
  ident: CR44
  article-title: Arsenic overlayer on Si(111): Removal of surface reconstruction
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.34.6041
  contributor:
    fullname: Bachrach
– volume: 9
  start-page: 1967
  year: 2009
  end-page: 1972
  ident: CR7
  article-title: Surface diffusion and substrate-nanowire adatom exchange in InAs nanowire growth
  publication-title: Nano Lett.
  doi: 10.1021/nl900191w
  contributor:
    fullname: Wang
– volume: 488
  start-page: 189
  year: 2012
  end-page: 192
  ident: CR29
  article-title: A III-V nanowire channel on silicon for high-performance vertical transistors
  publication-title: Nature
  doi: 10.1038/nature11293
  contributor:
    fullname: Fukui
– ident: CR34
– volume: 14
  start-page: 960
  year: 2014
  end-page: 966
  ident: CR18
  article-title: Position-controlled uniform GaAs nanowires on silicon using nanoimprint lithography
  publication-title: Nano Lett.
  doi: 10.1021/nl404376m
  contributor:
    fullname: van Helvoort
– volume: 22
  start-page: 425704
  year: 2011
  ident: CR23
  article-title: Unit cell parameters of wurtzite InP nanowires determined by x-ray diffraction
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/22/42/425704
  contributor:
    fullname: Stangl
– volume: 22
  start-page: 275602
  year: 2011
  ident: CR8
  article-title: High yield of self-catalyzed gaas nanowire arrays grown on silicon via gallium droplet positioning
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/22/27/275602
  contributor:
    fullname: Caroff
– volume: 21
  start-page: 365602
  year: 2010
  ident: CR9
  article-title: Self-induced growth of vertical free-standing InAs nanowires on Si(111) by molecular beam epitaxy
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/21/36/365602
  contributor:
    fullname: Abstreiter
– volume: 7
  start-page: 16655
  year: 2017
  end-page: 16661
  ident: CR42
  article-title: Study on fracture behavior of individual InAs nanowires using an electron-beam-drilled notch
  publication-title: RSC Adv.
  doi: 10.1039/C7RA01117B
  contributor:
    fullname: Kim
– volume: 9
  start-page: 1967
  year: 2009
  ident: 2257_CR7
  publication-title: Nano Lett.
  doi: 10.1021/nl900191w
  contributor:
    fullname: S. A. Dayeh
– volume: 21
  start-page: 365602
  year: 2010
  ident: 2257_CR9
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/21/36/365602
  contributor:
    fullname: G. Koblmüller
– volume: 26
  start-page: 415604
  year: 2015
  ident: 2257_CR27
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/26/41/415604
  contributor:
    fullname: U. P. Gomes
– volume: 28
  start-page: 065603
  year: 2017
  ident: 2257_CR39
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/aa5252
  contributor:
    fullname: U. P. Gomes
– volume: 22
  start-page: 425704
  year: 2011
  ident: 2257_CR23
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/22/42/425704
  contributor:
    fullname: D. Kriegner
– volume: 16
  start-page: 4361
  year: 2016
  ident: 2257_CR49
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b01461
  contributor:
    fullname: Q. Gao
– volume: 15
  start-page: 7837
  year: 2015
  ident: 2257_CR38
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b02454
  contributor:
    fullname: B. D. Liu
– volume: 4
  start-page: 654
  year: 2009
  ident: 2257_CR5
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2009.234
  contributor:
    fullname: V. T. Renard
– volume: 26
  start-page: 265302
  year: 2015
  ident: 2257_CR26
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/26/26/265302
  contributor:
    fullname: T. W. Shi
– volume: 13
  start-page: 3607
  year: 2013
  ident: 2257_CR17
  publication-title: Nano Lett.
  doi: 10.1021/nl401404w
  contributor:
    fullname: C. Somaschini
– volume: 12
  start-page: 1794
  year: 2012
  ident: 2257_CR11
  publication-title: Nano Lett.
  doi: 10.1021/nl203846g
  contributor:
    fullname: S. R. Plissard
– volume: 13
  start-page: 3976
  year: 2013
  ident: 2257_CR16
  publication-title: Cryst. Growth Des.
  doi: 10.1021/cg400701w
  contributor:
    fullname: G. Priante
– volume: 404
  start-page: 246
  year: 2014
  ident: 2257_CR31
  publication-title: J. Cryst. Growth
  doi: 10.1016/j.jcrysgro.2014.07.034
  contributor:
    fullname: F. Matteini
– volume: 4
  start-page: 50
  year: 2009
  ident: 2257_CR40
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2008.359
  contributor:
    fullname: P. Caroff
– volume: 334
  start-page: 51
  year: 2011
  ident: 2257_CR37
  publication-title: J. Cryst. Growth
  doi: 10.1016/j.jcrysgro.2011.08.023
  contributor:
    fullname: B. Mandl
– volume: 8
  start-page: 3475
  year: 2008
  ident: 2257_CR22
  publication-title: Nano Lett.
  doi: 10.1021/nl802398j
  contributor:
    fullname: K. Tomioka
– volume: 6
  start-page: 571
  year: 2017
  ident: 2257_CR3
  publication-title: IEEE J. Electron Devices Soc.
  doi: 10.1109/JEDS.2017.2787202
  contributor:
    fullname: K. H. Lee
– volume: 152
  start-page: 157
  year: 1988
  ident: 2257_CR45
  publication-title: J. Microsc.
  doi: 10.1111/j.1365-2818.1988.tb01374.x
  contributor:
    fullname: R. S. Becker
– volume: 14
  start-page: 960
  year: 2014
  ident: 2257_CR18
  publication-title: Nano Lett.
  doi: 10.1021/nl404376m
  contributor:
    fullname: A. M. Munshi
– volume: 13
  start-page: 5822
  year: 2013
  ident: 2257_CR1
  publication-title: Nano Lett.
  doi: 10.1021/nl402447h
  contributor:
    fullname: K. Tomioka
– volume: 82
  start-page: 035302
  year: 2010
  ident: 2257_CR13
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.82.035302
  contributor:
    fullname: G. E. Cirlin
– volume: 21
  start-page: 385602
  year: 2010
  ident: 2257_CR15
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/21/38/385602
  contributor:
    fullname: S. Plissard
– volume: 98
  start-page: 083114
  year: 2011
  ident: 2257_CR28
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3558729
  contributor:
    fullname: K. Tomioka
– volume: 74
  start-page: 131
  year: 1998
  ident: 2257_CR35
  publication-title: Ultramicroscopy
  doi: 10.1016/S0304-3991(98)00035-7
  contributor:
    fullname: M. J. Hÿtch
– volume: 24
  start-page: 225304
  year: 2013
  ident: 2257_CR2
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/24/22/225304
  contributor:
    fullname: P. D. Kanungo
– volume: 395
  start-page: 55
  year: 2014
  ident: 2257_CR25
  publication-title: J. Cryst. Growth
  doi: 10.1016/j.jcrysgro.2014.03.011
  contributor:
    fullname: X. Y. Wang
– volume: 104
  start-page: 103110
  year: 2014
  ident: 2257_CR41
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4868133
  contributor:
    fullname: X. Li
– volume: 15
  start-page: 2869
  year: 2015
  ident: 2257_CR19
  publication-title: Nano Lett.
  doi: 10.1021/nl504437v
  contributor:
    fullname: E. V. Russo-Averchi
– volume: 34
  start-page: 6041
  year: 1986
  ident: 2257_CR44
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.34.6041
  contributor:
    fullname: M. A. Olmstead
– volume: 100
  start-page: 232105
  year: 2012
  ident: 2257_CR12
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4726037
  contributor:
    fullname: C. Thelander
– volume: 39
  start-page: 1372
  year: 1989
  ident: 2257_CR48
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.39.1372
  contributor:
    fullname: C. H. Patterson
– volume: 30
  start-page: 3567
  year: 1991
  ident: 2257_CR43
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.1143/JJAP.30.3567
  contributor:
    fullname: T. Yasaka
– volume: 488
  start-page: 189
  year: 2012
  ident: 2257_CR29
  publication-title: Nature
  doi: 10.1038/nature11293
  contributor:
    fullname: K. Tomioka
– volume: 9
  start-page: 28
  year: 2006
  ident: 2257_CR4
  publication-title: Mater. Today
  doi: 10.1016/S1369-7021(06)71651-0
  contributor:
    fullname: C. Thelander
– volume: 92
  start-page: 063112
  year: 2008
  ident: 2257_CR6
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2837191
  contributor:
    fullname: A. Fontcuberta i Morral
– volume: 22
  start-page: 275602
  year: 2011
  ident: 2257_CR8
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/22/27/275602
  contributor:
    fullname: S. Plissard
– volume: 20
  start-page: 495606
  year: 2009
  ident: 2257_CR10
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/20/49/495606
  contributor:
    fullname: P. Caroff
– volume: 23
  start-page: 235602
  year: 2012
  ident: 2257_CR20
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/23/23/235602
  contributor:
    fullname: S. Hertenberger
– volume: 15
  start-page: 2768
  year: 2015
  ident: 2257_CR21
  publication-title: Cryst. Growth Des.
  doi: 10.1021/acs.cgd.5b00131
  contributor:
    fullname: S. Ermez
– volume: 6
  start-page: 463
  year: 2011
  ident: 2257_CR24
  publication-title: Nanoscale Res. Lett.
  doi: 10.1186/1556-276X-6-463
  contributor:
    fullname: T. F. Li
– volume: 108
  start-page: 114316
  year: 2010
  ident: 2257_CR30
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3525610
  contributor:
    fullname: S. Hertenberger
– volume: 11
  start-page: 1483
  year: 2011
  ident: 2257_CR33
  publication-title: Nano Lett.
  doi: 10.1021/nl1041512
  contributor:
    fullname: D. Kriegner
– ident: 2257_CR34
– volume: 10
  start-page: 4475
  year: 2010
  ident: 2257_CR14
  publication-title: Nano Lett.
  doi: 10.1021/nl102308k
  contributor:
    fullname: P. Krogstrup
– volume: 15
  start-page: 7253
  year: 2015
  ident: 2257_CR36
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b02165
  contributor:
    fullname: K. Tomioka
– volume: 365
  start-page: 383
  year: 1996
  ident: 2257_CR47
  publication-title: Surf. Sci.
  doi: 10.1016/0039-6028(96)00722-4
  contributor:
    fullname: C. Cheng
– volume: 60
  start-page: 1
  year: 2017
  ident: 2257_CR32
  publication-title: J. Cryst. Growth
  contributor:
    fullname: X. Y. Wang
– volume: 7
  start-page: 16655
  year: 2017
  ident: 2257_CR42
  publication-title: RSC Adv.
  doi: 10.1039/C7RA01117B
  contributor:
    fullname: S. Choi
– volume: 36
  start-page: 7715
  year: 1987
  ident: 2257_CR46
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.36.7715
  contributor:
    fullname: J. R. Patel
SSID ssj0062148
Score 2.3211427
Snippet A CMOS compatible process is presented in order to grow self-catalyzed InAs nanowires on silicon by molecular beam epitaxy. The crucial step of this process is...
SourceID hal
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Publisher
StartPage 581
SubjectTerms Arsenic
Atomic/Molecular Structure and Spectra
Biomedicine
Biotechnology
Chemistry and Materials Science
CMOS
Compatibility
Condensed Matter
Condensed Matter Physics
Degassing
Density functional theory
Epitaxial growth
Epitaxy
Growth conditions
High aspect ratio
Indium arsenides
Materials Science
Metalorganic chemical vapor deposition
Molecular beam epitaxy
Nanotechnology
Nanowires
Physics
Research Article
Substrates
Surface preparation
Vapor phase epitaxy
Vapor phases
Vapors
SummonAdditionalLinks – databaseName: SpringerLINK - Czech Republic Consortium
  dbid: AGYKE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgu8CBN2IwUIQ4gTq1zaPpsUIb4zE4ABKcqjRthTSpQ7RDgl-P067bgHHgmkRRajv2l8b-AnCCVsJjgRvQkSqxWCy0JU2xj3CV72qVCsZNvfPgVvQf2dUTf1oCd_rrIht26hvJ0lHPat1cPEDhyRcVi2ZmyWVocvMqdQOawcXzdbf2vwIbywK4sngMw1d9l7lokm_RaPnF5ELOAc0fd6NlyOmtV2WAeclUaDJNhp1xEXX0528ex398zQasTRAoCSqT2YSlJNuC1Tlewm3oXWa5ObSTUUry8VuqdEKmGek5QZxLzgd396RMYC-q_NoPM_gyC3KSqWxkGJDzHXjsdR_O-9bkwQVLU08WlrZNHaxwlINRKokVEy76SsU8X8bM05SrlKUy9rjrRSK1NaWx1j5PUttJHMF9uguNbJQle0A8HdmS6YhSnNRhMU7pU9uXiqJlCMVacFoLPnyteDXCGYOyEU6IwgmNcELZgmNUzXScYcTuBzehaUO0aygunXenBe1ac-FkH-YhAhqOCBNx1-JublOOLo3yFpzVipp1_7mg_X-NPoAVXKVfZa61oVG8jZNDhDJFdDSx3S_-guXm
  priority: 102
  providerName: Springer Nature
Title Insight of surface treatments for CMOS compatibility of InAs nanowires
URI https://link.springer.com/article/10.1007/s12274-018-2257-8
https://www.proquest.com/docview/2155522064/abstract/
https://www.proquest.com/docview/2503532235/abstract/
https://laas.hal.science/hal-02017661
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB7xuNADKhTUBYosxKko2jh-xDlVKdpleVdtV1pOkeMk4pQFEpD498wkm-Uh4JJItmVZ48-ez_Y8APYRJSrTuAC5sbknM-08Q84-OrBR4GyhpSJ_5_MLPRrLk4maLMCo84Uhs8puT2w26mzq6I68j6paKESfUH2b0i2Aq_u_bm49yh9F76yzZBqLsMwDpBWI7HAyP3rpgDd5tFqHMlRp3ftm40QX4MkMSxExiF_PvNJQi9dkH_mCfL55L23U0PArrM74I4vbCV-Dhbxchy8vogp-g-FxWdGRm00LVt3fFdblbG5PXjFkqezw_PIfa8zP69Y69pEaH5dxxUpbTil-cbUB4-Hg_-HIm6VL8JwITe05n7xYNbccdUyeWakD3OmsDCOTydAJZQtZmCxUQZjqwndCZM5FKi98nnOtIrEJS-W0zL8DC13qG-lSIbBTLjPsMhJ-ZKzAedVW9uBnJ6Lkpo2KkTzHPyZ5JijPhOSZmB7soRDn7Sie9Sg-S6gMuSoFqOQPvAc7nYyT2SqqEqQjCvkhsqb3q-eQ6MFBNy3P1R8OaOvzzrZhBYcVtYZmO7BU393nP5B51OluAyr8muHRLizHR1enA_z_Hlz8-Yul4yB-AmKV1g0
link.rule.ids 230,315,786,790,891,12083,12792,21416,27957,27958,31754,33408,33779,41116,41558,42185,42627,43345,43635,43840,52146,52269,74102,74392,74659
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB58HNSD-MT6DOJJWdxsHps9SSmWVls9aKG3kGZ38bSt3Vbw3zvZR32gXpMwhMkk8yX5ZgbgAq1ExBI3IFUm8XgsradcsI8MTBRYk0ouXLxz_0F2BvxuKIbVg1te0SrrM7E4qOOxdW_k1-iqmUDrY-Jm8uq5qlHud7UqobEMq5wx7ih94XBx4ZIBLapnlWFk6MjqX80idC7A-xi2op2g1Xrqm19afnGsyC-Q88cvaeF82luwWaFG0iyXeRuWkmwHNr7kEtyFdjfL3UWbjFOSz6epsQlZsMhzgtiUtPqPT6Qgnc9KTuy7G9zNmjnJTDZ2WYvzPRi0b59bHa8qkuBZFqqZZ30XuyqpoehZkthwGeD5ZngYqZiHlgmT8lTFoQjCkUx9y1hsbSSS1KcJlSJi-7CSjbPkAEhoR77idsQYCqU8RpER8yNlGK6mNLwBl7WK9KTMhaE_sx47fWrUp3b61KoB56jExTiXxbrT7GnXhgjVpaWkb7QBx7WOdbV3co0gRCAqRKz0e_fCEBpwVS_LZ_efEzr8X9gZrHWe-z3d6z7cH8E6TjEqqWbHsDKbzpMTxB6z0WlhYB-3ptBD
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB7xkCo4IKAglqeFemoVEcePOCe0AtJdXq1EkbhZXicRp-xCFiT-PTN5LFCVXm3Lssbjmc_2NzMA31BLVKbxAHLj8kBm2geGgn105JLIu0JLRfHOV9d6cCvP79Rdy3-qWlplZxNrQ52NPb2RH6GrFgq1T6ijoqVF_D5NjycPAVWQop_WtpzGPCwSyKZqBib92VllHfG6klYTUoZOrfvhrMPoIrybYSvqDGpwYD74qPl7Yki-g59__ZjWjihdhZUWQbJ-s-VrMJeX67D8Lq_gV0iHZUWXbjYuWPX0WDifsxmjvGKIU9nJ1a8bVhPQpw0_9oUGD8t-xUpXjimDcbUBt-nZn5NB0BZMCLyIzTTwIcWxau44epk8c1JHaOucjBOTydgL5QpZmCxWUTzSReiFyLxPVF6EPOdaJWITFspxmW8Bi_0oNNKPhMBJucxwykSEiXECd1Y72YPvnYjspMmLYd8yIJM8LcrTkjyt6cEhCnE2jjJaD_qXltoQrVKKSv7Me7Dbydi256iyCEgUIkTETf_unilFD3502_LW_emCtv8_2QF8Qd2yl8Prix1YwhUmDetsFxamj0_5HsKQ6Wi_1q9XumPUeA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Insight+of+surface+treatments+for+CMOS+compatibility+of+InAs+nanowires&rft.jtitle=Nano+research&rft.au=Dhungana%2C+Daya+S.&rft.au=Hemeryck%2C+Anne&rft.au=Sartori%2C+Nicolo&rft.au=Fazzini%2C+Pier-Francesco&rft.date=2019-03-01&rft.issn=1998-0124&rft.eissn=1998-0000&rft.volume=12&rft.issue=3&rft.spage=581&rft.epage=586&rft_id=info:doi/10.1007%2Fs12274-018-2257-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s12274_018_2257_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1998-0124&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1998-0124&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1998-0124&client=summon