Solitary wave solutions of few nonlinear evolution equations

The solitary wave solutions of nonlinear evolution equations, in the recent years is being attractive in the field of physical sciences and engineering. In this article, we have investigated further general solitary wave solutions of three important nonlinear evolution equations, via the simplified...

Full description

Saved in:
Bibliographic Details
Published inAIMS mathematics Vol. 5; no. 2; pp. 1199 - 1215
Main Authors K. M. Kazi Sazzad Hossain, A., Ali Akbar, M.
Format Journal Article
LanguageEnglish
Published AIMS Press 01.01.2020
Subjects
Online AccessGet full text
ISSN2473-6988
2473-6988
DOI10.3934/math.2020083

Cover

Loading…
Abstract The solitary wave solutions of nonlinear evolution equations, in the recent years is being attractive in the field of physical sciences and engineering. In this article, we have investigated further general solitary wave solutions of three important nonlinear evolution equations, via the simplified MCH equation, the Pochhammer-Chree equation and the Schrödinger-Hirota equation by using modified simple equation method. These equations play an important role in the study of nonlinear sciences. The obtained solutions are expressed in terms of exponential and trigonometric functions including kink, singular kink and periodic soliton solutions. It is shown that the obtained solutions are more general and fresh and can be helpful to analyze the intricate physical incident in mathematical physics.
AbstractList The solitary wave solutions of nonlinear evolution equations, in the recent years is being attractive in the field of physical sciences and engineering. In this article, we have investigated further general solitary wave solutions of three important nonlinear evolution equations, via the simplified MCH equation, the Pochhammer-Chree equation and the Schrödinger-Hirota equation by using modified simple equation method. These equations play an important role in the study of nonlinear sciences. The obtained solutions are expressed in terms of exponential and trigonometric functions including kink, singular kink and periodic soliton solutions. It is shown that the obtained solutions are more general and fresh and can be helpful to analyze the intricate physical incident in mathematical physics.
Author K. M. Kazi Sazzad Hossain, A.
Ali Akbar, M.
Author_xml – sequence: 1
  givenname: A.
  surname: K. M. Kazi Sazzad Hossain
  fullname: K. M. Kazi Sazzad Hossain, A.
– sequence: 2
  givenname: M.
  surname: Ali Akbar
  fullname: Ali Akbar, M.
BookMark eNptUMtOwzAQtFCRKKU3PiAfQIrtdexE4oIqHpUqcaB3a-MHpEpjcNJW_D1JWyGEOO1od3Zmdy7JqAmNI-Sa0RkUIG432L3POOWU5nBGxlwoSGWR56Nf-IJM23ZNKeWMC67EmNy9hrrqMH4le9y5pA31tqtC0ybBJ97tk96krhqHMXG70yxxn1s8kK7Iuce6ddNTnZDV48Nq_pwuX54W8_tlakDlXVo6qQopZaYgB4O5UUUPvfGWY8lVhqqwnIIQ1CKzpTIWM8g8U54VMgeYkMVR1gZc649Ybfp7dcBKHxohvmmMXWVqp8HCYOaszZywzKLxTPgCnGcSOMNe6-aoZWJo2-j8jx6jeshRDznqU449nf-hmz6t4fkuYlX_v_QNNkh5hw
CitedBy_id crossref_primary_10_1007_s11082_024_06319_5
crossref_primary_10_1007_s43994_024_00179_1
crossref_primary_10_1088_1402_4896_ad604c
crossref_primary_10_1088_1402_4896_ad51b3
crossref_primary_10_1016_j_heliyon_2023_e14250
crossref_primary_10_1007_s11082_022_04419_8
crossref_primary_10_1088_1402_4896_ad5e3f
crossref_primary_10_1088_1402_4896_adae3f
crossref_primary_10_1016_j_padiff_2022_100320
crossref_primary_10_37094_adyujsci_857583
crossref_primary_10_1038_s41598_024_79102_x
crossref_primary_10_3390_math13010089
crossref_primary_10_1088_1402_4896_abdcf7
crossref_primary_10_1007_s40819_022_01295_4
crossref_primary_10_1016_j_padiff_2025_101136
crossref_primary_10_1016_j_ijleo_2024_171801
crossref_primary_10_1016_j_jppr_2020_12_001
crossref_primary_10_3934_math_20231601
crossref_primary_10_1016_j_padiff_2023_100572
crossref_primary_10_1007_s10773_025_05933_7
crossref_primary_10_1016_j_aej_2024_07_060
crossref_primary_10_1155_2021_6610021
crossref_primary_10_1016_j_aej_2025_02_038
Cites_doi 10.1016/j.optlastec.2012.02.028
10.1007/s12043-012-0326-1
10.1016/S0375-9601(01)00580-1
10.1016/j.physa.2016.02.061
10.1002/mma.4081
10.1016/j.camwa.2013.11.001
10.1016/S0375-9601(01)00461-3
10.11648/j.ijamtp.20170302.11
10.1016/j.cam.2011.02.021
10.1016/S0375-9601(01)00376-0
10.1007/s11071-019-04866-1
10.1016/S0375-9601(00)00778-7
10.1080/00207160802450166
10.1016/j.camwa.2015.11.006
10.1016/S0960-0779(03)00192-9
10.1016/j.jppr.2019.01.006
10.1016/j.camwa.2015.04.015
10.1103/PhysRevLett.71.1661
10.1002/mma.5721
10.2298/SJEE1602203M
10.1016/0375-9601(81)90423-0
10.1002/sapm198675295
10.1016/j.camwa.2011.09.023
10.1016/j.mcm.2003.12.010
10.1088/0253-6102/61/6/02
10.1016/j.jare.2014.02.004
10.1063/1.1666399
10.1007/BF02464941
10.1016/S0960-0779(01)00248-X
ContentType Journal Article
CorporateAuthor 2 Department of Applied Mathematics, University of Rajshahi, Rajshahi, Bangladesh
1 Department of Mathematics, Begum Rokeya University, Rangpur, Bangladesh
CorporateAuthor_xml – name: 2 Department of Applied Mathematics, University of Rajshahi, Rajshahi, Bangladesh
– name: 1 Department of Mathematics, Begum Rokeya University, Rangpur, Bangladesh
DBID AAYXX
CITATION
DOA
DOI 10.3934/math.2020083
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ: Directory of Open Access Journal (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2473-6988
EndPage 1215
ExternalDocumentID oai_doaj_org_article_3d3e679edd5e4d1dacf14f93ef16321a
10_3934_math_2020083
GroupedDBID AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
CITATION
EBS
FRJ
GROUPED_DOAJ
IAO
ITC
M~E
OK1
RAN
ID FETCH-LOGICAL-c378t-be67966657383ca8c79573fcfd2ab275a79d203440da1db7cda535f17f196833
IEDL.DBID DOA
ISSN 2473-6988
IngestDate Wed Aug 27 01:26:16 EDT 2025
Tue Jul 01 03:56:44 EDT 2025
Thu Apr 24 23:03:15 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c378t-be67966657383ca8c79573fcfd2ab275a79d203440da1db7cda535f17f196833
OpenAccessLink https://doaj.org/article/3d3e679edd5e4d1dacf14f93ef16321a
PageCount 17
ParticipantIDs doaj_primary_oai_doaj_org_article_3d3e679edd5e4d1dacf14f93ef16321a
crossref_primary_10_3934_math_2020083
crossref_citationtrail_10_3934_math_2020083
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-01
  day: 01
PublicationDecade 2020
PublicationTitle AIMS mathematics
PublicationYear 2020
Publisher AIMS Press
Publisher_xml – name: AIMS Press
References 46
47
48
A. R. Seadawy (19)
49
M. S. Osman (51)
E. M. E. Zayed, A. G. Al-Nowehy (32)
S. Liu, Z. Fu, S. D. Liu (7)
A. C. Cevikel, A. Beker, M. Akar (9)
M. S. Osman, H. I. A. Gawad (53)
J. Zhang, F. Jiang, X. Zhao (24)
52
A. R. Seadawy (30)
10
54
11
A. Biswas, A. J. M. Jawad, W. N. Manrakhan (34)
13
14
59
16
L. Tian, X. Song (56)
W. Zhang, W. Ma (57)
17
P. A. Clarkson, R. J. Leveque, R. Saxton (58)
A. Biswas, A. J. M. Jawad, W. N. Manrakhan (38)
J. Li, L. Zhang (15)
6
8
60
21
A. K. M. K. S. Hossain, M. A. Akbar (43)
22
23
L. Yang, J. Liu, K. Yang (1)
27
28
29
Z. Yan, H. Zhang (12)
J. Hu (33)
R. Camassa, D. Holm (55)
A. R. Seadawy (44)
31
A. R. Seadawy (20)
36
A. R. Seadawy (18)
37
M. S. Osman, A. M. Wazwaz (50)
39
R. Hirota (2)
R. Hirota, J. Satsuma (3)
A. M. Wazwaz (5)
N. Taghizadeh, M. Mirzazadeh (4)
A. K. M. K. S. Hossain, M. A. Akbar, M. A. K. Azad (26)
A. R. Seadawy (45)
40
M. A. Akbar, N. H. M. Ali, E. M. E. Zayed (25)
41
42
References_xml – ident: 42
  article-title: i>Closed form wave solutions of two nonlinear evolution equations</i
– ident: 29
  article-title: i>Variational method for the derivative nonlinear Schrödinger equation with computational applications</i
– ident: 34
  article-title: t al. Optical solitons and complexitons of the Schrödinger-Hirota equation</i
  publication-title: Opt. Laser Technol.
  doi: 10.1016/j.optlastec.2012.02.028
– ident: 37
  article-title: i>New compact and noncompact solutions for two variants of a modified Camassa-Holm equation</i
– ident: 9
  article-title: t al. A procedure to construct exact solution of nonlinear evolution equations</i
  publication-title: Pramana J. Phys.
  doi: 10.1007/s12043-012-0326-1
– ident: 41
  article-title: i>Closed form solutions of complex wave equations via modified simple equation method</i
– ident: 7
  article-title: t al. Jacobi elliptic function expansion method and periodic wave solutions of nonlinear equations</i
  publication-title: Phys. Lett. A
  doi: 10.1016/S0375-9601(01)00580-1
– ident: 45
  article-title: i>Stability analysis solutions for nonlinear three-dimensional modified Korteweg-de Vries-Zakharov-Kuznetsov equation in a magnetized electron-positron plasma</i
  publication-title: Physica A
  doi: 10.1016/j.physa.2016.02.061
– ident: 6
  article-title: i>Solition solutions of a few nonlinear wave equations in engineering sciences</i
– ident: 21
  article-title: i>Study of nonlinear evolution equations to construct traveling wave solutions via the new approach of generalized (G′/G)-expansion method</i
– ident: 18
  article-title: i>Ion acoustic solitary wave solutions of two dimensional nonlinear Kadomtsev-Petviashvili-burgers equation in quantum plasma</i
  publication-title: Meth. Method. Appl. Sci.
  doi: 10.1002/mma.4081
– ident: 38
  article-title: t al. Optical solitons and complexitons of the Schrödinger-Hirota equation</i
  publication-title: Opt. Laser Technol.
  doi: 10.1016/j.optlastec.2012.02.028
– ident: 40
  article-title: i>Modified simple equation method for nonlinear evolution equations</i
– ident: 19
  article-title: i>Stability analysis for Zakharov-Kuznetsov equation of weakly nonlinear ion-acoustic waves in plasma</i
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2013.11.001
– ident: 47
  article-title: t al. Analytical and numerical simulations for the kinetics of phase separation in iron (Fe-Cr-X (X=Mo, Cu)) based on ternary alloys</i
– ident: 33
  article-title: i>Explicit solutions to three nonlinear physical models</i
  publication-title: Phys. Lett. A
  doi: 10.1016/S0375-9601(01)00461-3
– ident: 43
  article-title: i>Traveling wave solutions of nonlinear evolution equations via Modified simple equation method</i
  publication-title: Int. J. Appl. Math. Theor. Phys.
  doi: 10.11648/j.ijamtp.20170302.11
– ident: 48
  article-title: t al. Complex wave structures for abundant solutions related to the complex Ginzburg-Landau model</i
– ident: 4
  article-title: i>The first integral method to some complex nonlinear partial differential equations</i
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2011.02.021
– ident: 12
  article-title: i>New explicit solitary wave solutions and periodic wave solutions for Whitham Broer-Kaup equation in shallow water</i
  publication-title: Phys. Lett. A
  doi: 10.1016/S0375-9601(01)00376-0
– ident: 51
  article-title: i>One-soliton shaping and inelastic collision between double solitons in the fifth-order variable-coefficient Sawada-Kotera equation</i
  publication-title: Nonlinear Dynam.
  doi: 10.1007/s11071-019-04866-1
– ident: 1
  article-title: i>Exact solutions of nonlinear PDE nonlinear transformation and reduction of nonlinear PDE to a quadrature</i
  publication-title: Phys. Lett. A
  doi: 10.1016/S0375-9601(00)00778-7
– ident: 11
  article-title: i>Exact solutions of the Klein-Gordon equation by modified Exp-function method</i
– ident: 24
  article-title: i>An improved (G'/G)-expansion method for solving nonlinear evolution equations</i
  publication-title: Int. J. Comput. Math.
  doi: 10.1080/00207160802450166
– ident: 59
  article-title: P. G. Drazin, R. S. Johnson,
– ident: 39
  article-title: i>An ansatz for solving nonlinear partial differential equations in mathematical physics</i
– ident: 10
  article-title: G. Adomian, Solving Frontier Problems of
– ident: 20
  article-title: i>Three-dimensional nonlinear modified Zakharov-Kuznetsov equation of ion-acoustic waves in magnetized plasma</i
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2015.11.006
– ident: 28
  article-title: i>Closed form solutions of new fifth order nonlinear equations and new generalized fifth order nonlinear equations via the enhanced (G'/G)-expansion method</i
– ident: 56
  article-title: i>New peaked solitary wave solutions of the generalized Camassa-Holm equation</i
  publication-title: Chaos Soliton. Fract.
  doi: 10.1016/S0960-0779(03)00192-9
– ident: 36
  article-title: t al. New analytical wave structures for the (3+1)-dimensional Kadomtsev-Petviashvili and the generalized Boussinesq models and their applications</i
– ident: 26
  article-title: i>The closed form solutions of simplified MCH equation and third extended fifth order nonlinear equation</i
  publication-title: Propul. Power Res.
  doi: 10.1016/j.jppr.2019.01.006
– ident: 49
  article-title: i>Generalized exponential rational function method for extended Zakharov-Kuzetsov equation with conformable derivative</i
– ident: 13
  article-title: i>Exp-function method for Duffing equation and new solutions of (2+1) dimensional dispersive long wave equations</i
– ident: 44
  article-title: i>Fractional solitary wave solutions of the nonlinear higher-order extended KdV equation in a stratified shear flow: Part I</i
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2015.04.015
– ident: 55
  article-title: i>An integrable shallow water equation with peaked solitons</i
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.71.1661
– ident: 27
  article-title: i>Closed form solutions of two nonlinear equations via enhanced (G'/G)-expansion method</i
– ident: 50
  article-title: i>A general bilinear form to generate different wave structures of solitons for a (3+1)‐dimensional Boiti‐Leon‐Manna‐Pempinelli equation</i
  publication-title: Math. Method. Appl. Sci.
  doi: 10.1002/mma.5721
– ident: 32
  article-title: i>Exact traveling wave solutions for nonlinear PDEs in mathematical physics using the generalized Kudryashov method</i
  publication-title: Serb. J. Electr. Eng.
  doi: 10.2298/SJEE1602203M
– ident: 46
  article-title: i>Stability analysis of new exact traveling-wave solutions of new coupled KdV and new coupled Zakharov-Kuznetsov systems</i
– ident: 3
  article-title: i>Soliton solutions of a coupled Korteweg-de Vries equation</i
  publication-title: Phys. Lett. A
  doi: 10.1016/0375-9601(81)90423-0
– ident: 14
  article-title: i>Exp-function method for simplified modified Camassa-Holm equation</i
– ident: 58
  article-title: i>Solitary wave interaction in elastic rods</i
  publication-title: Stud. Appl. Math.
  doi: 10.1002/sapm198675295
– ident: 52
  article-title: i>Multi-wave solutions of the (2+1)-dimensional Nizhnik-Novikov-Veselov equations with variable coefficients</i
– ident: 30
  article-title: i>New exact solutions for the KdV equation with higher order nonlinearity by using the variational method</i
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2011.09.023
– ident: 16
  article-title: i>Traveling wave solutions of the simplified MCH equation via Exp(-φ(ξ))-expansion method</i
– ident: 31
  article-title: 50-57
– ident: 5
  article-title: i>A sine-cosine method for handlenonlinear wave equations</i
  publication-title: Math. Comput. Model.
  doi: 10.1016/j.mcm.2003.12.010
– ident: 60
  article-title: L. Zhibin, Exact solitary wave solutions of non-linear evolution equations,
– ident: 22
  article-title: t al. Different complex wave structures described by the Hirota equation with variable coefficients in inhomogeneous optical fibers</i
– ident: 25
  article-title: i>Generalized and improved (g′/g)-expansion method combined with Jacobi elliptic equation</i
  publication-title: Commun. Theor. Phys.
  doi: 10.1088/0253-6102/61/6/02
– ident: 53
  article-title: i>On shallow water waves in a medium with time-dependent dispersion and nonlinearity coefficients</i
  publication-title: J. Adv. Res.
  doi: 10.1016/j.jare.2014.02.004
– ident: 2
  article-title: i>Exact envelope soliton solutions of a nonlinear wave equation</i
  publication-title: J. Math. Phys.
  doi: 10.1063/1.1666399
– ident: 57
  article-title: i>Explicit solitary wave solution of the generalized Pochhammer-Chree (PC) equation</i
  publication-title: Appl. Math. Mech.
  doi: 10.1007/BF02464941
– ident: 15
  article-title: i>Bifurcation of traveling wave solution of the generalized Pochhammer-Chree (PC) equation</i
  publication-title: Chaos Soliton. Fract.
  doi: 10.1016/S0960-0779(01)00248-X
– ident: 23
  article-title: i>New solitary wave solutions of some nonlinear models and their applications</i
– ident: 17
  article-title: t al. Traveling wave solutions of nonlinear evolution equations via Exp(−Φ(η))-expansion method</i
– ident: 8
  article-title: t al. Jacobi elliptic function expansion method for solving KdV equation with conformable derivative and dual-power law nonlinearity</i
– ident: 54
  article-title: i>New complex waves in nonlinear optics based on the complex Ginzburg-Landau equation with Kerr law nonlinearity</i
SSID ssj0002124274
Score 2.2031646
Snippet The solitary wave solutions of nonlinear evolution equations, in the recent years is being attractive in the field of physical sciences and engineering. In...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 1199
SubjectTerms modified simple equation method
pochhammer-chree equation
schrödinger-hirota equation
simplified mch equation
solitary wave solutions
Title Solitary wave solutions of few nonlinear evolution equations
URI https://doaj.org/article/3d3e679edd5e4d1dacf14f93ef16321a
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1Fe8gATilq_YltiAURVIZWFInWL_JxQgba04t_ji0NUBsTCFiWnxPnOvkd8-Q6hC0ECs9bSQltjCw5LUXkpCkqBioT2vXLwg_PosRw-84eJmKy1-oKasEwPnIHrMc9CKXXwXgTuiTcuEh41CzFFEpTUoVHyeWvJFNjgZJB5yrdypTvTjPdS_Ad7D7Ddz374oDWq_tqnDHbQdhMM4ps8iF20EaZ7aGvUMqnO99H1ExSomdknXpllwO1Mwa8Rx7DC00x1YWY4LJtrOLxn_u75ARoP7sd3w6LpeFA4JtWisPCqJWyGpMTRGeWkTofRRU-NpVIYqT0Fkr6-N8Rb6bwRTEQiY1pIirFD1EmPDUcIl1qYQKVPhpBxIYOJwkmbHDbzyhLV76Krbwgq17CBQ1OKlyplBQBYBYBVDWBddNlKv2UWjF_kbgHNVga4q-sTSaNVo9HqL40e_8dNTtAmjCl_LDlFncXsI5yl8GFhz-uZ8gWvvsS7
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solitary+wave+solutions+of+few+nonlinear+evolution+equations&rft.jtitle=AIMS+mathematics&rft.au=A.+K.+M.+Kazi+Sazzad+Hossain&rft.au=M.+Ali+Akbar&rft.date=2020-01-01&rft.pub=AIMS+Press&rft.eissn=2473-6988&rft.volume=5&rft.issue=2&rft.spage=1199&rft.epage=1215&rft_id=info:doi/10.3934%2Fmath.2020083&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_3d3e679edd5e4d1dacf14f93ef16321a
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon