Electric power generation via asymmetric moisturizing of graphene oxide for flexible, printable and portable electronics

Flexible power supplies that can harvest power from an ambient environment are of considerable interest for future portable electronics. However, the complex structure and costly functional material of current power generators hinder their further development and practical application. Here we demon...

Full description

Saved in:
Bibliographic Details
Published inEnergy & environmental science Vol. 11; no. 7; pp. 1730 - 1735
Main Authors Liang, Yuan, Zhao, Fei, Cheng, Zhihua, Deng, Yaxi, Xiao, Yukun, Cheng, Huhu, Zhang, Panpan, Huang, Yaxin, Shao, Huibo, Qu, Liangti
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 01.01.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Flexible power supplies that can harvest power from an ambient environment are of considerable interest for future portable electronics. However, the complex structure and costly functional material of current power generators hinder their further development and practical application. Here we demonstrate flexible, all-printable graphene oxide (GO) functionalized paper as a moisture-electric power generator with an induced voltage of up to 2 V. Such high voltage is achieved by asymmetric moisturizing of GO, which enables directional ion migration across the GO. This work demonstrates a low-cost, scalable, lightweight and bendable power generator, opening up new possibilities for significantly expanding the application domain of graphene and reducing the cost of portable electronics.
AbstractList Flexible power supplies that can harvest power from an ambient environment are of considerable interest for future portable electronics. However, the complex structure and costly functional material of current power generators hinder their further development and practical application. Here we demonstrate flexible, all-printable graphene oxide (GO) functionalized paper as a moisture-electric power generator with an induced voltage of up to 2 V. Such high voltage is achieved by asymmetric moisturizing of GO, which enables directional ion migration across the GO. This work demonstrates a low-cost, scalable, lightweight and bendable power generator, opening up new possibilities for significantly expanding the application domain of graphene and reducing the cost of portable electronics.
Author Deng, Yaxi
Zhao, Fei
Liang, Yuan
Xiao, Yukun
Zhang, Panpan
Shao, Huibo
Huang, Yaxin
Cheng, Zhihua
Cheng, Huhu
Qu, Liangti
Author_xml – sequence: 1
  givenname: Yuan
  surname: Liang
  fullname: Liang, Yuan
  organization: Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology
– sequence: 2
  givenname: Fei
  surname: Zhao
  fullname: Zhao, Fei
  organization: Materials Science and Engineering Program and Department of Mechanical Engineering, The University of Texas at Austin, USA
– sequence: 3
  givenname: Zhihua
  surname: Cheng
  fullname: Cheng, Zhihua
  organization: Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology
– sequence: 4
  givenname: Yaxi
  surname: Deng
  fullname: Deng, Yaxi
  organization: Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology
– sequence: 5
  givenname: Yukun
  surname: Xiao
  fullname: Xiao, Yukun
  organization: Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology
– sequence: 6
  givenname: Huhu
  surname: Cheng
  fullname: Cheng, Huhu
  organization: Key Laboratory for Advanced Materials Processing Technology, Ministry of Education of China, State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University
– sequence: 7
  givenname: Panpan
  surname: Zhang
  fullname: Zhang, Panpan
  organization: Key Laboratory for Advanced Materials Processing Technology, Ministry of Education of China, State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University
– sequence: 8
  givenname: Yaxin
  surname: Huang
  fullname: Huang, Yaxin
  organization: Key Laboratory for Advanced Materials Processing Technology, Ministry of Education of China, State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University
– sequence: 9
  givenname: Huibo
  surname: Shao
  fullname: Shao, Huibo
  organization: Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology
– sequence: 10
  givenname: Liangti
  orcidid: 0000-0002-0161-3816
  surname: Qu
  fullname: Qu, Liangti
  organization: Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology
BookMark eNptkE9LAzEQxYNUsK1e_AQBb-Jqkv2XHKWsVSh40fOSzc7WlN2kJqm2fnpjqwjiad4wv5nHvAkaGWsAoXNKrilJxc2MVxUhRUnnR2hMyzxL8pIUox9dCHaCJt6vIsNIKcZoW_WggtMKr-07OLwEA04GbQ1-0xJLvxsG2M8Hq33YOP2hzRLbDi-dXL9EGtutbgF31uGuh61uerjCa6dNkFFiadp42h0a2JtZo5U_Rced7D2cfdcper6rnmb3yeJx_jC7XSQqLXlIGtUyIhQAyTMCnLOctqVIhSwglTnrmFA8z9us4A1lKoO8KXlLBAgp20jJdIouDnfXzr5uwId6ZTfORMuakYLTlNMii9TlgVLOeu-gq-MHg3S7mpL6K9n6N9kIkz-w0mGfWXBS9_-tfALyD39V
CitedBy_id crossref_primary_10_1016_j_device_2024_100356
crossref_primary_10_1002_sstr_202100124
crossref_primary_10_1016_j_cplett_2023_140984
crossref_primary_10_3390_c6020041
crossref_primary_10_1039_D1RA07773B
crossref_primary_10_1039_D4EE02252A
crossref_primary_10_1021_acsnano_4c01416
crossref_primary_10_1038_s41467_022_28998_y
crossref_primary_10_1007_s11708_024_0930_z
crossref_primary_10_1016_j_jclepro_2022_134679
crossref_primary_10_1039_D1CS00778E
crossref_primary_10_1016_j_nanoen_2021_106772
crossref_primary_10_1007_s41871_020_00056_5
crossref_primary_10_1021_acsami_3c08618
crossref_primary_10_1002_adma_202003722
crossref_primary_10_1016_j_snb_2023_133396
crossref_primary_10_1039_D3LC00175J
crossref_primary_10_1002_asia_202000179
crossref_primary_10_1016_j_nanoen_2020_104502
crossref_primary_10_1039_D4TA01819B
crossref_primary_10_1007_s10934_022_01382_3
crossref_primary_10_1039_D1EE00859E
crossref_primary_10_1016_j_rser_2024_114461
crossref_primary_10_1016_j_nantod_2025_102661
crossref_primary_10_1038_s41467_021_25554_y
crossref_primary_10_1021_acsami_2c02878
crossref_primary_10_1088_1361_6528_ab9daa
crossref_primary_10_1002_adma_202200693
crossref_primary_10_1002_idm2_12033
crossref_primary_10_1021_acsaelm_9b00842
crossref_primary_10_1016_j_apenergy_2023_121110
crossref_primary_10_1016_j_nxmate_2024_100309
crossref_primary_10_1021_acsaelm_3c01860
crossref_primary_10_1039_D0TA12073A
crossref_primary_10_1002_adma_202109450
crossref_primary_10_1002_admt_201900819
crossref_primary_10_1039_C8TA11966J
crossref_primary_10_1021_acsanm_3c01320
crossref_primary_10_1016_j_nanoen_2022_106942
crossref_primary_10_1002_admt_202300370
crossref_primary_10_1016_j_nanoen_2023_108748
crossref_primary_10_1002_advs_202413779
crossref_primary_10_1016_j_reactfunctpolym_2022_105421
crossref_primary_10_1002_eom2_12408
crossref_primary_10_1039_C8TA07125J
crossref_primary_10_1016_j_joule_2023_04_007
crossref_primary_10_1016_j_nanoen_2023_108745
crossref_primary_10_26599_NRE_2023_9120042
crossref_primary_10_1039_C9EE02616A
crossref_primary_10_1021_acsami_8b20462
crossref_primary_10_1021_acsanm_4c03847
crossref_primary_10_1021_acsmaterialslett_0c00474
crossref_primary_10_1016_j_apenergy_2020_115764
crossref_primary_10_1016_j_xcrp_2020_100175
crossref_primary_10_1002_chem_201805008
crossref_primary_10_1016_j_ijbiomac_2024_130022
crossref_primary_10_1039_D2SE00927G
crossref_primary_10_1021_jacs_1c01831
crossref_primary_10_1002_aenm_201802212
crossref_primary_10_1016_j_ceja_2023_100498
crossref_primary_10_1021_acsaelm_2c01747
crossref_primary_10_1016_j_nanoen_2019_104385
crossref_primary_10_1002_smll_202304572
crossref_primary_10_1002_adfm_202211013
crossref_primary_10_1002_dro2_80
crossref_primary_10_1021_acsanm_2c01557
crossref_primary_10_1016_j_cej_2024_153486
crossref_primary_10_1002_aesr_202100196
crossref_primary_10_1039_D0TA11974A
crossref_primary_10_1088_1361_6528_ac04d4
crossref_primary_10_1016_j_chempr_2020_06_033
crossref_primary_10_1038_s41467_020_20296_9
crossref_primary_10_1002_adma_202211165
crossref_primary_10_1016_j_nanoen_2022_107892
crossref_primary_10_1007_s10853_021_06345_8
crossref_primary_10_1002_adma_202103897
crossref_primary_10_1039_D3TA03468B
crossref_primary_10_1021_acsami_4c03828
crossref_primary_10_1002_adma_201901585
crossref_primary_10_1002_aesr_202200084
crossref_primary_10_1002_adma_202201228
crossref_primary_10_1002_admt_201900745
crossref_primary_10_1039_C9NA00429G
crossref_primary_10_1016_j_chphma_2024_12_005
crossref_primary_10_1016_j_apsusc_2021_149719
crossref_primary_10_1002_adfm_202308620
crossref_primary_10_1016_j_ijbiomac_2024_135258
crossref_primary_10_1016_j_carbon_2019_03_041
crossref_primary_10_1039_D0TA02868A
crossref_primary_10_1016_j_nanoen_2023_108819
crossref_primary_10_1039_C8TA12328D
crossref_primary_10_1002_adfm_202419710
crossref_primary_10_1007_s12274_023_6169_x
crossref_primary_10_1002_adfm_202311465
crossref_primary_10_1039_D0NJ06079H
crossref_primary_10_1002_advs_202206071
crossref_primary_10_1039_D2TA09432K
crossref_primary_10_1016_j_carbon_2019_07_033
crossref_primary_10_1016_j_nanoen_2019_104047
crossref_primary_10_1039_D1SE00562F
crossref_primary_10_1016_j_scib_2021_11_015
crossref_primary_10_1021_acsami_1c04290
crossref_primary_10_1016_j_egyr_2022_04_053
crossref_primary_10_1016_j_cclet_2021_10_013
crossref_primary_10_26599_NRE_2025_9120156
crossref_primary_10_1016_j_apcatb_2021_120908
crossref_primary_10_3390_coatings12121970
crossref_primary_10_1039_D0EE04013D
crossref_primary_10_3390_batteries9120591
crossref_primary_10_1016_j_nanoen_2020_104922
crossref_primary_10_1039_D1TA11029B
crossref_primary_10_1002_adfm_202107330
crossref_primary_10_1016_j_nanoen_2021_106605
crossref_primary_10_1016_j_nanoen_2024_110516
crossref_primary_10_1002_adma_202312209
crossref_primary_10_1016_j_cej_2019_123366
crossref_primary_10_1016_j_matdes_2023_111683
crossref_primary_10_1016_j_nanoen_2022_107065
crossref_primary_10_1039_C9TA08264F
crossref_primary_10_1021_acs_nanolett_9b02081
crossref_primary_10_1016_j_cej_2022_140925
crossref_primary_10_1016_j_snb_2020_128104
crossref_primary_10_1039_D3EE00843F
crossref_primary_10_1063_5_0241150
crossref_primary_10_1016_j_cej_2022_135588
crossref_primary_10_1016_j_carbon_2018_09_005
crossref_primary_10_1016_j_carbpol_2024_122727
crossref_primary_10_1016_j_electacta_2022_141509
crossref_primary_10_1021_acs_iecr_9b01742
crossref_primary_10_1063_5_0083220
crossref_primary_10_1002_cey2_34
crossref_primary_10_1002_adfm_202200260
crossref_primary_10_1021_acsnano_9b04375
crossref_primary_10_1016_j_nanoen_2021_106494
crossref_primary_10_1016_j_snb_2024_135325
crossref_primary_10_1016_j_jmapro_2024_12_006
crossref_primary_10_1021_acsanm_2c04343
crossref_primary_10_1016_j_snb_2023_134082
crossref_primary_10_1038_s41565_018_0228_6
crossref_primary_10_1126_sciadv_adg8602
crossref_primary_10_1007_s40820_023_01260_w
crossref_primary_10_1038_s41598_020_70512_1
crossref_primary_10_1002_admt_201800392
crossref_primary_10_1016_j_nanoen_2020_105558
crossref_primary_10_1039_D2TA09552A
crossref_primary_10_1039_C9NR06113D
crossref_primary_10_1186_s11671_019_3098_4
crossref_primary_10_1016_j_vacuum_2020_109700
crossref_primary_10_1002_inf2_12060
crossref_primary_10_1002_EXP_20220061
crossref_primary_10_1016_j_surfin_2023_102853
crossref_primary_10_1016_j_mser_2025_100934
crossref_primary_10_1016_j_cej_2022_135921
crossref_primary_10_1002_aesr_202400342
crossref_primary_10_1002_anie_202002762
crossref_primary_10_1021_acsami_9b08056
crossref_primary_10_1016_j_nanoen_2021_106593
crossref_primary_10_1039_D2NH00323F
crossref_primary_10_1016_j_nanoen_2019_104238
crossref_primary_10_1038_s41467_022_31221_7
crossref_primary_10_1016_j_carbon_2023_118687
crossref_primary_10_1016_j_ensm_2018_10_006
crossref_primary_10_1016_j_nanoen_2019_104364
crossref_primary_10_1039_C9TA13830G
crossref_primary_10_1039_D1MH00565K
crossref_primary_10_1002_adma_202209661
crossref_primary_10_1002_advs_202105084
crossref_primary_10_3390_molecules29235716
crossref_primary_10_1039_D4EE00777H
crossref_primary_10_1002_adfm_202424490
crossref_primary_10_1021_acsaem_1c00746
crossref_primary_10_1038_s41467_021_25606_3
crossref_primary_10_1016_j_cej_2023_143443
crossref_primary_10_1016_j_compositesb_2020_108187
crossref_primary_10_1002_adma_202106410
crossref_primary_10_1016_j_device_2024_100316
crossref_primary_10_2139_ssrn_4017347
crossref_primary_10_1007_s11630_024_2084_z
crossref_primary_10_1039_D2EE02046G
crossref_primary_10_1016_j_esci_2021_12_009
crossref_primary_10_1039_D2EE00846G
crossref_primary_10_1016_j_cej_2022_136910
crossref_primary_10_1039_D0EE02190C
crossref_primary_10_1016_j_cclet_2024_110750
crossref_primary_10_1038_s41467_024_55516_z
crossref_primary_10_1080_19475411_2023_2205176
crossref_primary_10_1039_D1TA06757E
crossref_primary_10_1016_j_nanoen_2023_108750
crossref_primary_10_1016_j_cej_2023_142582
crossref_primary_10_1039_D1NR07748A
crossref_primary_10_1007_s12274_024_6642_1
crossref_primary_10_1002_smll_202204603
crossref_primary_10_1021_acsaelm_3c00920
crossref_primary_10_35848_1347_4065_acaab5
crossref_primary_10_34133_2022_9873203
crossref_primary_10_1039_D2TA04830B
crossref_primary_10_1002_ange_202002762
crossref_primary_10_3389_fchem_2019_00803
crossref_primary_10_1016_j_nanoen_2019_03_073
crossref_primary_10_1016_j_nanoen_2023_109182
crossref_primary_10_1039_D1SE01996A
crossref_primary_10_1016_j_carbpol_2023_121139
crossref_primary_10_1016_j_flatc_2019_100090
crossref_primary_10_1246_cl_210497
crossref_primary_10_1038_s41565_021_00903_6
crossref_primary_10_1021_acsnano_3c02043
crossref_primary_10_1016_j_nanoen_2021_106677
crossref_primary_10_1002_adfm_202205417
crossref_primary_10_1038_s41467_018_06633_z
crossref_primary_10_1039_D2EE00432A
crossref_primary_10_1016_j_cej_2024_152303
crossref_primary_10_1360_SST_2021_0430
crossref_primary_10_1039_D2NJ06308E
crossref_primary_10_1039_C9EE00838A
crossref_primary_10_1038_s41467_024_47652_3
crossref_primary_10_1016_j_desal_2024_118210
crossref_primary_10_1002_smll_202103448
crossref_primary_10_1016_j_nanoen_2022_107709
crossref_primary_10_1021_acsanm_3c04753
crossref_primary_10_1039_C9SC02779C
crossref_primary_10_1039_D3EE00981E
crossref_primary_10_1002_cey2_626
Cites_doi 10.1002/aenm.201702481
10.1039/C5EE03813H
10.1126/science.290.5499.2123
10.1126/science.aao5561
10.1038/nmat4904
10.1002/advs.201700107
10.1002/adma.201503025
10.1039/c4ee00242c
10.1002/adma.201400334
10.1016/j.nanoen.2013.09.002
10.1038/nnano.2016.300
10.1021/nn1018158
10.1002/anie.201109142
10.1002/anie.201304358
10.1126/science.1111063
10.1002/aenm.201100312
10.1021/acsnano.6b04769
10.1002/admt.201700182
10.1002/adma.201501867
10.1021/nl8038579
10.1002/adma.201201464
10.1021/nl401934a
10.1039/C4TA06574C
10.1021/acsnano.5b01478
10.1038/nnano.2007.365
10.1002/adma.201604972
10.1039/c2ee23977a
10.1002/adma.201500311
10.1126/science.1124005
10.1039/C5EE03701H
10.1016/j.nanoen.2016.12.062
10.1002/adma.201305708
10.1002/adma.201103674
10.1038/nature07727
10.1126/science.aam5655
10.1002/adma.201501208
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2018
Copyright_xml – notice: Copyright Royal Society of Chemistry 2018
DBID AAYXX
CITATION
7SP
7ST
7TB
8FD
C1K
FR3
L7M
SOI
DOI 10.1039/C8EE00671G
DatabaseName CrossRef
Electronics & Communications Abstracts
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
DatabaseTitleList Technology Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1754-5706
EndPage 1735
ExternalDocumentID 10_1039_C8EE00671G
GroupedDBID 0-7
0R~
29G
4.4
53G
5GY
705
70~
7~J
AAEMU
AAIWI
AAJAE
AANOJ
AARTK
AAWGC
AAXHV
AAXPP
AAYXX
ABASK
ABDVN
ABEMK
ABIQK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFO
ACGFS
ACIWK
ACLDK
ACRPL
ADMRA
ADNMO
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRAH
AFRZK
AFVBQ
AGEGJ
AGQPQ
AGRSR
AHGCF
AHGXI
AKBGW
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALSGL
ANBJS
ANLMG
ANUXI
APEMP
ASKNT
ASPBG
AUDPV
AVWKF
AZFZN
BLAPV
BSQNT
C6K
CAG
CITATION
COF
CS3
EBS
ECGLT
EE0
EF-
EJD
FEDTE
GGIMP
GNO
H13
HVGLF
HZ~
H~N
J3G
J3H
J3I
L-8
M4U
N9A
O-G
O9-
P2P
R56
RAOCF
RCNCU
ROL
RPMJG
RRC
RSCEA
RVUXY
SKA
SLH
TOV
7SP
7ST
7TB
8FD
C1K
FR3
L7M
SOI
ID FETCH-LOGICAL-c378t-bcd209cee0540e88251d7939a6e3a52f29c855d468b12c4e5b78d09e9aad39aa3
ISSN 1754-5692
IngestDate Mon Jun 30 12:01:23 EDT 2025
Tue Jul 01 01:45:41 EDT 2025
Thu Apr 24 22:58:04 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c378t-bcd209cee0540e88251d7939a6e3a52f29c855d468b12c4e5b78d09e9aad39aa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0161-3816
PQID 2068138164
PQPubID 2047494
PageCount 6
ParticipantIDs proquest_journals_2068138164
crossref_primary_10_1039_C8EE00671G
crossref_citationtrail_10_1039_C8EE00671G
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20180101
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 01
  year: 2018
  text: 20180101
  day: 01
PublicationDecade 2010
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Energy & environmental science
PublicationYear 2018
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Cheng (C8EE00671G-(cit33)/*[position()=1]) 2013; 52
Liang (C8EE00671G-(cit35)/*[position()=1]) 2015; 3
Hou (C8EE00671G-(cit3)/*[position()=1]) 2017; 358
Shi (C8EE00671G-(cit20)/*[position()=1]) 2012; 24
Ha (C8EE00671G-(cit2)/*[position()=1]) 2015; 9
Cheng (C8EE00671G-(cit36)/*[position()=1]) 2016; 10
Hu (C8EE00671G-(cit17)/*[position()=1]) 2010; 4
Yan (C8EE00671G-(cit25)/*[position()=1]) 2009; 457
Liang (C8EE00671G-(cit32)/*[position()=1]) 2017; 32
Lau (C8EE00671G-(cit23)/*[position()=1]) 2013; 13
Yao (C8EE00671G-(cit31)/*[position()=1]) 2017; 4
Wu (C8EE00671G-(cit15)/*[position()=1]) 2015; 27
Cheng (C8EE00671G-(cit34)/*[position()=1]) 2014; 26
Arora (C8EE00671G-(cit4)/*[position()=1]) 2017; 358
Zhao (C8EE00671G-(cit12)/*[position()=1]) 2015; 27
Weng (C8EE00671G-(cit30)/*[position()=1]) 2011; 1
Zhong (C8EE00671G-(cit9)/*[position()=1]) 2017; 2
Yuan (C8EE00671G-(cit29)/*[position()=1]) 2013; 6
Liu (C8EE00671G-(cit27)/*[position()=1]) 2015; 27
Wang (C8EE00671G-(cit6)/*[position()=1]) 2006; 312
Kaempgen (C8EE00671G-(cit16)/*[position()=1]) 2009; 9
Zhao (C8EE00671G-(cit13)/*[position()=1]) 2017; 29
Matsuhisa (C8EE00671G-(cit19)/*[position()=1]) 2017; 16
Sirringhaus (C8EE00671G-(cit24)/*[position()=1]) 2000; 290
Kim (C8EE00671G-(cit8)/*[position()=1]) 2014; 7
Xue (C8EE00671G-(cit10)/*[position()=1]) 2017; 12
Baeg (C8EE00671G-(cit21)/*[position()=1]) 2012; 24
Liu (C8EE00671G-(cit11)/*[position()=1]) 2018
Rome (C8EE00671G-(cit5)/*[position()=1]) 2005; 309
Noh (C8EE00671G-(cit22)/*[position()=1]) 2007; 2
Muth (C8EE00671G-(cit18)/*[position()=1]) 2014; 26
Zhao (C8EE00671G-(cit14)/*[position()=1]) 2016; 9
Pu (C8EE00671G-(cit1)/*[position()=1]) 2015; 27
Yuan (C8EE00671G-(cit28)/*[position()=1]) 2012; 51
Oh (C8EE00671G-(cit7)/*[position()=1]) 2016; 9
Yao (C8EE00671G-(cit26)/*[position()=1]) 2013; 2
References_xml – start-page: 1702481
  year: 2018
  ident: C8EE00671G-(cit11)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201702481
– volume: 9
  start-page: 1696
  year: 2016
  ident: C8EE00671G-(cit7)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE03813H
– volume: 290
  start-page: 2123
  year: 2000
  ident: C8EE00671G-(cit24)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.290.5499.2123
– volume: 358
  start-page: 1192
  year: 2017
  ident: C8EE00671G-(cit3)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.aao5561
– volume: 16
  start-page: 834
  year: 2017
  ident: C8EE00671G-(cit19)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4904
– volume: 4
  start-page: 1700107
  year: 2017
  ident: C8EE00671G-(cit31)/*[position()=1]
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201700107
– volume: 27
  start-page: 8095
  year: 2015
  ident: C8EE00671G-(cit27)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201503025
– volume: 7
  start-page: 1959
  year: 2014
  ident: C8EE00671G-(cit8)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c4ee00242c
– volume: 26
  start-page: 6307
  year: 2014
  ident: C8EE00671G-(cit18)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201400334
– volume: 2
  start-page: 1071
  year: 2013
  ident: C8EE00671G-(cit26)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2013.09.002
– volume: 12
  start-page: 317
  year: 2017
  ident: C8EE00671G-(cit10)/*[position()=1]
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2016.300
– volume: 4
  start-page: 5843
  year: 2010
  ident: C8EE00671G-(cit17)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn1018158
– volume: 51
  start-page: 4934
  year: 2012
  ident: C8EE00671G-(cit28)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201109142
– volume: 52
  start-page: 10482
  year: 2013
  ident: C8EE00671G-(cit33)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201304358
– volume: 309
  start-page: 1725
  year: 2005
  ident: C8EE00671G-(cit5)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1111063
– volume: 1
  start-page: 917
  year: 2011
  ident: C8EE00671G-(cit30)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201100312
– volume: 10
  start-page: 9529
  year: 2016
  ident: C8EE00671G-(cit36)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b04769
– volume: 2
  start-page: 1700182
  year: 2017
  ident: C8EE00671G-(cit9)/*[position()=1]
  publication-title: Adv. Mater. Technol.
  doi: 10.1002/admt.201700182
– volume: 27
  start-page: 4351
  year: 2015
  ident: C8EE00671G-(cit12)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201501867
– volume: 9
  start-page: 1872
  year: 2009
  ident: C8EE00671G-(cit16)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl8038579
– volume: 24
  start-page: 5433
  year: 2012
  ident: C8EE00671G-(cit21)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201201464
– volume: 13
  start-page: 3864
  year: 2013
  ident: C8EE00671G-(cit23)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl401934a
– volume: 3
  start-page: 2547
  year: 2015
  ident: C8EE00671G-(cit35)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA06574C
– volume: 9
  start-page: 3421
  year: 2015
  ident: C8EE00671G-(cit2)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b01478
– volume: 2
  start-page: 784
  year: 2007
  ident: C8EE00671G-(cit22)/*[position()=1]
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2007.365
– volume: 29
  start-page: 1604972
  year: 2017
  ident: C8EE00671G-(cit13)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201604972
– volume: 6
  start-page: 470
  year: 2013
  ident: C8EE00671G-(cit29)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee23977a
– volume: 27
  start-page: 2472
  year: 2015
  ident: C8EE00671G-(cit1)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201500311
– volume: 312
  start-page: 242
  year: 2006
  ident: C8EE00671G-(cit6)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1124005
– volume: 9
  start-page: 912
  year: 2016
  ident: C8EE00671G-(cit14)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE03701H
– volume: 32
  start-page: 329
  year: 2017
  ident: C8EE00671G-(cit32)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.12.062
– volume: 26
  start-page: 2909
  year: 2014
  ident: C8EE00671G-(cit34)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201305708
– volume: 24
  start-page: 358
  year: 2012
  ident: C8EE00671G-(cit20)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201103674
– volume: 457
  start-page: 679
  year: 2009
  ident: C8EE00671G-(cit25)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature07727
– volume: 358
  start-page: 768
  year: 2017
  ident: C8EE00671G-(cit4)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.aam5655
– volume: 27
  start-page: 3669
  year: 2015
  ident: C8EE00671G-(cit15)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201501208
SSID ssj0062079
Score 2.6311808
Snippet Flexible power supplies that can harvest power from an ambient environment are of considerable interest for future portable electronics. However, the complex...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 1730
SubjectTerms Electric power
Electric power generation
Electric power supplies
Electronics
Graphene
High voltage
High voltages
Induced voltage
Portability
Voltage
Title Electric power generation via asymmetric moisturizing of graphene oxide for flexible, printable and portable electronics
URI https://www.proquest.com/docview/2068138164
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfKdoED4lMMBrIEFzQyEidO7OMY3SZAnDax7VLZiaNGou20Jqjsb-GP5dmxYxd6GFyixHEitb9f3nt-fh8IvSkIk3GWyohLpaJMcBEJKQWciSrOOa2YMlG-X_OTs-zTOT0fjX4FUUtdK_fLm415Jf-DKowBrjpL9h-QHV4KA3AO-MIREIbjrTAemx42Tbl3pXud6W7IygL6Q-daLX_OZsrcny0Aze66ubExzqZMNczeW6yaqi_7XevKmLIPLtbOvtbkVJkyAtpC1xe-Zc5yzaHfpw9qDgVpcy7Z0jPnS2N90xedp-TlVBhn7ZFqfKSB6uddTptpN6iNj3b0Qqya0FeRsMBX0YvXgmYRzfvud_sqGCvifE0mJwH3ikDAJoXdxlHukm5UBHGq66gesvFY6-Pk2Ks7t8X_hxYcYhPNrnzKJ_7ZO2ibwCIEpOj2wecPx9-cps9JbGo5Dr_Klb9N-Xv_9LrBs67vjRFz-gDdt6sPfNBT6SEaqfkjdC-oSfkYrRypsCEV9qTCQCrsSYVDUuFFjR2psCEVBlJhR6p3eKAUBkphRykcUOoJOjsanx6eRLY9R1SmBWsjWVYk5mBkaatfMZ0DXYG05yJXqaCkJrxklFZZzmRCykxRWbAq5oqDGIBZIn2KtuaLuXqGsIhFRQXJcsVoVhZM1LVIYS2tuydIUpId9Nb9h5PS1q7XLVS-T_5Gawe9HuZe9RVbNs7adVBM7Be9nJA4Z4neSc-e3-olL9Bdz_JdtNVed-ol2KitfGWp8huWOZab
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electric+power+generation+via+asymmetric+moisturizing+of+graphene+oxide+for+flexible%2C+printable+and+portable+electronics&rft.jtitle=Energy+%26+environmental+science&rft.au=Liang%2C+Yuan&rft.au=Zhao%2C+Fei&rft.au=Cheng%2C+Zhihua&rft.au=Deng%2C+Yaxi&rft.date=2018-01-01&rft.issn=1754-5692&rft.eissn=1754-5706&rft.volume=11&rft.issue=7&rft.spage=1730&rft.epage=1735&rft_id=info:doi/10.1039%2FC8EE00671G&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_C8EE00671G
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1754-5692&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1754-5692&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1754-5692&client=summon