Global sensitivity analysis for stochastic processes with independent increments

This paper is a first attempt to develop a numerical technique to analyze the sensitivity and the propagation of uncertainty through a system with stochastic processes having independent increments as input. Similar to Sobol’ indices for random variables, a meta-model based on Chaos expansions is us...

Full description

Saved in:
Bibliographic Details
Published inProbabilistic engineering mechanics Vol. 62; p. 103098
Main Authors Gayrard, Emeline, Chauvière, Cédric, Djellout, Hacène, Bonnet, Pierre, Zappa, Don-Pierre
Format Journal Article
LanguageEnglish
Published Barking Elsevier Ltd 01.10.2020
Elsevier Science Ltd
Elsevier
SeriesProbabilistic Engineering Mechanics
Subjects
Online AccessGet full text
ISSN0266-8920
1878-4275
DOI10.1016/j.probengmech.2020.103098

Cover

Loading…
Abstract This paper is a first attempt to develop a numerical technique to analyze the sensitivity and the propagation of uncertainty through a system with stochastic processes having independent increments as input. Similar to Sobol’ indices for random variables, a meta-model based on Chaos expansions is used and it is shown to be well suited to address such problems. New global sensitivity indices are also introduced to tackle the specificity of stochastic processes. The accuracy and the efficiency of the proposed method is demonstrated on an analytical example with three different input stochastic processes: a Wiener process; an Ornstein–Uhlenbeck process and a Brownian bridge process. The considered output, which is function of these three processes, is a non-Gaussian process. Then, we apply the same ideas on an example without known analytical solution.
AbstractList This paper is a first attempt to develop a numerical technique to analyze the sensitivity and the propagation of uncertainty through a system with stochastic processes having independent increments as input. Similar to Sobol' indices for random variables, a meta-model based on Chaos expansions is used and it is shown to be well suited to address such problems. New global sensitivity indices are also introduced to tackle the specificity of stochastic processes. The accuracy and the efficiency of the proposed method is demonstrated on an analytical example with three different input stochastic processes: a Wiener process; an Omstein-Uhlenbeck process and a Brownian bridge process. The considered output, which is function of these three processes, is a non-Gaussian process. Then, we apply the same ideas on an example without known analytical solution.
This paper is a first attempt to develop a numerical technique to analyze the sensitivity and the propagation of uncertainty through a system with stochastic processes having independent increments as input. Similar to Sobol’ indices for random variables, a meta-model based on Chaos expansions is used and it is shown to be well suited to address such problems. New global sensitivity indices are also introduced to tackle the specificity of stochastic processes. The accuracy and the efficiency of the proposed method is demonstrated on an analytical example with three different input stochastic processes: a Wiener process; an Ornstein–Uhlenbeck process and a Brownian bridge process. The considered output, which is function of these three processes, is a non-Gaussian process. Then, we apply the same ideas on an example without known analytical solution.
This paper is a first attempt to develop a numerical techniqueto analyze the sensitivity and the propagation of uncertaintythrough a system with stochastic processes having independent incrementsas input. Similar to Sobol’ indices for random variables, a metamodelbased on Chaos expansions is used and it is shown to be wellsuited to address such problems. New global sensitivity indices are alsointroduced to tackle the specificity of stochastic processes. The accuracyand the efficiency of the proposed method is demonstrated on an analyticalexample with three different input stochastic processes: a Wienerprocess; an Ornstein-Uhlenbeck process and a Brownian bridge process.The considered output, which is function of these three processes, is anon-Gaussian process. Then, we apply the same ideas on an examplewithout known analytical solution.
ArticleNumber 103098
Author Bonnet, Pierre
Gayrard, Emeline
Chauvière, Cédric
Zappa, Don-Pierre
Djellout, Hacène
Author_xml – sequence: 1
  givenname: Emeline
  surname: Gayrard
  fullname: Gayrard, Emeline
  email: Emeline.Gayrard@uca.fr
  organization: Laboratoire de Mathématiques Blaise Pascal (LMBP), CNRS UMR 6620, Université Clermont Auvergne, Campus Universitaire des Cézeaux, 3 place Vasarely, TSA 60026/CS 60026, 63 178, Aubière Cedex, France
– sequence: 2
  givenname: Cédric
  surname: Chauvière
  fullname: Chauvière, Cédric
  email: Cedric.Chauviere@uca.fr
  organization: Laboratoire de Mathématiques Blaise Pascal (LMBP), CNRS UMR 6620, Université Clermont Auvergne, Campus Universitaire des Cézeaux, 3 place Vasarely, TSA 60026/CS 60026, 63 178, Aubière Cedex, France
– sequence: 3
  givenname: Hacène
  surname: Djellout
  fullname: Djellout, Hacène
  email: Hacene.Djellout@uca.fr
  organization: Laboratoire de Mathématiques Blaise Pascal (LMBP), CNRS UMR 6620, Université Clermont Auvergne, Campus Universitaire des Cézeaux, 3 place Vasarely, TSA 60026/CS 60026, 63 178, Aubière Cedex, France
– sequence: 4
  givenname: Pierre
  surname: Bonnet
  fullname: Bonnet, Pierre
  email: pierre.bonnet@univ-bpclermont.fr
  organization: Institut Pascal, CNRS UMR 6602, Université Clermont Auvergne, Campus Universitaire des Cézeaux, 4 Avenue Blaise Pascal, TSA 60026/CS 60026, 63178 Aubière Cedex, France
– sequence: 5
  givenname: Don-Pierre
  surname: Zappa
  fullname: Zappa, Don-Pierre
  email: Don-Pierre.ZAPPA@CEA.FR
  organization: CEA/Gramat, BP 80200 46500 Gramat, France
BackLink https://hal.science/hal-02926263$$DView record in HAL
BookMark eNqNUE2L2zAUFCULm_34Dy576sFZSbYl-RhCuykEtofuWcjy00bBsVI9JSX_vjJeSo-9vPcYZuYxc0cWYxiBkM-Mrhhl4vmwOsXQwfh-BLtfcconvKKt-kSWTElV1lw2C7KkXIhStZzekjvEA6VMsrpdkh8vQ-jMUCCM6JO_-HQtzGiGK3osXIgFpmD3BpO3Rf5kARGw-O3TvvBjDyfIY0z5thGO-cIHcuPMgPD4se_J27evPzfbcvf68n2z3pW2kiqVnWpp5bjjsrOu74BJZ7qWCclM0zXUccVYK2ozgaBcU0mwNTBRK8p62ZnqnnyZffdm0KfojyZedTBeb9c7PWGUt1xwUV1Y5j7N3Jzg1xkw6UM4x5wSNa-lEpxVDc-sdmbZGBAjuL-2jOqpbH3Q_5Stp7L1XHbWbmYt5MgXD1Gj9TBa6H0Em3Qf_H-4_AHdupCp
Cites_doi 10.1016/j.cpc.2011.12.020
10.1016/j.ress.2007.04.002
10.1029/97JD01654
10.1007/s10479-015-2083-2
10.1090/S0025-5718-69-99647-1
10.2307/2371268
10.1080/00949655.2014.960415
10.1016/j.ress.2005.11.017
10.1137/S1064827501387826
10.1016/j.ress.2015.11.005
10.1016/0951-8320(96)00002-6
10.1016/j.jss.2018.01.010
10.1137/16M1097717
10.1615/Int.J.UncertaintyQuantification.2018026498
10.1137/130936233
10.1137/140997774
10.13182/NSE03-105CR
10.13182/04-54CR
10.1088/0143-0807/28/4/005
10.1016/S0021-9991(03)00092-5
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright Elsevier Science Ltd. Oct 2020
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright Elsevier Science Ltd. Oct 2020
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
7TB
8FD
FR3
KR7
1XC
VOOES
DOI 10.1016/j.probengmech.2020.103098
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
DatabaseTitleList Civil Engineering Abstracts


DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Statistics
Mathematics
EISSN 1878-4275
ExternalDocumentID oai_HAL_hal_02926263v1
10_1016_j_probengmech_2020_103098
S0266892020300850
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1~.
1~5
29O
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SST
SSZ
T5K
TN5
WUQ
XPP
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7TB
8FD
EFKBS
FR3
KR7
1XC
VOOES
ID FETCH-LOGICAL-c378t-b8903f2f27bcfdbe17fab91671a5b50f2811964aab91e8f537ec4e164801d7ba3
IEDL.DBID .~1
ISSN 0266-8920
IngestDate Fri May 09 12:15:38 EDT 2025
Sun Jul 13 05:37:21 EDT 2025
Tue Jul 01 04:09:52 EDT 2025
Fri Feb 23 02:45:53 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords 90B22
Chaos expansions
Sobol’ indices
Stochastic processes
60K25
65C05
65C50
Orthogonal polynomial
Orthogonal polynomial AMS 2010 subject classifications 90B22
Sobol' indices
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c378t-b8903f2f27bcfdbe17fab91671a5b50f2811964aab91e8f537ec4e164801d7ba3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1055-9695
OpenAccessLink https://hal.science/hal-02926263
PQID 2478621352
PQPubID 2047568
ParticipantIDs hal_primary_oai_HAL_hal_02926263v1
proquest_journals_2478621352
crossref_primary_10_1016_j_probengmech_2020_103098
elsevier_sciencedirect_doi_10_1016_j_probengmech_2020_103098
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-10-01
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Barking
PublicationPlace_xml – name: Barking
PublicationSeriesTitle Probabilistic Engineering Mechanics
PublicationTitle Probabilistic engineering mechanics
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier Science Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science Ltd
– name: Elsevier
References Iooss, Le Maître (b18) 2015
Tatang, Pan, Prinn, McRae (b10) 1997; 102
Golub, Welsch (b27) 1969; 23
Ouazine, Abbas (b3) 2016; 247
Ghanem, Spanos (b11) 1991
Sobol (b28) 1993; 1
Homma, Saltelli (b29) 1996; 52
Zhou, Lin (b7) 2008
Deman, Konakli, Sudret, Kerrou, Perrochet, Benabderrahmane (b15) 2016; 147
Owen, Prieur (b21) 2017; 5
Owen (b20) 2014; 2
Pettersson, Iaccarino, Nordström (b26) 2015
Aletia, Trubianib, Jamshidid (b8) 2018; 138
Chastaing, Gamboa, C. Prieur (b16) 2015; 85
Gautschi (b25) 2004
Vial (b32) 2007; 28
Sudret (b14) 2008; 93
Xiu, Karniadakis (b12) 2002; 24
Kucherenkoab, Tarantolaa, Annon (b19) 2012; 183
Granger, Henrion (b1) 1993
Helton, Johnsonb, Sallaberryc, Storlied (b4) 2006; 91
Wiener (b24) 1938; 60
T. Ishigami, T. Homma, An importance quantification technique in uncertainty analysis for computer models, in: Proceedings. First International Symposium on Uncertainty Modeling and Analysis, 1990, pp. 398–403.
Moore (b2) 1979
Ionescu-Bujor, Cacuci (b5) 2004; 147
Winkler (b6) 2004; 147
Hart, Gremaud (b17) 2018; 8
Dahlquist, Björck (b31) 2008
Xiu, Karniadakis (b13) 2003; 187
Prieur, Tarantola (b9) 2017
Rahman (b22) 2016; 4
Szegô (b23) 1975
Hart (10.1016/j.probengmech.2020.103098_b17) 2018; 8
Iooss (10.1016/j.probengmech.2020.103098_b18) 2015
Owen (10.1016/j.probengmech.2020.103098_b21) 2017; 5
Winkler (10.1016/j.probengmech.2020.103098_b6) 2004; 147
Xiu (10.1016/j.probengmech.2020.103098_b12) 2002; 24
Kucherenkoab (10.1016/j.probengmech.2020.103098_b19) 2012; 183
Pettersson (10.1016/j.probengmech.2020.103098_b26) 2015
Aletia (10.1016/j.probengmech.2020.103098_b8) 2018; 138
Prieur (10.1016/j.probengmech.2020.103098_b9) 2017
Homma (10.1016/j.probengmech.2020.103098_b29) 1996; 52
Moore (10.1016/j.probengmech.2020.103098_b2) 1979
Tatang (10.1016/j.probengmech.2020.103098_b10) 1997; 102
Golub (10.1016/j.probengmech.2020.103098_b27) 1969; 23
Ionescu-Bujor (10.1016/j.probengmech.2020.103098_b5) 2004; 147
Deman (10.1016/j.probengmech.2020.103098_b15) 2016; 147
Sudret (10.1016/j.probengmech.2020.103098_b14) 2008; 93
Ghanem (10.1016/j.probengmech.2020.103098_b11) 1991
Zhou (10.1016/j.probengmech.2020.103098_b7) 2008
Helton (10.1016/j.probengmech.2020.103098_b4) 2006; 91
Szegô (10.1016/j.probengmech.2020.103098_b23) 1975
Dahlquist (10.1016/j.probengmech.2020.103098_b31) 2008
Owen (10.1016/j.probengmech.2020.103098_b20) 2014; 2
Wiener (10.1016/j.probengmech.2020.103098_b24) 1938; 60
Ouazine (10.1016/j.probengmech.2020.103098_b3) 2016; 247
Xiu (10.1016/j.probengmech.2020.103098_b13) 2003; 187
Gautschi (10.1016/j.probengmech.2020.103098_b25) 2004
Sobol (10.1016/j.probengmech.2020.103098_b28) 1993; 1
10.1016/j.probengmech.2020.103098_b30
Vial (10.1016/j.probengmech.2020.103098_b32) 2007; 28
Rahman (10.1016/j.probengmech.2020.103098_b22) 2016; 4
Granger (10.1016/j.probengmech.2020.103098_b1) 1993
Chastaing (10.1016/j.probengmech.2020.103098_b16) 2015; 85
References_xml – year: 2008
  ident: b7
  article-title: Local sensitivity analysis
  publication-title: Encyclopedia of GIS
– volume: 247
  start-page: 211
  year: 2016
  end-page: 227
  ident: b3
  article-title: A functional approximation for retrial queues with two way communication
  publication-title: Ann. Oper. Res.
– volume: 183
  start-page: 937
  year: 2012
  end-page: 946
  ident: b19
  article-title: Estimation of global sensitivity indices for models with dependent variables
  publication-title: Comput. Phys. Comm.
– start-page: xxviii+717
  year: 2008
  ident: b31
  article-title: Numerical Methods in Scientific Computing. Vol. I
– start-page: x+214
  year: 1991
  ident: b11
  article-title: Stochastic Finite Elements: A Spectral Approach
– volume: 85
  start-page: 1306
  year: 2015
  end-page: 1333
  ident: b16
  article-title: Generalized Sobol sensitivity indices for dependent variables: numerical methods
  publication-title: J. Stat. Comput. Simul.
– volume: 147
  start-page: 204
  year: 2004
  end-page: 217
  ident: b6
  article-title: A comparative review of sensitivity and uncertainty analysis of large-scale systems - II: Statistical methods
  publication-title: Nucl. Sci. Eng.
– volume: 8
  start-page: 483
  year: 2018
  end-page: 493
  ident: b17
  article-title: An approximation theoretic perspective of Sobol’ indices with dependent variables
  publication-title: Int. J. Uncertain. Quantif.
– volume: 138
  start-page: 222
  year: 2018
  end-page: 235
  ident: b8
  article-title: An efficient method for uncertainty propagation in robust software performance estimation
  publication-title: J. Syst. Softw.
– start-page: 1217
  year: 2017
  end-page: 1239
  ident: b9
  article-title: Variance-based sensitivity analysis: theory and estimation algorithms
  publication-title: Handbook of Uncertainty Quantification, Vol. 1, 2, 3
– year: 1979
  ident: b2
  article-title: Methods and Applications of Interval Analysis
– start-page: xii+214
  year: 2015
  ident: b26
  publication-title: Polynomial Chaos methods for hyperbolic partial differential equations
– volume: 147
  start-page: 189
  year: 2004
  end-page: 203
  ident: b5
  article-title: A comparative review of sensitivity and uncertainty analysis of large-scale system, I: Deterministic methods
  publication-title: Nucl. Sci. Eng.
– volume: 1
  start-page: 407
  year: 1993
  end-page: 414
  ident: b28
  article-title: Sensitivity estimates for nonlinear mathematical models
  publication-title: Math. Model. Comput. Exp.
– reference: T. Ishigami, T. Homma, An importance quantification technique in uncertainty analysis for computer models, in: Proceedings. First International Symposium on Uncertainty Modeling and Analysis, 1990, pp. 398–403.
– volume: 23
  start-page: 221
  year: 1969
  end-page: 230
  ident: b27
  article-title: Calculation of gauss quadrature rules
  publication-title: Math. Comput.
– volume: 102
  start-page: 21925
  year: 1997
  end-page: 21932
  ident: b10
  article-title: An efficient method for parametric uncertainty analysis of numerical geophysical models
  publication-title: J. Geophys. Res.
– year: 1993
  ident: b1
  article-title: Comparative analysis of uncertainty propagation methods for robust engineering design
  publication-title: Uncertainty: A Guide to Dealing with Uncertainty in Quantitative Risk and Policy Analysis
– start-page: 101
  year: 2015
  end-page: 122
  ident: b18
  article-title: A review on global sensitivity analysis methods
  publication-title: Uncertainty Management in Simulation-Optimization of Complex Systems
– start-page: x+301
  year: 2004
  ident: b25
  publication-title: Orthogonal Polynomials: Computation and Approximation
– volume: 187
  start-page: 137
  year: 2003
  end-page: 167
  ident: b13
  article-title: Modeling uncertainty in flow simulations via generalized polynomial chaos
  publication-title: J. Comput. Phys.
– volume: 4
  start-page: 130
  year: 2016
  end-page: 162
  ident: b22
  article-title: The
  publication-title: SIAM/ASA J. Uncertain. Quantif.
– volume: 28
  start-page: 657
  year: 2007
  end-page: 663
  ident: b32
  article-title: Horizontal distance travelled by a mobile experiencing a quadratic drag force: normalized distance and parametrization
  publication-title: Eur. J. Phys.
– volume: 91
  start-page: 1175
  year: 2006
  end-page: 1209
  ident: b4
  article-title: Survey of sampling-based methods for uncertainty and sensitivity analysis
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 93
  start-page: 964
  year: 2008
  end-page: 979
  ident: b14
  article-title: Global sensitivity analysis using polynomial Chaos expansion
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 147
  start-page: 156
  year: 2016
  end-page: 169
  ident: b15
  article-title: Using sparse polynomial Chaos expansions for the global sensitivity analysis of ground water life time expectancy in a multi-layered hydrogeological model
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 2
  start-page: 245
  year: 2014
  end-page: 251
  ident: b20
  article-title: Sobol’ indices and shapley value
  publication-title: SIAM/ASA J. Uncertain. Quantif.
– volume: 60
  start-page: 897
  year: 1938
  end-page: 936
  ident: b24
  article-title: The homogeneous chaos
  publication-title: Amer. J. Math.
– start-page: xiii+432
  year: 1975
  ident: b23
  article-title: Orthogonal Polynomials, Vol. XXIII
– volume: 24
  start-page: 619
  year: 2002
  end-page: 644
  ident: b12
  article-title: The Wiener-Askey polynomial chaos for stochastic differential equations
  publication-title: SIAM J. Sci. Comput.
– volume: 5
  start-page: 986
  year: 2017
  end-page: 1002
  ident: b21
  article-title: On shapley value for measuring importance of dependent inputs
  publication-title: SIAM/ASA J. Uncertain. Quantif.
– volume: 52
  start-page: 1
  year: 1996
  end-page: 17
  ident: b29
  article-title: Importance measures in global sensitivity analysis of nonlinear models
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 183
  start-page: 937
  issue: 4
  year: 2012
  ident: 10.1016/j.probengmech.2020.103098_b19
  article-title: Estimation of global sensitivity indices for models with dependent variables
  publication-title: Comput. Phys. Comm.
  doi: 10.1016/j.cpc.2011.12.020
– start-page: x+214
  year: 1991
  ident: 10.1016/j.probengmech.2020.103098_b11
– volume: 93
  start-page: 964
  issue: 7
  year: 2008
  ident: 10.1016/j.probengmech.2020.103098_b14
  article-title: Global sensitivity analysis using polynomial Chaos expansion
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2007.04.002
– year: 1979
  ident: 10.1016/j.probengmech.2020.103098_b2
– volume: 102
  start-page: 21925
  year: 1997
  ident: 10.1016/j.probengmech.2020.103098_b10
  article-title: An efficient method for parametric uncertainty analysis of numerical geophysical models
  publication-title: J. Geophys. Res.
  doi: 10.1029/97JD01654
– volume: 1
  start-page: 407
  issue: 4
  year: 1993
  ident: 10.1016/j.probengmech.2020.103098_b28
  article-title: Sensitivity estimates for nonlinear mathematical models
  publication-title: Math. Model. Comput. Exp.
– volume: 247
  start-page: 211
  issue: 1
  year: 2016
  ident: 10.1016/j.probengmech.2020.103098_b3
  article-title: A functional approximation for retrial queues with two way communication
  publication-title: Ann. Oper. Res.
  doi: 10.1007/s10479-015-2083-2
– year: 2008
  ident: 10.1016/j.probengmech.2020.103098_b7
  article-title: Local sensitivity analysis
– volume: 23
  start-page: 221
  year: 1969
  ident: 10.1016/j.probengmech.2020.103098_b27
  article-title: Calculation of gauss quadrature rules
  publication-title: Math. Comput.
  doi: 10.1090/S0025-5718-69-99647-1
– volume: 60
  start-page: 897
  issue: 4
  year: 1938
  ident: 10.1016/j.probengmech.2020.103098_b24
  article-title: The homogeneous chaos
  publication-title: Amer. J. Math.
  doi: 10.2307/2371268
– volume: 85
  start-page: 1306
  issue: 7
  year: 2015
  ident: 10.1016/j.probengmech.2020.103098_b16
  article-title: Generalized Sobol sensitivity indices for dependent variables: numerical methods
  publication-title: J. Stat. Comput. Simul.
  doi: 10.1080/00949655.2014.960415
– start-page: x+301
  year: 2004
  ident: 10.1016/j.probengmech.2020.103098_b25
– volume: 91
  start-page: 1175
  issue: 10–11
  year: 2006
  ident: 10.1016/j.probengmech.2020.103098_b4
  article-title: Survey of sampling-based methods for uncertainty and sensitivity analysis
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2005.11.017
– volume: 24
  start-page: 619
  issue: 2
  year: 2002
  ident: 10.1016/j.probengmech.2020.103098_b12
  article-title: The Wiener-Askey polynomial chaos for stochastic differential equations
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/S1064827501387826
– volume: 147
  start-page: 156
  year: 2016
  ident: 10.1016/j.probengmech.2020.103098_b15
  article-title: Using sparse polynomial Chaos expansions for the global sensitivity analysis of ground water life time expectancy in a multi-layered hydrogeological model
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2015.11.005
– volume: 52
  start-page: 1
  issue: 1
  year: 1996
  ident: 10.1016/j.probengmech.2020.103098_b29
  article-title: Importance measures in global sensitivity analysis of nonlinear models
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/0951-8320(96)00002-6
– volume: 138
  start-page: 222
  year: 2018
  ident: 10.1016/j.probengmech.2020.103098_b8
  article-title: An efficient method for uncertainty propagation in robust software performance estimation
  publication-title: J. Syst. Softw.
  doi: 10.1016/j.jss.2018.01.010
– volume: 5
  start-page: 986
  issue: 1
  year: 2017
  ident: 10.1016/j.probengmech.2020.103098_b21
  article-title: On shapley value for measuring importance of dependent inputs
  publication-title: SIAM/ASA J. Uncertain. Quantif.
  doi: 10.1137/16M1097717
– start-page: xxviii+717
  year: 2008
  ident: 10.1016/j.probengmech.2020.103098_b31
– volume: 8
  start-page: 483
  issue: 6
  year: 2018
  ident: 10.1016/j.probengmech.2020.103098_b17
  article-title: An approximation theoretic perspective of Sobol’ indices with dependent variables
  publication-title: Int. J. Uncertain. Quantif.
  doi: 10.1615/Int.J.UncertaintyQuantification.2018026498
– start-page: 101
  year: 2015
  ident: 10.1016/j.probengmech.2020.103098_b18
  article-title: A review on global sensitivity analysis methods
– volume: 2
  start-page: 245
  issue: 1
  year: 2014
  ident: 10.1016/j.probengmech.2020.103098_b20
  article-title: Sobol’ indices and shapley value
  publication-title: SIAM/ASA J. Uncertain. Quantif.
  doi: 10.1137/130936233
– start-page: xiii+432
  year: 1975
  ident: 10.1016/j.probengmech.2020.103098_b23
– volume: 4
  start-page: 130
  issue: 1
  year: 2016
  ident: 10.1016/j.probengmech.2020.103098_b22
  article-title: The f-sensitivity index
  publication-title: SIAM/ASA J. Uncertain. Quantif.
  doi: 10.1137/140997774
– volume: 147
  start-page: 189
  issue: 3
  year: 2004
  ident: 10.1016/j.probengmech.2020.103098_b5
  article-title: A comparative review of sensitivity and uncertainty analysis of large-scale system, I: Deterministic methods
  publication-title: Nucl. Sci. Eng.
  doi: 10.13182/NSE03-105CR
– start-page: 1217
  year: 2017
  ident: 10.1016/j.probengmech.2020.103098_b9
  article-title: Variance-based sensitivity analysis: theory and estimation algorithms
– volume: 147
  start-page: 204
  issue: 3
  year: 2004
  ident: 10.1016/j.probengmech.2020.103098_b6
  article-title: A comparative review of sensitivity and uncertainty analysis of large-scale systems - II: Statistical methods
  publication-title: Nucl. Sci. Eng.
  doi: 10.13182/04-54CR
– start-page: xii+214
  year: 2015
  ident: 10.1016/j.probengmech.2020.103098_b26
– volume: 28
  start-page: 657
  year: 2007
  ident: 10.1016/j.probengmech.2020.103098_b32
  article-title: Horizontal distance travelled by a mobile experiencing a quadratic drag force: normalized distance and parametrization
  publication-title: Eur. J. Phys.
  doi: 10.1088/0143-0807/28/4/005
– ident: 10.1016/j.probengmech.2020.103098_b30
– volume: 187
  start-page: 137
  issue: 1
  year: 2003
  ident: 10.1016/j.probengmech.2020.103098_b13
  article-title: Modeling uncertainty in flow simulations via generalized polynomial chaos
  publication-title: J. Comput. Phys.
  doi: 10.1016/S0021-9991(03)00092-5
– year: 1993
  ident: 10.1016/j.probengmech.2020.103098_b1
  article-title: Comparative analysis of uncertainty propagation methods for robust engineering design
SSID ssj0017149
Score 2.2548163
Snippet This paper is a first attempt to develop a numerical technique to analyze the sensitivity and the propagation of uncertainty through a system with stochastic...
This paper is a first attempt to develop a numerical techniqueto analyze the sensitivity and the propagation of uncertaintythrough a system with stochastic...
SourceID hal
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 103098
SubjectTerms Applications
Brownian motion
Chaos expansions
Exact solutions
Gaussian process
Mathematics
Methodology
Normal distribution
Numerical analysis
Orthogonal polynomial
Probability
Random variables
Sensitivity analysis
Sobol’ indices
Statistics
Stochastic models
Stochastic processes
Title Global sensitivity analysis for stochastic processes with independent increments
URI https://dx.doi.org/10.1016/j.probengmech.2020.103098
https://www.proquest.com/docview/2478621352
https://hal.science/hal-02926263
Volume 62
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8QwEB48QHzxFteLKL7WbdMjLfiyiLK6KuKBvoUkm7gruC529dHfbqZJ1wMEwae2Q0vDZDKZmcx8A7CnaFcyo9NAWOkNkm4WB4WixnopUaisfMSJwdDA-UXWvk1O79P7CTisa2EwrdLrfqfTK23tKU3Pzeaw329eW-8hywuKR2kV8BpWsCcMpXz_fZzmgf29CxdnyQJ8ewZ2PnO8sGmLHjw86epcglYl6GGR_7ZHTfYwWfKHzq42ouMFmPMWJGm5QS7ChB4swby3Jolfq-UyXDo4f1JiirrrEUGEhyAh1lQl1uxTPYE4zWToygV0STAuS_rj3rgje69cCLFcgdvjo5vDduD7JwQqZvkokHkRxoYayqQyXakjZoS05iCLRCrT0NA8QjgugUSdmzRmWiXa-k921-oyKeJVmBo8D_QaEMlExqQRYRomiQyFtMsaj0yNorowqWoArTnGhw4mg9f5Y4_8C5s5spk7NjfgoOYt_zbn3Krzv3y-a-dj_DvEyW63zjjSQoowiFn8FjVgs54u7ldnyWnCrCMXWdtz_X9D2IBZfHLJfZswNXp51VvWSBnJ7UoKt2G6ddJpX-C1c3XX-QCyAunc
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED_SFLq9dFu30fRj08ZeTWz5Qzb0JYQWd03DYC30TUiKtKbQNMzZ_v7eWXK6FQqFvhnZwuIknX73od8BfDN8poWzeaRw9UbZrEijynCHVkoSG1wfaebINXA-LerL7PtVftWDcXcXhtIqg-73Or3V1qFlGKQ5XM7nw59oPRRlxSmU1hKvbcAmsVPlfdgcnZ7V03UwQSQeBeP3EXXYgi8PaV5Ut8Uuft3aNjTB21vocVU-dUxtXFO-5CO13Z5FJ29hO4BINvLjfAc9u9iBNwFQsrBdm_fwwzP6s4ay1H2ZCKYCCwlDtMoQ-ZlrRVTNbOlvDNiGkWuWzdflcVf4bLwXsfkAlyfHF-M6CiUUIpOKchXpsopTxx0X2riZtolwSiMiFInKdR47XibEyKWo0ZYuT4U1mUUTCg-umdAq_Qj9xd3C7gLTQhVCOxXncZbpWGnc2RQ1dYbbyuVmALyTmFx6pgzZpZDdyH_ELEnM0ot5AEedbOV_0y5Roz-n-1ecj_XviCq7Hk0ktcWcmBCL9G8ygINuumTYoI3kmUBbLkH4ufeyIXyGV_XF-UROTqdn-_Ca3vhcvwPor37_sYeIWVb6U1iT92Ep6uo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Global+sensitivity+analysis+for+stochastic+processes+with+independent+increments&rft.jtitle=Probabilistic+engineering+mechanics&rft.au=Gayrard%2C+Emeline&rft.au=Chauvi%C3%A8re%2C+C%C3%A9dric&rft.au=Djellout%2C+Hac%C3%A8ne&rft.au=Bonnet%2C+Pierre&rft.date=2020-10-01&rft.pub=Elsevier+Ltd&rft.issn=0266-8920&rft.eissn=1878-4275&rft.volume=62&rft_id=info:doi/10.1016%2Fj.probengmech.2020.103098&rft.externalDocID=S0266892020300850
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0266-8920&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0266-8920&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0266-8920&client=summon