Global sensitivity analysis for stochastic processes with independent increments
This paper is a first attempt to develop a numerical technique to analyze the sensitivity and the propagation of uncertainty through a system with stochastic processes having independent increments as input. Similar to Sobol’ indices for random variables, a meta-model based on Chaos expansions is us...
Saved in:
Published in | Probabilistic engineering mechanics Vol. 62; p. 103098 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Barking
Elsevier Ltd
01.10.2020
Elsevier Science Ltd Elsevier |
Series | Probabilistic Engineering Mechanics |
Subjects | |
Online Access | Get full text |
ISSN | 0266-8920 1878-4275 |
DOI | 10.1016/j.probengmech.2020.103098 |
Cover
Loading…
Abstract | This paper is a first attempt to develop a numerical technique to analyze the sensitivity and the propagation of uncertainty through a system with stochastic processes having independent increments as input. Similar to Sobol’ indices for random variables, a meta-model based on Chaos expansions is used and it is shown to be well suited to address such problems. New global sensitivity indices are also introduced to tackle the specificity of stochastic processes. The accuracy and the efficiency of the proposed method is demonstrated on an analytical example with three different input stochastic processes: a Wiener process; an Ornstein–Uhlenbeck process and a Brownian bridge process. The considered output, which is function of these three processes, is a non-Gaussian process. Then, we apply the same ideas on an example without known analytical solution. |
---|---|
AbstractList | This paper is a first attempt to develop a numerical technique to analyze the sensitivity and the propagation of uncertainty through a system with stochastic processes having independent increments as input. Similar to Sobol' indices for random variables, a meta-model based on Chaos expansions is used and it is shown to be well suited to address such problems. New global sensitivity indices are also introduced to tackle the specificity of stochastic processes. The accuracy and the efficiency of the proposed method is demonstrated on an analytical example with three different input stochastic processes: a Wiener process; an Omstein-Uhlenbeck process and a Brownian bridge process. The considered output, which is function of these three processes, is a non-Gaussian process. Then, we apply the same ideas on an example without known analytical solution. This paper is a first attempt to develop a numerical technique to analyze the sensitivity and the propagation of uncertainty through a system with stochastic processes having independent increments as input. Similar to Sobol’ indices for random variables, a meta-model based on Chaos expansions is used and it is shown to be well suited to address such problems. New global sensitivity indices are also introduced to tackle the specificity of stochastic processes. The accuracy and the efficiency of the proposed method is demonstrated on an analytical example with three different input stochastic processes: a Wiener process; an Ornstein–Uhlenbeck process and a Brownian bridge process. The considered output, which is function of these three processes, is a non-Gaussian process. Then, we apply the same ideas on an example without known analytical solution. This paper is a first attempt to develop a numerical techniqueto analyze the sensitivity and the propagation of uncertaintythrough a system with stochastic processes having independent incrementsas input. Similar to Sobol’ indices for random variables, a metamodelbased on Chaos expansions is used and it is shown to be wellsuited to address such problems. New global sensitivity indices are alsointroduced to tackle the specificity of stochastic processes. The accuracyand the efficiency of the proposed method is demonstrated on an analyticalexample with three different input stochastic processes: a Wienerprocess; an Ornstein-Uhlenbeck process and a Brownian bridge process.The considered output, which is function of these three processes, is anon-Gaussian process. Then, we apply the same ideas on an examplewithout known analytical solution. |
ArticleNumber | 103098 |
Author | Bonnet, Pierre Gayrard, Emeline Chauvière, Cédric Zappa, Don-Pierre Djellout, Hacène |
Author_xml | – sequence: 1 givenname: Emeline surname: Gayrard fullname: Gayrard, Emeline email: Emeline.Gayrard@uca.fr organization: Laboratoire de Mathématiques Blaise Pascal (LMBP), CNRS UMR 6620, Université Clermont Auvergne, Campus Universitaire des Cézeaux, 3 place Vasarely, TSA 60026/CS 60026, 63 178, Aubière Cedex, France – sequence: 2 givenname: Cédric surname: Chauvière fullname: Chauvière, Cédric email: Cedric.Chauviere@uca.fr organization: Laboratoire de Mathématiques Blaise Pascal (LMBP), CNRS UMR 6620, Université Clermont Auvergne, Campus Universitaire des Cézeaux, 3 place Vasarely, TSA 60026/CS 60026, 63 178, Aubière Cedex, France – sequence: 3 givenname: Hacène surname: Djellout fullname: Djellout, Hacène email: Hacene.Djellout@uca.fr organization: Laboratoire de Mathématiques Blaise Pascal (LMBP), CNRS UMR 6620, Université Clermont Auvergne, Campus Universitaire des Cézeaux, 3 place Vasarely, TSA 60026/CS 60026, 63 178, Aubière Cedex, France – sequence: 4 givenname: Pierre surname: Bonnet fullname: Bonnet, Pierre email: pierre.bonnet@univ-bpclermont.fr organization: Institut Pascal, CNRS UMR 6602, Université Clermont Auvergne, Campus Universitaire des Cézeaux, 4 Avenue Blaise Pascal, TSA 60026/CS 60026, 63178 Aubière Cedex, France – sequence: 5 givenname: Don-Pierre surname: Zappa fullname: Zappa, Don-Pierre email: Don-Pierre.ZAPPA@CEA.FR organization: CEA/Gramat, BP 80200 46500 Gramat, France |
BackLink | https://hal.science/hal-02926263$$DView record in HAL |
BookMark | eNqNUE2L2zAUFCULm_34Dy576sFZSbYl-RhCuykEtofuWcjy00bBsVI9JSX_vjJeSo-9vPcYZuYxc0cWYxiBkM-Mrhhl4vmwOsXQwfh-BLtfcconvKKt-kSWTElV1lw2C7KkXIhStZzekjvEA6VMsrpdkh8vQ-jMUCCM6JO_-HQtzGiGK3osXIgFpmD3BpO3Rf5kARGw-O3TvvBjDyfIY0z5thGO-cIHcuPMgPD4se_J27evPzfbcvf68n2z3pW2kiqVnWpp5bjjsrOu74BJZ7qWCclM0zXUccVYK2ozgaBcU0mwNTBRK8p62ZnqnnyZffdm0KfojyZedTBeb9c7PWGUt1xwUV1Y5j7N3Jzg1xkw6UM4x5wSNa-lEpxVDc-sdmbZGBAjuL-2jOqpbH3Q_5Stp7L1XHbWbmYt5MgXD1Gj9TBa6H0Em3Qf_H-4_AHdupCp |
Cites_doi | 10.1016/j.cpc.2011.12.020 10.1016/j.ress.2007.04.002 10.1029/97JD01654 10.1007/s10479-015-2083-2 10.1090/S0025-5718-69-99647-1 10.2307/2371268 10.1080/00949655.2014.960415 10.1016/j.ress.2005.11.017 10.1137/S1064827501387826 10.1016/j.ress.2015.11.005 10.1016/0951-8320(96)00002-6 10.1016/j.jss.2018.01.010 10.1137/16M1097717 10.1615/Int.J.UncertaintyQuantification.2018026498 10.1137/130936233 10.1137/140997774 10.13182/NSE03-105CR 10.13182/04-54CR 10.1088/0143-0807/28/4/005 10.1016/S0021-9991(03)00092-5 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd Copyright Elsevier Science Ltd. Oct 2020 Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright Elsevier Science Ltd. Oct 2020 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 7TB 8FD FR3 KR7 1XC VOOES |
DOI | 10.1016/j.probengmech.2020.103098 |
DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Statistics Mathematics |
EISSN | 1878-4275 |
ExternalDocumentID | oai_HAL_hal_02926263v1 10_1016_j_probengmech_2020_103098 S0266892020300850 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1~. 1~5 29O 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SET SEW SPC SPCBC SST SSZ T5K TN5 WUQ XPP ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7TB 8FD EFKBS FR3 KR7 1XC VOOES |
ID | FETCH-LOGICAL-c378t-b8903f2f27bcfdbe17fab91671a5b50f2811964aab91e8f537ec4e164801d7ba3 |
IEDL.DBID | .~1 |
ISSN | 0266-8920 |
IngestDate | Fri May 09 12:15:38 EDT 2025 Sun Jul 13 05:37:21 EDT 2025 Tue Jul 01 04:09:52 EDT 2025 Fri Feb 23 02:45:53 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | 90B22 Chaos expansions Sobol’ indices Stochastic processes 60K25 65C05 65C50 Orthogonal polynomial Orthogonal polynomial AMS 2010 subject classifications 90B22 Sobol' indices |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c378t-b8903f2f27bcfdbe17fab91671a5b50f2811964aab91e8f537ec4e164801d7ba3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1055-9695 |
OpenAccessLink | https://hal.science/hal-02926263 |
PQID | 2478621352 |
PQPubID | 2047568 |
ParticipantIDs | hal_primary_oai_HAL_hal_02926263v1 proquest_journals_2478621352 crossref_primary_10_1016_j_probengmech_2020_103098 elsevier_sciencedirect_doi_10_1016_j_probengmech_2020_103098 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-10-01 |
PublicationDateYYYYMMDD | 2020-10-01 |
PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Barking |
PublicationPlace_xml | – name: Barking |
PublicationSeriesTitle | Probabilistic Engineering Mechanics |
PublicationTitle | Probabilistic engineering mechanics |
PublicationYear | 2020 |
Publisher | Elsevier Ltd Elsevier Science Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Science Ltd – name: Elsevier |
References | Iooss, Le Maître (b18) 2015 Tatang, Pan, Prinn, McRae (b10) 1997; 102 Golub, Welsch (b27) 1969; 23 Ouazine, Abbas (b3) 2016; 247 Ghanem, Spanos (b11) 1991 Sobol (b28) 1993; 1 Homma, Saltelli (b29) 1996; 52 Zhou, Lin (b7) 2008 Deman, Konakli, Sudret, Kerrou, Perrochet, Benabderrahmane (b15) 2016; 147 Owen, Prieur (b21) 2017; 5 Owen (b20) 2014; 2 Pettersson, Iaccarino, Nordström (b26) 2015 Aletia, Trubianib, Jamshidid (b8) 2018; 138 Chastaing, Gamboa, C. Prieur (b16) 2015; 85 Gautschi (b25) 2004 Vial (b32) 2007; 28 Sudret (b14) 2008; 93 Xiu, Karniadakis (b12) 2002; 24 Kucherenkoab, Tarantolaa, Annon (b19) 2012; 183 Granger, Henrion (b1) 1993 Helton, Johnsonb, Sallaberryc, Storlied (b4) 2006; 91 Wiener (b24) 1938; 60 T. Ishigami, T. Homma, An importance quantification technique in uncertainty analysis for computer models, in: Proceedings. First International Symposium on Uncertainty Modeling and Analysis, 1990, pp. 398–403. Moore (b2) 1979 Ionescu-Bujor, Cacuci (b5) 2004; 147 Winkler (b6) 2004; 147 Hart, Gremaud (b17) 2018; 8 Dahlquist, Björck (b31) 2008 Xiu, Karniadakis (b13) 2003; 187 Prieur, Tarantola (b9) 2017 Rahman (b22) 2016; 4 Szegô (b23) 1975 Hart (10.1016/j.probengmech.2020.103098_b17) 2018; 8 Iooss (10.1016/j.probengmech.2020.103098_b18) 2015 Owen (10.1016/j.probengmech.2020.103098_b21) 2017; 5 Winkler (10.1016/j.probengmech.2020.103098_b6) 2004; 147 Xiu (10.1016/j.probengmech.2020.103098_b12) 2002; 24 Kucherenkoab (10.1016/j.probengmech.2020.103098_b19) 2012; 183 Pettersson (10.1016/j.probengmech.2020.103098_b26) 2015 Aletia (10.1016/j.probengmech.2020.103098_b8) 2018; 138 Prieur (10.1016/j.probengmech.2020.103098_b9) 2017 Homma (10.1016/j.probengmech.2020.103098_b29) 1996; 52 Moore (10.1016/j.probengmech.2020.103098_b2) 1979 Tatang (10.1016/j.probengmech.2020.103098_b10) 1997; 102 Golub (10.1016/j.probengmech.2020.103098_b27) 1969; 23 Ionescu-Bujor (10.1016/j.probengmech.2020.103098_b5) 2004; 147 Deman (10.1016/j.probengmech.2020.103098_b15) 2016; 147 Sudret (10.1016/j.probengmech.2020.103098_b14) 2008; 93 Ghanem (10.1016/j.probengmech.2020.103098_b11) 1991 Zhou (10.1016/j.probengmech.2020.103098_b7) 2008 Helton (10.1016/j.probengmech.2020.103098_b4) 2006; 91 Szegô (10.1016/j.probengmech.2020.103098_b23) 1975 Dahlquist (10.1016/j.probengmech.2020.103098_b31) 2008 Owen (10.1016/j.probengmech.2020.103098_b20) 2014; 2 Wiener (10.1016/j.probengmech.2020.103098_b24) 1938; 60 Ouazine (10.1016/j.probengmech.2020.103098_b3) 2016; 247 Xiu (10.1016/j.probengmech.2020.103098_b13) 2003; 187 Gautschi (10.1016/j.probengmech.2020.103098_b25) 2004 Sobol (10.1016/j.probengmech.2020.103098_b28) 1993; 1 10.1016/j.probengmech.2020.103098_b30 Vial (10.1016/j.probengmech.2020.103098_b32) 2007; 28 Rahman (10.1016/j.probengmech.2020.103098_b22) 2016; 4 Granger (10.1016/j.probengmech.2020.103098_b1) 1993 Chastaing (10.1016/j.probengmech.2020.103098_b16) 2015; 85 |
References_xml | – year: 2008 ident: b7 article-title: Local sensitivity analysis publication-title: Encyclopedia of GIS – volume: 247 start-page: 211 year: 2016 end-page: 227 ident: b3 article-title: A functional approximation for retrial queues with two way communication publication-title: Ann. Oper. Res. – volume: 183 start-page: 937 year: 2012 end-page: 946 ident: b19 article-title: Estimation of global sensitivity indices for models with dependent variables publication-title: Comput. Phys. Comm. – start-page: xxviii+717 year: 2008 ident: b31 article-title: Numerical Methods in Scientific Computing. Vol. I – start-page: x+214 year: 1991 ident: b11 article-title: Stochastic Finite Elements: A Spectral Approach – volume: 85 start-page: 1306 year: 2015 end-page: 1333 ident: b16 article-title: Generalized Sobol sensitivity indices for dependent variables: numerical methods publication-title: J. Stat. Comput. Simul. – volume: 147 start-page: 204 year: 2004 end-page: 217 ident: b6 article-title: A comparative review of sensitivity and uncertainty analysis of large-scale systems - II: Statistical methods publication-title: Nucl. Sci. Eng. – volume: 8 start-page: 483 year: 2018 end-page: 493 ident: b17 article-title: An approximation theoretic perspective of Sobol’ indices with dependent variables publication-title: Int. J. Uncertain. Quantif. – volume: 138 start-page: 222 year: 2018 end-page: 235 ident: b8 article-title: An efficient method for uncertainty propagation in robust software performance estimation publication-title: J. Syst. Softw. – start-page: 1217 year: 2017 end-page: 1239 ident: b9 article-title: Variance-based sensitivity analysis: theory and estimation algorithms publication-title: Handbook of Uncertainty Quantification, Vol. 1, 2, 3 – year: 1979 ident: b2 article-title: Methods and Applications of Interval Analysis – start-page: xii+214 year: 2015 ident: b26 publication-title: Polynomial Chaos methods for hyperbolic partial differential equations – volume: 147 start-page: 189 year: 2004 end-page: 203 ident: b5 article-title: A comparative review of sensitivity and uncertainty analysis of large-scale system, I: Deterministic methods publication-title: Nucl. Sci. Eng. – volume: 1 start-page: 407 year: 1993 end-page: 414 ident: b28 article-title: Sensitivity estimates for nonlinear mathematical models publication-title: Math. Model. Comput. Exp. – reference: T. Ishigami, T. Homma, An importance quantification technique in uncertainty analysis for computer models, in: Proceedings. First International Symposium on Uncertainty Modeling and Analysis, 1990, pp. 398–403. – volume: 23 start-page: 221 year: 1969 end-page: 230 ident: b27 article-title: Calculation of gauss quadrature rules publication-title: Math. Comput. – volume: 102 start-page: 21925 year: 1997 end-page: 21932 ident: b10 article-title: An efficient method for parametric uncertainty analysis of numerical geophysical models publication-title: J. Geophys. Res. – year: 1993 ident: b1 article-title: Comparative analysis of uncertainty propagation methods for robust engineering design publication-title: Uncertainty: A Guide to Dealing with Uncertainty in Quantitative Risk and Policy Analysis – start-page: 101 year: 2015 end-page: 122 ident: b18 article-title: A review on global sensitivity analysis methods publication-title: Uncertainty Management in Simulation-Optimization of Complex Systems – start-page: x+301 year: 2004 ident: b25 publication-title: Orthogonal Polynomials: Computation and Approximation – volume: 187 start-page: 137 year: 2003 end-page: 167 ident: b13 article-title: Modeling uncertainty in flow simulations via generalized polynomial chaos publication-title: J. Comput. Phys. – volume: 4 start-page: 130 year: 2016 end-page: 162 ident: b22 article-title: The publication-title: SIAM/ASA J. Uncertain. Quantif. – volume: 28 start-page: 657 year: 2007 end-page: 663 ident: b32 article-title: Horizontal distance travelled by a mobile experiencing a quadratic drag force: normalized distance and parametrization publication-title: Eur. J. Phys. – volume: 91 start-page: 1175 year: 2006 end-page: 1209 ident: b4 article-title: Survey of sampling-based methods for uncertainty and sensitivity analysis publication-title: Reliab. Eng. Syst. Saf. – volume: 93 start-page: 964 year: 2008 end-page: 979 ident: b14 article-title: Global sensitivity analysis using polynomial Chaos expansion publication-title: Reliab. Eng. Syst. Saf. – volume: 147 start-page: 156 year: 2016 end-page: 169 ident: b15 article-title: Using sparse polynomial Chaos expansions for the global sensitivity analysis of ground water life time expectancy in a multi-layered hydrogeological model publication-title: Reliab. Eng. Syst. Saf. – volume: 2 start-page: 245 year: 2014 end-page: 251 ident: b20 article-title: Sobol’ indices and shapley value publication-title: SIAM/ASA J. Uncertain. Quantif. – volume: 60 start-page: 897 year: 1938 end-page: 936 ident: b24 article-title: The homogeneous chaos publication-title: Amer. J. Math. – start-page: xiii+432 year: 1975 ident: b23 article-title: Orthogonal Polynomials, Vol. XXIII – volume: 24 start-page: 619 year: 2002 end-page: 644 ident: b12 article-title: The Wiener-Askey polynomial chaos for stochastic differential equations publication-title: SIAM J. Sci. Comput. – volume: 5 start-page: 986 year: 2017 end-page: 1002 ident: b21 article-title: On shapley value for measuring importance of dependent inputs publication-title: SIAM/ASA J. Uncertain. Quantif. – volume: 52 start-page: 1 year: 1996 end-page: 17 ident: b29 article-title: Importance measures in global sensitivity analysis of nonlinear models publication-title: Reliab. Eng. Syst. Saf. – volume: 183 start-page: 937 issue: 4 year: 2012 ident: 10.1016/j.probengmech.2020.103098_b19 article-title: Estimation of global sensitivity indices for models with dependent variables publication-title: Comput. Phys. Comm. doi: 10.1016/j.cpc.2011.12.020 – start-page: x+214 year: 1991 ident: 10.1016/j.probengmech.2020.103098_b11 – volume: 93 start-page: 964 issue: 7 year: 2008 ident: 10.1016/j.probengmech.2020.103098_b14 article-title: Global sensitivity analysis using polynomial Chaos expansion publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2007.04.002 – year: 1979 ident: 10.1016/j.probengmech.2020.103098_b2 – volume: 102 start-page: 21925 year: 1997 ident: 10.1016/j.probengmech.2020.103098_b10 article-title: An efficient method for parametric uncertainty analysis of numerical geophysical models publication-title: J. Geophys. Res. doi: 10.1029/97JD01654 – volume: 1 start-page: 407 issue: 4 year: 1993 ident: 10.1016/j.probengmech.2020.103098_b28 article-title: Sensitivity estimates for nonlinear mathematical models publication-title: Math. Model. Comput. Exp. – volume: 247 start-page: 211 issue: 1 year: 2016 ident: 10.1016/j.probengmech.2020.103098_b3 article-title: A functional approximation for retrial queues with two way communication publication-title: Ann. Oper. Res. doi: 10.1007/s10479-015-2083-2 – year: 2008 ident: 10.1016/j.probengmech.2020.103098_b7 article-title: Local sensitivity analysis – volume: 23 start-page: 221 year: 1969 ident: 10.1016/j.probengmech.2020.103098_b27 article-title: Calculation of gauss quadrature rules publication-title: Math. Comput. doi: 10.1090/S0025-5718-69-99647-1 – volume: 60 start-page: 897 issue: 4 year: 1938 ident: 10.1016/j.probengmech.2020.103098_b24 article-title: The homogeneous chaos publication-title: Amer. J. Math. doi: 10.2307/2371268 – volume: 85 start-page: 1306 issue: 7 year: 2015 ident: 10.1016/j.probengmech.2020.103098_b16 article-title: Generalized Sobol sensitivity indices for dependent variables: numerical methods publication-title: J. Stat. Comput. Simul. doi: 10.1080/00949655.2014.960415 – start-page: x+301 year: 2004 ident: 10.1016/j.probengmech.2020.103098_b25 – volume: 91 start-page: 1175 issue: 10–11 year: 2006 ident: 10.1016/j.probengmech.2020.103098_b4 article-title: Survey of sampling-based methods for uncertainty and sensitivity analysis publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2005.11.017 – volume: 24 start-page: 619 issue: 2 year: 2002 ident: 10.1016/j.probengmech.2020.103098_b12 article-title: The Wiener-Askey polynomial chaos for stochastic differential equations publication-title: SIAM J. Sci. Comput. doi: 10.1137/S1064827501387826 – volume: 147 start-page: 156 year: 2016 ident: 10.1016/j.probengmech.2020.103098_b15 article-title: Using sparse polynomial Chaos expansions for the global sensitivity analysis of ground water life time expectancy in a multi-layered hydrogeological model publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2015.11.005 – volume: 52 start-page: 1 issue: 1 year: 1996 ident: 10.1016/j.probengmech.2020.103098_b29 article-title: Importance measures in global sensitivity analysis of nonlinear models publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/0951-8320(96)00002-6 – volume: 138 start-page: 222 year: 2018 ident: 10.1016/j.probengmech.2020.103098_b8 article-title: An efficient method for uncertainty propagation in robust software performance estimation publication-title: J. Syst. Softw. doi: 10.1016/j.jss.2018.01.010 – volume: 5 start-page: 986 issue: 1 year: 2017 ident: 10.1016/j.probengmech.2020.103098_b21 article-title: On shapley value for measuring importance of dependent inputs publication-title: SIAM/ASA J. Uncertain. Quantif. doi: 10.1137/16M1097717 – start-page: xxviii+717 year: 2008 ident: 10.1016/j.probengmech.2020.103098_b31 – volume: 8 start-page: 483 issue: 6 year: 2018 ident: 10.1016/j.probengmech.2020.103098_b17 article-title: An approximation theoretic perspective of Sobol’ indices with dependent variables publication-title: Int. J. Uncertain. Quantif. doi: 10.1615/Int.J.UncertaintyQuantification.2018026498 – start-page: 101 year: 2015 ident: 10.1016/j.probengmech.2020.103098_b18 article-title: A review on global sensitivity analysis methods – volume: 2 start-page: 245 issue: 1 year: 2014 ident: 10.1016/j.probengmech.2020.103098_b20 article-title: Sobol’ indices and shapley value publication-title: SIAM/ASA J. Uncertain. Quantif. doi: 10.1137/130936233 – start-page: xiii+432 year: 1975 ident: 10.1016/j.probengmech.2020.103098_b23 – volume: 4 start-page: 130 issue: 1 year: 2016 ident: 10.1016/j.probengmech.2020.103098_b22 article-title: The f-sensitivity index publication-title: SIAM/ASA J. Uncertain. Quantif. doi: 10.1137/140997774 – volume: 147 start-page: 189 issue: 3 year: 2004 ident: 10.1016/j.probengmech.2020.103098_b5 article-title: A comparative review of sensitivity and uncertainty analysis of large-scale system, I: Deterministic methods publication-title: Nucl. Sci. Eng. doi: 10.13182/NSE03-105CR – start-page: 1217 year: 2017 ident: 10.1016/j.probengmech.2020.103098_b9 article-title: Variance-based sensitivity analysis: theory and estimation algorithms – volume: 147 start-page: 204 issue: 3 year: 2004 ident: 10.1016/j.probengmech.2020.103098_b6 article-title: A comparative review of sensitivity and uncertainty analysis of large-scale systems - II: Statistical methods publication-title: Nucl. Sci. Eng. doi: 10.13182/04-54CR – start-page: xii+214 year: 2015 ident: 10.1016/j.probengmech.2020.103098_b26 – volume: 28 start-page: 657 year: 2007 ident: 10.1016/j.probengmech.2020.103098_b32 article-title: Horizontal distance travelled by a mobile experiencing a quadratic drag force: normalized distance and parametrization publication-title: Eur. J. Phys. doi: 10.1088/0143-0807/28/4/005 – ident: 10.1016/j.probengmech.2020.103098_b30 – volume: 187 start-page: 137 issue: 1 year: 2003 ident: 10.1016/j.probengmech.2020.103098_b13 article-title: Modeling uncertainty in flow simulations via generalized polynomial chaos publication-title: J. Comput. Phys. doi: 10.1016/S0021-9991(03)00092-5 – year: 1993 ident: 10.1016/j.probengmech.2020.103098_b1 article-title: Comparative analysis of uncertainty propagation methods for robust engineering design |
SSID | ssj0017149 |
Score | 2.2548163 |
Snippet | This paper is a first attempt to develop a numerical technique to analyze the sensitivity and the propagation of uncertainty through a system with stochastic... This paper is a first attempt to develop a numerical techniqueto analyze the sensitivity and the propagation of uncertaintythrough a system with stochastic... |
SourceID | hal proquest crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 103098 |
SubjectTerms | Applications Brownian motion Chaos expansions Exact solutions Gaussian process Mathematics Methodology Normal distribution Numerical analysis Orthogonal polynomial Probability Random variables Sensitivity analysis Sobol’ indices Statistics Stochastic models Stochastic processes |
Title | Global sensitivity analysis for stochastic processes with independent increments |
URI | https://dx.doi.org/10.1016/j.probengmech.2020.103098 https://www.proquest.com/docview/2478621352 https://hal.science/hal-02926263 |
Volume | 62 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8QwEB48QHzxFteLKL7WbdMjLfiyiLK6KuKBvoUkm7gruC529dHfbqZJ1wMEwae2Q0vDZDKZmcx8A7CnaFcyo9NAWOkNkm4WB4WixnopUaisfMSJwdDA-UXWvk1O79P7CTisa2EwrdLrfqfTK23tKU3Pzeaw329eW-8hywuKR2kV8BpWsCcMpXz_fZzmgf29CxdnyQJ8ewZ2PnO8sGmLHjw86epcglYl6GGR_7ZHTfYwWfKHzq42ouMFmPMWJGm5QS7ChB4swby3Jolfq-UyXDo4f1JiirrrEUGEhyAh1lQl1uxTPYE4zWToygV0STAuS_rj3rgje69cCLFcgdvjo5vDduD7JwQqZvkokHkRxoYayqQyXakjZoS05iCLRCrT0NA8QjgugUSdmzRmWiXa-k921-oyKeJVmBo8D_QaEMlExqQRYRomiQyFtMsaj0yNorowqWoArTnGhw4mg9f5Y4_8C5s5spk7NjfgoOYt_zbn3Krzv3y-a-dj_DvEyW63zjjSQoowiFn8FjVgs54u7ldnyWnCrCMXWdtz_X9D2IBZfHLJfZswNXp51VvWSBnJ7UoKt2G6ddJpX-C1c3XX-QCyAunc |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED_SFLq9dFu30fRj08ZeTWz5Qzb0JYQWd03DYC30TUiKtKbQNMzZ_v7eWXK6FQqFvhnZwuIknX73od8BfDN8poWzeaRw9UbZrEijynCHVkoSG1wfaebINXA-LerL7PtVftWDcXcXhtIqg-73Or3V1qFlGKQ5XM7nw59oPRRlxSmU1hKvbcAmsVPlfdgcnZ7V03UwQSQeBeP3EXXYgi8PaV5Ut8Uuft3aNjTB21vocVU-dUxtXFO-5CO13Z5FJ29hO4BINvLjfAc9u9iBNwFQsrBdm_fwwzP6s4ay1H2ZCKYCCwlDtMoQ-ZlrRVTNbOlvDNiGkWuWzdflcVf4bLwXsfkAlyfHF-M6CiUUIpOKchXpsopTxx0X2riZtolwSiMiFInKdR47XibEyKWo0ZYuT4U1mUUTCg-umdAq_Qj9xd3C7gLTQhVCOxXncZbpWGnc2RQ1dYbbyuVmALyTmFx6pgzZpZDdyH_ELEnM0ot5AEedbOV_0y5Roz-n-1ecj_XviCq7Hk0ktcWcmBCL9G8ygINuumTYoI3kmUBbLkH4ufeyIXyGV_XF-UROTqdn-_Ca3vhcvwPor37_sYeIWVb6U1iT92Ep6uo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Global+sensitivity+analysis+for+stochastic+processes+with+independent+increments&rft.jtitle=Probabilistic+engineering+mechanics&rft.au=Gayrard%2C+Emeline&rft.au=Chauvi%C3%A8re%2C+C%C3%A9dric&rft.au=Djellout%2C+Hac%C3%A8ne&rft.au=Bonnet%2C+Pierre&rft.date=2020-10-01&rft.pub=Elsevier+Ltd&rft.issn=0266-8920&rft.eissn=1878-4275&rft.volume=62&rft_id=info:doi/10.1016%2Fj.probengmech.2020.103098&rft.externalDocID=S0266892020300850 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0266-8920&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0266-8920&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0266-8920&client=summon |