Component-based 2-/3-dimensional nearest neighbor search based on Elias method to GPU parallel 2D/3D Euclidean Minimum Spanning Tree Problem
We present improved data parallel approaches working on graphics processing unit (GPU) compute unified device architecture (CUDA) platform to build hierarchical Euclidean minimum spanning forest or tree (EMSF/EMST) for applications whose input only contains N points with arbitrary data distribution...
Saved in:
Published in | Applied soft computing Vol. 100; p. 106928 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.03.2021
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 1568-4946 1872-9681 |
DOI | 10.1016/j.asoc.2020.106928 |
Cover
Abstract | We present improved data parallel approaches working on graphics processing unit (GPU) compute unified device architecture (CUDA) platform to build hierarchical Euclidean minimum spanning forest or tree (EMSF/EMST) for applications whose input only contains N points with arbitrary data distribution in 2D/3D Euclidean space. Characteristic of the proposed parallel algorithms follows “data parallelism, decentralized control and O(1) local memory occupied by each GPU thread”. This research has to solve GPU parallelism of component-based nearest neighbor search (component-based NNS), tree traversal, and other graph operations like union-find. For exact NNS, instead of using classical K-d tree search or brute-force computing method, we propose a K-d search method working based on dividing the Euclidean K-dimensional space into congruent and non-overlapping square/cubic cells where size of points in each cell is bounded. For component-based NNS, with the uniqueness property based on 2D/3D square/cubic space partition, we propose dynamic and static pruning techniques to prune unnecessary neighbor cells’ search. For tree traversal, instead of using breadth-first-search, this paper proposes CUDA kernels working with a distributed dynamic link list for selecting a local spanning tree’s shortest outgoing edge since size of local EMSTs in EMSF cannot be predicted. Source code is provided online and experimental comparisons are conducted on both 2D and 3D benchmarks with up to 107 points to build final EMST. Results show that applying K-d search with static pruning technique and the proposed operators totally working in parallel on GPU, our current implementation runs faster than our previous work and current optimal sequential dual-tree mlpack EMST library.
•The first GPU parallel 3D EMSF/EMST algorithm in Borůvka’s framework.•The first GPU parallel 2D/3D EMSF/EMST algorithm running faster than current optimal sequential EMST algorithm, namely the dual-tree Mlpack EMST.•The first 2D/3D component-based Nearest Neighbor Search with static pruning technique based on congruent non-overlapping Euclidean space partition. |
---|---|
AbstractList | We present improved data parallel approaches working on graphics processing unit (GPU) compute unified device architecture (CUDA) platform to build hierarchical Euclidean minimum spanning forest or tree (EMSF/EMST) for applications whose input only contains N points with arbitrary data distribution in 2D/3D Euclidean space. Characteristic of the proposed parallel algorithms follows “data parallelism, decentralized control and O(1) local memory occupied by each GPU thread”. This research has to solve GPU parallelism of component-based nearest neighbor search (component-based NNS), tree traversal, and other graph operations like union-find. For exact NNS, instead of using classical K-d tree search or brute-force computing method, we propose a K-d search method working based on dividing the Euclidean K-dimensional space into congruent and non-overlapping square/cubic cells where size of points in each cell is bounded. For component-based NNS, with the uniqueness property based on 2D/3D square/cubic space partition, we propose dynamic and static pruning techniques to prune unnecessary neighbor cells’ search. For tree traversal, instead of using breadth-first-search, this paper proposes CUDA kernels working with a distributed dynamic link list for selecting a local spanning tree’s shortest outgoing edge since size of local EMSTs in EMSF cannot be predicted. Source code is provided online and experimental comparisons are conducted on both 2D and 3D benchmarks with up to 107 points to build final EMST. Results show that applying K-d search with static pruning technique and the proposed operators totally working in parallel on GPU, our current implementation runs faster than our previous work and current optimal sequential dual-tree mlpack EMST library.
•The first GPU parallel 3D EMSF/EMST algorithm in Borůvka’s framework.•The first GPU parallel 2D/3D EMSF/EMST algorithm running faster than current optimal sequential EMST algorithm, namely the dual-tree Mlpack EMST.•The first 2D/3D component-based Nearest Neighbor Search with static pruning technique based on congruent non-overlapping Euclidean space partition. |
ArticleNumber | 106928 |
Author | Qiao, Wen-Bao Créput, Jean-Charles |
Author_xml | – sequence: 1 givenname: Wen-Bao surname: Qiao fullname: Qiao, Wen-Bao email: rapidbao@outlook.com organization: Computer School, Beijing Information Science and Technology University, China – sequence: 2 givenname: Jean-Charles surname: Créput fullname: Créput, Jean-Charles organization: CIAD, Univ. Bourgogne Franche-Comté, UTBM, F-90010 Belfort, France |
BackLink | https://hal.science/hal-03493814$$DView record in HAL |
BookMark | eNp9kctq3DAUhkVIIZf2BbrStgvP6GLLMnQTJpMLTGmg07WQpeOMBlkaJCfQd-hDR8btJouszuHn_8450n-FzkMMgNBXSlaUULE-rnSOZsUImwXRMXmGLqlsWdUJSc9L3whZ1V0tLtBVzkdSoGK6RH83cTyVWWGqep3BYlateWXdCCG7GLTHAXSCPJXqng99TDgXwRzwYo8Bb73TGY8wHaLFU8T3T7_xSSftPXjMbtf8Fm9fjHcWdMA_XHDjy4h_nXQILjzjfQLATyn2HsbP6NOgfYYv_-o12t9t95uHavfz_nFzs6sMb2U5lEPfD6KzTWObgUErekl0YzmxgnCgREMr-07S3rbA6oEK0YElpu0k16bh1-jbMvagvTolN-r0R0Xt1MPNTs0a4XXHJa1fafHKxWtSzDnBoIyb9FS-ZkraeUWJmgNQRzUHoOYA1BJAQdk79P-uD6HvCwTl_a8OksrGQTBgXQIzKRvdR_gbCu2hkQ |
CitedBy_id | crossref_primary_10_1016_j_asoc_2022_108503 crossref_primary_10_3390_app11093863 crossref_primary_10_1016_j_displa_2022_102275 crossref_primary_10_1016_j_uclim_2023_101787 |
Cites_doi | 10.1023/A:1014573219977 10.1145/62.2160 10.1016/j.ins.2011.04.013 10.1145/361002.361007 10.1163/1574040053326325 10.1287/ijoc.3.4.376 10.1145/375827.375847 10.1016/S0012-365X(00)00224-7 10.1016/j.asoc.2018.10.046 10.1016/S0262-8856(96)01105-5 10.1109/JIOT.2016.2579198 10.1145/355541.355562 10.1002/j.1538-7305.1957.tb01515.x 10.1145/355921.355927 10.1109/42.876306 10.1016/0925-7721(94)90018-3 10.1145/355826.355832 10.1364/AO.56.003411 10.1090/S0002-9939-1956-0078686-7 10.1093/bioinformatics/18.4.536 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. Attribution - NonCommercial |
Copyright_xml | – notice: 2020 Elsevier B.V. – notice: Attribution - NonCommercial |
DBID | AAYXX CITATION 1XC VOOES |
DOI | 10.1016/j.asoc.2020.106928 |
DatabaseName | CrossRef Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1872-9681 |
ExternalDocumentID | oai_HAL_hal_03493814v1 10_1016_j_asoc_2020_106928 S1568494620308668 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSV SSZ T5K UHS UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 1XC VOOES |
ID | FETCH-LOGICAL-c378t-b3ebbf69d55d5f2e76b80a5d30d603e10ae78b981bd7e24f1669ed0c7983ac53 |
IEDL.DBID | AIKHN |
ISSN | 1568-4946 |
IngestDate | Fri May 09 12:07:52 EDT 2025 Thu Apr 24 23:11:14 EDT 2025 Tue Jul 01 01:50:08 EDT 2025 Fri Feb 23 02:48:31 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | GPU parallel 3D EMST Decentralized control GPU breadth first search GPU union-find GPU link list 3D Euclidean minimum spanning tree Component-based nearest neighbor search |
Language | English |
License | Attribution - NonCommercial: http://creativecommons.org/licenses/by-nc |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c378t-b3ebbf69d55d5f2e76b80a5d30d603e10ae78b981bd7e24f1669ed0c7983ac53 |
OpenAccessLink | https://hal.science/hal-03493814 |
ParticipantIDs | hal_primary_oai_HAL_hal_03493814v1 crossref_citationtrail_10_1016_j_asoc_2020_106928 crossref_primary_10_1016_j_asoc_2020_106928 elsevier_sciencedirect_doi_10_1016_j_asoc_2020_106928 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-03-01 |
PublicationDateYYYYMMDD | 2021-03-01 |
PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Applied soft computing |
PublicationYear | 2021 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Zhong, Miao, Fränti (b7) 2011; 181 Shamos, Hoey (b17) 1975 Bader, Madduri (b26) 2006 Chung, Condon (b24) 1996 An, Xiang, Chavez (b8) 2000; 19 L. Nyland, S. Johns, Understanding and using atomic memory operations, in: 4th GPU Technology Conf., GTC’13, March, 2013. Zhang (b39) 2013 March, Ram, Gray (b6) 2010 Qiao, Créput (b2) 2019; 76 Cleary (b33) 1979; 5 Bentley, Weide, Yao (b27) 1980; 6 Rajasekaran (b20) 2004; 1 Shi, Cao, Zhang, Li, Xu (b11) 2016; 3 M. Greenspan, G. Godin, J. Talbot, Acceleration of binning nearest neighbor methods, in: Proceedings of Vision Interface 2000, 2000, pp. 337–344. Wang (b40) 2015 Reinelt (b41) 1991; 3 Nešetřil, Milková, Nešetřilová (b12) 2001; 233 Omohundro (b31) 1989 Christofides (b10) 1976 P.N. Yianilos, Data structures and algorithms for nearest neighbor search in general metric spaces, in: ACM-SIAM Symposium on Discrete Algorithms, 1993. Robins, Salowe (b37) 1994 Li, Yu, Zhang, Zhao, Zhang (b3) 2017; 56 Bentley (b19) 1975; 18 Hu, Nooshabadi, Ahmadi (b28) 2015 Boruvka (b1) 1926 Xu, Olman, Xu (b5) 2002; 18 Kruskal (b13) 1956; 7 Chazelle (b15) 2000; 47 Chong, Han, Lam (b25) 2001; 48 Zhang, Wang, Creput, Moreau, Ruichek (b29) 2013 R.L. Rivest, On the optimality of Elia’s algorithm for performing best-match searches, in: IFIP Congress, 1974, pp. 678–681. Nobari, Cao, Karras, Bressan (b23) 2012; 47 Tarjan, Van Leeuwen (b35) 1984; 31 Harish, Vineet, Narayanan (b22) 2009 Prim (b14) 1957; 36 Xu, Uberbacher (b9) 1997; 15 Lingas (b16) 1994; 4 Vineet, Harish, Patidar, Narayanan (b21) 2009 Bentley, Friedman (b18) 1975; 27 Cormen (b36) 2009 Scharstein, Szeliski (b4) 2002; 47 March (10.1016/j.asoc.2020.106928_b6) 2010 10.1016/j.asoc.2020.106928_b30 Bentley (10.1016/j.asoc.2020.106928_b27) 1980; 6 Boruvka (10.1016/j.asoc.2020.106928_b1) 1926 10.1016/j.asoc.2020.106928_b32 Chazelle (10.1016/j.asoc.2020.106928_b15) 2000; 47 Reinelt (10.1016/j.asoc.2020.106928_b41) 1991; 3 10.1016/j.asoc.2020.106928_b34 Xu (10.1016/j.asoc.2020.106928_b9) 1997; 15 Zhong (10.1016/j.asoc.2020.106928_b7) 2011; 181 Chong (10.1016/j.asoc.2020.106928_b25) 2001; 48 Shi (10.1016/j.asoc.2020.106928_b11) 2016; 3 10.1016/j.asoc.2020.106928_b38 Lingas (10.1016/j.asoc.2020.106928_b16) 1994; 4 Bader (10.1016/j.asoc.2020.106928_b26) 2006 Li (10.1016/j.asoc.2020.106928_b3) 2017; 56 Bentley (10.1016/j.asoc.2020.106928_b18) 1975; 27 An (10.1016/j.asoc.2020.106928_b8) 2000; 19 Xu (10.1016/j.asoc.2020.106928_b5) 2002; 18 Rajasekaran (10.1016/j.asoc.2020.106928_b20) 2004; 1 Bentley (10.1016/j.asoc.2020.106928_b19) 1975; 18 Prim (10.1016/j.asoc.2020.106928_b14) 1957; 36 Omohundro (10.1016/j.asoc.2020.106928_b31) 1989 Tarjan (10.1016/j.asoc.2020.106928_b35) 1984; 31 Nobari (10.1016/j.asoc.2020.106928_b23) 2012; 47 Shamos (10.1016/j.asoc.2020.106928_b17) 1975 Zhang (10.1016/j.asoc.2020.106928_b29) 2013 Christofides (10.1016/j.asoc.2020.106928_b10) 1976 Cleary (10.1016/j.asoc.2020.106928_b33) 1979; 5 Robins (10.1016/j.asoc.2020.106928_b37) 1994 Vineet (10.1016/j.asoc.2020.106928_b21) 2009 Kruskal (10.1016/j.asoc.2020.106928_b13) 1956; 7 Hu (10.1016/j.asoc.2020.106928_b28) 2015 Nešetřil (10.1016/j.asoc.2020.106928_b12) 2001; 233 Qiao (10.1016/j.asoc.2020.106928_b2) 2019; 76 Scharstein (10.1016/j.asoc.2020.106928_b4) 2002; 47 Cormen (10.1016/j.asoc.2020.106928_b36) 2009 Wang (10.1016/j.asoc.2020.106928_b40) 2015 Chung (10.1016/j.asoc.2020.106928_b24) 1996 Zhang (10.1016/j.asoc.2020.106928_b39) 2013 Harish (10.1016/j.asoc.2020.106928_b22) 2009 |
References_xml | – volume: 18 start-page: 509 year: 1975 end-page: 517 ident: b19 article-title: Multidimensional binary search trees used for associative searching publication-title: Commun. ACM – start-page: 2752 year: 2015 end-page: 2755 ident: b28 article-title: Massively parallel KD-tree construction and nearest neighbor search algorithms publication-title: 2015 IEEE International Symposium on Circuits and Systems – volume: 76 start-page: 105 year: 2019 end-page: 120 ident: b2 article-title: GPU implementation of Borůvka’s algorithm to Euclidean minimum spanning tree based on Elias method publication-title: Appl. Soft Comput. – volume: 19 start-page: 805 year: 2000 end-page: 808 ident: b8 article-title: A fast implementation of the minimum spanning tree method for phase unwrapping publication-title: IEEE Trans. Med. Imag. – start-page: 53 year: 2013 end-page: 60 ident: b29 article-title: Cellular GPU model for structured mesh generation and its application to the stereo-matching disparity map publication-title: Multimedia (ISM), 2013 IEEE International Symposium on – volume: 27 start-page: 97 year: 1975 ident: b18 article-title: Fast algorithms for constructing minimal spanning trees in coordinate spaces publication-title: IEEE Trans. Comput. – year: 1976 ident: b10 article-title: Worst-Case Analysis of a New Heuristic for the Travelling Salesman Problem – volume: 36 start-page: 1389 year: 1957 end-page: 1401 ident: b14 article-title: Shortest connection networks and some generalizations publication-title: Bell Syst. Tech. J. – volume: 4 start-page: 199 year: 1994 end-page: 208 ident: b16 article-title: A linear-time construction of the relative neighborhood graph from the Delaunay triangulation publication-title: Comput. Geom. – volume: 1 year: 2004 ident: b20 article-title: On the Euclidean minimum spanning tree problem publication-title: Comput. Lett. – year: 2015 ident: b40 article-title: Cellular Matrix for Parallel K-Means and Local Search to Euclidean Grid Matching – start-page: 151 year: 1975 end-page: 162 ident: b17 article-title: Closest-point problems publication-title: Foundations of Computer Science, 1975., 16th Annual Symposium on – volume: 18 start-page: 536 year: 2002 end-page: 545 ident: b5 article-title: Clustering gene expression data using a graph-theoretic approach: an application of minimum spanning trees publication-title: Bioinformatics – volume: 15 start-page: 47 year: 1997 end-page: 57 ident: b9 article-title: 2D image segmentation using minimum spanning trees publication-title: Image Vis. Comput. – volume: 47 start-page: 205 year: 2012 end-page: 214 ident: b23 article-title: Scalable parallel minimum spanning forest computation publication-title: ACM SIGPLAN Notices – year: 2009 ident: b36 article-title: Introduction to Algorithms – year: 1926 ident: b1 article-title: O jistém problému minimálním – volume: 7 start-page: 48 year: 1956 end-page: 50 ident: b13 article-title: On the shortest spanning subtree of a graph and the traveling salesman problem publication-title: Proc. Am. Math. Soc. – volume: 31 start-page: 245 year: 1984 end-page: 281 ident: b35 article-title: Worst-case analysis of set union algorithms publication-title: J. ACM – year: 2013 ident: b39 article-title: Cellular GPU Models to Euclidean Optimization Problems: Applications from Stereo Matching to Structured Adaptive Meshing and Traveling Salesman Problem – volume: 48 start-page: 297 year: 2001 end-page: 323 ident: b25 article-title: Concurrent threads and optimal parallel minimum spanning trees algorithm publication-title: J. ACM – year: 2009 ident: b22 article-title: Large graph algorithms for massively multithreaded architectures – volume: 5 start-page: 183 year: 1979 end-page: 192 ident: b33 article-title: Analysis of an algorithm for finding nearest neighbors in Euclidean space publication-title: ACM Trans. Math. Softw. (TOMS) – volume: 3 start-page: 637 year: 2016 end-page: 646 ident: b11 article-title: Edge computing: Vision and challenges publication-title: IEEE Internet Things J. – reference: L. Nyland, S. Johns, Understanding and using atomic memory operations, in: 4th GPU Technology Conf., GTC’13, March, 2013. – volume: 47 start-page: 7 year: 2002 end-page: 42 ident: b4 article-title: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms publication-title: Int. J. Comput. Vis. – start-page: 603 year: 2010 end-page: 612 ident: b6 article-title: Fast Euclidean minimum spanning tree: algorithm, analysis, and applications publication-title: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining – year: 1989 ident: b31 article-title: Five Balltree Construction Algorithms – start-page: 250 year: 1994 end-page: 258 ident: b37 article-title: On the maximum degree of minimum spanning trees publication-title: Proceedings of the Tenth Annual Symposium on Computational Geometry – reference: R.L. Rivest, On the optimality of Elia’s algorithm for performing best-match searches, in: IFIP Congress, 1974, pp. 678–681. – volume: 6 start-page: 563 year: 1980 end-page: 580 ident: b27 article-title: Optimal expected-time algorithms for closest point problems publication-title: ACM Trans. Math. Softw. (TOMS) – reference: M. Greenspan, G. Godin, J. Talbot, Acceleration of binning nearest neighbor methods, in: Proceedings of Vision Interface 2000, 2000, pp. 337–344. – volume: 233 start-page: 3 year: 2001 end-page: 36 ident: b12 article-title: Otakar Borůvka on minimum spanning tree problem translation of both the 1926 papers, comments, history publication-title: Discrete Math. – start-page: 167 year: 2009 end-page: 171 ident: b21 article-title: Fast minimum spanning tree for large graphs on the GPU publication-title: Proceedings of the Conference on High Performance Graphics 2009 – start-page: 302 year: 1996 end-page: 308 ident: b24 article-title: Parallel implementation of Bouvka’s minimum spanning tree algorithm publication-title: Parallel Processing Symposium, 1996., Proceedings of IPPS’96, The 10th International – start-page: 523 year: 2006 end-page: 530 ident: b26 article-title: Designing multithreaded algorithms for breadth-first search and st-connectivity on the Cray MTA-2 publication-title: Parallel Processing, 2006. ICPP 2006. International Conference on – volume: 181 start-page: 3397 year: 2011 end-page: 3410 ident: b7 article-title: Minimum spanning tree based split-and-merge: A hierarchical clustering method publication-title: Inform. Sci. – reference: P.N. Yianilos, Data structures and algorithms for nearest neighbor search in general metric spaces, in: ACM-SIAM Symposium on Discrete Algorithms, 1993. – volume: 56 start-page: 3411 year: 2017 end-page: 3420 ident: b3 article-title: 3D cost aggregation with multiple minimum spanning trees for stereo matching publication-title: Appl. Opt. – volume: 3 start-page: 376 year: 1991 end-page: 384 ident: b41 article-title: TSPLIB—A traveling salesman problem library publication-title: ORSA J. Comput. – volume: 47 start-page: 1028 year: 2000 end-page: 1047 ident: b15 article-title: A minimum spanning tree algorithm with inverse-Ackermann type complexity publication-title: J. ACM – volume: 47 start-page: 7 issue: 1–3 year: 2002 ident: 10.1016/j.asoc.2020.106928_b4 article-title: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms publication-title: Int. J. Comput. Vis. doi: 10.1023/A:1014573219977 – year: 2009 ident: 10.1016/j.asoc.2020.106928_b36 – ident: 10.1016/j.asoc.2020.106928_b32 – start-page: 2752 year: 2015 ident: 10.1016/j.asoc.2020.106928_b28 article-title: Massively parallel KD-tree construction and nearest neighbor search algorithms – ident: 10.1016/j.asoc.2020.106928_b30 – ident: 10.1016/j.asoc.2020.106928_b34 – volume: 31 start-page: 245 issue: 2 year: 1984 ident: 10.1016/j.asoc.2020.106928_b35 article-title: Worst-case analysis of set union algorithms publication-title: J. ACM doi: 10.1145/62.2160 – volume: 181 start-page: 3397 issue: 16 year: 2011 ident: 10.1016/j.asoc.2020.106928_b7 article-title: Minimum spanning tree based split-and-merge: A hierarchical clustering method publication-title: Inform. Sci. doi: 10.1016/j.ins.2011.04.013 – start-page: 302 year: 1996 ident: 10.1016/j.asoc.2020.106928_b24 article-title: Parallel implementation of Bouvka’s minimum spanning tree algorithm – volume: 18 start-page: 509 issue: 9 year: 1975 ident: 10.1016/j.asoc.2020.106928_b19 article-title: Multidimensional binary search trees used for associative searching publication-title: Commun. ACM doi: 10.1145/361002.361007 – volume: 1 issue: 1 year: 2004 ident: 10.1016/j.asoc.2020.106928_b20 article-title: On the Euclidean minimum spanning tree problem publication-title: Comput. Lett. doi: 10.1163/1574040053326325 – volume: 3 start-page: 376 issue: 4 year: 1991 ident: 10.1016/j.asoc.2020.106928_b41 article-title: TSPLIB—A traveling salesman problem library publication-title: ORSA J. Comput. doi: 10.1287/ijoc.3.4.376 – volume: 48 start-page: 297 issue: 2 year: 2001 ident: 10.1016/j.asoc.2020.106928_b25 article-title: Concurrent threads and optimal parallel minimum spanning trees algorithm publication-title: J. ACM doi: 10.1145/375827.375847 – volume: 233 start-page: 3 issue: 1–3 year: 2001 ident: 10.1016/j.asoc.2020.106928_b12 article-title: Otakar Borůvka on minimum spanning tree problem translation of both the 1926 papers, comments, history publication-title: Discrete Math. doi: 10.1016/S0012-365X(00)00224-7 – volume: 76 start-page: 105 year: 2019 ident: 10.1016/j.asoc.2020.106928_b2 article-title: GPU implementation of Borůvka’s algorithm to Euclidean minimum spanning tree based on Elias method publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.10.046 – start-page: 523 year: 2006 ident: 10.1016/j.asoc.2020.106928_b26 article-title: Designing multithreaded algorithms for breadth-first search and st-connectivity on the Cray MTA-2 – year: 2013 ident: 10.1016/j.asoc.2020.106928_b39 – year: 1926 ident: 10.1016/j.asoc.2020.106928_b1 – volume: 15 start-page: 47 issue: 1 year: 1997 ident: 10.1016/j.asoc.2020.106928_b9 article-title: 2D image segmentation using minimum spanning trees publication-title: Image Vis. Comput. doi: 10.1016/S0262-8856(96)01105-5 – volume: 3 start-page: 637 issue: 5 year: 2016 ident: 10.1016/j.asoc.2020.106928_b11 article-title: Edge computing: Vision and challenges publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2016.2579198 – volume: 47 start-page: 1028 issue: 6 year: 2000 ident: 10.1016/j.asoc.2020.106928_b15 article-title: A minimum spanning tree algorithm with inverse-Ackermann type complexity publication-title: J. ACM doi: 10.1145/355541.355562 – year: 2015 ident: 10.1016/j.asoc.2020.106928_b40 – volume: 36 start-page: 1389 issue: 6 year: 1957 ident: 10.1016/j.asoc.2020.106928_b14 article-title: Shortest connection networks and some generalizations publication-title: Bell Syst. Tech. J. doi: 10.1002/j.1538-7305.1957.tb01515.x – year: 1976 ident: 10.1016/j.asoc.2020.106928_b10 – start-page: 167 year: 2009 ident: 10.1016/j.asoc.2020.106928_b21 article-title: Fast minimum spanning tree for large graphs on the GPU – volume: 6 start-page: 563 issue: 4 year: 1980 ident: 10.1016/j.asoc.2020.106928_b27 article-title: Optimal expected-time algorithms for closest point problems publication-title: ACM Trans. Math. Softw. (TOMS) doi: 10.1145/355921.355927 – volume: 19 start-page: 805 issue: 8 year: 2000 ident: 10.1016/j.asoc.2020.106928_b8 article-title: A fast implementation of the minimum spanning tree method for phase unwrapping publication-title: IEEE Trans. Med. Imag. doi: 10.1109/42.876306 – start-page: 250 year: 1994 ident: 10.1016/j.asoc.2020.106928_b37 article-title: On the maximum degree of minimum spanning trees – volume: 47 start-page: 205 year: 2012 ident: 10.1016/j.asoc.2020.106928_b23 article-title: Scalable parallel minimum spanning forest computation – ident: 10.1016/j.asoc.2020.106928_b38 – volume: 4 start-page: 199 issue: 4 year: 1994 ident: 10.1016/j.asoc.2020.106928_b16 article-title: A linear-time construction of the relative neighborhood graph from the Delaunay triangulation publication-title: Comput. Geom. doi: 10.1016/0925-7721(94)90018-3 – volume: 5 start-page: 183 issue: 2 year: 1979 ident: 10.1016/j.asoc.2020.106928_b33 article-title: Analysis of an algorithm for finding nearest neighbors in Euclidean space publication-title: ACM Trans. Math. Softw. (TOMS) doi: 10.1145/355826.355832 – volume: 27 start-page: 97 year: 1975 ident: 10.1016/j.asoc.2020.106928_b18 article-title: Fast algorithms for constructing minimal spanning trees in coordinate spaces publication-title: IEEE Trans. Comput. – volume: 56 start-page: 3411 issue: 12 year: 2017 ident: 10.1016/j.asoc.2020.106928_b3 article-title: 3D cost aggregation with multiple minimum spanning trees for stereo matching publication-title: Appl. Opt. doi: 10.1364/AO.56.003411 – start-page: 151 year: 1975 ident: 10.1016/j.asoc.2020.106928_b17 article-title: Closest-point problems – year: 2009 ident: 10.1016/j.asoc.2020.106928_b22 – start-page: 603 year: 2010 ident: 10.1016/j.asoc.2020.106928_b6 article-title: Fast Euclidean minimum spanning tree: algorithm, analysis, and applications – volume: 7 start-page: 48 issue: 1 year: 1956 ident: 10.1016/j.asoc.2020.106928_b13 article-title: On the shortest spanning subtree of a graph and the traveling salesman problem publication-title: Proc. Am. Math. Soc. doi: 10.1090/S0002-9939-1956-0078686-7 – start-page: 53 year: 2013 ident: 10.1016/j.asoc.2020.106928_b29 article-title: Cellular GPU model for structured mesh generation and its application to the stereo-matching disparity map – volume: 18 start-page: 536 issue: 4 year: 2002 ident: 10.1016/j.asoc.2020.106928_b5 article-title: Clustering gene expression data using a graph-theoretic approach: an application of minimum spanning trees publication-title: Bioinformatics doi: 10.1093/bioinformatics/18.4.536 – year: 1989 ident: 10.1016/j.asoc.2020.106928_b31 |
SSID | ssj0016928 |
Score | 2.351755 |
Snippet | We present improved data parallel approaches working on graphics processing unit (GPU) compute unified device architecture (CUDA) platform to build... |
SourceID | hal crossref elsevier |
SourceType | Open Access Repository Enrichment Source Index Database Publisher |
StartPage | 106928 |
SubjectTerms | 3D Euclidean minimum spanning tree Component-based nearest neighbor search Computer Science Decentralized control GPU breadth first search GPU link list GPU parallel 3D EMST GPU union-find |
Title | Component-based 2-/3-dimensional nearest neighbor search based on Elias method to GPU parallel 2D/3D Euclidean Minimum Spanning Tree Problem |
URI | https://dx.doi.org/10.1016/j.asoc.2020.106928 https://hal.science/hal-03493814 |
Volume | 100 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1BT9swFLZouewyxtg0YFQW2m0ySezYiY9VKXQMUAVF4hbZsaNlCmkFLcf9gv1o_GqnEodx2CnS07OT-L34Pcefv4fQNyHzysXNnBgNR3JkJonUVUkk7DGlQvHKwI7u1bWY3KUX9_x-C426szAAqwxzv5_T17N1kERhNKNFXUe3buWRp64_CpQrQuQ9tE2ZFLyPtoc_fk6uN5sJQq5LrII-gQbh7IyHeSk3CG6ZSEEAiv-KT71f3Z_WdeQ5-4Deh5QRD_1T7aIt235EO105Bhy-zj30F0Tz1kURArHJYEoiRgzQ93vqDdwCYe3T0l3dktwZH3s_x1593uJxU6sn7KtK4-Ucn0_vMJCDN41tMD2N2Cker8qmNla1-Kpu64fVA75d-LpHePZoLZ76CjWf0OxsPBtNSCi2QEqW5e7BmNW6EtJwbnhFbSZ0HituWGxEzGwSK5vlWros12SWplUihLQmLjOZM1Vy9hn1W_eKXwAsxTOjmWI80Slg2VSsqWUcmIPiMuH7KOlGuCgDETnUw2iKDnH2uwCrFGCVwltlH33ftFl4Go43tXlnuOKVMxUuTrzZ7thZeXMDYN6eDC8LkAGNj0tu0ufk4D87P0TvKOBh1vi1r6i_fFzZI5fQLPUA9U7-JAPntqOby-kguO8Lapb0Yg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwELWAHuilLaVVaaGMKm7IzYdjJz4iWLptdxESi8TNsmNHpArZFexy5Bf0R9cTJyv1UA49RRqNHcfjeMb28xtCjoQsKu83C2oNXsmRuaTSVCWVeMaUCc0riye60wsxvs5-3PCbDXI63IVBWGU_94c5vZute0nU92a0qOvoyq88iszXlyLlihDFJnmRcZYjru_r0xrnkQjZJVhFbYrq_c2ZAPLSvgv8IjFFASr-yztt3g77rJ3fOX9DXvUBI5yENu2QDde-Ja-HZAzQ_5u75DeK5q33IRQ9k4WURoxaJO8PxBvQIl3tw9I__YLcmx7CKIegPm9h1NT6AUJOaVjO4dvlNSA1eNO4BtKziJ3BaFU2tXW6hWnd1nerO7hahKxHMLt3Di5Dfpp3ZHY-mp2OaZ9qgZYsL3zDmDOmEtJybnmVulyYItbcstiKmLkk1i4vjPQxrs1dmlWJENLZuMxlwXTJ2Xuy1fpP_IBQKZ5bwzTjickQyaZjkzrGkTcoLhO-R5Khh1XZ05BjNoxGDXizXwqtotAqKlhljxyvyywCCcez2nwwnPprKCnvJZ4t98Vbef0C5N0en0wUypDEx4c22WPy8T8rPyTb49l0oibfL35-Ii9TRMZ0SLZ9srW8X7kDH9oszedu6P4B2PfzmA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Component-based+2-%2F3-dimensional+nearest+neighbor+search+based+on+Elias+method+to+GPU+parallel+2D%2F3D+Euclidean+Minimum+Spanning+Tree+Problem&rft.jtitle=Applied+soft+computing&rft.au=Qiao%2C+Wen-Bao&rft.au=Cr%C3%A9put%2C+Jean-Charles&rft.date=2021-03-01&rft.pub=Elsevier&rft.issn=1568-4946&rft.volume=100&rft.spage=106928&rft_id=info:doi/10.1016%2Fj.asoc.2020.106928&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_03493814v1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |