Component-based 2-/3-dimensional nearest neighbor search based on Elias method to GPU parallel 2D/3D Euclidean Minimum Spanning Tree Problem

We present improved data parallel approaches working on graphics processing unit (GPU) compute unified device architecture (CUDA) platform to build hierarchical Euclidean minimum spanning forest or tree (EMSF/EMST) for applications whose input only contains N points with arbitrary data distribution...

Full description

Saved in:
Bibliographic Details
Published inApplied soft computing Vol. 100; p. 106928
Main Authors Qiao, Wen-Bao, Créput, Jean-Charles
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.03.2021
Elsevier
Subjects
Online AccessGet full text
ISSN1568-4946
1872-9681
DOI10.1016/j.asoc.2020.106928

Cover

Abstract We present improved data parallel approaches working on graphics processing unit (GPU) compute unified device architecture (CUDA) platform to build hierarchical Euclidean minimum spanning forest or tree (EMSF/EMST) for applications whose input only contains N points with arbitrary data distribution in 2D/3D Euclidean space. Characteristic of the proposed parallel algorithms follows “data parallelism, decentralized control and O(1) local memory occupied by each GPU thread”. This research has to solve GPU parallelism of component-based nearest neighbor search (component-based NNS), tree traversal, and other graph operations like union-find. For exact NNS, instead of using classical K-d tree search or brute-force computing method, we propose a K-d search method working based on dividing the Euclidean K-dimensional space into congruent and non-overlapping square/cubic cells where size of points in each cell is bounded. For component-based NNS, with the uniqueness property based on 2D/3D square/cubic space partition, we propose dynamic and static pruning techniques to prune unnecessary neighbor cells’ search. For tree traversal, instead of using breadth-first-search, this paper proposes CUDA kernels working with a distributed dynamic link list for selecting a local spanning tree’s shortest outgoing edge since size of local EMSTs in EMSF cannot be predicted. Source code is provided online and experimental comparisons are conducted on both 2D and 3D benchmarks with up to 107 points to build final EMST. Results show that applying K-d search with static pruning technique and the proposed operators totally working in parallel on GPU, our current implementation runs faster than our previous work and current optimal sequential dual-tree mlpack EMST library. •The first GPU parallel 3D EMSF/EMST algorithm in Borůvka’s framework.•The first GPU parallel 2D/3D EMSF/EMST algorithm running faster than current optimal sequential EMST algorithm, namely the dual-tree Mlpack EMST.•The first 2D/3D component-based Nearest Neighbor Search with static pruning technique based on congruent non-overlapping Euclidean space partition.
AbstractList We present improved data parallel approaches working on graphics processing unit (GPU) compute unified device architecture (CUDA) platform to build hierarchical Euclidean minimum spanning forest or tree (EMSF/EMST) for applications whose input only contains N points with arbitrary data distribution in 2D/3D Euclidean space. Characteristic of the proposed parallel algorithms follows “data parallelism, decentralized control and O(1) local memory occupied by each GPU thread”. This research has to solve GPU parallelism of component-based nearest neighbor search (component-based NNS), tree traversal, and other graph operations like union-find. For exact NNS, instead of using classical K-d tree search or brute-force computing method, we propose a K-d search method working based on dividing the Euclidean K-dimensional space into congruent and non-overlapping square/cubic cells where size of points in each cell is bounded. For component-based NNS, with the uniqueness property based on 2D/3D square/cubic space partition, we propose dynamic and static pruning techniques to prune unnecessary neighbor cells’ search. For tree traversal, instead of using breadth-first-search, this paper proposes CUDA kernels working with a distributed dynamic link list for selecting a local spanning tree’s shortest outgoing edge since size of local EMSTs in EMSF cannot be predicted. Source code is provided online and experimental comparisons are conducted on both 2D and 3D benchmarks with up to 107 points to build final EMST. Results show that applying K-d search with static pruning technique and the proposed operators totally working in parallel on GPU, our current implementation runs faster than our previous work and current optimal sequential dual-tree mlpack EMST library. •The first GPU parallel 3D EMSF/EMST algorithm in Borůvka’s framework.•The first GPU parallel 2D/3D EMSF/EMST algorithm running faster than current optimal sequential EMST algorithm, namely the dual-tree Mlpack EMST.•The first 2D/3D component-based Nearest Neighbor Search with static pruning technique based on congruent non-overlapping Euclidean space partition.
ArticleNumber 106928
Author Qiao, Wen-Bao
Créput, Jean-Charles
Author_xml – sequence: 1
  givenname: Wen-Bao
  surname: Qiao
  fullname: Qiao, Wen-Bao
  email: rapidbao@outlook.com
  organization: Computer School, Beijing Information Science and Technology University, China
– sequence: 2
  givenname: Jean-Charles
  surname: Créput
  fullname: Créput, Jean-Charles
  organization: CIAD, Univ. Bourgogne Franche-Comté, UTBM, F-90010 Belfort, France
BackLink https://hal.science/hal-03493814$$DView record in HAL
BookMark eNp9kctq3DAUhkVIIZf2BbrStgvP6GLLMnQTJpMLTGmg07WQpeOMBlkaJCfQd-hDR8btJouszuHn_8450n-FzkMMgNBXSlaUULE-rnSOZsUImwXRMXmGLqlsWdUJSc9L3whZ1V0tLtBVzkdSoGK6RH83cTyVWWGqep3BYlateWXdCCG7GLTHAXSCPJXqng99TDgXwRzwYo8Bb73TGY8wHaLFU8T3T7_xSSftPXjMbtf8Fm9fjHcWdMA_XHDjy4h_nXQILjzjfQLATyn2HsbP6NOgfYYv_-o12t9t95uHavfz_nFzs6sMb2U5lEPfD6KzTWObgUErekl0YzmxgnCgREMr-07S3rbA6oEK0YElpu0k16bh1-jbMvagvTolN-r0R0Xt1MPNTs0a4XXHJa1fafHKxWtSzDnBoIyb9FS-ZkraeUWJmgNQRzUHoOYA1BJAQdk79P-uD6HvCwTl_a8OksrGQTBgXQIzKRvdR_gbCu2hkQ
CitedBy_id crossref_primary_10_1016_j_asoc_2022_108503
crossref_primary_10_3390_app11093863
crossref_primary_10_1016_j_displa_2022_102275
crossref_primary_10_1016_j_uclim_2023_101787
Cites_doi 10.1023/A:1014573219977
10.1145/62.2160
10.1016/j.ins.2011.04.013
10.1145/361002.361007
10.1163/1574040053326325
10.1287/ijoc.3.4.376
10.1145/375827.375847
10.1016/S0012-365X(00)00224-7
10.1016/j.asoc.2018.10.046
10.1016/S0262-8856(96)01105-5
10.1109/JIOT.2016.2579198
10.1145/355541.355562
10.1002/j.1538-7305.1957.tb01515.x
10.1145/355921.355927
10.1109/42.876306
10.1016/0925-7721(94)90018-3
10.1145/355826.355832
10.1364/AO.56.003411
10.1090/S0002-9939-1956-0078686-7
10.1093/bioinformatics/18.4.536
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Attribution - NonCommercial
Copyright_xml – notice: 2020 Elsevier B.V.
– notice: Attribution - NonCommercial
DBID AAYXX
CITATION
1XC
VOOES
DOI 10.1016/j.asoc.2020.106928
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
ExternalDocumentID oai_HAL_hal_03493814v1
10_1016_j_asoc_2020_106928
S1568494620308668
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
1XC
VOOES
ID FETCH-LOGICAL-c378t-b3ebbf69d55d5f2e76b80a5d30d603e10ae78b981bd7e24f1669ed0c7983ac53
IEDL.DBID AIKHN
ISSN 1568-4946
IngestDate Fri May 09 12:07:52 EDT 2025
Thu Apr 24 23:11:14 EDT 2025
Tue Jul 01 01:50:08 EDT 2025
Fri Feb 23 02:48:31 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords GPU parallel 3D EMST
Decentralized control
GPU breadth first search
GPU union-find
GPU link list
3D Euclidean minimum spanning tree
Component-based nearest neighbor search
Language English
License Attribution - NonCommercial: http://creativecommons.org/licenses/by-nc
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c378t-b3ebbf69d55d5f2e76b80a5d30d603e10ae78b981bd7e24f1669ed0c7983ac53
OpenAccessLink https://hal.science/hal-03493814
ParticipantIDs hal_primary_oai_HAL_hal_03493814v1
crossref_citationtrail_10_1016_j_asoc_2020_106928
crossref_primary_10_1016_j_asoc_2020_106928
elsevier_sciencedirect_doi_10_1016_j_asoc_2020_106928
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-03-01
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-01
  day: 01
PublicationDecade 2020
PublicationTitle Applied soft computing
PublicationYear 2021
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Zhong, Miao, Fränti (b7) 2011; 181
Shamos, Hoey (b17) 1975
Bader, Madduri (b26) 2006
Chung, Condon (b24) 1996
An, Xiang, Chavez (b8) 2000; 19
L. Nyland, S. Johns, Understanding and using atomic memory operations, in: 4th GPU Technology Conf., GTC’13, March, 2013.
Zhang (b39) 2013
March, Ram, Gray (b6) 2010
Qiao, Créput (b2) 2019; 76
Cleary (b33) 1979; 5
Bentley, Weide, Yao (b27) 1980; 6
Rajasekaran (b20) 2004; 1
Shi, Cao, Zhang, Li, Xu (b11) 2016; 3
M. Greenspan, G. Godin, J. Talbot, Acceleration of binning nearest neighbor methods, in: Proceedings of Vision Interface 2000, 2000, pp. 337–344.
Wang (b40) 2015
Reinelt (b41) 1991; 3
Nešetřil, Milková, Nešetřilová (b12) 2001; 233
Omohundro (b31) 1989
Christofides (b10) 1976
P.N. Yianilos, Data structures and algorithms for nearest neighbor search in general metric spaces, in: ACM-SIAM Symposium on Discrete Algorithms, 1993.
Robins, Salowe (b37) 1994
Li, Yu, Zhang, Zhao, Zhang (b3) 2017; 56
Bentley (b19) 1975; 18
Hu, Nooshabadi, Ahmadi (b28) 2015
Boruvka (b1) 1926
Xu, Olman, Xu (b5) 2002; 18
Kruskal (b13) 1956; 7
Chazelle (b15) 2000; 47
Chong, Han, Lam (b25) 2001; 48
Zhang, Wang, Creput, Moreau, Ruichek (b29) 2013
R.L. Rivest, On the optimality of Elia’s algorithm for performing best-match searches, in: IFIP Congress, 1974, pp. 678–681.
Nobari, Cao, Karras, Bressan (b23) 2012; 47
Tarjan, Van Leeuwen (b35) 1984; 31
Harish, Vineet, Narayanan (b22) 2009
Prim (b14) 1957; 36
Xu, Uberbacher (b9) 1997; 15
Lingas (b16) 1994; 4
Vineet, Harish, Patidar, Narayanan (b21) 2009
Bentley, Friedman (b18) 1975; 27
Cormen (b36) 2009
Scharstein, Szeliski (b4) 2002; 47
March (10.1016/j.asoc.2020.106928_b6) 2010
10.1016/j.asoc.2020.106928_b30
Bentley (10.1016/j.asoc.2020.106928_b27) 1980; 6
Boruvka (10.1016/j.asoc.2020.106928_b1) 1926
10.1016/j.asoc.2020.106928_b32
Chazelle (10.1016/j.asoc.2020.106928_b15) 2000; 47
Reinelt (10.1016/j.asoc.2020.106928_b41) 1991; 3
10.1016/j.asoc.2020.106928_b34
Xu (10.1016/j.asoc.2020.106928_b9) 1997; 15
Zhong (10.1016/j.asoc.2020.106928_b7) 2011; 181
Chong (10.1016/j.asoc.2020.106928_b25) 2001; 48
Shi (10.1016/j.asoc.2020.106928_b11) 2016; 3
10.1016/j.asoc.2020.106928_b38
Lingas (10.1016/j.asoc.2020.106928_b16) 1994; 4
Bader (10.1016/j.asoc.2020.106928_b26) 2006
Li (10.1016/j.asoc.2020.106928_b3) 2017; 56
Bentley (10.1016/j.asoc.2020.106928_b18) 1975; 27
An (10.1016/j.asoc.2020.106928_b8) 2000; 19
Xu (10.1016/j.asoc.2020.106928_b5) 2002; 18
Rajasekaran (10.1016/j.asoc.2020.106928_b20) 2004; 1
Bentley (10.1016/j.asoc.2020.106928_b19) 1975; 18
Prim (10.1016/j.asoc.2020.106928_b14) 1957; 36
Omohundro (10.1016/j.asoc.2020.106928_b31) 1989
Tarjan (10.1016/j.asoc.2020.106928_b35) 1984; 31
Nobari (10.1016/j.asoc.2020.106928_b23) 2012; 47
Shamos (10.1016/j.asoc.2020.106928_b17) 1975
Zhang (10.1016/j.asoc.2020.106928_b29) 2013
Christofides (10.1016/j.asoc.2020.106928_b10) 1976
Cleary (10.1016/j.asoc.2020.106928_b33) 1979; 5
Robins (10.1016/j.asoc.2020.106928_b37) 1994
Vineet (10.1016/j.asoc.2020.106928_b21) 2009
Kruskal (10.1016/j.asoc.2020.106928_b13) 1956; 7
Hu (10.1016/j.asoc.2020.106928_b28) 2015
Nešetřil (10.1016/j.asoc.2020.106928_b12) 2001; 233
Qiao (10.1016/j.asoc.2020.106928_b2) 2019; 76
Scharstein (10.1016/j.asoc.2020.106928_b4) 2002; 47
Cormen (10.1016/j.asoc.2020.106928_b36) 2009
Wang (10.1016/j.asoc.2020.106928_b40) 2015
Chung (10.1016/j.asoc.2020.106928_b24) 1996
Zhang (10.1016/j.asoc.2020.106928_b39) 2013
Harish (10.1016/j.asoc.2020.106928_b22) 2009
References_xml – volume: 18
  start-page: 509
  year: 1975
  end-page: 517
  ident: b19
  article-title: Multidimensional binary search trees used for associative searching
  publication-title: Commun. ACM
– start-page: 2752
  year: 2015
  end-page: 2755
  ident: b28
  article-title: Massively parallel KD-tree construction and nearest neighbor search algorithms
  publication-title: 2015 IEEE International Symposium on Circuits and Systems
– volume: 76
  start-page: 105
  year: 2019
  end-page: 120
  ident: b2
  article-title: GPU implementation of Borůvka’s algorithm to Euclidean minimum spanning tree based on Elias method
  publication-title: Appl. Soft Comput.
– volume: 19
  start-page: 805
  year: 2000
  end-page: 808
  ident: b8
  article-title: A fast implementation of the minimum spanning tree method for phase unwrapping
  publication-title: IEEE Trans. Med. Imag.
– start-page: 53
  year: 2013
  end-page: 60
  ident: b29
  article-title: Cellular GPU model for structured mesh generation and its application to the stereo-matching disparity map
  publication-title: Multimedia (ISM), 2013 IEEE International Symposium on
– volume: 27
  start-page: 97
  year: 1975
  ident: b18
  article-title: Fast algorithms for constructing minimal spanning trees in coordinate spaces
  publication-title: IEEE Trans. Comput.
– year: 1976
  ident: b10
  article-title: Worst-Case Analysis of a New Heuristic for the Travelling Salesman Problem
– volume: 36
  start-page: 1389
  year: 1957
  end-page: 1401
  ident: b14
  article-title: Shortest connection networks and some generalizations
  publication-title: Bell Syst. Tech. J.
– volume: 4
  start-page: 199
  year: 1994
  end-page: 208
  ident: b16
  article-title: A linear-time construction of the relative neighborhood graph from the Delaunay triangulation
  publication-title: Comput. Geom.
– volume: 1
  year: 2004
  ident: b20
  article-title: On the Euclidean minimum spanning tree problem
  publication-title: Comput. Lett.
– year: 2015
  ident: b40
  article-title: Cellular Matrix for Parallel K-Means and Local Search to Euclidean Grid Matching
– start-page: 151
  year: 1975
  end-page: 162
  ident: b17
  article-title: Closest-point problems
  publication-title: Foundations of Computer Science, 1975., 16th Annual Symposium on
– volume: 18
  start-page: 536
  year: 2002
  end-page: 545
  ident: b5
  article-title: Clustering gene expression data using a graph-theoretic approach: an application of minimum spanning trees
  publication-title: Bioinformatics
– volume: 15
  start-page: 47
  year: 1997
  end-page: 57
  ident: b9
  article-title: 2D image segmentation using minimum spanning trees
  publication-title: Image Vis. Comput.
– volume: 47
  start-page: 205
  year: 2012
  end-page: 214
  ident: b23
  article-title: Scalable parallel minimum spanning forest computation
  publication-title: ACM SIGPLAN Notices
– year: 2009
  ident: b36
  article-title: Introduction to Algorithms
– year: 1926
  ident: b1
  article-title: O jistém problému minimálním
– volume: 7
  start-page: 48
  year: 1956
  end-page: 50
  ident: b13
  article-title: On the shortest spanning subtree of a graph and the traveling salesman problem
  publication-title: Proc. Am. Math. Soc.
– volume: 31
  start-page: 245
  year: 1984
  end-page: 281
  ident: b35
  article-title: Worst-case analysis of set union algorithms
  publication-title: J. ACM
– year: 2013
  ident: b39
  article-title: Cellular GPU Models to Euclidean Optimization Problems: Applications from Stereo Matching to Structured Adaptive Meshing and Traveling Salesman Problem
– volume: 48
  start-page: 297
  year: 2001
  end-page: 323
  ident: b25
  article-title: Concurrent threads and optimal parallel minimum spanning trees algorithm
  publication-title: J. ACM
– year: 2009
  ident: b22
  article-title: Large graph algorithms for massively multithreaded architectures
– volume: 5
  start-page: 183
  year: 1979
  end-page: 192
  ident: b33
  article-title: Analysis of an algorithm for finding nearest neighbors in Euclidean space
  publication-title: ACM Trans. Math. Softw. (TOMS)
– volume: 3
  start-page: 637
  year: 2016
  end-page: 646
  ident: b11
  article-title: Edge computing: Vision and challenges
  publication-title: IEEE Internet Things J.
– reference: L. Nyland, S. Johns, Understanding and using atomic memory operations, in: 4th GPU Technology Conf., GTC’13, March, 2013.
– volume: 47
  start-page: 7
  year: 2002
  end-page: 42
  ident: b4
  article-title: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms
  publication-title: Int. J. Comput. Vis.
– start-page: 603
  year: 2010
  end-page: 612
  ident: b6
  article-title: Fast Euclidean minimum spanning tree: algorithm, analysis, and applications
  publication-title: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– year: 1989
  ident: b31
  article-title: Five Balltree Construction Algorithms
– start-page: 250
  year: 1994
  end-page: 258
  ident: b37
  article-title: On the maximum degree of minimum spanning trees
  publication-title: Proceedings of the Tenth Annual Symposium on Computational Geometry
– reference: R.L. Rivest, On the optimality of Elia’s algorithm for performing best-match searches, in: IFIP Congress, 1974, pp. 678–681.
– volume: 6
  start-page: 563
  year: 1980
  end-page: 580
  ident: b27
  article-title: Optimal expected-time algorithms for closest point problems
  publication-title: ACM Trans. Math. Softw. (TOMS)
– reference: M. Greenspan, G. Godin, J. Talbot, Acceleration of binning nearest neighbor methods, in: Proceedings of Vision Interface 2000, 2000, pp. 337–344.
– volume: 233
  start-page: 3
  year: 2001
  end-page: 36
  ident: b12
  article-title: Otakar Borůvka on minimum spanning tree problem translation of both the 1926 papers, comments, history
  publication-title: Discrete Math.
– start-page: 167
  year: 2009
  end-page: 171
  ident: b21
  article-title: Fast minimum spanning tree for large graphs on the GPU
  publication-title: Proceedings of the Conference on High Performance Graphics 2009
– start-page: 302
  year: 1996
  end-page: 308
  ident: b24
  article-title: Parallel implementation of Bouvka’s minimum spanning tree algorithm
  publication-title: Parallel Processing Symposium, 1996., Proceedings of IPPS’96, The 10th International
– start-page: 523
  year: 2006
  end-page: 530
  ident: b26
  article-title: Designing multithreaded algorithms for breadth-first search and st-connectivity on the Cray MTA-2
  publication-title: Parallel Processing, 2006. ICPP 2006. International Conference on
– volume: 181
  start-page: 3397
  year: 2011
  end-page: 3410
  ident: b7
  article-title: Minimum spanning tree based split-and-merge: A hierarchical clustering method
  publication-title: Inform. Sci.
– reference: P.N. Yianilos, Data structures and algorithms for nearest neighbor search in general metric spaces, in: ACM-SIAM Symposium on Discrete Algorithms, 1993.
– volume: 56
  start-page: 3411
  year: 2017
  end-page: 3420
  ident: b3
  article-title: 3D cost aggregation with multiple minimum spanning trees for stereo matching
  publication-title: Appl. Opt.
– volume: 3
  start-page: 376
  year: 1991
  end-page: 384
  ident: b41
  article-title: TSPLIB—A traveling salesman problem library
  publication-title: ORSA J. Comput.
– volume: 47
  start-page: 1028
  year: 2000
  end-page: 1047
  ident: b15
  article-title: A minimum spanning tree algorithm with inverse-Ackermann type complexity
  publication-title: J. ACM
– volume: 47
  start-page: 7
  issue: 1–3
  year: 2002
  ident: 10.1016/j.asoc.2020.106928_b4
  article-title: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms
  publication-title: Int. J. Comput. Vis.
  doi: 10.1023/A:1014573219977
– year: 2009
  ident: 10.1016/j.asoc.2020.106928_b36
– ident: 10.1016/j.asoc.2020.106928_b32
– start-page: 2752
  year: 2015
  ident: 10.1016/j.asoc.2020.106928_b28
  article-title: Massively parallel KD-tree construction and nearest neighbor search algorithms
– ident: 10.1016/j.asoc.2020.106928_b30
– ident: 10.1016/j.asoc.2020.106928_b34
– volume: 31
  start-page: 245
  issue: 2
  year: 1984
  ident: 10.1016/j.asoc.2020.106928_b35
  article-title: Worst-case analysis of set union algorithms
  publication-title: J. ACM
  doi: 10.1145/62.2160
– volume: 181
  start-page: 3397
  issue: 16
  year: 2011
  ident: 10.1016/j.asoc.2020.106928_b7
  article-title: Minimum spanning tree based split-and-merge: A hierarchical clustering method
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2011.04.013
– start-page: 302
  year: 1996
  ident: 10.1016/j.asoc.2020.106928_b24
  article-title: Parallel implementation of Bouvka’s minimum spanning tree algorithm
– volume: 18
  start-page: 509
  issue: 9
  year: 1975
  ident: 10.1016/j.asoc.2020.106928_b19
  article-title: Multidimensional binary search trees used for associative searching
  publication-title: Commun. ACM
  doi: 10.1145/361002.361007
– volume: 1
  issue: 1
  year: 2004
  ident: 10.1016/j.asoc.2020.106928_b20
  article-title: On the Euclidean minimum spanning tree problem
  publication-title: Comput. Lett.
  doi: 10.1163/1574040053326325
– volume: 3
  start-page: 376
  issue: 4
  year: 1991
  ident: 10.1016/j.asoc.2020.106928_b41
  article-title: TSPLIB—A traveling salesman problem library
  publication-title: ORSA J. Comput.
  doi: 10.1287/ijoc.3.4.376
– volume: 48
  start-page: 297
  issue: 2
  year: 2001
  ident: 10.1016/j.asoc.2020.106928_b25
  article-title: Concurrent threads and optimal parallel minimum spanning trees algorithm
  publication-title: J. ACM
  doi: 10.1145/375827.375847
– volume: 233
  start-page: 3
  issue: 1–3
  year: 2001
  ident: 10.1016/j.asoc.2020.106928_b12
  article-title: Otakar Borůvka on minimum spanning tree problem translation of both the 1926 papers, comments, history
  publication-title: Discrete Math.
  doi: 10.1016/S0012-365X(00)00224-7
– volume: 76
  start-page: 105
  year: 2019
  ident: 10.1016/j.asoc.2020.106928_b2
  article-title: GPU implementation of Borůvka’s algorithm to Euclidean minimum spanning tree based on Elias method
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.10.046
– start-page: 523
  year: 2006
  ident: 10.1016/j.asoc.2020.106928_b26
  article-title: Designing multithreaded algorithms for breadth-first search and st-connectivity on the Cray MTA-2
– year: 2013
  ident: 10.1016/j.asoc.2020.106928_b39
– year: 1926
  ident: 10.1016/j.asoc.2020.106928_b1
– volume: 15
  start-page: 47
  issue: 1
  year: 1997
  ident: 10.1016/j.asoc.2020.106928_b9
  article-title: 2D image segmentation using minimum spanning trees
  publication-title: Image Vis. Comput.
  doi: 10.1016/S0262-8856(96)01105-5
– volume: 3
  start-page: 637
  issue: 5
  year: 2016
  ident: 10.1016/j.asoc.2020.106928_b11
  article-title: Edge computing: Vision and challenges
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2016.2579198
– volume: 47
  start-page: 1028
  issue: 6
  year: 2000
  ident: 10.1016/j.asoc.2020.106928_b15
  article-title: A minimum spanning tree algorithm with inverse-Ackermann type complexity
  publication-title: J. ACM
  doi: 10.1145/355541.355562
– year: 2015
  ident: 10.1016/j.asoc.2020.106928_b40
– volume: 36
  start-page: 1389
  issue: 6
  year: 1957
  ident: 10.1016/j.asoc.2020.106928_b14
  article-title: Shortest connection networks and some generalizations
  publication-title: Bell Syst. Tech. J.
  doi: 10.1002/j.1538-7305.1957.tb01515.x
– year: 1976
  ident: 10.1016/j.asoc.2020.106928_b10
– start-page: 167
  year: 2009
  ident: 10.1016/j.asoc.2020.106928_b21
  article-title: Fast minimum spanning tree for large graphs on the GPU
– volume: 6
  start-page: 563
  issue: 4
  year: 1980
  ident: 10.1016/j.asoc.2020.106928_b27
  article-title: Optimal expected-time algorithms for closest point problems
  publication-title: ACM Trans. Math. Softw. (TOMS)
  doi: 10.1145/355921.355927
– volume: 19
  start-page: 805
  issue: 8
  year: 2000
  ident: 10.1016/j.asoc.2020.106928_b8
  article-title: A fast implementation of the minimum spanning tree method for phase unwrapping
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/42.876306
– start-page: 250
  year: 1994
  ident: 10.1016/j.asoc.2020.106928_b37
  article-title: On the maximum degree of minimum spanning trees
– volume: 47
  start-page: 205
  year: 2012
  ident: 10.1016/j.asoc.2020.106928_b23
  article-title: Scalable parallel minimum spanning forest computation
– ident: 10.1016/j.asoc.2020.106928_b38
– volume: 4
  start-page: 199
  issue: 4
  year: 1994
  ident: 10.1016/j.asoc.2020.106928_b16
  article-title: A linear-time construction of the relative neighborhood graph from the Delaunay triangulation
  publication-title: Comput. Geom.
  doi: 10.1016/0925-7721(94)90018-3
– volume: 5
  start-page: 183
  issue: 2
  year: 1979
  ident: 10.1016/j.asoc.2020.106928_b33
  article-title: Analysis of an algorithm for finding nearest neighbors in Euclidean space
  publication-title: ACM Trans. Math. Softw. (TOMS)
  doi: 10.1145/355826.355832
– volume: 27
  start-page: 97
  year: 1975
  ident: 10.1016/j.asoc.2020.106928_b18
  article-title: Fast algorithms for constructing minimal spanning trees in coordinate spaces
  publication-title: IEEE Trans. Comput.
– volume: 56
  start-page: 3411
  issue: 12
  year: 2017
  ident: 10.1016/j.asoc.2020.106928_b3
  article-title: 3D cost aggregation with multiple minimum spanning trees for stereo matching
  publication-title: Appl. Opt.
  doi: 10.1364/AO.56.003411
– start-page: 151
  year: 1975
  ident: 10.1016/j.asoc.2020.106928_b17
  article-title: Closest-point problems
– year: 2009
  ident: 10.1016/j.asoc.2020.106928_b22
– start-page: 603
  year: 2010
  ident: 10.1016/j.asoc.2020.106928_b6
  article-title: Fast Euclidean minimum spanning tree: algorithm, analysis, and applications
– volume: 7
  start-page: 48
  issue: 1
  year: 1956
  ident: 10.1016/j.asoc.2020.106928_b13
  article-title: On the shortest spanning subtree of a graph and the traveling salesman problem
  publication-title: Proc. Am. Math. Soc.
  doi: 10.1090/S0002-9939-1956-0078686-7
– start-page: 53
  year: 2013
  ident: 10.1016/j.asoc.2020.106928_b29
  article-title: Cellular GPU model for structured mesh generation and its application to the stereo-matching disparity map
– volume: 18
  start-page: 536
  issue: 4
  year: 2002
  ident: 10.1016/j.asoc.2020.106928_b5
  article-title: Clustering gene expression data using a graph-theoretic approach: an application of minimum spanning trees
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/18.4.536
– year: 1989
  ident: 10.1016/j.asoc.2020.106928_b31
SSID ssj0016928
Score 2.351755
Snippet We present improved data parallel approaches working on graphics processing unit (GPU) compute unified device architecture (CUDA) platform to build...
SourceID hal
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 106928
SubjectTerms 3D Euclidean minimum spanning tree
Component-based nearest neighbor search
Computer Science
Decentralized control
GPU breadth first search
GPU link list
GPU parallel 3D EMST
GPU union-find
Title Component-based 2-/3-dimensional nearest neighbor search based on Elias method to GPU parallel 2D/3D Euclidean Minimum Spanning Tree Problem
URI https://dx.doi.org/10.1016/j.asoc.2020.106928
https://hal.science/hal-03493814
Volume 100
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1BT9swFLZouewyxtg0YFQW2m0ySezYiY9VKXQMUAVF4hbZsaNlCmkFLcf9gv1o_GqnEodx2CnS07OT-L34Pcefv4fQNyHzysXNnBgNR3JkJonUVUkk7DGlQvHKwI7u1bWY3KUX9_x-C426szAAqwxzv5_T17N1kERhNKNFXUe3buWRp64_CpQrQuQ9tE2ZFLyPtoc_fk6uN5sJQq5LrII-gQbh7IyHeSk3CG6ZSEEAiv-KT71f3Z_WdeQ5-4Deh5QRD_1T7aIt235EO105Bhy-zj30F0Tz1kURArHJYEoiRgzQ93vqDdwCYe3T0l3dktwZH3s_x1593uJxU6sn7KtK4-Ucn0_vMJCDN41tMD2N2Cker8qmNla1-Kpu64fVA75d-LpHePZoLZ76CjWf0OxsPBtNSCi2QEqW5e7BmNW6EtJwbnhFbSZ0HituWGxEzGwSK5vlWros12SWplUihLQmLjOZM1Vy9hn1W_eKXwAsxTOjmWI80Slg2VSsqWUcmIPiMuH7KOlGuCgDETnUw2iKDnH2uwCrFGCVwltlH33ftFl4Go43tXlnuOKVMxUuTrzZ7thZeXMDYN6eDC8LkAGNj0tu0ufk4D87P0TvKOBh1vi1r6i_fFzZI5fQLPUA9U7-JAPntqOby-kguO8Lapb0Yg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwELWAHuilLaVVaaGMKm7IzYdjJz4iWLptdxESi8TNsmNHpArZFexy5Bf0R9cTJyv1UA49RRqNHcfjeMb28xtCjoQsKu83C2oNXsmRuaTSVCWVeMaUCc0riye60wsxvs5-3PCbDXI63IVBWGU_94c5vZute0nU92a0qOvoyq88iszXlyLlihDFJnmRcZYjru_r0xrnkQjZJVhFbYrq_c2ZAPLSvgv8IjFFASr-yztt3g77rJ3fOX9DXvUBI5yENu2QDde-Ja-HZAzQ_5u75DeK5q33IRQ9k4WURoxaJO8PxBvQIl3tw9I__YLcmx7CKIegPm9h1NT6AUJOaVjO4dvlNSA1eNO4BtKziJ3BaFU2tXW6hWnd1nerO7hahKxHMLt3Di5Dfpp3ZHY-mp2OaZ9qgZYsL3zDmDOmEtJybnmVulyYItbcstiKmLkk1i4vjPQxrs1dmlWJENLZuMxlwXTJ2Xuy1fpP_IBQKZ5bwzTjickQyaZjkzrGkTcoLhO-R5Khh1XZ05BjNoxGDXizXwqtotAqKlhljxyvyywCCcez2nwwnPprKCnvJZ4t98Vbef0C5N0en0wUypDEx4c22WPy8T8rPyTb49l0oibfL35-Ii9TRMZ0SLZ9srW8X7kDH9oszedu6P4B2PfzmA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Component-based+2-%2F3-dimensional+nearest+neighbor+search+based+on+Elias+method+to+GPU+parallel+2D%2F3D+Euclidean+Minimum+Spanning+Tree+Problem&rft.jtitle=Applied+soft+computing&rft.au=Qiao%2C+Wen-Bao&rft.au=Cr%C3%A9put%2C+Jean-Charles&rft.date=2021-03-01&rft.pub=Elsevier&rft.issn=1568-4946&rft.volume=100&rft.spage=106928&rft_id=info:doi/10.1016%2Fj.asoc.2020.106928&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_03493814v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon