Hyers-Ulam-Mittag-Leffler stability of fractional differential equations with two caputo derivative using fractional fourier transform
In this paper, we discuss standard approaches to the Hyers-Ulam Mittag Leffler problem of fractional derivatives and nonlinear fractional integrals (simply called nonlinear fractional differential equation), namely two Caputo fractional derivatives using a fractional Fourier transform. We prove the...
Saved in:
Published in | AIMS mathematics Vol. 7; no. 2; pp. 1791 - 1810 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
AIMS Press
01.01.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, we discuss standard approaches to the Hyers-Ulam Mittag Leffler problem of fractional derivatives and nonlinear fractional integrals (simply called nonlinear fractional differential equation), namely two Caputo fractional derivatives using a fractional Fourier transform. We prove the basic properties of derivatives including the rules for their properties and the conditions for the equivalence of various definitions. Further, we give a brief basic Hyers-Ulam Mittag Leffler problem method for the solving of linear fractional differential equations using fractional Fourier transform and mention the limits of their usability. In particular, we formulate the theorem describing the structure of the Hyers-Ulam Mittag Leffler problem for linear two-term equations. In particular, we derive the two Caputo fractional derivative step response functions of those generalized systems. Finally, we consider some physical examples, in the particular fractional differential equation and the fractional Fourier transform. |
---|---|
AbstractList | In this paper, we discuss standard approaches to the Hyers-Ulam Mittag Leffler problem of fractional derivatives and nonlinear fractional integrals (simply called nonlinear fractional differential equation), namely two Caputo fractional derivatives using a fractional Fourier transform. We prove the basic properties of derivatives including the rules for their properties and the conditions for the equivalence of various definitions. Further, we give a brief basic Hyers-Ulam Mittag Leffler problem method for the solving of linear fractional differential equations using fractional Fourier transform and mention the limits of their usability. In particular, we formulate the theorem describing the structure of the Hyers-Ulam Mittag Leffler problem for linear two-term equations. In particular, we derive the two Caputo fractional derivative step response functions of those generalized systems. Finally, we consider some physical examples, in the particular fractional differential equation and the fractional Fourier transform. |
Author | Moaaz, Osama Govindan, Vediyappan Ali, Rifaqat Baleanu, Dumitru Santra, Shyam Sundar Ganesh, Anumanthappa Deepa, Swaminathan |
Author_xml | – sequence: 1 givenname: Anumanthappa surname: Ganesh fullname: Ganesh, Anumanthappa – sequence: 2 givenname: Swaminathan surname: Deepa fullname: Deepa, Swaminathan – sequence: 3 givenname: Dumitru surname: Baleanu fullname: Baleanu, Dumitru – sequence: 4 givenname: Shyam Sundar surname: Santra fullname: Santra, Shyam Sundar – sequence: 5 givenname: Osama surname: Moaaz fullname: Moaaz, Osama – sequence: 6 givenname: Vediyappan surname: Govindan fullname: Govindan, Vediyappan – sequence: 7 givenname: Rifaqat surname: Ali fullname: Ali, Rifaqat |
BookMark | eNptUUtOwzAQtVCR-HXHAXwAUvxrkywRAopUxIaurYkzbl0lcbEdUC_AuUkpSAixmpk3M28-74yMOt8hIZecTWQp1XULaT0RTAjO5BE5FSqX2awsitEv_4SMY9wwxgQXSuTqlHzMdxhitmygzZ5cSrDKFmhtg4HGBJVrXNpRb6kNYJLzHTS0dtZiwC65IcDXHvZ4pO8urWl699TAtk-e1hjc25B7Q9pH161-U1jfBzeMSAG6aH1oL8ixhSbi-Nuek-X93cvtPFs8Pzze3iwyI_MiZYBorJEz5AKk4KXkUpjc8GnNVMEQc1nI4TZeM0AmDAx5JiUwUQO3M0B5Th4PvLWHjd4G10LYaQ9OfwE-rDSE5EyDusJiaoyBGTCrSjBFWedKVYrnlSntdDpwiQOXCT7GgFYbl76eMZzlGs2Z3guj98Lob2GGpqs_TT9L_Fv-CYBxlgA |
CitedBy_id | crossref_primary_10_1155_2022_3777566 crossref_primary_10_3934_math_20231424 crossref_primary_10_1007_s12190_023_01872_w crossref_primary_10_3390_fractalfract8080443 crossref_primary_10_3934_math_2024923 crossref_primary_10_1080_10255842_2022_2109020 crossref_primary_10_3390_fractalfract7020144 crossref_primary_10_3934_math_2024734 crossref_primary_10_3390_math10030291 crossref_primary_10_1002_mma_10572 crossref_primary_10_1016_j_aej_2023_05_037 |
Cites_doi | 10.1016/j.cnsns.2010.05.027 10.1080/01630563.2019.1604545 10.2307/2042795 10.1186/s13662-021-03320-0 10.1016/j.chaos.2019.109534 10.1098/rsta.2012.0144 10.1186/s13661-020-01361-0 10.2478/s13540-014-0209-x 10.1186/s13661-017-0867-9 10.1140/epjp/i2018-12119-6 10.1007/BF01093718 10.3233/JIFS-191025 10.3934/dcdss.2017025 10.1186/s13661-019-1172-6 10.1007/s40314-019-0791-y 10.1186/s13661-018-1008-9 10.1186/1687-2770-2013-112 10.1073/pnas.27.4.222 10.1016/j.camwa.2011.03.002 10.1080/00036810108840931 10.23919/ECC.2001.7076127 10.1186/s13662-021-03393-x 10.1186/s13662-021-03454-1 10.1088/1742-6596/1597/1/012027 10.4064/sm-113-3-199-210 10.1186/s13661-019-1194-0 10.1186/s13662-020-02558-4 10.1186/s13662-020-02854-z 10.1080/10652469808819206 10.1186/s13661-017-0749-1 10.1016/j.chaos.2020.109705 |
ContentType | Journal Article |
CorporateAuthor | Department of Mathematics and Computer Science, Faculty of Arts and Sciences, Çankaya University Ankara, 06790 Etimesgut, Turkey Department of Mathematics, Government Arts and Science College, Hosur, 635 110, Tamilnadu, India Department of Mathematics, College of Science and Arts, Muhayil, King Khalid University, Abha 9004, Saudi Arabia Department of Mathematics, Faculty of Science, Mansoura University, 35516 Mansoura, Egypt Department of Mathematics, Adhiyamaan college of engineering, Hosur, 635 109, Tamilnadu, India Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan, China Department of Mathematics, JIS College of Engineering, Kalyani, West Bengal-741 235, India Department of Mathematics, Phuket Rajabhat University, 83000, Thailand Instiute of Space Sciences, Magurele-Bucharest, 077125 Magurele, Romania |
CorporateAuthor_xml | – name: Department of Mathematics, Adhiyamaan college of engineering, Hosur, 635 109, Tamilnadu, India – name: Department of Mathematics, Government Arts and Science College, Hosur, 635 110, Tamilnadu, India – name: Department of Mathematics, JIS College of Engineering, Kalyani, West Bengal-741 235, India – name: Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan, China – name: Department of Mathematics, Phuket Rajabhat University, 83000, Thailand – name: Department of Mathematics and Computer Science, Faculty of Arts and Sciences, Çankaya University Ankara, 06790 Etimesgut, Turkey – name: Department of Mathematics, Faculty of Science, Mansoura University, 35516 Mansoura, Egypt – name: Department of Mathematics, College of Science and Arts, Muhayil, King Khalid University, Abha 9004, Saudi Arabia – name: Instiute of Space Sciences, Magurele-Bucharest, 077125 Magurele, Romania |
DBID | AAYXX CITATION DOA |
DOI | 10.3934/math.2022103 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2473-6988 |
EndPage | 1810 |
ExternalDocumentID | oai_doaj_org_article_be85ccca6a0f49ac89d744b417bc9f55 10_3934_math_2022103 |
GroupedDBID | AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV CITATION EBS FRJ GROUPED_DOAJ IAO ITC M~E OK1 RAN |
ID | FETCH-LOGICAL-c378t-aeecfc36e12a32193132c7c15d0480ee73830211d0ae02ca313033a02da1f6ae3 |
IEDL.DBID | DOA |
ISSN | 2473-6988 |
IngestDate | Wed Aug 27 01:32:27 EDT 2025 Thu Apr 24 22:51:34 EDT 2025 Tue Jul 01 03:56:51 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c378t-aeecfc36e12a32193132c7c15d0480ee73830211d0ae02ca313033a02da1f6ae3 |
OpenAccessLink | https://doaj.org/article/be85ccca6a0f49ac89d744b417bc9f55 |
PageCount | 20 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_be85ccca6a0f49ac89d744b417bc9f55 crossref_citationtrail_10_3934_math_2022103 crossref_primary_10_3934_math_2022103 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-01-01 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | AIMS mathematics |
PublicationYear | 2022 |
Publisher | AIMS Press |
Publisher_xml | – name: AIMS Press |
References | key-10.3934/math.2022103-28 key-10.3934/math.2022103-29 key-10.3934/math.2022103-26 key-10.3934/math.2022103-27 key-10.3934/math.2022103-24 key-10.3934/math.2022103-25 key-10.3934/math.2022103-22 key-10.3934/math.2022103-23 key-10.3934/math.2022103-20 key-10.3934/math.2022103-21 key-10.3934/math.2022103-6 key-10.3934/math.2022103-7 key-10.3934/math.2022103-8 key-10.3934/math.2022103-9 key-10.3934/math.2022103-19 key-10.3934/math.2022103-17 key-10.3934/math.2022103-1 key-10.3934/math.2022103-18 key-10.3934/math.2022103-2 key-10.3934/math.2022103-15 key-10.3934/math.2022103-37 key-10.3934/math.2022103-3 key-10.3934/math.2022103-16 key-10.3934/math.2022103-4 key-10.3934/math.2022103-13 key-10.3934/math.2022103-35 key-10.3934/math.2022103-5 key-10.3934/math.2022103-14 key-10.3934/math.2022103-36 key-10.3934/math.2022103-11 key-10.3934/math.2022103-33 key-10.3934/math.2022103-12 key-10.3934/math.2022103-34 key-10.3934/math.2022103-31 key-10.3934/math.2022103-10 key-10.3934/math.2022103-32 key-10.3934/math.2022103-30 |
References_xml | – ident: key-10.3934/math.2022103-3 doi: 10.1016/j.cnsns.2010.05.027 – ident: key-10.3934/math.2022103-9 doi: 10.1080/01630563.2019.1604545 – ident: key-10.3934/math.2022103-15 doi: 10.2307/2042795 – ident: key-10.3934/math.2022103-30 doi: 10.1186/s13662-021-03320-0 – ident: key-10.3934/math.2022103-16 – ident: key-10.3934/math.2022103-33 – ident: key-10.3934/math.2022103-18 doi: 10.1016/j.chaos.2019.109534 – ident: key-10.3934/math.2022103-12 doi: 10.1098/rsta.2012.0144 – ident: key-10.3934/math.2022103-6 doi: 10.1186/s13661-020-01361-0 – ident: key-10.3934/math.2022103-1 doi: 10.2478/s13540-014-0209-x – ident: key-10.3934/math.2022103-10 doi: 10.1186/s13661-017-0867-9 – ident: key-10.3934/math.2022103-26 doi: 10.1140/epjp/i2018-12119-6 – ident: key-10.3934/math.2022103-35 doi: 10.1007/BF01093718 – ident: key-10.3934/math.2022103-19 doi: 10.3233/JIFS-191025 – ident: key-10.3934/math.2022103-7 – ident: key-10.3934/math.2022103-20 doi: 10.3934/dcdss.2017025 – ident: key-10.3934/math.2022103-21 doi: 10.1186/s13661-019-1172-6 – ident: key-10.3934/math.2022103-2 – ident: key-10.3934/math.2022103-13 – ident: key-10.3934/math.2022103-23 doi: 10.1007/s40314-019-0791-y – ident: key-10.3934/math.2022103-25 doi: 10.1186/s13661-018-1008-9 – ident: key-10.3934/math.2022103-11 doi: 10.1186/1687-2770-2013-112 – ident: key-10.3934/math.2022103-14 doi: 10.1073/pnas.27.4.222 – ident: key-10.3934/math.2022103-4 doi: 10.1016/j.camwa.2011.03.002 – ident: key-10.3934/math.2022103-34 – ident: key-10.3934/math.2022103-37 doi: 10.1080/00036810108840931 – ident: key-10.3934/math.2022103-17 doi: 10.23919/ECC.2001.7076127 – ident: key-10.3934/math.2022103-29 doi: 10.1186/s13662-021-03393-x – ident: key-10.3934/math.2022103-31 doi: 10.1186/s13662-021-03454-1 – ident: key-10.3934/math.2022103-27 doi: 10.1088/1742-6596/1597/1/012027 – ident: key-10.3934/math.2022103-36 doi: 10.4064/sm-113-3-199-210 – ident: key-10.3934/math.2022103-24 doi: 10.1186/s13661-019-1194-0 – ident: key-10.3934/math.2022103-22 doi: 10.1186/s13662-020-02558-4 – ident: key-10.3934/math.2022103-28 doi: 10.1186/s13662-020-02854-z – ident: key-10.3934/math.2022103-32 doi: 10.1080/10652469808819206 – ident: key-10.3934/math.2022103-8 doi: 10.1186/s13661-017-0749-1 – ident: key-10.3934/math.2022103-5 doi: 10.1016/j.chaos.2020.109705 |
SSID | ssj0002124274 |
Score | 2.275554 |
Snippet | In this paper, we discuss standard approaches to the Hyers-Ulam Mittag Leffler problem of fractional derivatives and nonlinear fractional integrals (simply... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
StartPage | 1791 |
SubjectTerms | caputo derivative fractional differential equation fractional fourier transform hyers-ulam-mittag-leffler stability mittag-leffler function |
Title | Hyers-Ulam-Mittag-Leffler stability of fractional differential equations with two caputo derivative using fractional fourier transform |
URI | https://doaj.org/article/be85ccca6a0f49ac89d744b417bc9f55 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1Fe8gATsprEzmsERFUhykSlbpHjnCukqiltCuIP8Lu5i9MqDIiFNbIc6-7i-z7n_B1jV6kGzyQqF9TNWKjANyKNDMaykT5IaxHQ0UXh4XM0GKnHcThutfqimjAnD-wM18shCQ2-JtKeVak2SVrESuXKj3OT2rBWL8Wc1yJTtAfjhqyQb7lKd5lK1UP8R_8eAqQ48kcOakn11zmlv8d2GzDIb90i9tkWzA7YznCjpLo8ZF8DwsRihI4Tw9eq0hPxBNZOYcER19WVrZ-8tNwu3A0FnG7d8wS_3SmHN6flveR04sqrj5IbPV9VJS8w9t5r2W9Oxe-T9hTWdbLj1RrWHrFR_-HlfiCa3gnCyDiphAYw1sgI_EBL3JVIodHExg8LukQOEEsS_vL9wkNnBUZLymVSe0GhfRtpkMesMytncMI4cpwwRyKJ4AhUiI6IkfTIKLcaE6CCsMtu1tbMTCMsTv0tphkSDLJ9RrbPGtt32fVm9NwJavwy7o4csxlDMtj1AwyOrAmO7K_gOP2PSc7YNq3Jnbucs061WMEFIpEqv6yD7htbpeDr |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hyers-Ulam-Mittag-Leffler+stability+of+fractional+differential+equations+with+two+caputo+derivative+using+fractional+fourier+transform&rft.jtitle=AIMS+mathematics&rft.au=Anumanthappa+Ganesh&rft.au=Swaminathan+Deepa&rft.au=Dumitru+Baleanu&rft.au=Shyam+Sundar+Santra&rft.date=2022-01-01&rft.pub=AIMS+Press&rft.eissn=2473-6988&rft.volume=7&rft.issue=2&rft.spage=1791&rft.epage=1810&rft_id=info:doi/10.3934%2Fmath.2022103&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_be85ccca6a0f49ac89d744b417bc9f55 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon |