Hyers-Ulam-Mittag-Leffler stability of fractional differential equations with two caputo derivative using fractional fourier transform

In this paper, we discuss standard approaches to the Hyers-Ulam Mittag Leffler problem of fractional derivatives and nonlinear fractional integrals (simply called nonlinear fractional differential equation), namely two Caputo fractional derivatives using a fractional Fourier transform. We prove the...

Full description

Saved in:
Bibliographic Details
Published inAIMS mathematics Vol. 7; no. 2; pp. 1791 - 1810
Main Authors Ganesh, Anumanthappa, Deepa, Swaminathan, Baleanu, Dumitru, Santra, Shyam Sundar, Moaaz, Osama, Govindan, Vediyappan, Ali, Rifaqat
Format Journal Article
LanguageEnglish
Published AIMS Press 01.01.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, we discuss standard approaches to the Hyers-Ulam Mittag Leffler problem of fractional derivatives and nonlinear fractional integrals (simply called nonlinear fractional differential equation), namely two Caputo fractional derivatives using a fractional Fourier transform. We prove the basic properties of derivatives including the rules for their properties and the conditions for the equivalence of various definitions. Further, we give a brief basic Hyers-Ulam Mittag Leffler problem method for the solving of linear fractional differential equations using fractional Fourier transform and mention the limits of their usability. In particular, we formulate the theorem describing the structure of the Hyers-Ulam Mittag Leffler problem for linear two-term equations. In particular, we derive the two Caputo fractional derivative step response functions of those generalized systems. Finally, we consider some physical examples, in the particular fractional differential equation and the fractional Fourier transform.
AbstractList In this paper, we discuss standard approaches to the Hyers-Ulam Mittag Leffler problem of fractional derivatives and nonlinear fractional integrals (simply called nonlinear fractional differential equation), namely two Caputo fractional derivatives using a fractional Fourier transform. We prove the basic properties of derivatives including the rules for their properties and the conditions for the equivalence of various definitions. Further, we give a brief basic Hyers-Ulam Mittag Leffler problem method for the solving of linear fractional differential equations using fractional Fourier transform and mention the limits of their usability. In particular, we formulate the theorem describing the structure of the Hyers-Ulam Mittag Leffler problem for linear two-term equations. In particular, we derive the two Caputo fractional derivative step response functions of those generalized systems. Finally, we consider some physical examples, in the particular fractional differential equation and the fractional Fourier transform.
Author Moaaz, Osama
Govindan, Vediyappan
Ali, Rifaqat
Baleanu, Dumitru
Santra, Shyam Sundar
Ganesh, Anumanthappa
Deepa, Swaminathan
Author_xml – sequence: 1
  givenname: Anumanthappa
  surname: Ganesh
  fullname: Ganesh, Anumanthappa
– sequence: 2
  givenname: Swaminathan
  surname: Deepa
  fullname: Deepa, Swaminathan
– sequence: 3
  givenname: Dumitru
  surname: Baleanu
  fullname: Baleanu, Dumitru
– sequence: 4
  givenname: Shyam Sundar
  surname: Santra
  fullname: Santra, Shyam Sundar
– sequence: 5
  givenname: Osama
  surname: Moaaz
  fullname: Moaaz, Osama
– sequence: 6
  givenname: Vediyappan
  surname: Govindan
  fullname: Govindan, Vediyappan
– sequence: 7
  givenname: Rifaqat
  surname: Ali
  fullname: Ali, Rifaqat
BookMark eNptUUtOwzAQtVCR-HXHAXwAUvxrkywRAopUxIaurYkzbl0lcbEdUC_AuUkpSAixmpk3M28-74yMOt8hIZecTWQp1XULaT0RTAjO5BE5FSqX2awsitEv_4SMY9wwxgQXSuTqlHzMdxhitmygzZ5cSrDKFmhtg4HGBJVrXNpRb6kNYJLzHTS0dtZiwC65IcDXHvZ4pO8urWl699TAtk-e1hjc25B7Q9pH161-U1jfBzeMSAG6aH1oL8ixhSbi-Nuek-X93cvtPFs8Pzze3iwyI_MiZYBorJEz5AKk4KXkUpjc8GnNVMEQc1nI4TZeM0AmDAx5JiUwUQO3M0B5Th4PvLWHjd4G10LYaQ9OfwE-rDSE5EyDusJiaoyBGTCrSjBFWedKVYrnlSntdDpwiQOXCT7GgFYbl76eMZzlGs2Z3guj98Lob2GGpqs_TT9L_Fv-CYBxlgA
CitedBy_id crossref_primary_10_1155_2022_3777566
crossref_primary_10_3934_math_20231424
crossref_primary_10_1007_s12190_023_01872_w
crossref_primary_10_3390_fractalfract8080443
crossref_primary_10_3934_math_2024923
crossref_primary_10_1080_10255842_2022_2109020
crossref_primary_10_3390_fractalfract7020144
crossref_primary_10_3934_math_2024734
crossref_primary_10_3390_math10030291
crossref_primary_10_1002_mma_10572
crossref_primary_10_1016_j_aej_2023_05_037
Cites_doi 10.1016/j.cnsns.2010.05.027
10.1080/01630563.2019.1604545
10.2307/2042795
10.1186/s13662-021-03320-0
10.1016/j.chaos.2019.109534
10.1098/rsta.2012.0144
10.1186/s13661-020-01361-0
10.2478/s13540-014-0209-x
10.1186/s13661-017-0867-9
10.1140/epjp/i2018-12119-6
10.1007/BF01093718
10.3233/JIFS-191025
10.3934/dcdss.2017025
10.1186/s13661-019-1172-6
10.1007/s40314-019-0791-y
10.1186/s13661-018-1008-9
10.1186/1687-2770-2013-112
10.1073/pnas.27.4.222
10.1016/j.camwa.2011.03.002
10.1080/00036810108840931
10.23919/ECC.2001.7076127
10.1186/s13662-021-03393-x
10.1186/s13662-021-03454-1
10.1088/1742-6596/1597/1/012027
10.4064/sm-113-3-199-210
10.1186/s13661-019-1194-0
10.1186/s13662-020-02558-4
10.1186/s13662-020-02854-z
10.1080/10652469808819206
10.1186/s13661-017-0749-1
10.1016/j.chaos.2020.109705
ContentType Journal Article
CorporateAuthor Department of Mathematics and Computer Science, Faculty of Arts and Sciences, Çankaya University Ankara, 06790 Etimesgut, Turkey
Department of Mathematics, Government Arts and Science College, Hosur, 635 110, Tamilnadu, India
Department of Mathematics, College of Science and Arts, Muhayil, King Khalid University, Abha 9004, Saudi Arabia
Department of Mathematics, Faculty of Science, Mansoura University, 35516 Mansoura, Egypt
Department of Mathematics, Adhiyamaan college of engineering, Hosur, 635 109, Tamilnadu, India
Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan, China
Department of Mathematics, JIS College of Engineering, Kalyani, West Bengal-741 235, India
Department of Mathematics, Phuket Rajabhat University, 83000, Thailand
Instiute of Space Sciences, Magurele-Bucharest, 077125 Magurele, Romania
CorporateAuthor_xml – name: Department of Mathematics, Adhiyamaan college of engineering, Hosur, 635 109, Tamilnadu, India
– name: Department of Mathematics, Government Arts and Science College, Hosur, 635 110, Tamilnadu, India
– name: Department of Mathematics, JIS College of Engineering, Kalyani, West Bengal-741 235, India
– name: Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan, China
– name: Department of Mathematics, Phuket Rajabhat University, 83000, Thailand
– name: Department of Mathematics and Computer Science, Faculty of Arts and Sciences, Çankaya University Ankara, 06790 Etimesgut, Turkey
– name: Department of Mathematics, Faculty of Science, Mansoura University, 35516 Mansoura, Egypt
– name: Department of Mathematics, College of Science and Arts, Muhayil, King Khalid University, Abha 9004, Saudi Arabia
– name: Instiute of Space Sciences, Magurele-Bucharest, 077125 Magurele, Romania
DBID AAYXX
CITATION
DOA
DOI 10.3934/math.2022103
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2473-6988
EndPage 1810
ExternalDocumentID oai_doaj_org_article_be85ccca6a0f49ac89d744b417bc9f55
10_3934_math_2022103
GroupedDBID AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
CITATION
EBS
FRJ
GROUPED_DOAJ
IAO
ITC
M~E
OK1
RAN
ID FETCH-LOGICAL-c378t-aeecfc36e12a32193132c7c15d0480ee73830211d0ae02ca313033a02da1f6ae3
IEDL.DBID DOA
ISSN 2473-6988
IngestDate Wed Aug 27 01:32:27 EDT 2025
Thu Apr 24 22:51:34 EDT 2025
Tue Jul 01 03:56:51 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c378t-aeecfc36e12a32193132c7c15d0480ee73830211d0ae02ca313033a02da1f6ae3
OpenAccessLink https://doaj.org/article/be85ccca6a0f49ac89d744b417bc9f55
PageCount 20
ParticipantIDs doaj_primary_oai_doaj_org_article_be85ccca6a0f49ac89d744b417bc9f55
crossref_citationtrail_10_3934_math_2022103
crossref_primary_10_3934_math_2022103
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-01
  day: 01
PublicationDecade 2020
PublicationTitle AIMS mathematics
PublicationYear 2022
Publisher AIMS Press
Publisher_xml – name: AIMS Press
References key-10.3934/math.2022103-28
key-10.3934/math.2022103-29
key-10.3934/math.2022103-26
key-10.3934/math.2022103-27
key-10.3934/math.2022103-24
key-10.3934/math.2022103-25
key-10.3934/math.2022103-22
key-10.3934/math.2022103-23
key-10.3934/math.2022103-20
key-10.3934/math.2022103-21
key-10.3934/math.2022103-6
key-10.3934/math.2022103-7
key-10.3934/math.2022103-8
key-10.3934/math.2022103-9
key-10.3934/math.2022103-19
key-10.3934/math.2022103-17
key-10.3934/math.2022103-1
key-10.3934/math.2022103-18
key-10.3934/math.2022103-2
key-10.3934/math.2022103-15
key-10.3934/math.2022103-37
key-10.3934/math.2022103-3
key-10.3934/math.2022103-16
key-10.3934/math.2022103-4
key-10.3934/math.2022103-13
key-10.3934/math.2022103-35
key-10.3934/math.2022103-5
key-10.3934/math.2022103-14
key-10.3934/math.2022103-36
key-10.3934/math.2022103-11
key-10.3934/math.2022103-33
key-10.3934/math.2022103-12
key-10.3934/math.2022103-34
key-10.3934/math.2022103-31
key-10.3934/math.2022103-10
key-10.3934/math.2022103-32
key-10.3934/math.2022103-30
References_xml – ident: key-10.3934/math.2022103-3
  doi: 10.1016/j.cnsns.2010.05.027
– ident: key-10.3934/math.2022103-9
  doi: 10.1080/01630563.2019.1604545
– ident: key-10.3934/math.2022103-15
  doi: 10.2307/2042795
– ident: key-10.3934/math.2022103-30
  doi: 10.1186/s13662-021-03320-0
– ident: key-10.3934/math.2022103-16
– ident: key-10.3934/math.2022103-33
– ident: key-10.3934/math.2022103-18
  doi: 10.1016/j.chaos.2019.109534
– ident: key-10.3934/math.2022103-12
  doi: 10.1098/rsta.2012.0144
– ident: key-10.3934/math.2022103-6
  doi: 10.1186/s13661-020-01361-0
– ident: key-10.3934/math.2022103-1
  doi: 10.2478/s13540-014-0209-x
– ident: key-10.3934/math.2022103-10
  doi: 10.1186/s13661-017-0867-9
– ident: key-10.3934/math.2022103-26
  doi: 10.1140/epjp/i2018-12119-6
– ident: key-10.3934/math.2022103-35
  doi: 10.1007/BF01093718
– ident: key-10.3934/math.2022103-19
  doi: 10.3233/JIFS-191025
– ident: key-10.3934/math.2022103-7
– ident: key-10.3934/math.2022103-20
  doi: 10.3934/dcdss.2017025
– ident: key-10.3934/math.2022103-21
  doi: 10.1186/s13661-019-1172-6
– ident: key-10.3934/math.2022103-2
– ident: key-10.3934/math.2022103-13
– ident: key-10.3934/math.2022103-23
  doi: 10.1007/s40314-019-0791-y
– ident: key-10.3934/math.2022103-25
  doi: 10.1186/s13661-018-1008-9
– ident: key-10.3934/math.2022103-11
  doi: 10.1186/1687-2770-2013-112
– ident: key-10.3934/math.2022103-14
  doi: 10.1073/pnas.27.4.222
– ident: key-10.3934/math.2022103-4
  doi: 10.1016/j.camwa.2011.03.002
– ident: key-10.3934/math.2022103-34
– ident: key-10.3934/math.2022103-37
  doi: 10.1080/00036810108840931
– ident: key-10.3934/math.2022103-17
  doi: 10.23919/ECC.2001.7076127
– ident: key-10.3934/math.2022103-29
  doi: 10.1186/s13662-021-03393-x
– ident: key-10.3934/math.2022103-31
  doi: 10.1186/s13662-021-03454-1
– ident: key-10.3934/math.2022103-27
  doi: 10.1088/1742-6596/1597/1/012027
– ident: key-10.3934/math.2022103-36
  doi: 10.4064/sm-113-3-199-210
– ident: key-10.3934/math.2022103-24
  doi: 10.1186/s13661-019-1194-0
– ident: key-10.3934/math.2022103-22
  doi: 10.1186/s13662-020-02558-4
– ident: key-10.3934/math.2022103-28
  doi: 10.1186/s13662-020-02854-z
– ident: key-10.3934/math.2022103-32
  doi: 10.1080/10652469808819206
– ident: key-10.3934/math.2022103-8
  doi: 10.1186/s13661-017-0749-1
– ident: key-10.3934/math.2022103-5
  doi: 10.1016/j.chaos.2020.109705
SSID ssj0002124274
Score 2.275554
Snippet In this paper, we discuss standard approaches to the Hyers-Ulam Mittag Leffler problem of fractional derivatives and nonlinear fractional integrals (simply...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 1791
SubjectTerms caputo derivative
fractional differential equation
fractional fourier transform
hyers-ulam-mittag-leffler stability
mittag-leffler function
Title Hyers-Ulam-Mittag-Leffler stability of fractional differential equations with two caputo derivative using fractional fourier transform
URI https://doaj.org/article/be85ccca6a0f49ac89d744b417bc9f55
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1Fe8gATsprEzmsERFUhykSlbpHjnCukqiltCuIP8Lu5i9MqDIiFNbIc6-7i-z7n_B1jV6kGzyQqF9TNWKjANyKNDMaykT5IaxHQ0UXh4XM0GKnHcThutfqimjAnD-wM18shCQ2-JtKeVak2SVrESuXKj3OT2rBWL8Wc1yJTtAfjhqyQb7lKd5lK1UP8R_8eAqQ48kcOakn11zmlv8d2GzDIb90i9tkWzA7YznCjpLo8ZF8DwsRihI4Tw9eq0hPxBNZOYcER19WVrZ-8tNwu3A0FnG7d8wS_3SmHN6flveR04sqrj5IbPV9VJS8w9t5r2W9Oxe-T9hTWdbLj1RrWHrFR_-HlfiCa3gnCyDiphAYw1sgI_EBL3JVIodHExg8LukQOEEsS_vL9wkNnBUZLymVSe0GhfRtpkMesMytncMI4cpwwRyKJ4AhUiI6IkfTIKLcaE6CCsMtu1tbMTCMsTv0tphkSDLJ9RrbPGtt32fVm9NwJavwy7o4csxlDMtj1AwyOrAmO7K_gOP2PSc7YNq3Jnbucs061WMEFIpEqv6yD7htbpeDr
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hyers-Ulam-Mittag-Leffler+stability+of+fractional+differential+equations+with+two+caputo+derivative+using+fractional+fourier+transform&rft.jtitle=AIMS+mathematics&rft.au=Anumanthappa+Ganesh&rft.au=Swaminathan+Deepa&rft.au=Dumitru+Baleanu&rft.au=Shyam+Sundar+Santra&rft.date=2022-01-01&rft.pub=AIMS+Press&rft.eissn=2473-6988&rft.volume=7&rft.issue=2&rft.spage=1791&rft.epage=1810&rft_id=info:doi/10.3934%2Fmath.2022103&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_be85ccca6a0f49ac89d744b417bc9f55
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon