Performance optimization of PERC solar cells based on laser ablation forming local contact on the rear

To improve the photoelectric conversion efficiency ( ) of the solar cell, a green wavelength (532 nm) laser source in a nanosecond range was used to ablate the passivated emitter and rear cell (PERC) to form the contact holes. If the laser ablation hole opening process was not set properly, the diam...

Full description

Saved in:
Bibliographic Details
Published inHigh temperature materials and processes Vol. 43; no. 1; pp. pp. 1363 - 1365
Main Authors Wu, Hao, Zhao, Shikai, Hong, Jiaqi, Zou, Dingsen, Hu, Kaixiang, Zhu, Ping, Chen, Yizhan
Format Journal Article
LanguageEnglish
Published Berlin De Gruyter 01.01.2024
Walter de Gruyter GmbH
Subjects
Online AccessGet full text
ISSN2191-0324
0334-6455
2191-0324
DOI10.1515/htmp-2022-0326

Cover

Abstract To improve the photoelectric conversion efficiency ( ) of the solar cell, a green wavelength (532 nm) laser source in a nanosecond range was used to ablate the passivated emitter and rear cell (PERC) to form the contact holes. If the laser ablation hole opening process was not set properly, the diameter or the external expansion of holes would be too large, causing the decline of the PERC performance. The Gaussian distribution of the laser is regulated by the output power ( ) and the repetition frequency ( ) of the incident pulse laser, so that the optimized morphology of holes is obtained on the back of the PERC solar cells. After the contact holes are screen printed by the aluminum paste, the local back surface field is finally formed. The experimental results showed that the outward expansion decreases obviously with the increase of laser . Second, the spacing of the holes decreases with the increase of the laser . It was found that under the laser of 33.0 W and of 1,400 kHz, the of the industrial PERC solar cells was the highest. The Quokka simulations indicated that small outward expansion, small diameter, and long spacing of holes would further decrease the recombination parameter in the rear surface. With the optimized morphology of contact holes and the low contact resistance, the PERC cell’s calculated and improvements were 6.5 mV and 0.48%, respectively, which was verified with experimental findings.
AbstractList To improve the photoelectric conversion efficiency ( η ) of the solar cell, a green wavelength (532 nm) laser source in a nanosecond range was used to ablate the passivated emitter and rear cell (PERC) to form the contact holes. If the laser ablation hole opening process was not set properly, the diameter or the external expansion of holes would be too large, causing the decline of the PERC performance. The Gaussian distribution of the laser is regulated by the output power ( P o ) and the repetition frequency ( f rep ) of the incident pulse laser, so that the optimized morphology of holes is obtained on the back of the PERC solar cells. After the contact holes are screen printed by the aluminum paste, the local back surface field is finally formed. The experimental results showed that the outward expansion decreases obviously with the increase of laser P o . Second, the spacing of the holes decreases with the increase of the laser f rep . It was found that under the laser P o of 33.0 W and f rep of 1,400 kHz, the η of the industrial PERC solar cells was the highest. The Quokka simulations indicated that small outward expansion, small diameter, and long spacing of holes would further decrease the recombination parameter in the rear surface. With the optimized morphology of contact holes and the low contact resistance, the PERC cell’s calculated V oc and η improvements were 6.5 mV and 0.48%, respectively, which was verified with experimental findings.
To improve the photoelectric conversion efficiency (η) of the solar cell, a green wavelength (532 nm) laser source in a nanosecond range was used to ablate the passivated emitter and rear cell (PERC) to form the contact holes. If the laser ablation hole opening process was not set properly, the diameter or the external expansion of holes would be too large, causing the decline of the PERC performance. The Gaussian distribution of the laser is regulated by the output power (P o) and the repetition frequency (f rep) of the incident pulse laser, so that the optimized morphology of holes is obtained on the back of the PERC solar cells. After the contact holes are screen printed by the aluminum paste, the local back surface field is finally formed. The experimental results showed that the outward expansion decreases obviously with the increase of laser P o. Second, the spacing of the holes decreases with the increase of the laser f rep. It was found that under the laser P o of 33.0 W and f rep of 1,400 kHz, the η of the industrial PERC solar cells was the highest. The Quokka simulations indicated that small outward expansion, small diameter, and long spacing of holes would further decrease the recombination parameter in the rear surface. With the optimized morphology of contact holes and the low contact resistance, the PERC cell’s calculated V oc and η improvements were 6.5 mV and 0.48%, respectively, which was verified with experimental findings.
To improve the photoelectric conversion efficiency ( ) of the solar cell, a green wavelength (532 nm) laser source in a nanosecond range was used to ablate the passivated emitter and rear cell (PERC) to form the contact holes. If the laser ablation hole opening process was not set properly, the diameter or the external expansion of holes would be too large, causing the decline of the PERC performance. The Gaussian distribution of the laser is regulated by the output power ( ) and the repetition frequency ( ) of the incident pulse laser, so that the optimized morphology of holes is obtained on the back of the PERC solar cells. After the contact holes are screen printed by the aluminum paste, the local back surface field is finally formed. The experimental results showed that the outward expansion decreases obviously with the increase of laser . Second, the spacing of the holes decreases with the increase of the laser . It was found that under the laser of 33.0 W and of 1,400 kHz, the of the industrial PERC solar cells was the highest. The Quokka simulations indicated that small outward expansion, small diameter, and long spacing of holes would further decrease the recombination parameter in the rear surface. With the optimized morphology of contact holes and the low contact resistance, the PERC cell’s calculated and improvements were 6.5 mV and 0.48%, respectively, which was verified with experimental findings.
Author Zou, Dingsen
Hu, Kaixiang
Wu, Hao
Hong, Jiaqi
Zhao, Shikai
Zhu, Ping
Chen, Yizhan
Author_xml – sequence: 1
  givenname: Hao
  surname: Wu
  fullname: Wu, Hao
  organization: Jiangsu Runyang Yueda Century Photovoltaic Technology Co., Ltd, Jiangsu, China
– sequence: 2
  givenname: Shikai
  surname: Zhao
  fullname: Zhao, Shikai
  organization: School of Applied Physics and Materials, Wuyi University, Jiangmen, China
– sequence: 3
  givenname: Jiaqi
  surname: Hong
  fullname: Hong, Jiaqi
  organization: School of Applied Physics and Materials, Wuyi University, Jiangmen, China
– sequence: 4
  givenname: Dingsen
  surname: Zou
  fullname: Zou, Dingsen
  organization: School of Applied Physics and Materials, Wuyi University, Jiangmen, China
– sequence: 5
  givenname: Kaixiang
  surname: Hu
  fullname: Hu, Kaixiang
  organization: School of Applied Physics and Materials, Wuyi University, Jiangmen, China
– sequence: 6
  givenname: Ping
  surname: Zhu
  fullname: Zhu, Ping
  organization: Guangzhou Sanfu New Materials Technology Co., Ltd, Guangzhou, China
– sequence: 7
  givenname: Yizhan
  surname: Chen
  fullname: Chen, Yizhan
  email: yizhanchen@126.com
  organization: School of Applied Physics and Materials, Wuyi University, Jiangmen, China
BookMark eNptkc1rFTEUxYNUsNZuXQdcT83nTLKUR9VCwSLdh5vMzes88ibPTB5S_3ozjqgLs8kh95xfLpzX5GLOMxLylrMbrrl-_1SPp04wITomRf-CXApu-arVxT_6FblelgNrR1muB35J4gOWmMsR5oA0n-p0nH5AnfJMc6QPt193dMkJCg2Y0kI9LDjSNkxNFAo-bd6VMM17mnKAREOeK4S6-uoT0oJQ3pCXEdKC17_vK_L48fZx97m7__LpbvfhvgtyMLUDNGCFt2b0Jg7coIpaNY1MGj8YlMFHEQffW5TRx8Ci8p7xiNoqYEFekbsNO2Y4uFOZjlCeXYbJ_XrIZe-g1CkkdP2ooLfKBgWDGsNohTRawwDMcB61aKx3G-tU8rczLtUd8rnMbXsneW-l7vuBN9fN5golL0vB-OdXztzajFubcWszbm2mBewW-A6pYhlxX87PTfyl_z-oJJc_Ad22l1g
Cites_doi 10.1109/JPHOTOV.2016.2617042
10.1109/JPHOTOV.2019.2899460
10.1002/pip.3187
10.1016/j.solmat.2015.06.057
10.1088/0022-3727/39/3/005
10.1002/pip.3425
10.1016/j.apsusc.2011.09.108
10.1016/j.solmat.2016.09.021
10.1063/1.2172738
10.1063/1.101596
10.1016/j.egypro.2012.07.003
10.1109/JPHOTOV.2014.2320302
10.1364/OPTICA.4.000951
10.1117/12.932276
10.1016/j.solener.2018.02.046
10.2351/1.5028314
10.1016/j.solener.2018.12.049
10.1016/j.solmat.2013.04.025
10.4028/www.scientific.net/SSP.308.138
10.1016/j.egypro.2015.07.073
10.1364/OL.7.000196
10.1016/j.phpro.2010.08.148
10.1016/j.solener.2019.12.044
10.1016/j.solener.2018.04.022
10.2351/1.521827
ContentType Journal Article
Copyright This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SR
8BQ
8FD
JG9
DOA
DOI 10.1515/htmp-2022-0326
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList CrossRef
Materials Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2191-0324
EndPage 1365
ExternalDocumentID oai_doaj_org_article_6d4a6949c4a74dcd923855a7a0811f52
10_1515_htmp_2022_0326
10_1515_htmp_2022_0326431
GroupedDBID -~X
0R~
0~D
4.4
5GY
AAFPC
AAFWJ
AAQCX
AASOL
AASQH
ABAOT
ABAQN
ABFKT
ABIQR
ABSOE
ABUVI
ABXMZ
ACGFS
ACIWK
ACXLN
ACZBO
ADGQD
ADGYE
ADJVZ
ADOZN
AEJTT
AENEX
AEQDQ
AEXIE
AFBAA
AFBDD
AFCXV
AFPKN
AFQUK
AHGSO
AIERV
AJATJ
AKXKS
ALMA_UNASSIGNED_HOLDINGS
BAKPI
BBCWN
CFGNV
EBS
GROUPED_DOAJ
HZ~
IY9
M48
O9-
OK1
P2P
QD8
RDG
SA.
SLJYH
AAYXX
CITATION
7SR
8BQ
8FD
JG9
ID FETCH-LOGICAL-c378t-ae8a92b98db8f718e4f54db8e038b78e3cbf2f7b69e3fbfc0f4bb01fe594a0c3
IEDL.DBID M48
ISSN 2191-0324
0334-6455
IngestDate Wed Aug 27 01:21:08 EDT 2025
Mon Jun 30 10:04:35 EDT 2025
Tue Jul 01 00:44:35 EDT 2025
Sat Sep 06 16:57:52 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This work is licensed under the Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c378t-ae8a92b98db8f718e4f54db8e038b78e3cbf2f7b69e3fbfc0f4bb01fe594a0c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1515/htmp-2022-0326
PQID 3169356671
PQPubID 2030061
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_6d4a6949c4a74dcd923855a7a0811f52
proquest_journals_3169356671
crossref_primary_10_1515_htmp_2022_0326
walterdegruyter_journals_10_1515_htmp_2022_0326431
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin
PublicationPlace_xml – name: Berlin
PublicationTitle High temperature materials and processes
PublicationYear 2024
Publisher De Gruyter
Walter de Gruyter GmbH
Publisher_xml – name: De Gruyter
– name: Walter de Gruyter GmbH
References 2024030815204708942_j_htmp-2022-0326_ref_008
2024030815204708942_j_htmp-2022-0326_ref_009
2024030815204708942_j_htmp-2022-0326_ref_006
2024030815204708942_j_htmp-2022-0326_ref_007
2024030815204708942_j_htmp-2022-0326_ref_004
2024030815204708942_j_htmp-2022-0326_ref_026
2024030815204708942_j_htmp-2022-0326_ref_005
2024030815204708942_j_htmp-2022-0326_ref_027
2024030815204708942_j_htmp-2022-0326_ref_002
2024030815204708942_j_htmp-2022-0326_ref_024
2024030815204708942_j_htmp-2022-0326_ref_003
2024030815204708942_j_htmp-2022-0326_ref_025
2024030815204708942_j_htmp-2022-0326_ref_022
2024030815204708942_j_htmp-2022-0326_ref_001
2024030815204708942_j_htmp-2022-0326_ref_023
2024030815204708942_j_htmp-2022-0326_ref_020
2024030815204708942_j_htmp-2022-0326_ref_021
2024030815204708942_j_htmp-2022-0326_ref_019
2024030815204708942_j_htmp-2022-0326_ref_017
2024030815204708942_j_htmp-2022-0326_ref_018
2024030815204708942_j_htmp-2022-0326_ref_015
2024030815204708942_j_htmp-2022-0326_ref_016
2024030815204708942_j_htmp-2022-0326_ref_013
2024030815204708942_j_htmp-2022-0326_ref_014
2024030815204708942_j_htmp-2022-0326_ref_011
2024030815204708942_j_htmp-2022-0326_ref_012
2024030815204708942_j_htmp-2022-0326_ref_010
References_xml – ident: 2024030815204708942_j_htmp-2022-0326_ref_017
  doi: 10.1109/JPHOTOV.2016.2617042
– ident: 2024030815204708942_j_htmp-2022-0326_ref_005
  doi: 10.1109/JPHOTOV.2019.2899460
– ident: 2024030815204708942_j_htmp-2022-0326_ref_015
  doi: 10.1002/pip.3187
– ident: 2024030815204708942_j_htmp-2022-0326_ref_018
  doi: 10.1016/j.solmat.2015.06.057
– ident: 2024030815204708942_j_htmp-2022-0326_ref_008
  doi: 10.1088/0022-3727/39/3/005
– ident: 2024030815204708942_j_htmp-2022-0326_ref_027
  doi: 10.1002/pip.3425
– ident: 2024030815204708942_j_htmp-2022-0326_ref_013
  doi: 10.1016/j.apsusc.2011.09.108
– ident: 2024030815204708942_j_htmp-2022-0326_ref_022
  doi: 10.1016/j.solmat.2016.09.021
– ident: 2024030815204708942_j_htmp-2022-0326_ref_011
  doi: 10.1063/1.2172738
– ident: 2024030815204708942_j_htmp-2022-0326_ref_001
  doi: 10.1063/1.101596
– ident: 2024030815204708942_j_htmp-2022-0326_ref_003
  doi: 10.1016/j.egypro.2012.07.003
– ident: 2024030815204708942_j_htmp-2022-0326_ref_016
  doi: 10.1109/JPHOTOV.2014.2320302
– ident: 2024030815204708942_j_htmp-2022-0326_ref_002
– ident: 2024030815204708942_j_htmp-2022-0326_ref_012
  doi: 10.1364/OPTICA.4.000951
– ident: 2024030815204708942_j_htmp-2022-0326_ref_006
  doi: 10.1002/pip.3425
– ident: 2024030815204708942_j_htmp-2022-0326_ref_024
  doi: 10.1117/12.932276
– ident: 2024030815204708942_j_htmp-2022-0326_ref_010
  doi: 10.1016/j.solener.2018.02.046
– ident: 2024030815204708942_j_htmp-2022-0326_ref_026
  doi: 10.2351/1.5028314
– ident: 2024030815204708942_j_htmp-2022-0326_ref_019
  doi: 10.1016/j.solener.2018.12.049
– ident: 2024030815204708942_j_htmp-2022-0326_ref_007
  doi: 10.1016/j.solmat.2013.04.025
– ident: 2024030815204708942_j_htmp-2022-0326_ref_020
  doi: 10.4028/www.scientific.net/SSP.308.138
– ident: 2024030815204708942_j_htmp-2022-0326_ref_004
  doi: 10.1016/j.egypro.2015.07.073
– ident: 2024030815204708942_j_htmp-2022-0326_ref_021
  doi: 10.1364/OL.7.000196
– ident: 2024030815204708942_j_htmp-2022-0326_ref_014
  doi: 10.1016/j.phpro.2010.08.148
– ident: 2024030815204708942_j_htmp-2022-0326_ref_025
  doi: 10.1016/j.solener.2019.12.044
– ident: 2024030815204708942_j_htmp-2022-0326_ref_023
  doi: 10.1016/j.solener.2018.04.022
– ident: 2024030815204708942_j_htmp-2022-0326_ref_009
  doi: 10.2351/1.521827
SSID ssj0000491571
Score 2.284296
Snippet To improve the photoelectric conversion efficiency ( ) of the solar cell, a green wavelength (532 nm) laser source in a nanosecond range was used to ablate the...
To improve the photoelectric conversion efficiency ( η ) of the solar cell, a green wavelength (532 nm) laser source in a nanosecond range was used to ablate...
To improve the photoelectric conversion efficiency (η) of the solar cell, a green wavelength (532 nm) laser source in a nanosecond range was used to ablate the...
SourceID doaj
proquest
crossref
walterdegruyter
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage pp. 1363
SubjectTerms Ablation
Contact holes
Contact resistance
Emitters
Energy conversion efficiency
Laser ablation
laser output power
Lasers
local back surface field
Morphology
nanosecond laser ablation
Normal distribution
Photoelectricity
Photovoltaic cells
repetition frequency
solar cell simulation
Solar cells
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8QwEA3iSQ-Ln7i6Sg6Cp7Jpm7TJUcVlERSRFfYWknaiCPtBt4v4752kXV1F8OKttGEIb5LMm2T6Qsg5T5yMXeqiJGFlxAHCOhhHAtkwFzFAFmpz7u6z4RO_HYvx2lVfviaskQdugOtnJTeZ4qrgJudlUSIhkUKY3GAsi50Iqy9TbC2Zem14byzyuFVpxJjdf6kncxwSmHqx1CsprEWhINb_jWF23sJZdQnP1fK9Xp2NhpAz2CGdlivSy6aPu2QDpntke01BcJ-4h6_CfzrD6T9p_6ukM0cfbh6v6cLnrtTvzy-oD1klxY9ImaGixjaFcNRbQHM0BDbqq9dNUft2yA4pssrqgIwGN6PrYdRenRAVaS7ryIA0KrFKllY6DD_AneD4DCyVNpeQFtYlLreZgtRZVzDHrWWxA6G4YUV6SDansykcEYrpXpkImwGz6IIEEyzIlOKSW6kKpmSXXKyQ1PNGIEP7xAIx1x5z7THXHvMuufJAf7bywtbhBbpbt-7Wf7m7S3orN-l2ti106hVlkJfmcZckP1z31er3XiGBOv6Pjp2QLbTJm92ZHtmsqyWcIl-p7VkYmh9HeuiV
  priority: 102
  providerName: Directory of Open Access Journals
Title Performance optimization of PERC solar cells based on laser ablation forming local contact on the rear
URI https://www.degruyter.com/doi/10.1515/htmp-2022-0326
https://www.proquest.com/docview/3169356671
https://doaj.org/article/6d4a6949c4a74dcd923855a7a0811f52
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA66XvQgPnF9kYPgqdqmSZscRFQUERQRBW8haSeK6K52K7r_3knadX0dvIV2SJuZJPN9yWRCyBZnTiYudRFjcRlxgDAPJpFANMxFApCF2Jzzi-z0hp_dittx_FOrwMGf1M7fJ3VTPe68vwz3ccDvhdt7ErF7Xz89o7WRVcUIRibJFHqlzBOx8xbqPzRIOBGBf-EY9VFEjLc5HH9X8c1HhVT-3_Dn7FvYyS7hrnod1qOd0-CQTubIbIsk6UFj-nkyAb0FMvMlv-AicZfjYwG0j5PDU3vqkvYdvTy-OqID33zqV-8H1Du0kuJLBNRQUWObMDnqa8DqaHB71Me2m6L2cogdKWLOaolcnxxfH51G7cUKUZHmso4MSKOYVbK00qFzAu4ExzLEqbS5hLSwjrncZgpSZ10RO25tnDgQipu4SJdJp9fvwQqhSAZLJmwGsS24YUi_IFOKS26lKmIlu2R7pEn93KTP0J52oM6117n2Otde511y6BX9KeXTXocH_epOt6NIZyU3meIKv5XzsigRnUohTG4Q2CROsC5ZH5lJj7qSTn2-GUStedIl7IfpxlJ__xXCq9V_N2GNTGOZNws066RTV6-wgZCltpuB6m-GHvkBgdXp6Q
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7B9gAcKp5ioYAPSJyiJo6d2MdStSzQlgoWqTfLj3F7oJsqmxXi3zNO0u0WOHFL4qdmYs83k_EXgLeCR1XEMmac5yETiP0-WGSS0LCQBWLV5-Ycn1Sz7-LTmTzbOAuT0ioDnrerX93AkLobGr9KgbI11wBZ4N2L7vKKFEyOVE74I93-uAtbFaF_PoGtvdmHb1_WkRbCwIWsi5Gx8e_WtyxST9x_C21u_-y_W68ntWF-Dh_C9ogb2d6g6EdwBxeP4cEGm-ATiKc3hwBYQ1vB5XjGkjWRnR583WfL5MeyFKtfsmS-AqNCgs_YMuuGpDiWeqDuWG_kWMpkt75L9QgpMkKY7VOYHx7M92fZ-BuFzJe16jKLymrutApORTJFKKIUdI15qVytsPQu8li7SmMZXfR5FM7lRUSphc19-Qwmi2aBz4GR6xe4dBXmzgvLydnCSmuhhFPa51pN4d21JM3VQJZhkpNBMjdJ5ibJ3CSZT-F9EvS6ViK57h807bkZ14ypgrCVFprGqkXwgbCoktLWlmBMESWfws61msy48pamTOwyhFHrYgr8D9Xd1Pr3rAhMvfifRm_g3mx-fGSOPp58fgn3qUgMUZodmHTtCl8Rbunc6_HF_A29nOwl
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7BVkL0UPEUW0rxAYlTtIljO_axlG6XV1lBkbhZfpZLN6tsVlX_PeMku22BE7coHjvWTOz5ZjL-AvCG0SiLWMaM0txnLIRuHywyjmiY8SIE0dXmfDkTsx_s40--qSZcDWWVPlw06-u2Z0id-NqtU6JsyzWAHnjyq71cooExkMoRf0yWPt6HHSEUlSPYOZqdfv-6TbQgBC54VQyEjX93vuOQOt7-O2Bz76r7bL2d0y3vM30EewNsJEe9nR_DvbB4Aru3yASfQpzfnAEgNe4El8MRS1JHMj_5dkxWKYwlKVW_Isl7eYKNiJ5DQ4zta-JIGgGHI52PI6mQ3bg2ySFQJAgwm2dwPj05P55lw18UMldWss1MkEZRq6S3MqInCixyhtchL6WtZCidjTRWVqhQRhtdHpm1eREDV8zkrnwOo0W9CC-AYOTnKbci5NYxQzHWCkIpJpmVyuVKjuHtRpN62XNl6BRjoM510rlOOtdJ52N4lxS9lUoc192NurnQw5LRwjMjFFP4rIp55xGKSs5NZRDFFJHTMRxszKSHhbfSZSKXQYhaFWOgf5juRurfs0Istf8_nV7Dg_n7qf784ezTS3iILazP0RzAqG3W4RWiltYeDu_lb3KQ61Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+optimization+of+PERC+solar+cells+based+on+laser+ablation+forming+local+contact+on+the+rear&rft.jtitle=High+temperature+materials+and+processes&rft.au=Wu%2C+Hao&rft.au=Zhao%2C+Shikai&rft.au=Hong%2C+Jiaqi&rft.au=Zou%2C+Dingsen&rft.date=2024-01-01&rft.issn=2191-0324&rft.eissn=2191-0324&rft.volume=43&rft.issue=1&rft_id=info:doi/10.1515%2Fhtmp-2022-0326&rft.externalDBID=n%2Fa&rft.externalDocID=10_1515_htmp_2022_0326
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2191-0324&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2191-0324&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2191-0324&client=summon