Performance optimization of PERC solar cells based on laser ablation forming local contact on the rear
To improve the photoelectric conversion efficiency ( ) of the solar cell, a green wavelength (532 nm) laser source in a nanosecond range was used to ablate the passivated emitter and rear cell (PERC) to form the contact holes. If the laser ablation hole opening process was not set properly, the diam...
Saved in:
Published in | High temperature materials and processes Vol. 43; no. 1; pp. pp. 1363 - 1365 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin
De Gruyter
01.01.2024
Walter de Gruyter GmbH |
Subjects | |
Online Access | Get full text |
ISSN | 2191-0324 0334-6455 2191-0324 |
DOI | 10.1515/htmp-2022-0326 |
Cover
Abstract | To improve the photoelectric conversion efficiency (
) of the solar cell, a green wavelength (532 nm) laser source in a nanosecond range was used to ablate the passivated emitter and rear cell (PERC) to form the contact holes. If the laser ablation hole opening process was not set properly, the diameter or the external expansion of holes would be too large, causing the decline of the PERC performance. The Gaussian distribution of the laser is regulated by the output power (
) and the repetition frequency (
) of the incident pulse laser, so that the optimized morphology of holes is obtained on the back of the PERC solar cells. After the contact holes are screen printed by the aluminum paste, the local back surface field is finally formed. The experimental results showed that the outward expansion decreases obviously with the increase of laser
. Second, the spacing of the holes decreases with the increase of the laser
. It was found that under the laser
of 33.0 W and
of 1,400 kHz, the
of the industrial PERC solar cells was the highest. The Quokka simulations indicated that small outward expansion, small diameter, and long spacing of holes would further decrease the recombination parameter in the rear surface. With the optimized morphology of contact holes and the low contact resistance, the PERC cell’s calculated
and
improvements were 6.5 mV and 0.48%, respectively, which was verified with experimental findings. |
---|---|
AbstractList | To improve the photoelectric conversion efficiency (
η
) of the solar cell, a green wavelength (532 nm) laser source in a nanosecond range was used to ablate the passivated emitter and rear cell (PERC) to form the contact holes. If the laser ablation hole opening process was not set properly, the diameter or the external expansion of holes would be too large, causing the decline of the PERC performance. The Gaussian distribution of the laser is regulated by the output power (
P
o
) and the repetition frequency (
f
rep
) of the incident pulse laser, so that the optimized morphology of holes is obtained on the back of the PERC solar cells. After the contact holes are screen printed by the aluminum paste, the local back surface field is finally formed. The experimental results showed that the outward expansion decreases obviously with the increase of laser
P
o
. Second, the spacing of the holes decreases with the increase of the laser
f
rep
. It was found that under the laser
P
o
of 33.0 W and
f
rep
of 1,400 kHz, the
η
of the industrial PERC solar cells was the highest. The Quokka simulations indicated that small outward expansion, small diameter, and long spacing of holes would further decrease the recombination parameter in the rear surface. With the optimized morphology of contact holes and the low contact resistance, the PERC cell’s calculated
V
oc
and
η
improvements were 6.5 mV and 0.48%, respectively, which was verified with experimental findings. To improve the photoelectric conversion efficiency (η) of the solar cell, a green wavelength (532 nm) laser source in a nanosecond range was used to ablate the passivated emitter and rear cell (PERC) to form the contact holes. If the laser ablation hole opening process was not set properly, the diameter or the external expansion of holes would be too large, causing the decline of the PERC performance. The Gaussian distribution of the laser is regulated by the output power (P o) and the repetition frequency (f rep) of the incident pulse laser, so that the optimized morphology of holes is obtained on the back of the PERC solar cells. After the contact holes are screen printed by the aluminum paste, the local back surface field is finally formed. The experimental results showed that the outward expansion decreases obviously with the increase of laser P o. Second, the spacing of the holes decreases with the increase of the laser f rep. It was found that under the laser P o of 33.0 W and f rep of 1,400 kHz, the η of the industrial PERC solar cells was the highest. The Quokka simulations indicated that small outward expansion, small diameter, and long spacing of holes would further decrease the recombination parameter in the rear surface. With the optimized morphology of contact holes and the low contact resistance, the PERC cell’s calculated V oc and η improvements were 6.5 mV and 0.48%, respectively, which was verified with experimental findings. To improve the photoelectric conversion efficiency ( ) of the solar cell, a green wavelength (532 nm) laser source in a nanosecond range was used to ablate the passivated emitter and rear cell (PERC) to form the contact holes. If the laser ablation hole opening process was not set properly, the diameter or the external expansion of holes would be too large, causing the decline of the PERC performance. The Gaussian distribution of the laser is regulated by the output power ( ) and the repetition frequency ( ) of the incident pulse laser, so that the optimized morphology of holes is obtained on the back of the PERC solar cells. After the contact holes are screen printed by the aluminum paste, the local back surface field is finally formed. The experimental results showed that the outward expansion decreases obviously with the increase of laser . Second, the spacing of the holes decreases with the increase of the laser . It was found that under the laser of 33.0 W and of 1,400 kHz, the of the industrial PERC solar cells was the highest. The Quokka simulations indicated that small outward expansion, small diameter, and long spacing of holes would further decrease the recombination parameter in the rear surface. With the optimized morphology of contact holes and the low contact resistance, the PERC cell’s calculated and improvements were 6.5 mV and 0.48%, respectively, which was verified with experimental findings. |
Author | Zou, Dingsen Hu, Kaixiang Wu, Hao Hong, Jiaqi Zhao, Shikai Zhu, Ping Chen, Yizhan |
Author_xml | – sequence: 1 givenname: Hao surname: Wu fullname: Wu, Hao organization: Jiangsu Runyang Yueda Century Photovoltaic Technology Co., Ltd, Jiangsu, China – sequence: 2 givenname: Shikai surname: Zhao fullname: Zhao, Shikai organization: School of Applied Physics and Materials, Wuyi University, Jiangmen, China – sequence: 3 givenname: Jiaqi surname: Hong fullname: Hong, Jiaqi organization: School of Applied Physics and Materials, Wuyi University, Jiangmen, China – sequence: 4 givenname: Dingsen surname: Zou fullname: Zou, Dingsen organization: School of Applied Physics and Materials, Wuyi University, Jiangmen, China – sequence: 5 givenname: Kaixiang surname: Hu fullname: Hu, Kaixiang organization: School of Applied Physics and Materials, Wuyi University, Jiangmen, China – sequence: 6 givenname: Ping surname: Zhu fullname: Zhu, Ping organization: Guangzhou Sanfu New Materials Technology Co., Ltd, Guangzhou, China – sequence: 7 givenname: Yizhan surname: Chen fullname: Chen, Yizhan email: yizhanchen@126.com organization: School of Applied Physics and Materials, Wuyi University, Jiangmen, China |
BookMark | eNptkc1rFTEUxYNUsNZuXQdcT83nTLKUR9VCwSLdh5vMzes88ibPTB5S_3ozjqgLs8kh95xfLpzX5GLOMxLylrMbrrl-_1SPp04wITomRf-CXApu-arVxT_6FblelgNrR1muB35J4gOWmMsR5oA0n-p0nH5AnfJMc6QPt193dMkJCg2Y0kI9LDjSNkxNFAo-bd6VMM17mnKAREOeK4S6-uoT0oJQ3pCXEdKC17_vK_L48fZx97m7__LpbvfhvgtyMLUDNGCFt2b0Jg7coIpaNY1MGj8YlMFHEQffW5TRx8Ci8p7xiNoqYEFekbsNO2Y4uFOZjlCeXYbJ_XrIZe-g1CkkdP2ooLfKBgWDGsNohTRawwDMcB61aKx3G-tU8rczLtUd8rnMbXsneW-l7vuBN9fN5golL0vB-OdXztzajFubcWszbm2mBewW-A6pYhlxX87PTfyl_z-oJJc_Ad22l1g |
Cites_doi | 10.1109/JPHOTOV.2016.2617042 10.1109/JPHOTOV.2019.2899460 10.1002/pip.3187 10.1016/j.solmat.2015.06.057 10.1088/0022-3727/39/3/005 10.1002/pip.3425 10.1016/j.apsusc.2011.09.108 10.1016/j.solmat.2016.09.021 10.1063/1.2172738 10.1063/1.101596 10.1016/j.egypro.2012.07.003 10.1109/JPHOTOV.2014.2320302 10.1364/OPTICA.4.000951 10.1117/12.932276 10.1016/j.solener.2018.02.046 10.2351/1.5028314 10.1016/j.solener.2018.12.049 10.1016/j.solmat.2013.04.025 10.4028/www.scientific.net/SSP.308.138 10.1016/j.egypro.2015.07.073 10.1364/OL.7.000196 10.1016/j.phpro.2010.08.148 10.1016/j.solener.2019.12.044 10.1016/j.solener.2018.04.022 10.2351/1.521827 |
ContentType | Journal Article |
Copyright | This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7SR 8BQ 8FD JG9 DOA |
DOI | 10.1515/htmp-2022-0326 |
DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2191-0324 |
EndPage | 1365 |
ExternalDocumentID | oai_doaj_org_article_6d4a6949c4a74dcd923855a7a0811f52 10_1515_htmp_2022_0326 10_1515_htmp_2022_0326431 |
GroupedDBID | -~X 0R~ 0~D 4.4 5GY AAFPC AAFWJ AAQCX AASOL AASQH ABAOT ABAQN ABFKT ABIQR ABSOE ABUVI ABXMZ ACGFS ACIWK ACXLN ACZBO ADGQD ADGYE ADJVZ ADOZN AEJTT AENEX AEQDQ AEXIE AFBAA AFBDD AFCXV AFPKN AFQUK AHGSO AIERV AJATJ AKXKS ALMA_UNASSIGNED_HOLDINGS BAKPI BBCWN CFGNV EBS GROUPED_DOAJ HZ~ IY9 M48 O9- OK1 P2P QD8 RDG SA. SLJYH AAYXX CITATION 7SR 8BQ 8FD JG9 |
ID | FETCH-LOGICAL-c378t-ae8a92b98db8f718e4f54db8e038b78e3cbf2f7b69e3fbfc0f4bb01fe594a0c3 |
IEDL.DBID | M48 |
ISSN | 2191-0324 0334-6455 |
IngestDate | Wed Aug 27 01:21:08 EDT 2025 Mon Jun 30 10:04:35 EDT 2025 Tue Jul 01 00:44:35 EDT 2025 Sat Sep 06 16:57:52 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This work is licensed under the Creative Commons Attribution 4.0 International License. http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c378t-ae8a92b98db8f718e4f54db8e038b78e3cbf2f7b69e3fbfc0f4bb01fe594a0c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1515/htmp-2022-0326 |
PQID | 3169356671 |
PQPubID | 2030061 |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_6d4a6949c4a74dcd923855a7a0811f52 proquest_journals_3169356671 crossref_primary_10_1515_htmp_2022_0326 walterdegruyter_journals_10_1515_htmp_2022_0326431 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-01-01 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin |
PublicationPlace_xml | – name: Berlin |
PublicationTitle | High temperature materials and processes |
PublicationYear | 2024 |
Publisher | De Gruyter Walter de Gruyter GmbH |
Publisher_xml | – name: De Gruyter – name: Walter de Gruyter GmbH |
References | 2024030815204708942_j_htmp-2022-0326_ref_008 2024030815204708942_j_htmp-2022-0326_ref_009 2024030815204708942_j_htmp-2022-0326_ref_006 2024030815204708942_j_htmp-2022-0326_ref_007 2024030815204708942_j_htmp-2022-0326_ref_004 2024030815204708942_j_htmp-2022-0326_ref_026 2024030815204708942_j_htmp-2022-0326_ref_005 2024030815204708942_j_htmp-2022-0326_ref_027 2024030815204708942_j_htmp-2022-0326_ref_002 2024030815204708942_j_htmp-2022-0326_ref_024 2024030815204708942_j_htmp-2022-0326_ref_003 2024030815204708942_j_htmp-2022-0326_ref_025 2024030815204708942_j_htmp-2022-0326_ref_022 2024030815204708942_j_htmp-2022-0326_ref_001 2024030815204708942_j_htmp-2022-0326_ref_023 2024030815204708942_j_htmp-2022-0326_ref_020 2024030815204708942_j_htmp-2022-0326_ref_021 2024030815204708942_j_htmp-2022-0326_ref_019 2024030815204708942_j_htmp-2022-0326_ref_017 2024030815204708942_j_htmp-2022-0326_ref_018 2024030815204708942_j_htmp-2022-0326_ref_015 2024030815204708942_j_htmp-2022-0326_ref_016 2024030815204708942_j_htmp-2022-0326_ref_013 2024030815204708942_j_htmp-2022-0326_ref_014 2024030815204708942_j_htmp-2022-0326_ref_011 2024030815204708942_j_htmp-2022-0326_ref_012 2024030815204708942_j_htmp-2022-0326_ref_010 |
References_xml | – ident: 2024030815204708942_j_htmp-2022-0326_ref_017 doi: 10.1109/JPHOTOV.2016.2617042 – ident: 2024030815204708942_j_htmp-2022-0326_ref_005 doi: 10.1109/JPHOTOV.2019.2899460 – ident: 2024030815204708942_j_htmp-2022-0326_ref_015 doi: 10.1002/pip.3187 – ident: 2024030815204708942_j_htmp-2022-0326_ref_018 doi: 10.1016/j.solmat.2015.06.057 – ident: 2024030815204708942_j_htmp-2022-0326_ref_008 doi: 10.1088/0022-3727/39/3/005 – ident: 2024030815204708942_j_htmp-2022-0326_ref_027 doi: 10.1002/pip.3425 – ident: 2024030815204708942_j_htmp-2022-0326_ref_013 doi: 10.1016/j.apsusc.2011.09.108 – ident: 2024030815204708942_j_htmp-2022-0326_ref_022 doi: 10.1016/j.solmat.2016.09.021 – ident: 2024030815204708942_j_htmp-2022-0326_ref_011 doi: 10.1063/1.2172738 – ident: 2024030815204708942_j_htmp-2022-0326_ref_001 doi: 10.1063/1.101596 – ident: 2024030815204708942_j_htmp-2022-0326_ref_003 doi: 10.1016/j.egypro.2012.07.003 – ident: 2024030815204708942_j_htmp-2022-0326_ref_016 doi: 10.1109/JPHOTOV.2014.2320302 – ident: 2024030815204708942_j_htmp-2022-0326_ref_002 – ident: 2024030815204708942_j_htmp-2022-0326_ref_012 doi: 10.1364/OPTICA.4.000951 – ident: 2024030815204708942_j_htmp-2022-0326_ref_006 doi: 10.1002/pip.3425 – ident: 2024030815204708942_j_htmp-2022-0326_ref_024 doi: 10.1117/12.932276 – ident: 2024030815204708942_j_htmp-2022-0326_ref_010 doi: 10.1016/j.solener.2018.02.046 – ident: 2024030815204708942_j_htmp-2022-0326_ref_026 doi: 10.2351/1.5028314 – ident: 2024030815204708942_j_htmp-2022-0326_ref_019 doi: 10.1016/j.solener.2018.12.049 – ident: 2024030815204708942_j_htmp-2022-0326_ref_007 doi: 10.1016/j.solmat.2013.04.025 – ident: 2024030815204708942_j_htmp-2022-0326_ref_020 doi: 10.4028/www.scientific.net/SSP.308.138 – ident: 2024030815204708942_j_htmp-2022-0326_ref_004 doi: 10.1016/j.egypro.2015.07.073 – ident: 2024030815204708942_j_htmp-2022-0326_ref_021 doi: 10.1364/OL.7.000196 – ident: 2024030815204708942_j_htmp-2022-0326_ref_014 doi: 10.1016/j.phpro.2010.08.148 – ident: 2024030815204708942_j_htmp-2022-0326_ref_025 doi: 10.1016/j.solener.2019.12.044 – ident: 2024030815204708942_j_htmp-2022-0326_ref_023 doi: 10.1016/j.solener.2018.04.022 – ident: 2024030815204708942_j_htmp-2022-0326_ref_009 doi: 10.2351/1.521827 |
SSID | ssj0000491571 |
Score | 2.284296 |
Snippet | To improve the photoelectric conversion efficiency (
) of the solar cell, a green wavelength (532 nm) laser source in a nanosecond range was used to ablate the... To improve the photoelectric conversion efficiency ( η ) of the solar cell, a green wavelength (532 nm) laser source in a nanosecond range was used to ablate... To improve the photoelectric conversion efficiency (η) of the solar cell, a green wavelength (532 nm) laser source in a nanosecond range was used to ablate the... |
SourceID | doaj proquest crossref walterdegruyter |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | pp. 1363 |
SubjectTerms | Ablation Contact holes Contact resistance Emitters Energy conversion efficiency Laser ablation laser output power Lasers local back surface field Morphology nanosecond laser ablation Normal distribution Photoelectricity Photovoltaic cells repetition frequency solar cell simulation Solar cells |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8QwEA3iSQ-Ln7i6Sg6Cp7Jpm7TJUcVlERSRFfYWknaiCPtBt4v4752kXV1F8OKttGEIb5LMm2T6Qsg5T5yMXeqiJGFlxAHCOhhHAtkwFzFAFmpz7u6z4RO_HYvx2lVfviaskQdugOtnJTeZ4qrgJudlUSIhkUKY3GAsi50Iqy9TbC2Zem14byzyuFVpxJjdf6kncxwSmHqx1CsprEWhINb_jWF23sJZdQnP1fK9Xp2NhpAz2CGdlivSy6aPu2QDpntke01BcJ-4h6_CfzrD6T9p_6ukM0cfbh6v6cLnrtTvzy-oD1klxY9ImaGixjaFcNRbQHM0BDbqq9dNUft2yA4pssrqgIwGN6PrYdRenRAVaS7ryIA0KrFKllY6DD_AneD4DCyVNpeQFtYlLreZgtRZVzDHrWWxA6G4YUV6SDansykcEYrpXpkImwGz6IIEEyzIlOKSW6kKpmSXXKyQ1PNGIEP7xAIx1x5z7THXHvMuufJAf7bywtbhBbpbt-7Wf7m7S3orN-l2ti106hVlkJfmcZckP1z31er3XiGBOv6Pjp2QLbTJm92ZHtmsqyWcIl-p7VkYmh9HeuiV priority: 102 providerName: Directory of Open Access Journals |
Title | Performance optimization of PERC solar cells based on laser ablation forming local contact on the rear |
URI | https://www.degruyter.com/doi/10.1515/htmp-2022-0326 https://www.proquest.com/docview/3169356671 https://doaj.org/article/6d4a6949c4a74dcd923855a7a0811f52 |
Volume | 43 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA66XvQgPnF9kYPgqdqmSZscRFQUERQRBW8haSeK6K52K7r_3knadX0dvIV2SJuZJPN9yWRCyBZnTiYudRFjcRlxgDAPJpFANMxFApCF2Jzzi-z0hp_dittx_FOrwMGf1M7fJ3VTPe68vwz3ccDvhdt7ErF7Xz89o7WRVcUIRibJFHqlzBOx8xbqPzRIOBGBf-EY9VFEjLc5HH9X8c1HhVT-3_Dn7FvYyS7hrnod1qOd0-CQTubIbIsk6UFj-nkyAb0FMvMlv-AicZfjYwG0j5PDU3vqkvYdvTy-OqID33zqV-8H1Du0kuJLBNRQUWObMDnqa8DqaHB71Me2m6L2cogdKWLOaolcnxxfH51G7cUKUZHmso4MSKOYVbK00qFzAu4ExzLEqbS5hLSwjrncZgpSZ10RO25tnDgQipu4SJdJp9fvwQqhSAZLJmwGsS24YUi_IFOKS26lKmIlu2R7pEn93KTP0J52oM6117n2Otde511y6BX9KeXTXocH_epOt6NIZyU3meIKv5XzsigRnUohTG4Q2CROsC5ZH5lJj7qSTn2-GUStedIl7IfpxlJ__xXCq9V_N2GNTGOZNws066RTV6-wgZCltpuB6m-GHvkBgdXp6Q |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7B9gAcKp5ioYAPSJyiJo6d2MdStSzQlgoWqTfLj3F7oJsqmxXi3zNO0u0WOHFL4qdmYs83k_EXgLeCR1XEMmac5yETiP0-WGSS0LCQBWLV5-Ycn1Sz7-LTmTzbOAuT0ioDnrerX93AkLobGr9KgbI11wBZ4N2L7vKKFEyOVE74I93-uAtbFaF_PoGtvdmHb1_WkRbCwIWsi5Gx8e_WtyxST9x_C21u_-y_W68ntWF-Dh_C9ogb2d6g6EdwBxeP4cEGm-ATiKc3hwBYQ1vB5XjGkjWRnR583WfL5MeyFKtfsmS-AqNCgs_YMuuGpDiWeqDuWG_kWMpkt75L9QgpMkKY7VOYHx7M92fZ-BuFzJe16jKLymrutApORTJFKKIUdI15qVytsPQu8li7SmMZXfR5FM7lRUSphc19-Qwmi2aBz4GR6xe4dBXmzgvLydnCSmuhhFPa51pN4d21JM3VQJZhkpNBMjdJ5ibJ3CSZT-F9EvS6ViK57h807bkZ14ypgrCVFprGqkXwgbCoktLWlmBMESWfws61msy48pamTOwyhFHrYgr8D9Xd1Pr3rAhMvfifRm_g3mx-fGSOPp58fgn3qUgMUZodmHTtCl8Rbunc6_HF_A29nOwl |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7BVkL0UPEUW0rxAYlTtIljO_axlG6XV1lBkbhZfpZLN6tsVlX_PeMku22BE7coHjvWTOz5ZjL-AvCG0SiLWMaM0txnLIRuHywyjmiY8SIE0dXmfDkTsx_s40--qSZcDWWVPlw06-u2Z0id-NqtU6JsyzWAHnjyq71cooExkMoRf0yWPt6HHSEUlSPYOZqdfv-6TbQgBC54VQyEjX93vuOQOt7-O2Bz76r7bL2d0y3vM30EewNsJEe9nR_DvbB4Aru3yASfQpzfnAEgNe4El8MRS1JHMj_5dkxWKYwlKVW_Isl7eYKNiJ5DQ4zta-JIGgGHI52PI6mQ3bg2ySFQJAgwm2dwPj05P55lw18UMldWss1MkEZRq6S3MqInCixyhtchL6WtZCidjTRWVqhQRhtdHpm1eREDV8zkrnwOo0W9CC-AYOTnKbci5NYxQzHWCkIpJpmVyuVKjuHtRpN62XNl6BRjoM510rlOOtdJ52N4lxS9lUoc192NurnQw5LRwjMjFFP4rIp55xGKSs5NZRDFFJHTMRxszKSHhbfSZSKXQYhaFWOgf5juRurfs0Istf8_nV7Dg_n7qf784ezTS3iILazP0RzAqG3W4RWiltYeDu_lb3KQ61Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+optimization+of+PERC+solar+cells+based+on+laser+ablation+forming+local+contact+on+the+rear&rft.jtitle=High+temperature+materials+and+processes&rft.au=Wu%2C+Hao&rft.au=Zhao%2C+Shikai&rft.au=Hong%2C+Jiaqi&rft.au=Zou%2C+Dingsen&rft.date=2024-01-01&rft.issn=2191-0324&rft.eissn=2191-0324&rft.volume=43&rft.issue=1&rft_id=info:doi/10.1515%2Fhtmp-2022-0326&rft.externalDBID=n%2Fa&rft.externalDocID=10_1515_htmp_2022_0326 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2191-0324&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2191-0324&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2191-0324&client=summon |