On two new contractions and discontinuity on fixed points

This paper deals with a well known open problem raised by Kannan (Bull. Calcutta Math. Soc., 60: 71–76, 1968) and B. E. Rhoades (Contemp. Math., 72: 233–245, 1988) on the existence of general contractions which have fixed points, but do not force the continuity at the fixed point. We propose some ne...

Full description

Saved in:
Bibliographic Details
Published inAIMS mathematics Vol. 7; no. 2; pp. 1628 - 1663
Main Authors Zhou, Mi, Saleem, Naeem, Liu, Xiao-lan, Özgür, Nihal
Format Journal Article
LanguageEnglish
Published AIMS Press 01.01.2022
Subjects
Online AccessGet full text
ISSN2473-6988
2473-6988
DOI10.3934/math.2022095

Cover

Loading…
Abstract This paper deals with a well known open problem raised by Kannan (Bull. Calcutta Math. Soc., 60: 71–76, 1968) and B. E. Rhoades (Contemp. Math., 72: 233–245, 1988) on the existence of general contractions which have fixed points, but do not force the continuity at the fixed point. We propose some new affirmative solutions to this question using two new contractions called $ (\psi, \varphi) $-$ \mathcal{A} $-contraction and $ (\psi, \varphi) $-$ \mathcal{A^{\prime}} $-contraction inspired by the results of H. Garai et al. (Applicable Analysis and Discrete Mathematics, 14(1): 33–54, 2020) and P. D. Proinov (J. Fixed Point Theory Appl. (2020) 22: 21). Some new fixed point and common fixed point results in compact metric spaces and also in complete metric spaces are proved in which the corresponding contractive mappings are not necessarily continuous at their fixed points. Moreover, we show that new solutions to characterize the completeness of metric spaces. Several examples are provided to verify the validity of our main results.
AbstractList This paper deals with a well known open problem raised by Kannan (Bull. Calcutta Math. Soc., 60: 71–76, 1968) and B. E. Rhoades (Contemp. Math., 72: 233–245, 1988) on the existence of general contractions which have fixed points, but do not force the continuity at the fixed point. We propose some new affirmative solutions to this question using two new contractions called (ψ,φ)-A-contraction and (ψ,φ)-A′-contraction inspired by the results of H. Garai et al. (Applicable Analysis and Discrete Mathematics, 14(1): 33–54, 2020) and P. D. Proinov (J. Fixed Point Theory Appl. (2020) 22: 21). Some new fixed point and common fixed point results in compact metric spaces and also in complete metric spaces are proved in which the corresponding contractive mappings are not necessarily continuous at their fixed points. Moreover, we show that new solutions to characterize the completeness of metric spaces. Several examples are provided to verify the validity of our main results.
This paper deals with a well known open problem raised by Kannan (Bull. Calcutta Math. Soc., 60: 71–76, 1968) and B. E. Rhoades (Contemp. Math., 72: 233–245, 1988) on the existence of general contractions which have fixed points, but do not force the continuity at the fixed point. We propose some new affirmative solutions to this question using two new contractions called $ (\psi, \varphi) $-$ \mathcal{A} $-contraction and $ (\psi, \varphi) $-$ \mathcal{A^{\prime}} $-contraction inspired by the results of H. Garai et al. (Applicable Analysis and Discrete Mathematics, 14(1): 33–54, 2020) and P. D. Proinov (J. Fixed Point Theory Appl. (2020) 22: 21). Some new fixed point and common fixed point results in compact metric spaces and also in complete metric spaces are proved in which the corresponding contractive mappings are not necessarily continuous at their fixed points. Moreover, we show that new solutions to characterize the completeness of metric spaces. Several examples are provided to verify the validity of our main results.
Author Saleem, Naeem
Liu, Xiao-lan
Zhou, Mi
Özgür, Nihal
Author_xml – sequence: 1
  givenname: Mi
  surname: Zhou
  fullname: Zhou, Mi
– sequence: 2
  givenname: Naeem
  surname: Saleem
  fullname: Saleem, Naeem
– sequence: 3
  givenname: Xiao-lan
  surname: Liu
  fullname: Liu, Xiao-lan
– sequence: 4
  givenname: Nihal
  surname: Özgür
  fullname: Özgür, Nihal
BookMark eNptUNtKAzEUDFLBqn3zA_IBbk1PsrvJoxQvhUJf9Dlkc9GUNilJpPbv3bUVRHw6h-HMnJm5RKMQg0XoZkamVFB2t1XlfQoEgIj6DI2BtbRqBOejX_sFmuS8JoTADBi0bIzEKuCyjzjYPdYxlKR08TFkrILBxucB8-HDlwOOATv_aQ3eRR9KvkbnTm2ynZzmFXp9fHiZP1fL1dNifr-sNG15qZSyneG8Y5yRtgbXv-6UdgZoR41jjNaGNrxxxoHTTBFSm1rXjRMAzHRK0Cu0OOqaqNZyl_xWpYOMystvIKY3qVLxemOlMJZoQRinRLOGUU64bZwGxTrLKJheC45aOsWck3VS-6KGwH1wv5EzIocu5dClPHXZk27_kH5M_Hv-Bd-meFk
CitedBy_id crossref_primary_10_3390_fractalfract7030212
crossref_primary_10_1186_s13660_024_03097_2
crossref_primary_10_3390_app12146852
crossref_primary_10_3934_math_2023848
Cites_doi 10.1063/1.5020497
10.2478/dema-2014-0012
10.3390/axioms8020072
10.1007/s11784-020-00803-7
10.1016/j.jmaa.2016.02.053
10.1007/s00025-016-0570-7
10.15388/NA.2019.6.4
10.2298/FIL1711319I
10.1007/s11784-020-0756-1
10.3390/math6100188
10.4995/agt.2017.6713
10.1007/s12215-020-00527-0
10.24193/fpt-ro.2019.2.47
10.2298/FIL1711501P
10.1142/9789814415521-0017
10.22436/jnsa.010.05.04
10.2307/2316437
10.2298/AADM181018007G
10.3233/BME-2008-0556
10.3390/math8020212
10.1007/s11784-020-00801-9
10.1007/s40840-018-0698-6
10.1186/1029-242X-2014-38
10.24193/fpt-ro.2018.1.25
10.1006/jmaa.1999.6560
10.1007/s40840-017-0555-z
10.1007/s11784-020-0765-0
10.15388/NA.2016.4.7
10.1007/s11784-021-00863-3
10.36045/bbms/1576206358
10.1007/s12215-018-0386-2
10.4064/cm-36-1-81-86
10.24193/fpt-ro.2018.1.06
10.1186/1687-1812-2012-94
10.1186/1687-1812-2014-210
10.3906/mat-1912-80
10.1007/s00010-019-00680-7
10.1090/S0002-9947-1977-0433430-4
10.1007/BF01472580
10.1090/S0002-9939-07-09055-7
ContentType Journal Article
CorporateAuthor Key Laboratory of Higher Education of Sichuan Province for Enterprise Informationlization and Internet of Things, Zigong, Sichuan, 643000, China
School of Science and Technology, University of Sanya, Sanya, Hainan, 572000, China
College of Mathematics and Statistics, Sichuan University of Science and Engineering, Zigong, Sichuan, 643000, China
Department of Mathematics, University of Management and Technology, Lahore, Pakistan
Department of Mathematics, Balıkesir University, 10145 Balıkesir, Turkey
South Sichuan Center for Applied Mathematics, Zigong, Sichuan, 643000, China
CorporateAuthor_xml – name: Department of Mathematics, University of Management and Technology, Lahore, Pakistan
– name: Department of Mathematics, Balıkesir University, 10145 Balıkesir, Turkey
– name: Key Laboratory of Higher Education of Sichuan Province for Enterprise Informationlization and Internet of Things, Zigong, Sichuan, 643000, China
– name: School of Science and Technology, University of Sanya, Sanya, Hainan, 572000, China
– name: South Sichuan Center for Applied Mathematics, Zigong, Sichuan, 643000, China
– name: College of Mathematics and Statistics, Sichuan University of Science and Engineering, Zigong, Sichuan, 643000, China
DBID AAYXX
CITATION
DOA
DOI 10.3934/math.2022095
DatabaseName CrossRef
Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2473-6988
EndPage 1663
ExternalDocumentID oai_doaj_org_article_9de0c904830c4643808e6fc2a4be432d
10_3934_math_2022095
GroupedDBID AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
CITATION
EBS
FRJ
GROUPED_DOAJ
IAO
ITC
M~E
OK1
RAN
ID FETCH-LOGICAL-c378t-aaebd88b4840752f021bacfd23b3df4435d3686fdf2fc4a005d5c56f9224dba93
IEDL.DBID DOA
ISSN 2473-6988
IngestDate Wed Aug 27 01:06:35 EDT 2025
Tue Jul 01 03:56:51 EDT 2025
Thu Apr 24 23:03:17 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c378t-aaebd88b4840752f021bacfd23b3df4435d3686fdf2fc4a005d5c56f9224dba93
OpenAccessLink https://doaj.org/article/9de0c904830c4643808e6fc2a4be432d
PageCount 36
ParticipantIDs doaj_primary_oai_doaj_org_article_9de0c904830c4643808e6fc2a4be432d
crossref_citationtrail_10_3934_math_2022095
crossref_primary_10_3934_math_2022095
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-01
  day: 01
PublicationDecade 2020
PublicationTitle AIMS mathematics
PublicationYear 2022
Publisher AIMS Press
Publisher_xml – name: AIMS Press
References key-10.3934/math.2022095-14
key-10.3934/math.2022095-36
key-10.3934/math.2022095-13
key-10.3934/math.2022095-35
key-10.3934/math.2022095-16
key-10.3934/math.2022095-38
key-10.3934/math.2022095-15
key-10.3934/math.2022095-37
key-10.3934/math.2022095-18
key-10.3934/math.2022095-17
key-10.3934/math.2022095-39
key-10.3934/math.2022095-19
key-10.3934/math.2022095-41
key-10.3934/math.2022095-40
key-10.3934/math.2022095-8
key-10.3934/math.2022095-21
key-10.3934/math.2022095-43
key-10.3934/math.2022095-9
key-10.3934/math.2022095-20
key-10.3934/math.2022095-42
key-10.3934/math.2022095-6
key-10.3934/math.2022095-23
key-10.3934/math.2022095-45
key-10.3934/math.2022095-7
key-10.3934/math.2022095-22
key-10.3934/math.2022095-44
key-10.3934/math.2022095-4
key-10.3934/math.2022095-5
key-10.3934/math.2022095-2
key-10.3934/math.2022095-3
key-10.3934/math.2022095-1
key-10.3934/math.2022095-25
key-10.3934/math.2022095-24
key-10.3934/math.2022095-27
key-10.3934/math.2022095-26
key-10.3934/math.2022095-29
key-10.3934/math.2022095-28
key-10.3934/math.2022095-30
key-10.3934/math.2022095-10
key-10.3934/math.2022095-32
key-10.3934/math.2022095-31
key-10.3934/math.2022095-12
key-10.3934/math.2022095-34
key-10.3934/math.2022095-11
key-10.3934/math.2022095-33
References_xml – ident: key-10.3934/math.2022095-12
  doi: 10.1063/1.5020497
– ident: key-10.3934/math.2022095-40
– ident: key-10.3934/math.2022095-23
  doi: 10.2478/dema-2014-0012
– ident: key-10.3934/math.2022095-45
  doi: 10.3390/axioms8020072
– ident: key-10.3934/math.2022095-34
  doi: 10.1007/s11784-020-00803-7
– ident: key-10.3934/math.2022095-6
  doi: 10.1016/j.jmaa.2016.02.053
– ident: key-10.3934/math.2022095-32
  doi: 10.1007/s00025-016-0570-7
– ident: key-10.3934/math.2022095-36
  doi: 10.15388/NA.2019.6.4
– ident: key-10.3934/math.2022095-37
  doi: 10.2298/FIL1711319I
– ident: key-10.3934/math.2022095-25
  doi: 10.1007/s11784-020-0756-1
– ident: key-10.3934/math.2022095-18
  doi: 10.3390/math6100188
– ident: key-10.3934/math.2022095-7
  doi: 10.4995/agt.2017.6713
– ident: key-10.3934/math.2022095-41
  doi: 10.1007/s12215-020-00527-0
– ident: key-10.3934/math.2022095-17
  doi: 10.24193/fpt-ro.2019.2.47
– ident: key-10.3934/math.2022095-39
  doi: 10.2298/FIL1711501P
– ident: key-10.3934/math.2022095-4
  doi: 10.1142/9789814415521-0017
– ident: key-10.3934/math.2022095-19
  doi: 10.22436/jnsa.010.05.04
– ident: key-10.3934/math.2022095-2
  doi: 10.2307/2316437
– ident: key-10.3934/math.2022095-22
  doi: 10.2298/AADM181018007G
– ident: key-10.3934/math.2022095-38
– ident: key-10.3934/math.2022095-1
  doi: 10.3233/BME-2008-0556
– ident: key-10.3934/math.2022095-16
– ident: key-10.3934/math.2022095-35
  doi: 10.3390/math8020212
– ident: key-10.3934/math.2022095-24
  doi: 10.1007/s11784-020-00801-9
– ident: key-10.3934/math.2022095-14
  doi: 10.1007/s40840-018-0698-6
– ident: key-10.3934/math.2022095-27
  doi: 10.1186/1029-242X-2014-38
– ident: key-10.3934/math.2022095-33
  doi: 10.24193/fpt-ro.2018.1.25
– ident: key-10.3934/math.2022095-5
  doi: 10.1006/jmaa.1999.6560
– ident: key-10.3934/math.2022095-13
  doi: 10.1007/s40840-017-0555-z
– ident: key-10.3934/math.2022095-21
  doi: 10.1007/s11784-020-0765-0
– ident: key-10.3934/math.2022095-28
– ident: key-10.3934/math.2022095-31
  doi: 10.15388/NA.2016.4.7
– ident: key-10.3934/math.2022095-20
  doi: 10.1007/s11784-021-00863-3
– ident: key-10.3934/math.2022095-29
– ident: key-10.3934/math.2022095-15
  doi: 10.36045/bbms/1576206358
– ident: key-10.3934/math.2022095-9
  doi: 10.1007/s12215-018-0386-2
– ident: key-10.3934/math.2022095-42
  doi: 10.4064/cm-36-1-81-86
– ident: key-10.3934/math.2022095-8
  doi: 10.24193/fpt-ro.2018.1.06
– ident: key-10.3934/math.2022095-26
  doi: 10.1186/1687-1812-2012-94
– ident: key-10.3934/math.2022095-30
  doi: 10.1186/1687-1812-2014-210
– ident: key-10.3934/math.2022095-11
  doi: 10.3906/mat-1912-80
– ident: key-10.3934/math.2022095-10
  doi: 10.1007/s00010-019-00680-7
– ident: key-10.3934/math.2022095-3
  doi: 10.1090/S0002-9947-1977-0433430-4
– ident: key-10.3934/math.2022095-43
  doi: 10.1007/BF01472580
– ident: key-10.3934/math.2022095-44
  doi: 10.1090/S0002-9939-07-09055-7
SSID ssj0002124274
Score 2.2048562
Snippet This paper deals with a well known open problem raised by Kannan (Bull. Calcutta Math. Soc., 60: 71–76, 1968) and B. E. Rhoades (Contemp. Math., 72: 233–245,...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 1628
SubjectTerms discontinuity at the fixed point
fixed point
φ)-a-contraction
Title On two new contractions and discontinuity on fixed points
URI https://doaj.org/article/9de0c904830c4643808e6fc2a4be432d
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kJz2IT6wv9qAnCV2zj-4eVSxFqF4s9Bb2CQVJik3Rn-9MEks9iBevYQibb5KZb7Kz3xBy5YEDa9z610qKTEgXM5NLnXGpkmPa69iIJE2e1XgqnmZytjHqC3vCWnngFriBCZF5g8LnzAuF-ug6quRzK1wUPA8YfZlhG8UUxmAIyALqrbbTnRsuBsD_cO8hB2P5IwdtSPU3OWW0R3Y7Mkjv2kXsk61YHpCdyVpJdXlIzEtJ64-KAvulTVt5exBhSW0ZKB6prXDUwwq4NK1KmuafMdBFNS_r5RGZjh5fH8ZZN-4g83yo68za6ILWTkDNNZR5godw1qeQc8dDEsBrAldapZDy5IWFzydID5AayMLBWcOPSa-synhCqLA83vIw5NEy4VHDbagsA_QNUzaY2Cc33wAUvtMCx5EUbwXUBAhXgXAVHVx9cr22XrQaGL_Y3SOWaxtUrm4ugD-Lzp_FX_48_Y-bnJFtXFP7q-Sc9Or3VbwA8lC7y-Y9-QJ4PsG1
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+two+new+contractions+and+discontinuity+on+fixed+points&rft.jtitle=AIMS+mathematics&rft.au=Mi+Zhou&rft.au=Naeem+Saleem&rft.au=Xiao-lan+Liu&rft.au=Nihal+%C3%96zg%C3%BCr&rft.date=2022-01-01&rft.pub=AIMS+Press&rft.eissn=2473-6988&rft.volume=7&rft.issue=2&rft.spage=1628&rft.epage=1663&rft_id=info:doi/10.3934%2Fmath.2022095&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_9de0c904830c4643808e6fc2a4be432d
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon