On two new contractions and discontinuity on fixed points
This paper deals with a well known open problem raised by Kannan (Bull. Calcutta Math. Soc., 60: 71–76, 1968) and B. E. Rhoades (Contemp. Math., 72: 233–245, 1988) on the existence of general contractions which have fixed points, but do not force the continuity at the fixed point. We propose some ne...
Saved in:
Published in | AIMS mathematics Vol. 7; no. 2; pp. 1628 - 1663 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
AIMS Press
01.01.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 2473-6988 2473-6988 |
DOI | 10.3934/math.2022095 |
Cover
Loading…
Abstract | This paper deals with a well known open problem raised by Kannan (Bull. Calcutta Math. Soc., 60: 71–76, 1968) and B. E. Rhoades (Contemp. Math., 72: 233–245, 1988) on the existence of general contractions which have fixed points, but do not force the continuity at the fixed point. We propose some new affirmative solutions to this question using two new contractions called $ (\psi, \varphi) $-$ \mathcal{A} $-contraction and $ (\psi, \varphi) $-$ \mathcal{A^{\prime}} $-contraction inspired by the results of H. Garai et al. (Applicable Analysis and Discrete Mathematics, 14(1): 33–54, 2020) and P. D. Proinov (J. Fixed Point Theory Appl. (2020) 22: 21). Some new fixed point and common fixed point results in compact metric spaces and also in complete metric spaces are proved in which the corresponding contractive mappings are not necessarily continuous at their fixed points. Moreover, we show that new solutions to characterize the completeness of metric spaces. Several examples are provided to verify the validity of our main results. |
---|---|
AbstractList | This paper deals with a well known open problem raised by Kannan (Bull. Calcutta Math. Soc., 60: 71–76, 1968) and B. E. Rhoades (Contemp. Math., 72: 233–245, 1988) on the existence of general contractions which have fixed points, but do not force the continuity at the fixed point. We propose some new affirmative solutions to this question using two new contractions called (ψ,φ)-A-contraction and (ψ,φ)-A′-contraction inspired by the results of H. Garai et al. (Applicable Analysis and Discrete Mathematics, 14(1): 33–54, 2020) and P. D. Proinov (J. Fixed Point Theory Appl. (2020) 22: 21). Some new fixed point and common fixed point results in compact metric spaces and also in complete metric spaces are proved in which the corresponding contractive mappings are not necessarily continuous at their fixed points. Moreover, we show that new solutions to characterize the completeness of metric spaces. Several examples are provided to verify the validity of our main results. This paper deals with a well known open problem raised by Kannan (Bull. Calcutta Math. Soc., 60: 71–76, 1968) and B. E. Rhoades (Contemp. Math., 72: 233–245, 1988) on the existence of general contractions which have fixed points, but do not force the continuity at the fixed point. We propose some new affirmative solutions to this question using two new contractions called $ (\psi, \varphi) $-$ \mathcal{A} $-contraction and $ (\psi, \varphi) $-$ \mathcal{A^{\prime}} $-contraction inspired by the results of H. Garai et al. (Applicable Analysis and Discrete Mathematics, 14(1): 33–54, 2020) and P. D. Proinov (J. Fixed Point Theory Appl. (2020) 22: 21). Some new fixed point and common fixed point results in compact metric spaces and also in complete metric spaces are proved in which the corresponding contractive mappings are not necessarily continuous at their fixed points. Moreover, we show that new solutions to characterize the completeness of metric spaces. Several examples are provided to verify the validity of our main results. |
Author | Saleem, Naeem Liu, Xiao-lan Zhou, Mi Özgür, Nihal |
Author_xml | – sequence: 1 givenname: Mi surname: Zhou fullname: Zhou, Mi – sequence: 2 givenname: Naeem surname: Saleem fullname: Saleem, Naeem – sequence: 3 givenname: Xiao-lan surname: Liu fullname: Liu, Xiao-lan – sequence: 4 givenname: Nihal surname: Özgür fullname: Özgür, Nihal |
BookMark | eNptUNtKAzEUDFLBqn3zA_IBbk1PsrvJoxQvhUJf9Dlkc9GUNilJpPbv3bUVRHw6h-HMnJm5RKMQg0XoZkamVFB2t1XlfQoEgIj6DI2BtbRqBOejX_sFmuS8JoTADBi0bIzEKuCyjzjYPdYxlKR08TFkrILBxucB8-HDlwOOATv_aQ3eRR9KvkbnTm2ynZzmFXp9fHiZP1fL1dNifr-sNG15qZSyneG8Y5yRtgbXv-6UdgZoR41jjNaGNrxxxoHTTBFSm1rXjRMAzHRK0Cu0OOqaqNZyl_xWpYOMystvIKY3qVLxemOlMJZoQRinRLOGUU64bZwGxTrLKJheC45aOsWck3VS-6KGwH1wv5EzIocu5dClPHXZk27_kH5M_Hv-Bd-meFk |
CitedBy_id | crossref_primary_10_3390_fractalfract7030212 crossref_primary_10_1186_s13660_024_03097_2 crossref_primary_10_3390_app12146852 crossref_primary_10_3934_math_2023848 |
Cites_doi | 10.1063/1.5020497 10.2478/dema-2014-0012 10.3390/axioms8020072 10.1007/s11784-020-00803-7 10.1016/j.jmaa.2016.02.053 10.1007/s00025-016-0570-7 10.15388/NA.2019.6.4 10.2298/FIL1711319I 10.1007/s11784-020-0756-1 10.3390/math6100188 10.4995/agt.2017.6713 10.1007/s12215-020-00527-0 10.24193/fpt-ro.2019.2.47 10.2298/FIL1711501P 10.1142/9789814415521-0017 10.22436/jnsa.010.05.04 10.2307/2316437 10.2298/AADM181018007G 10.3233/BME-2008-0556 10.3390/math8020212 10.1007/s11784-020-00801-9 10.1007/s40840-018-0698-6 10.1186/1029-242X-2014-38 10.24193/fpt-ro.2018.1.25 10.1006/jmaa.1999.6560 10.1007/s40840-017-0555-z 10.1007/s11784-020-0765-0 10.15388/NA.2016.4.7 10.1007/s11784-021-00863-3 10.36045/bbms/1576206358 10.1007/s12215-018-0386-2 10.4064/cm-36-1-81-86 10.24193/fpt-ro.2018.1.06 10.1186/1687-1812-2012-94 10.1186/1687-1812-2014-210 10.3906/mat-1912-80 10.1007/s00010-019-00680-7 10.1090/S0002-9947-1977-0433430-4 10.1007/BF01472580 10.1090/S0002-9939-07-09055-7 |
ContentType | Journal Article |
CorporateAuthor | Key Laboratory of Higher Education of Sichuan Province for Enterprise Informationlization and Internet of Things, Zigong, Sichuan, 643000, China School of Science and Technology, University of Sanya, Sanya, Hainan, 572000, China College of Mathematics and Statistics, Sichuan University of Science and Engineering, Zigong, Sichuan, 643000, China Department of Mathematics, University of Management and Technology, Lahore, Pakistan Department of Mathematics, Balıkesir University, 10145 Balıkesir, Turkey South Sichuan Center for Applied Mathematics, Zigong, Sichuan, 643000, China |
CorporateAuthor_xml | – name: Department of Mathematics, University of Management and Technology, Lahore, Pakistan – name: Department of Mathematics, Balıkesir University, 10145 Balıkesir, Turkey – name: Key Laboratory of Higher Education of Sichuan Province for Enterprise Informationlization and Internet of Things, Zigong, Sichuan, 643000, China – name: School of Science and Technology, University of Sanya, Sanya, Hainan, 572000, China – name: South Sichuan Center for Applied Mathematics, Zigong, Sichuan, 643000, China – name: College of Mathematics and Statistics, Sichuan University of Science and Engineering, Zigong, Sichuan, 643000, China |
DBID | AAYXX CITATION DOA |
DOI | 10.3934/math.2022095 |
DatabaseName | CrossRef Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2473-6988 |
EndPage | 1663 |
ExternalDocumentID | oai_doaj_org_article_9de0c904830c4643808e6fc2a4be432d 10_3934_math_2022095 |
GroupedDBID | AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV CITATION EBS FRJ GROUPED_DOAJ IAO ITC M~E OK1 RAN |
ID | FETCH-LOGICAL-c378t-aaebd88b4840752f021bacfd23b3df4435d3686fdf2fc4a005d5c56f9224dba93 |
IEDL.DBID | DOA |
ISSN | 2473-6988 |
IngestDate | Wed Aug 27 01:06:35 EDT 2025 Tue Jul 01 03:56:51 EDT 2025 Thu Apr 24 23:03:17 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c378t-aaebd88b4840752f021bacfd23b3df4435d3686fdf2fc4a005d5c56f9224dba93 |
OpenAccessLink | https://doaj.org/article/9de0c904830c4643808e6fc2a4be432d |
PageCount | 36 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_9de0c904830c4643808e6fc2a4be432d crossref_citationtrail_10_3934_math_2022095 crossref_primary_10_3934_math_2022095 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-01-01 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | AIMS mathematics |
PublicationYear | 2022 |
Publisher | AIMS Press |
Publisher_xml | – name: AIMS Press |
References | key-10.3934/math.2022095-14 key-10.3934/math.2022095-36 key-10.3934/math.2022095-13 key-10.3934/math.2022095-35 key-10.3934/math.2022095-16 key-10.3934/math.2022095-38 key-10.3934/math.2022095-15 key-10.3934/math.2022095-37 key-10.3934/math.2022095-18 key-10.3934/math.2022095-17 key-10.3934/math.2022095-39 key-10.3934/math.2022095-19 key-10.3934/math.2022095-41 key-10.3934/math.2022095-40 key-10.3934/math.2022095-8 key-10.3934/math.2022095-21 key-10.3934/math.2022095-43 key-10.3934/math.2022095-9 key-10.3934/math.2022095-20 key-10.3934/math.2022095-42 key-10.3934/math.2022095-6 key-10.3934/math.2022095-23 key-10.3934/math.2022095-45 key-10.3934/math.2022095-7 key-10.3934/math.2022095-22 key-10.3934/math.2022095-44 key-10.3934/math.2022095-4 key-10.3934/math.2022095-5 key-10.3934/math.2022095-2 key-10.3934/math.2022095-3 key-10.3934/math.2022095-1 key-10.3934/math.2022095-25 key-10.3934/math.2022095-24 key-10.3934/math.2022095-27 key-10.3934/math.2022095-26 key-10.3934/math.2022095-29 key-10.3934/math.2022095-28 key-10.3934/math.2022095-30 key-10.3934/math.2022095-10 key-10.3934/math.2022095-32 key-10.3934/math.2022095-31 key-10.3934/math.2022095-12 key-10.3934/math.2022095-34 key-10.3934/math.2022095-11 key-10.3934/math.2022095-33 |
References_xml | – ident: key-10.3934/math.2022095-12 doi: 10.1063/1.5020497 – ident: key-10.3934/math.2022095-40 – ident: key-10.3934/math.2022095-23 doi: 10.2478/dema-2014-0012 – ident: key-10.3934/math.2022095-45 doi: 10.3390/axioms8020072 – ident: key-10.3934/math.2022095-34 doi: 10.1007/s11784-020-00803-7 – ident: key-10.3934/math.2022095-6 doi: 10.1016/j.jmaa.2016.02.053 – ident: key-10.3934/math.2022095-32 doi: 10.1007/s00025-016-0570-7 – ident: key-10.3934/math.2022095-36 doi: 10.15388/NA.2019.6.4 – ident: key-10.3934/math.2022095-37 doi: 10.2298/FIL1711319I – ident: key-10.3934/math.2022095-25 doi: 10.1007/s11784-020-0756-1 – ident: key-10.3934/math.2022095-18 doi: 10.3390/math6100188 – ident: key-10.3934/math.2022095-7 doi: 10.4995/agt.2017.6713 – ident: key-10.3934/math.2022095-41 doi: 10.1007/s12215-020-00527-0 – ident: key-10.3934/math.2022095-17 doi: 10.24193/fpt-ro.2019.2.47 – ident: key-10.3934/math.2022095-39 doi: 10.2298/FIL1711501P – ident: key-10.3934/math.2022095-4 doi: 10.1142/9789814415521-0017 – ident: key-10.3934/math.2022095-19 doi: 10.22436/jnsa.010.05.04 – ident: key-10.3934/math.2022095-2 doi: 10.2307/2316437 – ident: key-10.3934/math.2022095-22 doi: 10.2298/AADM181018007G – ident: key-10.3934/math.2022095-38 – ident: key-10.3934/math.2022095-1 doi: 10.3233/BME-2008-0556 – ident: key-10.3934/math.2022095-16 – ident: key-10.3934/math.2022095-35 doi: 10.3390/math8020212 – ident: key-10.3934/math.2022095-24 doi: 10.1007/s11784-020-00801-9 – ident: key-10.3934/math.2022095-14 doi: 10.1007/s40840-018-0698-6 – ident: key-10.3934/math.2022095-27 doi: 10.1186/1029-242X-2014-38 – ident: key-10.3934/math.2022095-33 doi: 10.24193/fpt-ro.2018.1.25 – ident: key-10.3934/math.2022095-5 doi: 10.1006/jmaa.1999.6560 – ident: key-10.3934/math.2022095-13 doi: 10.1007/s40840-017-0555-z – ident: key-10.3934/math.2022095-21 doi: 10.1007/s11784-020-0765-0 – ident: key-10.3934/math.2022095-28 – ident: key-10.3934/math.2022095-31 doi: 10.15388/NA.2016.4.7 – ident: key-10.3934/math.2022095-20 doi: 10.1007/s11784-021-00863-3 – ident: key-10.3934/math.2022095-29 – ident: key-10.3934/math.2022095-15 doi: 10.36045/bbms/1576206358 – ident: key-10.3934/math.2022095-9 doi: 10.1007/s12215-018-0386-2 – ident: key-10.3934/math.2022095-42 doi: 10.4064/cm-36-1-81-86 – ident: key-10.3934/math.2022095-8 doi: 10.24193/fpt-ro.2018.1.06 – ident: key-10.3934/math.2022095-26 doi: 10.1186/1687-1812-2012-94 – ident: key-10.3934/math.2022095-30 doi: 10.1186/1687-1812-2014-210 – ident: key-10.3934/math.2022095-11 doi: 10.3906/mat-1912-80 – ident: key-10.3934/math.2022095-10 doi: 10.1007/s00010-019-00680-7 – ident: key-10.3934/math.2022095-3 doi: 10.1090/S0002-9947-1977-0433430-4 – ident: key-10.3934/math.2022095-43 doi: 10.1007/BF01472580 – ident: key-10.3934/math.2022095-44 doi: 10.1090/S0002-9939-07-09055-7 |
SSID | ssj0002124274 |
Score | 2.2048562 |
Snippet | This paper deals with a well known open problem raised by Kannan (Bull. Calcutta Math. Soc., 60: 71–76, 1968) and B. E. Rhoades (Contemp. Math., 72: 233–245,... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
StartPage | 1628 |
SubjectTerms | discontinuity at the fixed point fixed point φ)-a-contraction |
Title | On two new contractions and discontinuity on fixed points |
URI | https://doaj.org/article/9de0c904830c4643808e6fc2a4be432d |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kJz2IT6wv9qAnCV2zj-4eVSxFqF4s9Bb2CQVJik3Rn-9MEks9iBevYQibb5KZb7Kz3xBy5YEDa9z610qKTEgXM5NLnXGpkmPa69iIJE2e1XgqnmZytjHqC3vCWnngFriBCZF5g8LnzAuF-ug6quRzK1wUPA8YfZlhG8UUxmAIyALqrbbTnRsuBsD_cO8hB2P5IwdtSPU3OWW0R3Y7Mkjv2kXsk61YHpCdyVpJdXlIzEtJ64-KAvulTVt5exBhSW0ZKB6prXDUwwq4NK1KmuafMdBFNS_r5RGZjh5fH8ZZN-4g83yo68za6ILWTkDNNZR5godw1qeQc8dDEsBrAldapZDy5IWFzydID5AayMLBWcOPSa-synhCqLA83vIw5NEy4VHDbagsA_QNUzaY2Cc33wAUvtMCx5EUbwXUBAhXgXAVHVx9cr22XrQaGL_Y3SOWaxtUrm4ugD-Lzp_FX_48_Y-bnJFtXFP7q-Sc9Or3VbwA8lC7y-Y9-QJ4PsG1 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+two+new+contractions+and+discontinuity+on+fixed+points&rft.jtitle=AIMS+mathematics&rft.au=Mi+Zhou&rft.au=Naeem+Saleem&rft.au=Xiao-lan+Liu&rft.au=Nihal+%C3%96zg%C3%BCr&rft.date=2022-01-01&rft.pub=AIMS+Press&rft.eissn=2473-6988&rft.volume=7&rft.issue=2&rft.spage=1628&rft.epage=1663&rft_id=info:doi/10.3934%2Fmath.2022095&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_9de0c904830c4643808e6fc2a4be432d |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon |