On inequalities of Hermite-Hadamard-Mercer type involving Riemann-Liouville fractional integrals
The goal of this article is to establish many inequalities of Hermite-Hadamard-Mercer type involving Riemann-Liouville fractional operators. We also establish some related fractional integral inequalities connected to the left side of Hermite-Hadamard-Mercer type inequality for differentiable convex...
Saved in:
Published in | AIMS mathematics Vol. 6; no. 1; pp. 712 - 725 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
AIMS Press
01.01.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The goal of this article is to establish many inequalities of Hermite-Hadamard-Mercer type involving Riemann-Liouville fractional operators. We also establish some related fractional integral inequalities connected to the left side of Hermite-Hadamard-Mercer type inequality for differentiable convex functions. Further remarks and observations for these results are given. Finally, we see the efficiency of our inequalities via some applications on special means. |
---|---|
AbstractList | The goal of this article is to establish many inequalities of Hermite-Hadamard-Mercer type involving Riemann-Liouville fractional operators. We also establish some related fractional integral inequalities connected to the left side of Hermite-Hadamard-Mercer type inequality for differentiable convex functions. Further remarks and observations for these results are given. Finally, we see the efficiency of our inequalities via some applications on special means. |
Author | Kashuri, Artion Ali, Muhammad Aamir Abdeljawad, Thabet Mohammed, Pshtiwan Othman |
Author_xml | – sequence: 1 givenname: Thabet surname: Abdeljawad fullname: Abdeljawad, Thabet organization: Department of Mathematics and General Sciences, Prince Sultan University, P.O. Box 66833, Riyadh 11586, Saudi Arabia, Department of Medical Research, China Medical University, Taichung 40402, Taiwan, Department of Computer Science and Information Engineering, Asia University, Taichung 41354, Taiwan – sequence: 2 givenname: Muhammad Aamir surname: Ali fullname: Ali, Muhammad Aamir organization: Jiangsu Key Laboratory of NSLSCS, School of Mathematical Sciences, Nanjing Normal University, China – sequence: 3 givenname: Pshtiwan Othman surname: Mohammed fullname: Mohammed, Pshtiwan Othman organization: Department of Mathematics, College of Education, University of Sulaimani, Sulaimani 46001, Kurdistan Region, Iraq – sequence: 4 givenname: Artion surname: Kashuri fullname: Kashuri, Artion organization: Department of Mathematics, Faculty of Technical Science, University Ismail Qemali, Vlora, Albania |
BookMark | eNptUNtKw0AUXKSCtfbND8gHGN1bbo9S1BYqBdHn9WRztm5JsnWzLfTvTWwFEZ_mcJgZZuaSjFrXIiHXjN6KQsi7BsLHLaecUSnOyJjLTMRpkeejX_cFmXbdhtKexSXP5Ji8r9rItvi5g9oGi13kTDRH39iA8RwqaMBX8TN6jT4Khy325L2r97ZdRy8WG2jbeGndbm_rGiPjQQfrWqh7WsC1h7q7IuemB5yecELeHh9eZ_N4uXpazO6XsRZZHmLI86Iwsqgq1MCpYAxSXuY05ZhmRVINxTRNEkilMZCVLEm0EExiYiowgGJCFkffysFGbb3tkx-UA6u-H86vFfhgdY2KGZ4LURouskxWCStETlGUnIIuOQDvvfjRS3vXdR6N0jbA0Cx4sLViVA2Tq2FydZq8F938Ef2E-Jf-Bfo8hmg |
CitedBy_id | crossref_primary_10_3934_math_2022709 crossref_primary_10_2298_FIL2311427A crossref_primary_10_3390_axioms11030132 crossref_primary_10_3390_axioms12060517 crossref_primary_10_2298_FIL2314531A crossref_primary_10_3390_axioms13060413 crossref_primary_10_1007_s12346_022_00708_5 crossref_primary_10_3390_axioms13020114 crossref_primary_10_3390_math11081953 crossref_primary_10_1216_rmj_2024_54_331 crossref_primary_10_3934_math_2021275 crossref_primary_10_1016_j_aej_2022_10_019 crossref_primary_10_1142_S0218348X24400164 crossref_primary_10_3934_math_2022392 crossref_primary_10_2298_FIL2317553S crossref_primary_10_1515_anly_2023_0019 crossref_primary_10_1155_2022_6716830 |
Cites_doi | 10.1016/S0096-3003(02)00657-4 10.13001/1081-3810.1684 10.1016/j.jksus.2017.07.011 10.3934/math.2020468 10.1186/s13662-019-2438-0 10.18514/MMN.2015.1099 10.18514/MMN.2017.1197 10.1002/mma.6188 10.1016/j.aej.2020.03.039 10.3390/sym12040595 10.1007/BF02112278 10.1515/math-2020-0038 10.3390/sym12091485 10.1186/s13660-017-1594-6 10.1016/j.cam.2020.112740 10.1016/j.laa.2006.02.030 10.1016/j.mcm.2011.12.048 10.3390/sym12091503 10.3390/sym12040610 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.3934/math.2021043 |
DatabaseName | CrossRef DOAJ - Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2473-6988 |
EndPage | 725 |
ExternalDocumentID | oai_doaj_org_article_1f2833bf23774d519380e3b20acb2aa2 10_3934_math_2021043 |
GroupedDBID | AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV CITATION EBS FRJ GROUPED_DOAJ IAO ITC M~E OK1 RAN |
ID | FETCH-LOGICAL-c378t-a8899f49ddeca20311a62b8062e6795d2021c055a64ffa7b155c3314e5fdafae3 |
IEDL.DBID | DOA |
ISSN | 2473-6988 |
IngestDate | Wed Aug 27 01:15:23 EDT 2025 Thu Apr 24 22:59:09 EDT 2025 Tue Jul 01 03:56:46 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c378t-a8899f49ddeca20311a62b8062e6795d2021c055a64ffa7b155c3314e5fdafae3 |
OpenAccessLink | https://doaj.org/article/1f2833bf23774d519380e3b20acb2aa2 |
PageCount | 14 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1f2833bf23774d519380e3b20acb2aa2 crossref_citationtrail_10_3934_math_2021043 crossref_primary_10_3934_math_2021043 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-01 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | AIMS mathematics |
PublicationYear | 2021 |
Publisher | AIMS Press |
Publisher_xml | – name: AIMS Press |
References | key-10.3934/math.2021043-1 key-10.3934/math.2021043-24 key-10.3934/math.2021043-25 key-10.3934/math.2021043-26 key-10.3934/math.2021043-27 key-10.3934/math.2021043-20 key-10.3934/math.2021043-21 key-10.3934/math.2021043-22 key-10.3934/math.2021043-23 key-10.3934/math.2021043-9 key-10.3934/math.2021043-8 key-10.3934/math.2021043-7 key-10.3934/math.2021043-6 key-10.3934/math.2021043-5 key-10.3934/math.2021043-4 key-10.3934/math.2021043-3 key-10.3934/math.2021043-2 key-10.3934/math.2021043-17 key-10.3934/math.2021043-18 key-10.3934/math.2021043-19 key-10.3934/math.2021043-13 key-10.3934/math.2021043-14 key-10.3934/math.2021043-15 key-10.3934/math.2021043-16 key-10.3934/math.2021043-10 key-10.3934/math.2021043-11 key-10.3934/math.2021043-12 |
References_xml | – ident: key-10.3934/math.2021043-27 doi: 10.1016/S0096-3003(02)00657-4 – ident: key-10.3934/math.2021043-24 doi: 10.13001/1081-3810.1684 – ident: key-10.3934/math.2021043-4 doi: 10.1016/j.jksus.2017.07.011 – ident: key-10.3934/math.2021043-20 doi: 10.3934/math.2020468 – ident: key-10.3934/math.2021043-21 doi: 10.1186/s13662-019-2438-0 – ident: key-10.3934/math.2021043-3 doi: 10.18514/MMN.2015.1099 – ident: key-10.3934/math.2021043-9 doi: 10.18514/MMN.2017.1197 – ident: key-10.3934/math.2021043-6 – ident: key-10.3934/math.2021043-2 – ident: key-10.3934/math.2021043-11 doi: 10.1002/mma.6188 – ident: key-10.3934/math.2021043-22 – ident: key-10.3934/math.2021043-13 doi: 10.1016/j.aej.2020.03.039 – ident: key-10.3934/math.2021043-17 doi: 10.3390/sym12040595 – ident: key-10.3934/math.2021043-14 – ident: key-10.3934/math.2021043-26 doi: 10.1007/BF02112278 – ident: key-10.3934/math.2021043-12 doi: 10.1515/math-2020-0038 – ident: key-10.3934/math.2021043-19 doi: 10.3390/sym12091485 – ident: key-10.3934/math.2021043-15 doi: 10.1186/s13660-017-1594-6 – ident: key-10.3934/math.2021043-1 – ident: key-10.3934/math.2021043-16 doi: 10.1016/j.cam.2020.112740 – ident: key-10.3934/math.2021043-23 doi: 10.1016/j.laa.2006.02.030 – ident: key-10.3934/math.2021043-7 – ident: key-10.3934/math.2021043-5 – ident: key-10.3934/math.2021043-25 – ident: key-10.3934/math.2021043-8 doi: 10.1016/j.mcm.2011.12.048 – ident: key-10.3934/math.2021043-18 doi: 10.3390/sym12091503 – ident: key-10.3934/math.2021043-10 doi: 10.3390/sym12040610 |
SSID | ssj0002124274 |
Score | 2.287887 |
Snippet | The goal of this article is to establish many inequalities of Hermite-Hadamard-Mercer type involving Riemann-Liouville fractional operators. We also establish... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
StartPage | 712 |
SubjectTerms | hermite-hadamard-mercer inequality jensen-mercer inequality riemann-liouville fractional integral |
Title | On inequalities of Hermite-Hadamard-Mercer type involving Riemann-Liouville fractional integrals |
URI | https://doaj.org/article/1f2833bf23774d519380e3b20acb2aa2 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iSQ_iE9cXPehJwrZJmrZHFZdFXAVxYW91kiawsHZlH_5-Z5q6rAfx4rUMafqlnXyTznzD2KVIvNCVk8jcMuAqM4qD0p5T97gYCQDYprZq8KT7Q_UwSkdrrb4oJyzIAwfgujhWLqXxQiJRqYhv5LGTRsRgjQBovC_ueWvBFPlgdMgK462Q6S4LqbrI_-jfA0Y4Sv7Yg9ak-ps9pbfLdloyGN2ESeyxDVfvs-3BSkl1fsDenusIiWCofcSoNpr6qE8JLAvH0WvAOyW9Dig7ZRbRcSoao8OhU4LoZYyj1DV_HE-Xn1TyF_lZKGPAe7YyEZP5IRv27l_v-rztisCtzPIFhxxDJK8K9EsWBH6TCWhh8lgLp7MiregZbZymoJX3kBkkDFbKRLnUV-DBySO2WU9rd8wiU2RJZRJhCgsqQ1S9Ba-l8AnytirXHXb9jVNpW8lw6lwxKTF0IFRLQrVsUe2wq5X1R5DK-MXuliBf2ZDAdXMBl71sl738a9lP_mOQU7ZFcwonKmdsczFbunPkGAtz0bxOX-P30EU |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+inequalities+of+Hermite-Hadamard-Mercer+type+involving+Riemann-Liouville+fractional+integrals&rft.jtitle=AIMS+mathematics&rft.au=Thabet+Abdeljawad&rft.au=Muhammad+Aamir+Ali&rft.au=Pshtiwan+Othman+Mohammed&rft.au=Artion+Kashuri&rft.date=2021-01-01&rft.pub=AIMS+Press&rft.eissn=2473-6988&rft.volume=6&rft.issue=1&rft.spage=712&rft.epage=725&rft_id=info:doi/10.3934%2Fmath.2021043&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_1f2833bf23774d519380e3b20acb2aa2 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon |