Electrodeposition mechanism and characterization of Ni–Mo alloy and its electrocatalytic performance for hydrogen evolution
In the study, the electrodeposition mechanism of Ni–Mo alloy was investigated. Potentiostatic deposition showed that the presence of MoO42− could reduce the deposition overpotential of Ni, and the deposition current efficiency of Ni–Mo alloy was lower than pure Ni deposition as the potential moved n...
Saved in:
Published in | International journal of hydrogen energy Vol. 41; no. 31; pp. 13341 - 13349 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
17.08.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In the study, the electrodeposition mechanism of Ni–Mo alloy was investigated. Potentiostatic deposition showed that the presence of MoO42− could reduce the deposition overpotential of Ni, and the deposition current efficiency of Ni–Mo alloy was lower than pure Ni deposition as the potential moved negatively. Cyclic Voltammetry (CV) indicated that both the first reduction peak for Ni deposition and the deposition peak of Ni–Mo alloy moved to more positive potentials as the content of Ni2+ increased, but the deposition peak of Ni–Mo alloy moved to more negative potentials as the content of MoO42− increased. The cathodic polarization curve on Rotating Disc Electrode (RDE) presented that Ni–Mo codeposition was controlled by charge transfer. The morphology, composition and structure of Ni–Mo alloy were characterized by SEM, EDS and XRD. The results showed the Ni–Mo alloy coatings exhibited a spherical and cauliflower-like pattern, having a considerably rougher surface, with nano-crystal structure when the elements composition was Ni80.14Mo19.59. The electrochemical activity for hydrogen evolution of Ni–Mo alloy was studied in 30 wt.% KOH at 25 °C using steady-state polarization and electrochemical impedance spectroscopy (EIS) methods. The results clearly demonstrated that an increase in the electrochemical activity for hydrogen evolution of the Ni–Mo alloy coating can be attributed both higher exchange current density and larger real electrode area.
[Display omitted]
•The electrodeposition mechanism of Ni–Mo alloy was investigated.•The Ni80.14Mo19.59 alloy coatings exhibited a spherical and cauliflower-like pattern, with nano-crystal structure.•The Ni–Mo alloy had better catalytic activity for hydrogen evolution. |
---|---|
AbstractList | In the study, the electrodeposition mechanism of Ni–Mo alloy was investigated. Potentiostatic deposition showed that the presence of MoO42− could reduce the deposition overpotential of Ni, and the deposition current efficiency of Ni–Mo alloy was lower than pure Ni deposition as the potential moved negatively. Cyclic Voltammetry (CV) indicated that both the first reduction peak for Ni deposition and the deposition peak of Ni–Mo alloy moved to more positive potentials as the content of Ni2+ increased, but the deposition peak of Ni–Mo alloy moved to more negative potentials as the content of MoO42− increased. The cathodic polarization curve on Rotating Disc Electrode (RDE) presented that Ni–Mo codeposition was controlled by charge transfer. The morphology, composition and structure of Ni–Mo alloy were characterized by SEM, EDS and XRD. The results showed the Ni–Mo alloy coatings exhibited a spherical and cauliflower-like pattern, having a considerably rougher surface, with nano-crystal structure when the elements composition was Ni80.14Mo19.59. The electrochemical activity for hydrogen evolution of Ni–Mo alloy was studied in 30 wt.% KOH at 25 °C using steady-state polarization and electrochemical impedance spectroscopy (EIS) methods. The results clearly demonstrated that an increase in the electrochemical activity for hydrogen evolution of the Ni–Mo alloy coating can be attributed both higher exchange current density and larger real electrode area.
[Display omitted]
•The electrodeposition mechanism of Ni–Mo alloy was investigated.•The Ni80.14Mo19.59 alloy coatings exhibited a spherical and cauliflower-like pattern, with nano-crystal structure.•The Ni–Mo alloy had better catalytic activity for hydrogen evolution. |
Author | Liu, Xue-jiang Fu, Xin-ling Li, Jian-ming Xu, Chao Zeng, Ming Zhou, Jian-bo |
Author_xml | – sequence: 1 givenname: Chao surname: Xu fullname: Xu, Chao email: hunanxuchao@163.com – sequence: 2 givenname: Jian-bo surname: Zhou fullname: Zhou, Jian-bo email: 229530464@qq.com – sequence: 3 givenname: Ming surname: Zeng fullname: Zeng, Ming – sequence: 4 givenname: Xin-ling surname: Fu fullname: Fu, Xin-ling email: weiym929@163.com – sequence: 5 givenname: Xue-jiang surname: Liu fullname: Liu, Xue-jiang – sequence: 6 givenname: Jian-ming surname: Li fullname: Li, Jian-ming email: Lijming0901@sina.com |
BookMark | eNqFkM9qGzEQxkVxoY6TVwh6gXWk_aOVoIcW46QFp72kZzGrHdUy65WRlIADgbxD3rBPUtluL7n49M0w833M_C7IZPQjEnLN2ZwzLm42c7dZ73sccV7mfs5E1uYDmXLZqqKqZTshU1YJVlRcqU_kIsYNY7xltZqSl-WAJgXf485Hl5wf6RbNGkYXtxTGnuY6gEkY3DMcx97SH-7P69u9pzAMfn_ccilSPCUZSDDskzN0h8H6sIXRIM0FzUcG_xtHik9-eDyEXZKPFoaIV_90Rn7dLh8W34rVz7vvi6-rwlStTAW0kmMlhULsQFlbYldbgKYTHVjeMGVLKcuGY9tLJqoaOsuVVWXfc8mFrasZEadcE3yMAa3eBbeFsNec6QNEvdH_IeoDRM1E1iYbP78zGpeOHFIAN5y3fznZMT_35DDoaBxmHr0LGZbuvTsX8RcrG5qW |
CitedBy_id | crossref_primary_10_1016_j_electacta_2025_145825 crossref_primary_10_1002_advs_202403752 crossref_primary_10_1016_j_ijhydene_2016_09_115 crossref_primary_10_1039_D3NJ01571H crossref_primary_10_1039_D4RA08619H crossref_primary_10_1002_celc_202001436 crossref_primary_10_1016_j_electacta_2022_140975 crossref_primary_10_3390_coatings9020085 crossref_primary_10_1016_j_colsurfa_2020_124654 crossref_primary_10_1016_j_ijhydene_2023_10_183 crossref_primary_10_1002_cssc_202101312 crossref_primary_10_1016_j_ijhydene_2017_10_002 crossref_primary_10_1002_er_7950 crossref_primary_10_1016_j_ijhydene_2018_01_030 crossref_primary_10_1021_acsaem_8b02087 crossref_primary_10_1016_j_electacta_2021_138352 crossref_primary_10_1016_j_ijhydene_2025_01_471 crossref_primary_10_1016_j_mtcomm_2024_108863 crossref_primary_10_1007_s10562_024_04743_6 crossref_primary_10_1016_j_apsusc_2017_06_216 crossref_primary_10_1016_j_ijhydene_2020_06_195 crossref_primary_10_1016_j_ijhydene_2024_10_311 crossref_primary_10_1016_j_micromeso_2021_111556 crossref_primary_10_1016_j_jallcom_2021_161595 crossref_primary_10_1016_j_jmapro_2024_03_099 crossref_primary_10_1002_cssc_201800112 crossref_primary_10_1002_jctb_7368 crossref_primary_10_1039_D4RA06466F crossref_primary_10_2320_matertrans_MAW201801 crossref_primary_10_1016_j_matlet_2018_05_050 crossref_primary_10_1039_C9EN01303B crossref_primary_10_1021_acsaem_4c01621 crossref_primary_10_1016_j_jallcom_2022_165352 crossref_primary_10_1016_j_ijhydene_2018_01_029 crossref_primary_10_1016_j_ijhydene_2020_09_026 crossref_primary_10_1016_j_rsurfi_2025_100421 crossref_primary_10_1007_s11581_017_2378_1 crossref_primary_10_1016_j_jmrt_2024_03_192 crossref_primary_10_1007_s10800_019_01361_8 crossref_primary_10_1016_j_corsci_2019_03_053 crossref_primary_10_1016_j_ijhydene_2017_08_012 crossref_primary_10_1016_j_ceramint_2022_08_286 crossref_primary_10_1016_j_heliyon_2023_e15230 crossref_primary_10_1039_D3CY01703F crossref_primary_10_1016_j_ijhydene_2021_08_056 crossref_primary_10_1039_D4NR05248J crossref_primary_10_1039_C6NJ03798D crossref_primary_10_1007_s12678_018_0490_2 crossref_primary_10_1016_j_jallcom_2024_174944 crossref_primary_10_1007_s11696_023_02790_8 crossref_primary_10_1016_j_ijhydene_2018_12_224 crossref_primary_10_1007_s12613_023_2677_7 crossref_primary_10_1016_j_ijhydene_2025_01_095 crossref_primary_10_1088_2053_1591_acf278 crossref_primary_10_1016_j_apsusc_2020_147894 crossref_primary_10_1016_j_ijhydene_2017_11_131 crossref_primary_10_1007_s11696_018_0486_7 crossref_primary_10_1134_S1023193518120042 crossref_primary_10_1016_j_matchar_2018_09_026 |
Cites_doi | 10.1016/j.ijhydene.2015.12.132 10.1149/1.1838297 10.1016/j.ijhydene.2010.03.093 10.1016/j.jallcom.2014.09.220 10.1016/j.ijhydene.2014.01.091 10.1021/cs300691m 10.1149/1.1837658 10.1016/j.apcatb.2015.09.018 10.1016/j.ijhydene.2013.01.117 10.1016/j.jelechem.2014.10.014 10.1016/j.molcata.2005.09.040 10.1016/j.ijhydene.2013.12.053 10.1039/tf9585401053 10.1016/j.apcatb.2013.12.030 10.1016/j.molcata.2004.10.029 10.1016/j.apsusc.2016.01.114 10.1016/S1001-0521(07)60202-2 10.1016/j.fuel.2014.03.049 10.1016/j.ijhydene.2013.11.093 10.1016/S0022-0728(98)00011-4 10.1016/j.scriptamat.2013.03.006 10.1016/S1452-3981(23)15490-3 10.1007/s10800-015-0908-y 10.1016/S0022-0728(75)80205-1 10.1149/1.2085778 10.1088/1674-1056/24/10/108202 10.1016/j.ijhydene.2008.04.039 10.1016/j.apsusc.2016.02.086 |
ContentType | Journal Article |
Copyright | 2016 Hydrogen Energy Publications LLC |
Copyright_xml | – notice: 2016 Hydrogen Energy Publications LLC |
DBID | AAYXX CITATION |
DOI | 10.1016/j.ijhydene.2016.06.205 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-3487 |
EndPage | 13349 |
ExternalDocumentID | 10_1016_j_ijhydene_2016_06_205 S036031991531795X |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AARLI AAXUO ABFNM ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADECG ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA HZ~ IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SCC SDF SDG SES SPC SPCBC SSK SSM SSR SSZ T5K TN5 XPP ZMT ~G- 29J AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HVGLF R2- SAC SCB SEW SSH T9H WUQ |
ID | FETCH-LOGICAL-c378t-a781e3869eeba9ff2eb4faa5b6baf1509f288251e7d80634abf19f92dd1816f43 |
IEDL.DBID | .~1 |
ISSN | 0360-3199 |
IngestDate | Tue Jul 01 04:12:46 EDT 2025 Thu Apr 24 22:56:01 EDT 2025 Fri Feb 23 02:26:19 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 31 |
Keywords | Current efficiency Electrodeposition mechanism Potentiostatic deposition Hydrogen evolution Ni-Mo alloy |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c378t-a781e3869eeba9ff2eb4faa5b6baf1509f288251e7d80634abf19f92dd1816f43 |
PageCount | 9 |
ParticipantIDs | crossref_primary_10_1016_j_ijhydene_2016_06_205 crossref_citationtrail_10_1016_j_ijhydene_2016_06_205 elsevier_sciencedirect_doi_10_1016_j_ijhydene_2016_06_205 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-08-17 |
PublicationDateYYYYMMDD | 2016-08-17 |
PublicationDate_xml | – month: 08 year: 2016 text: 2016-08-17 day: 17 |
PublicationDecade | 2010 |
PublicationTitle | International journal of hydrogen energy |
PublicationYear | 2016 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Jayalakshmi, Woo-Young, Kwang-Deog, Oh-Shim (bib18) 2008; 3 Miles (bib23) 1975; 60 Isaac, Emma, Valentin, Ruben, Agustin (bib15) 2009; 52 Navarro-Flores, Chong, Omanovic (bib16) 2005; 226 Grilca, Likozar, Levec (bib3) 2014; 150–151 Parsons (bib11) 1958; 54 Lv, Liang, Wang (bib8) 2016; 366 Krstajic, Jovic, Jovic (bib13) 2008; 33 Chen, Yang, Shi, Li, Chu, Pan (bib5) 2014; 129 Guettaf Temam, Ben Temam, Benramache (bib26) 2015; 24 Podlaha, Landolt (bib31) 1997; 144 Martinez, Metiko, Valek (bib10) 2006; 245 Laszczyńskaa, Szczygiełb, Szczygie (bib19) 2016; 369 Luo, Ren, Xu, Zheng (bib22) 2007; 26 Jekawa, Murase, Matsubara, Hirato, Awakura (bib30) 1998; 145 Li, Huang, Chen, Wang (bib12) 2016; 667 Manazoğlu, Hapçı, Orhan (bib7) 2016; 46 Brenner (bib28) 1963 Aaboubi, Ali Omar, Franczak, Msellak (bib29) 2015; 737 Kurz, Ensslen, Welzel, Leineweber, Mittemeijer (bib1) 2013; 69 Gennero de Chialvo, Chialvo (bib27) 1998; 448 Alsalmea, Alzaqria, Alsaleha, Siddiqui, Alotaibi, Kozhevnikova (bib6) 2016; 182 Huot, Trudeau, Schulz (bib24) 1991; 138 Liu, Chen, Chu, Yang, Zhu, Wang (bib4) 2013; 38 Qing, Shuang, Nianwen, Chen, Liu, Wei (bib9) 2010; 35 Tang, Xiao, Yang, Lu, Zhuang (bib14) 2014; 39 Berry (bib32) 1973 Lobiaka, Shlyakhova, Bulusheva, Plyusnin, Shubin, Okotrub (bib2) 2015; 621 Rauscher, Müller, Schmidt, Kieback, Röntzsch (bib17) 2016; 41 Cao, Zhang (bib33) 2002 Xia, Lei, Lv, Li (bib20) 2014; 39 Lupi, Dell’Era, Pasquali (bib21) 2014; 39 James, Bryce, Caroline, Nathan, Gray (bib25) 2013; 3 Tian (bib34) 1984 Qing (10.1016/j.ijhydene.2016.06.205_bib9) 2010; 35 Liu (10.1016/j.ijhydene.2016.06.205_bib4) 2013; 38 Isaac (10.1016/j.ijhydene.2016.06.205_bib15) 2009; 52 Lobiaka (10.1016/j.ijhydene.2016.06.205_bib2) 2015; 621 Laszczyńskaa (10.1016/j.ijhydene.2016.06.205_bib19) 2016; 369 Chen (10.1016/j.ijhydene.2016.06.205_bib5) 2014; 129 Martinez (10.1016/j.ijhydene.2016.06.205_bib10) 2006; 245 Li (10.1016/j.ijhydene.2016.06.205_bib12) 2016; 667 Xia (10.1016/j.ijhydene.2016.06.205_bib20) 2014; 39 Aaboubi (10.1016/j.ijhydene.2016.06.205_bib29) 2015; 737 Podlaha (10.1016/j.ijhydene.2016.06.205_bib31) 1997; 144 Jayalakshmi (10.1016/j.ijhydene.2016.06.205_bib18) 2008; 3 Lupi (10.1016/j.ijhydene.2016.06.205_bib21) 2014; 39 Kurz (10.1016/j.ijhydene.2016.06.205_bib1) 2013; 69 Krstajic (10.1016/j.ijhydene.2016.06.205_bib13) 2008; 33 Berry (10.1016/j.ijhydene.2016.06.205_bib32) 1973 Gennero de Chialvo (10.1016/j.ijhydene.2016.06.205_bib27) 1998; 448 Huot (10.1016/j.ijhydene.2016.06.205_bib24) 1991; 138 Grilca (10.1016/j.ijhydene.2016.06.205_bib3) 2014; 150–151 Cao (10.1016/j.ijhydene.2016.06.205_bib33) 2002 Alsalmea (10.1016/j.ijhydene.2016.06.205_bib6) 2016; 182 Manazoğlu (10.1016/j.ijhydene.2016.06.205_bib7) 2016; 46 Jekawa (10.1016/j.ijhydene.2016.06.205_bib30) 1998; 145 Navarro-Flores (10.1016/j.ijhydene.2016.06.205_bib16) 2005; 226 Lv (10.1016/j.ijhydene.2016.06.205_bib8) 2016; 366 Guettaf Temam (10.1016/j.ijhydene.2016.06.205_bib26) 2015; 24 Parsons (10.1016/j.ijhydene.2016.06.205_bib11) 1958; 54 Tang (10.1016/j.ijhydene.2016.06.205_bib14) 2014; 39 Miles (10.1016/j.ijhydene.2016.06.205_bib23) 1975; 60 Brenner (10.1016/j.ijhydene.2016.06.205_bib28) 1963 Tian (10.1016/j.ijhydene.2016.06.205_bib34) 1984 Rauscher (10.1016/j.ijhydene.2016.06.205_bib17) 2016; 41 James (10.1016/j.ijhydene.2016.06.205_bib25) 2013; 3 Luo (10.1016/j.ijhydene.2016.06.205_bib22) 2007; 26 |
References_xml | – volume: 448 start-page: 87 year: 1998 end-page: 93 ident: bib27 article-title: Hydrogen evolution reaction on smooth Ni publication-title: J Electroanal Chem – volume: 737 start-page: 226 year: 2015 end-page: 234 ident: bib29 article-title: Investigation of the electrodeposition kinetics of Ni-Mo alloys in the presence of magnetic field publication-title: J Electroanal Chem – start-page: 86 year: 2002 end-page: 92 ident: bib33 article-title: An introduction to electrochemical impedance spectroscopy – start-page: 268 year: 1984 end-page: 270 ident: bib34 article-title: Electrochemical research methods – volume: 245 start-page: 114 year: 2006 end-page: 121 ident: bib10 article-title: Electrocatalytic properties of electrodeposited Ni-15Mo cathodes for the HER in acid solutions: synergistic electronic effect publication-title: J Mol Catal A-Chem – volume: 46 start-page: 191 year: 2016 end-page: 204 ident: bib7 article-title: Effect of electrolysis parameters of Ni–Mo alloy on the electrocatalytic activity for hydrogen evaluation and their stability in alkali medium publication-title: J Appl Electrochem – volume: 144 start-page: 1672 year: 1997 end-page: 1680 ident: bib31 article-title: Induce codeposition, Ⅲ. molybdenum alloys with nickel, cobalt and iron publication-title: J Electrochem Soc – volume: 39 start-page: 3055 year: 2014 end-page: 3060 ident: bib14 article-title: Noble fabrication of Ni-Mo cathode for alkalinewater electrolysis and alkaline polymer electrolyte water electrolysis publication-title: Int J Hydrogen Energy – volume: 33 start-page: 3676 year: 2008 end-page: 3687 ident: bib13 article-title: Electrodeposition of Ni-Mo alloy coatings and their characterization as cathodes for hydrogen evolution in sodium hydroxide solution publication-title: Int J Hydrogen Energy – volume: 129 start-page: 1 year: 2014 end-page: 10 ident: bib5 article-title: Regulating product distribution in deoxygenation of methyl laurate on silica-supported Ni-Mo phosphides: effect of Ni/Mo ratio publication-title: Fuel – year: 1973 ident: bib32 article-title: Powder diffraction file joint committee on powder diffraction standards – volume: 52 start-page: 79 year: 2009 end-page: 91 ident: bib15 article-title: EIS characte-rization of Ni/Zn and Ni-Co/Zn stainless steel based electrodeposits for the hydrogen evolution reaction publication-title: ECS Trans – volume: 39 start-page: 1932 year: 2014 end-page: 1940 ident: bib21 article-title: In situ activation with Mo of Ni-Co alloys for hydrogen evolution reaction publication-title: Int J Hydrogen Energy – volume: 69 start-page: 65 year: 2013 end-page: 68 ident: bib1 article-title: The thermal stability of Ni–Mo and Ni-W thin films: solute segregation and planar faults publication-title: Scr Mater – volume: 35 start-page: 5194 year: 2010 end-page: 5201 ident: bib9 article-title: A study on pulse plating amorphous Ni-Mo alloy coating used as HER cathode in alkaline medium publication-title: Int J Hydrogen Energy – volume: 3 start-page: 908 year: 2008 end-page: 916 ident: bib18 article-title: Electrochemical characterization of Ni-Mo-Fe composite film in alkaline solution publication-title: Int J Electrochem Sc – volume: 38 start-page: 3948 year: 2013 end-page: 3955 ident: bib4 article-title: Catalytic steam reforming of bio-oil aqueous fraction for hydrogen production over Ni–Mo supported on modified sepiolite catalysts publication-title: Int J Hydrogen Energy – volume: 150–151 start-page: 275 year: 2014 end-page: 287 ident: bib3 article-title: Hydrodeoxygenation and hydrocracking of solvolysed lignocellulosic biomass by oxide, reduced and sulphide form of NiMo, Ni, Mo and Pd catalysts publication-title: Appl Catal B-Environ – volume: 39 start-page: 4794 year: 2014 end-page: 4802 ident: bib20 article-title: Synthesis and electrocatalytic hydrogen evolution performance of Ni-Mo-Cu alloy coating electrode publication-title: Int J Hydrogen Energy – volume: 621 start-page: 351 year: 2015 end-page: 356 ident: bib2 article-title: Ni–Mo and Co–Mo alloy nanoparticles for catalytic chemical vapor deposition synthesis of carbon nanotubes publication-title: J Alloy Comd – volume: 138 start-page: 1316 year: 1991 end-page: 1321 ident: bib24 article-title: Low hydrogen overpotential nanocrystalline Ni-Mo cathodes for alkaline water electrolysis publication-title: J Electrochem Soc – start-page: 413 year: 1963 end-page: 455 ident: bib28 article-title: Electrodeposition of alloys principles and practice – volume: 369 start-page: 224 year: 2016 end-page: 231 ident: bib19 article-title: Electrodeposition and characterization of Ni–Mo–ZrO publication-title: Appl Surf Sci – volume: 3 start-page: 166 year: 2013 end-page: 169 ident: bib25 article-title: Ni-Mo nanopowders for efficient electrochemical hydrogen evolution publication-title: ACS Catal – volume: 41 start-page: 2165 year: 2016 end-page: 2176 ident: bib17 article-title: Ni-Mo-B alloys as cathode material for alkaline water electrolysis publication-title: Int J Hydrogen Energy – volume: 54 start-page: 1053 year: 1958 end-page: 1063 ident: bib11 article-title: The rate of electrolytic hydrogen evolution and the heat of adsorption of hydrogen publication-title: Trans Faraday Soc – volume: 24 start-page: 10 year: 2015 end-page: 15 ident: bib26 article-title: Surface morphology and electrochemical characterization of electrodeposited Ni-Mo nanocomposites as cathodes for hydrogen evolution publication-title: Chin Phys B – volume: 226 start-page: 179 year: 2005 end-page: 197 ident: bib16 article-title: Characterization of Ni, NiMo, NiW and NiFe electroactive coatings as electrocatalysts for hydrogen evolution in an acidic medium publication-title: J Mol Catal A-Chem – volume: 366 start-page: 353 year: 2016 end-page: 358 ident: bib8 article-title: Investigation of hydrogen evolution activity for the nickel, nickel-molybdenum nickel-graphite composite and nickel-reduced graphene oxide composite coatings publication-title: Appl Surf Sci – volume: 145 start-page: 523 year: 1998 end-page: 527 ident: bib30 article-title: Determination of chemical species and their composition in Ni-Mo alloy plating baths by factor analysis of visible absorption spectra publication-title: J Electrochem Soc – volume: 667 start-page: 280 year: 2016 end-page: 285 ident: bib12 article-title: Electrochemical characteristics of the amorphous-nanocrystal Ni-Mo cathodes in sodium hydroxide solution publication-title: Eng Mater – volume: 182 start-page: 102 year: 2016 end-page: 108 ident: bib6 article-title: Efficient Ni–Mo hydrodesulfurization catalyst prepared through Keggin polyoxometalate publication-title: Appl Catal B Environ – volume: 60 start-page: 89 year: 1975 end-page: 96 ident: bib23 article-title: Evaluation of electrocatalysts for water electrolysis in alkaline solutions publication-title: J Electroanal Chem – volume: 26 start-page: 2005 year: 2007 end-page: 2011 ident: bib22 article-title: A new method to improve surface morphology of Ni-Fe-Mo-Co alloy electrode and its catalytic activity for HER publication-title: Rare Met – volume: 41 start-page: 2165 issue: 4 year: 2016 ident: 10.1016/j.ijhydene.2016.06.205_bib17 article-title: Ni-Mo-B alloys as cathode material for alkaline water electrolysis publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2015.12.132 – year: 1973 ident: 10.1016/j.ijhydene.2016.06.205_bib32 – volume: 145 start-page: 523 issue: 2 year: 1998 ident: 10.1016/j.ijhydene.2016.06.205_bib30 article-title: Determination of chemical species and their composition in Ni-Mo alloy plating baths by factor analysis of visible absorption spectra publication-title: J Electrochem Soc doi: 10.1149/1.1838297 – volume: 35 start-page: 5194 year: 2010 ident: 10.1016/j.ijhydene.2016.06.205_bib9 article-title: A study on pulse plating amorphous Ni-Mo alloy coating used as HER cathode in alkaline medium publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2010.03.093 – volume: 52 start-page: 79 issue: 32 year: 2009 ident: 10.1016/j.ijhydene.2016.06.205_bib15 article-title: EIS characte-rization of Ni/Zn and Ni-Co/Zn stainless steel based electrodeposits for the hydrogen evolution reaction publication-title: ECS Trans – volume: 621 start-page: 351 year: 2015 ident: 10.1016/j.ijhydene.2016.06.205_bib2 article-title: Ni–Mo and Co–Mo alloy nanoparticles for catalytic chemical vapor deposition synthesis of carbon nanotubes publication-title: J Alloy Comd doi: 10.1016/j.jallcom.2014.09.220 – volume: 39 start-page: 4794 year: 2014 ident: 10.1016/j.ijhydene.2016.06.205_bib20 article-title: Synthesis and electrocatalytic hydrogen evolution performance of Ni-Mo-Cu alloy coating electrode publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2014.01.091 – volume: 3 start-page: 166 year: 2013 ident: 10.1016/j.ijhydene.2016.06.205_bib25 article-title: Ni-Mo nanopowders for efficient electrochemical hydrogen evolution publication-title: ACS Catal doi: 10.1021/cs300691m – volume: 144 start-page: 1672 issue: 5 year: 1997 ident: 10.1016/j.ijhydene.2016.06.205_bib31 article-title: Induce codeposition, Ⅲ. molybdenum alloys with nickel, cobalt and iron publication-title: J Electrochem Soc doi: 10.1149/1.1837658 – volume: 667 start-page: 280 year: 2016 ident: 10.1016/j.ijhydene.2016.06.205_bib12 article-title: Electrochemical characteristics of the amorphous-nanocrystal Ni-Mo cathodes in sodium hydroxide solution publication-title: Eng Mater – volume: 182 start-page: 102 year: 2016 ident: 10.1016/j.ijhydene.2016.06.205_bib6 article-title: Efficient Ni–Mo hydrodesulfurization catalyst prepared through Keggin polyoxometalate publication-title: Appl Catal B Environ doi: 10.1016/j.apcatb.2015.09.018 – volume: 38 start-page: 3948 year: 2013 ident: 10.1016/j.ijhydene.2016.06.205_bib4 article-title: Catalytic steam reforming of bio-oil aqueous fraction for hydrogen production over Ni–Mo supported on modified sepiolite catalysts publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2013.01.117 – volume: 737 start-page: 226 issue: 15 year: 2015 ident: 10.1016/j.ijhydene.2016.06.205_bib29 article-title: Investigation of the electrodeposition kinetics of Ni-Mo alloys in the presence of magnetic field publication-title: J Electroanal Chem doi: 10.1016/j.jelechem.2014.10.014 – volume: 245 start-page: 114 issue: 22 year: 2006 ident: 10.1016/j.ijhydene.2016.06.205_bib10 article-title: Electrocatalytic properties of electrodeposited Ni-15Mo cathodes for the HER in acid solutions: synergistic electronic effect publication-title: J Mol Catal A-Chem doi: 10.1016/j.molcata.2005.09.040 – volume: 39 start-page: 3055 year: 2014 ident: 10.1016/j.ijhydene.2016.06.205_bib14 article-title: Noble fabrication of Ni-Mo cathode for alkalinewater electrolysis and alkaline polymer electrolyte water electrolysis publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2013.12.053 – volume: 54 start-page: 1053 year: 1958 ident: 10.1016/j.ijhydene.2016.06.205_bib11 article-title: The rate of electrolytic hydrogen evolution and the heat of adsorption of hydrogen publication-title: Trans Faraday Soc doi: 10.1039/tf9585401053 – start-page: 413 year: 1963 ident: 10.1016/j.ijhydene.2016.06.205_bib28 – volume: 150–151 start-page: 275 year: 2014 ident: 10.1016/j.ijhydene.2016.06.205_bib3 article-title: Hydrodeoxygenation and hydrocracking of solvolysed lignocellulosic biomass by oxide, reduced and sulphide form of NiMo, Ni, Mo and Pd catalysts publication-title: Appl Catal B-Environ doi: 10.1016/j.apcatb.2013.12.030 – volume: 226 start-page: 179 year: 2005 ident: 10.1016/j.ijhydene.2016.06.205_bib16 article-title: Characterization of Ni, NiMo, NiW and NiFe electroactive coatings as electrocatalysts for hydrogen evolution in an acidic medium publication-title: J Mol Catal A-Chem doi: 10.1016/j.molcata.2004.10.029 – volume: 366 start-page: 353 year: 2016 ident: 10.1016/j.ijhydene.2016.06.205_bib8 article-title: Investigation of hydrogen evolution activity for the nickel, nickel-molybdenum nickel-graphite composite and nickel-reduced graphene oxide composite coatings publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2016.01.114 – volume: 26 start-page: 2005 issue: 3 year: 2007 ident: 10.1016/j.ijhydene.2016.06.205_bib22 article-title: A new method to improve surface morphology of Ni-Fe-Mo-Co alloy electrode and its catalytic activity for HER publication-title: Rare Met doi: 10.1016/S1001-0521(07)60202-2 – volume: 129 start-page: 1 year: 2014 ident: 10.1016/j.ijhydene.2016.06.205_bib5 article-title: Regulating product distribution in deoxygenation of methyl laurate on silica-supported Ni-Mo phosphides: effect of Ni/Mo ratio publication-title: Fuel doi: 10.1016/j.fuel.2014.03.049 – start-page: 268 year: 1984 ident: 10.1016/j.ijhydene.2016.06.205_bib34 – start-page: 86 year: 2002 ident: 10.1016/j.ijhydene.2016.06.205_bib33 – volume: 39 start-page: 1932 year: 2014 ident: 10.1016/j.ijhydene.2016.06.205_bib21 article-title: In situ activation with Mo of Ni-Co alloys for hydrogen evolution reaction publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2013.11.093 – volume: 448 start-page: 87 year: 1998 ident: 10.1016/j.ijhydene.2016.06.205_bib27 article-title: Hydrogen evolution reaction on smooth Ni(1-x) + Mo(x) alloys (0 ≤ x ≤ 0125) publication-title: J Electroanal Chem doi: 10.1016/S0022-0728(98)00011-4 – volume: 69 start-page: 65 year: 2013 ident: 10.1016/j.ijhydene.2016.06.205_bib1 article-title: The thermal stability of Ni–Mo and Ni-W thin films: solute segregation and planar faults publication-title: Scr Mater doi: 10.1016/j.scriptamat.2013.03.006 – volume: 3 start-page: 908 year: 2008 ident: 10.1016/j.ijhydene.2016.06.205_bib18 article-title: Electrochemical characterization of Ni-Mo-Fe composite film in alkaline solution publication-title: Int J Electrochem Sc doi: 10.1016/S1452-3981(23)15490-3 – volume: 46 start-page: 191 issue: 2 year: 2016 ident: 10.1016/j.ijhydene.2016.06.205_bib7 article-title: Effect of electrolysis parameters of Ni–Mo alloy on the electrocatalytic activity for hydrogen evaluation and their stability in alkali medium publication-title: J Appl Electrochem doi: 10.1007/s10800-015-0908-y – volume: 60 start-page: 89 year: 1975 ident: 10.1016/j.ijhydene.2016.06.205_bib23 article-title: Evaluation of electrocatalysts for water electrolysis in alkaline solutions publication-title: J Electroanal Chem doi: 10.1016/S0022-0728(75)80205-1 – volume: 138 start-page: 1316 year: 1991 ident: 10.1016/j.ijhydene.2016.06.205_bib24 article-title: Low hydrogen overpotential nanocrystalline Ni-Mo cathodes for alkaline water electrolysis publication-title: J Electrochem Soc doi: 10.1149/1.2085778 – volume: 24 start-page: 10 year: 2015 ident: 10.1016/j.ijhydene.2016.06.205_bib26 article-title: Surface morphology and electrochemical characterization of electrodeposited Ni-Mo nanocomposites as cathodes for hydrogen evolution publication-title: Chin Phys B doi: 10.1088/1674-1056/24/10/108202 – volume: 33 start-page: 3676 year: 2008 ident: 10.1016/j.ijhydene.2016.06.205_bib13 article-title: Electrodeposition of Ni-Mo alloy coatings and their characterization as cathodes for hydrogen evolution in sodium hydroxide solution publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2008.04.039 – volume: 369 start-page: 224 year: 2016 ident: 10.1016/j.ijhydene.2016.06.205_bib19 article-title: Electrodeposition and characterization of Ni–Mo–ZrO2 composite coatings publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2016.02.086 |
SSID | ssj0017049 |
Score | 2.4370267 |
Snippet | In the study, the electrodeposition mechanism of Ni–Mo alloy was investigated. Potentiostatic deposition showed that the presence of MoO42− could reduce the... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 13341 |
SubjectTerms | Current efficiency Electrodeposition mechanism Hydrogen evolution Ni-Mo alloy Potentiostatic deposition |
Title | Electrodeposition mechanism and characterization of Ni–Mo alloy and its electrocatalytic performance for hydrogen evolution |
URI | https://dx.doi.org/10.1016/j.ijhydene.2016.06.205 |
Volume | 41 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6KXvQgPrE-yh68xuax2SRHkZaq2IsKvYXd7Cym2KS0VehB8T_4D_0l7jSbWkHw4CkPdkiyO4-PzXwzhJyF0teujoUjBY8dBsbmhHDB8TBfUWWAsBmzLfq898CuB-GgQS5rLgymVVrfX_n0hbe2d9p2NtvjPG_fGd-LFJzE2KzRqnCADHYWoZafvy3TPLzIQmAz2MHRKyzh4Xk-fJwb88ZymR7HOp4-trH7LUCtBJ3uNtmyaJFeVC-0QxpQ7JLNlRqCe-S1UzWyUVDnX9ERIJ03n46oKBTNliWZK8YlLTXt55_vH7clxb_u88WofDaltiXOYkdnbp5Ix9-sAmpOqPmMSWk0jsKL1dh98tDt3F_2HNtTwcmCKJ45Ioo9CGKeAEiRaO2DZFqIUHIptAGHifZjZLNCpGKDXpiQ2kt04itloADXLDgga0VZwCGhjGkIE6FcUJJxF2QovSBTcSA4F14ETRLWE5lmtuA49r14SuvMsmFaL0CKC5C63BzDJmkv5cZVyY0_JZJ6ndIfypOauPCH7NE_ZI_JBl7hFrMXnZC12eQZTg1GmcnWQglbZP3i6qbX_wKWiO04 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1BOQAHxCp2fOAams1OckQIVLZeAKm3yI7HIhW0FRSkHpD4B_6QL8HTOKVISBw4JUoySmKPx0_2vDcAh1yFxjep9JQUqRejHXNS-ugFlK-oCyTYTNkWbdG6iy86vDMDJzUXhtIqXeyvYvo4WrsrTdeazUFZNm9s7CUKTmbHrPUq3pmFOVKn4g2YOz6_bLUnmwmJQ8H2eY8MpojC3aOyez-yI5wUMwNBUp4hVbL7bY6amnfOlmHJAUZ2XH3TCsxgbxUWp2QE1-DttKplo7FOwWKPSIze8vmRyZ5mxUSVuSJdsr5h7fLz_eO6z2jjfTR-qhw-M1cVZ7yoM7JvZINvYgGzJ8z-xlPfOh3DV-e063B3dnp70vJcWQWviJJ06MkkDTBKRYaoZGZMiCo2UnIllDQWH2YmTInQiolOLYCJpTJBZrJQa4sGhImjDWj0-j3cBBbHBnkmtY9axcJHxVUQFTqNpBAySHALeN2QeeE0x6n0xUNeJ5d187oDcuqA3Bf2yLegObEbVKobf1pkdT_lP_wnt1PDH7bb_7A9gPnW7fVVfnXevtyBBbpDK85BsguN4dML7lnIMlT7ziW_AKr77-k |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrodeposition+mechanism+and+characterization+of+Ni%E2%80%93Mo+alloy+and+its+electrocatalytic+performance+for+hydrogen+evolution&rft.jtitle=International+journal+of+hydrogen+energy&rft.au=Xu%2C+Chao&rft.au=Zhou%2C+Jian-bo&rft.au=Zeng%2C+Ming&rft.au=Fu%2C+Xin-ling&rft.date=2016-08-17&rft.pub=Elsevier+Ltd&rft.issn=0360-3199&rft.eissn=1879-3487&rft.volume=41&rft.issue=31&rft.spage=13341&rft.epage=13349&rft_id=info:doi/10.1016%2Fj.ijhydene.2016.06.205&rft.externalDocID=S036031991531795X |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-3199&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-3199&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-3199&client=summon |