Electrodeposition mechanism and characterization of Ni–Mo alloy and its electrocatalytic performance for hydrogen evolution

In the study, the electrodeposition mechanism of Ni–Mo alloy was investigated. Potentiostatic deposition showed that the presence of MoO42− could reduce the deposition overpotential of Ni, and the deposition current efficiency of Ni–Mo alloy was lower than pure Ni deposition as the potential moved n...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of hydrogen energy Vol. 41; no. 31; pp. 13341 - 13349
Main Authors Xu, Chao, Zhou, Jian-bo, Zeng, Ming, Fu, Xin-ling, Liu, Xue-jiang, Li, Jian-ming
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 17.08.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In the study, the electrodeposition mechanism of Ni–Mo alloy was investigated. Potentiostatic deposition showed that the presence of MoO42− could reduce the deposition overpotential of Ni, and the deposition current efficiency of Ni–Mo alloy was lower than pure Ni deposition as the potential moved negatively. Cyclic Voltammetry (CV) indicated that both the first reduction peak for Ni deposition and the deposition peak of Ni–Mo alloy moved to more positive potentials as the content of Ni2+ increased, but the deposition peak of Ni–Mo alloy moved to more negative potentials as the content of MoO42− increased. The cathodic polarization curve on Rotating Disc Electrode (RDE) presented that Ni–Mo codeposition was controlled by charge transfer. The morphology, composition and structure of Ni–Mo alloy were characterized by SEM, EDS and XRD. The results showed the Ni–Mo alloy coatings exhibited a spherical and cauliflower-like pattern, having a considerably rougher surface, with nano-crystal structure when the elements composition was Ni80.14Mo19.59. The electrochemical activity for hydrogen evolution of Ni–Mo alloy was studied in 30 wt.% KOH at 25 °C using steady-state polarization and electrochemical impedance spectroscopy (EIS) methods. The results clearly demonstrated that an increase in the electrochemical activity for hydrogen evolution of the Ni–Mo alloy coating can be attributed both higher exchange current density and larger real electrode area. [Display omitted] •The electrodeposition mechanism of Ni–Mo alloy was investigated.•The Ni80.14Mo19.59 alloy coatings exhibited a spherical and cauliflower-like pattern, with nano-crystal structure.•The Ni–Mo alloy had better catalytic activity for hydrogen evolution.
AbstractList In the study, the electrodeposition mechanism of Ni–Mo alloy was investigated. Potentiostatic deposition showed that the presence of MoO42− could reduce the deposition overpotential of Ni, and the deposition current efficiency of Ni–Mo alloy was lower than pure Ni deposition as the potential moved negatively. Cyclic Voltammetry (CV) indicated that both the first reduction peak for Ni deposition and the deposition peak of Ni–Mo alloy moved to more positive potentials as the content of Ni2+ increased, but the deposition peak of Ni–Mo alloy moved to more negative potentials as the content of MoO42− increased. The cathodic polarization curve on Rotating Disc Electrode (RDE) presented that Ni–Mo codeposition was controlled by charge transfer. The morphology, composition and structure of Ni–Mo alloy were characterized by SEM, EDS and XRD. The results showed the Ni–Mo alloy coatings exhibited a spherical and cauliflower-like pattern, having a considerably rougher surface, with nano-crystal structure when the elements composition was Ni80.14Mo19.59. The electrochemical activity for hydrogen evolution of Ni–Mo alloy was studied in 30 wt.% KOH at 25 °C using steady-state polarization and electrochemical impedance spectroscopy (EIS) methods. The results clearly demonstrated that an increase in the electrochemical activity for hydrogen evolution of the Ni–Mo alloy coating can be attributed both higher exchange current density and larger real electrode area. [Display omitted] •The electrodeposition mechanism of Ni–Mo alloy was investigated.•The Ni80.14Mo19.59 alloy coatings exhibited a spherical and cauliflower-like pattern, with nano-crystal structure.•The Ni–Mo alloy had better catalytic activity for hydrogen evolution.
Author Liu, Xue-jiang
Fu, Xin-ling
Li, Jian-ming
Xu, Chao
Zeng, Ming
Zhou, Jian-bo
Author_xml – sequence: 1
  givenname: Chao
  surname: Xu
  fullname: Xu, Chao
  email: hunanxuchao@163.com
– sequence: 2
  givenname: Jian-bo
  surname: Zhou
  fullname: Zhou, Jian-bo
  email: 229530464@qq.com
– sequence: 3
  givenname: Ming
  surname: Zeng
  fullname: Zeng, Ming
– sequence: 4
  givenname: Xin-ling
  surname: Fu
  fullname: Fu, Xin-ling
  email: weiym929@163.com
– sequence: 5
  givenname: Xue-jiang
  surname: Liu
  fullname: Liu, Xue-jiang
– sequence: 6
  givenname: Jian-ming
  surname: Li
  fullname: Li, Jian-ming
  email: Lijming0901@sina.com
BookMark eNqFkM9qGzEQxkVxoY6TVwh6gXWk_aOVoIcW46QFp72kZzGrHdUy65WRlIADgbxD3rBPUtluL7n49M0w833M_C7IZPQjEnLN2ZwzLm42c7dZ73sccV7mfs5E1uYDmXLZqqKqZTshU1YJVlRcqU_kIsYNY7xltZqSl-WAJgXf485Hl5wf6RbNGkYXtxTGnuY6gEkY3DMcx97SH-7P69u9pzAMfn_ccilSPCUZSDDskzN0h8H6sIXRIM0FzUcG_xtHik9-eDyEXZKPFoaIV_90Rn7dLh8W34rVz7vvi6-rwlStTAW0kmMlhULsQFlbYldbgKYTHVjeMGVLKcuGY9tLJqoaOsuVVWXfc8mFrasZEadcE3yMAa3eBbeFsNec6QNEvdH_IeoDRM1E1iYbP78zGpeOHFIAN5y3fznZMT_35DDoaBxmHr0LGZbuvTsX8RcrG5qW
CitedBy_id crossref_primary_10_1016_j_electacta_2025_145825
crossref_primary_10_1002_advs_202403752
crossref_primary_10_1016_j_ijhydene_2016_09_115
crossref_primary_10_1039_D3NJ01571H
crossref_primary_10_1039_D4RA08619H
crossref_primary_10_1002_celc_202001436
crossref_primary_10_1016_j_electacta_2022_140975
crossref_primary_10_3390_coatings9020085
crossref_primary_10_1016_j_colsurfa_2020_124654
crossref_primary_10_1016_j_ijhydene_2023_10_183
crossref_primary_10_1002_cssc_202101312
crossref_primary_10_1016_j_ijhydene_2017_10_002
crossref_primary_10_1002_er_7950
crossref_primary_10_1016_j_ijhydene_2018_01_030
crossref_primary_10_1021_acsaem_8b02087
crossref_primary_10_1016_j_electacta_2021_138352
crossref_primary_10_1016_j_ijhydene_2025_01_471
crossref_primary_10_1016_j_mtcomm_2024_108863
crossref_primary_10_1007_s10562_024_04743_6
crossref_primary_10_1016_j_apsusc_2017_06_216
crossref_primary_10_1016_j_ijhydene_2020_06_195
crossref_primary_10_1016_j_ijhydene_2024_10_311
crossref_primary_10_1016_j_micromeso_2021_111556
crossref_primary_10_1016_j_jallcom_2021_161595
crossref_primary_10_1016_j_jmapro_2024_03_099
crossref_primary_10_1002_cssc_201800112
crossref_primary_10_1002_jctb_7368
crossref_primary_10_1039_D4RA06466F
crossref_primary_10_2320_matertrans_MAW201801
crossref_primary_10_1016_j_matlet_2018_05_050
crossref_primary_10_1039_C9EN01303B
crossref_primary_10_1021_acsaem_4c01621
crossref_primary_10_1016_j_jallcom_2022_165352
crossref_primary_10_1016_j_ijhydene_2018_01_029
crossref_primary_10_1016_j_ijhydene_2020_09_026
crossref_primary_10_1016_j_rsurfi_2025_100421
crossref_primary_10_1007_s11581_017_2378_1
crossref_primary_10_1016_j_jmrt_2024_03_192
crossref_primary_10_1007_s10800_019_01361_8
crossref_primary_10_1016_j_corsci_2019_03_053
crossref_primary_10_1016_j_ijhydene_2017_08_012
crossref_primary_10_1016_j_ceramint_2022_08_286
crossref_primary_10_1016_j_heliyon_2023_e15230
crossref_primary_10_1039_D3CY01703F
crossref_primary_10_1016_j_ijhydene_2021_08_056
crossref_primary_10_1039_D4NR05248J
crossref_primary_10_1039_C6NJ03798D
crossref_primary_10_1007_s12678_018_0490_2
crossref_primary_10_1016_j_jallcom_2024_174944
crossref_primary_10_1007_s11696_023_02790_8
crossref_primary_10_1016_j_ijhydene_2018_12_224
crossref_primary_10_1007_s12613_023_2677_7
crossref_primary_10_1016_j_ijhydene_2025_01_095
crossref_primary_10_1088_2053_1591_acf278
crossref_primary_10_1016_j_apsusc_2020_147894
crossref_primary_10_1016_j_ijhydene_2017_11_131
crossref_primary_10_1007_s11696_018_0486_7
crossref_primary_10_1134_S1023193518120042
crossref_primary_10_1016_j_matchar_2018_09_026
Cites_doi 10.1016/j.ijhydene.2015.12.132
10.1149/1.1838297
10.1016/j.ijhydene.2010.03.093
10.1016/j.jallcom.2014.09.220
10.1016/j.ijhydene.2014.01.091
10.1021/cs300691m
10.1149/1.1837658
10.1016/j.apcatb.2015.09.018
10.1016/j.ijhydene.2013.01.117
10.1016/j.jelechem.2014.10.014
10.1016/j.molcata.2005.09.040
10.1016/j.ijhydene.2013.12.053
10.1039/tf9585401053
10.1016/j.apcatb.2013.12.030
10.1016/j.molcata.2004.10.029
10.1016/j.apsusc.2016.01.114
10.1016/S1001-0521(07)60202-2
10.1016/j.fuel.2014.03.049
10.1016/j.ijhydene.2013.11.093
10.1016/S0022-0728(98)00011-4
10.1016/j.scriptamat.2013.03.006
10.1016/S1452-3981(23)15490-3
10.1007/s10800-015-0908-y
10.1016/S0022-0728(75)80205-1
10.1149/1.2085778
10.1088/1674-1056/24/10/108202
10.1016/j.ijhydene.2008.04.039
10.1016/j.apsusc.2016.02.086
ContentType Journal Article
Copyright 2016 Hydrogen Energy Publications LLC
Copyright_xml – notice: 2016 Hydrogen Energy Publications LLC
DBID AAYXX
CITATION
DOI 10.1016/j.ijhydene.2016.06.205
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-3487
EndPage 13349
ExternalDocumentID 10_1016_j_ijhydene_2016_06_205
S036031991531795X
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AARLI
AAXUO
ABFNM
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADECG
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
HZ~
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SCC
SDF
SDG
SES
SPC
SPCBC
SSK
SSM
SSR
SSZ
T5K
TN5
XPP
ZMT
~G-
29J
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HVGLF
R2-
SAC
SCB
SEW
SSH
T9H
WUQ
ID FETCH-LOGICAL-c378t-a781e3869eeba9ff2eb4faa5b6baf1509f288251e7d80634abf19f92dd1816f43
IEDL.DBID .~1
ISSN 0360-3199
IngestDate Tue Jul 01 04:12:46 EDT 2025
Thu Apr 24 22:56:01 EDT 2025
Fri Feb 23 02:26:19 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 31
Keywords Current efficiency
Electrodeposition mechanism
Potentiostatic deposition
Hydrogen evolution
Ni-Mo alloy
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c378t-a781e3869eeba9ff2eb4faa5b6baf1509f288251e7d80634abf19f92dd1816f43
PageCount 9
ParticipantIDs crossref_primary_10_1016_j_ijhydene_2016_06_205
crossref_citationtrail_10_1016_j_ijhydene_2016_06_205
elsevier_sciencedirect_doi_10_1016_j_ijhydene_2016_06_205
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-08-17
PublicationDateYYYYMMDD 2016-08-17
PublicationDate_xml – month: 08
  year: 2016
  text: 2016-08-17
  day: 17
PublicationDecade 2010
PublicationTitle International journal of hydrogen energy
PublicationYear 2016
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Jayalakshmi, Woo-Young, Kwang-Deog, Oh-Shim (bib18) 2008; 3
Miles (bib23) 1975; 60
Isaac, Emma, Valentin, Ruben, Agustin (bib15) 2009; 52
Navarro-Flores, Chong, Omanovic (bib16) 2005; 226
Grilca, Likozar, Levec (bib3) 2014; 150–151
Parsons (bib11) 1958; 54
Lv, Liang, Wang (bib8) 2016; 366
Krstajic, Jovic, Jovic (bib13) 2008; 33
Chen, Yang, Shi, Li, Chu, Pan (bib5) 2014; 129
Guettaf Temam, Ben Temam, Benramache (bib26) 2015; 24
Podlaha, Landolt (bib31) 1997; 144
Martinez, Metiko, Valek (bib10) 2006; 245
Laszczyńskaa, Szczygiełb, Szczygie (bib19) 2016; 369
Luo, Ren, Xu, Zheng (bib22) 2007; 26
Jekawa, Murase, Matsubara, Hirato, Awakura (bib30) 1998; 145
Li, Huang, Chen, Wang (bib12) 2016; 667
Manazoğlu, Hapçı, Orhan (bib7) 2016; 46
Brenner (bib28) 1963
Aaboubi, Ali Omar, Franczak, Msellak (bib29) 2015; 737
Kurz, Ensslen, Welzel, Leineweber, Mittemeijer (bib1) 2013; 69
Gennero de Chialvo, Chialvo (bib27) 1998; 448
Alsalmea, Alzaqria, Alsaleha, Siddiqui, Alotaibi, Kozhevnikova (bib6) 2016; 182
Huot, Trudeau, Schulz (bib24) 1991; 138
Liu, Chen, Chu, Yang, Zhu, Wang (bib4) 2013; 38
Qing, Shuang, Nianwen, Chen, Liu, Wei (bib9) 2010; 35
Tang, Xiao, Yang, Lu, Zhuang (bib14) 2014; 39
Berry (bib32) 1973
Lobiaka, Shlyakhova, Bulusheva, Plyusnin, Shubin, Okotrub (bib2) 2015; 621
Rauscher, Müller, Schmidt, Kieback, Röntzsch (bib17) 2016; 41
Cao, Zhang (bib33) 2002
Xia, Lei, Lv, Li (bib20) 2014; 39
Lupi, Dell’Era, Pasquali (bib21) 2014; 39
James, Bryce, Caroline, Nathan, Gray (bib25) 2013; 3
Tian (bib34) 1984
Qing (10.1016/j.ijhydene.2016.06.205_bib9) 2010; 35
Liu (10.1016/j.ijhydene.2016.06.205_bib4) 2013; 38
Isaac (10.1016/j.ijhydene.2016.06.205_bib15) 2009; 52
Lobiaka (10.1016/j.ijhydene.2016.06.205_bib2) 2015; 621
Laszczyńskaa (10.1016/j.ijhydene.2016.06.205_bib19) 2016; 369
Chen (10.1016/j.ijhydene.2016.06.205_bib5) 2014; 129
Martinez (10.1016/j.ijhydene.2016.06.205_bib10) 2006; 245
Li (10.1016/j.ijhydene.2016.06.205_bib12) 2016; 667
Xia (10.1016/j.ijhydene.2016.06.205_bib20) 2014; 39
Aaboubi (10.1016/j.ijhydene.2016.06.205_bib29) 2015; 737
Podlaha (10.1016/j.ijhydene.2016.06.205_bib31) 1997; 144
Jayalakshmi (10.1016/j.ijhydene.2016.06.205_bib18) 2008; 3
Lupi (10.1016/j.ijhydene.2016.06.205_bib21) 2014; 39
Kurz (10.1016/j.ijhydene.2016.06.205_bib1) 2013; 69
Krstajic (10.1016/j.ijhydene.2016.06.205_bib13) 2008; 33
Berry (10.1016/j.ijhydene.2016.06.205_bib32) 1973
Gennero de Chialvo (10.1016/j.ijhydene.2016.06.205_bib27) 1998; 448
Huot (10.1016/j.ijhydene.2016.06.205_bib24) 1991; 138
Grilca (10.1016/j.ijhydene.2016.06.205_bib3) 2014; 150–151
Cao (10.1016/j.ijhydene.2016.06.205_bib33) 2002
Alsalmea (10.1016/j.ijhydene.2016.06.205_bib6) 2016; 182
Manazoğlu (10.1016/j.ijhydene.2016.06.205_bib7) 2016; 46
Jekawa (10.1016/j.ijhydene.2016.06.205_bib30) 1998; 145
Navarro-Flores (10.1016/j.ijhydene.2016.06.205_bib16) 2005; 226
Lv (10.1016/j.ijhydene.2016.06.205_bib8) 2016; 366
Guettaf Temam (10.1016/j.ijhydene.2016.06.205_bib26) 2015; 24
Parsons (10.1016/j.ijhydene.2016.06.205_bib11) 1958; 54
Tang (10.1016/j.ijhydene.2016.06.205_bib14) 2014; 39
Miles (10.1016/j.ijhydene.2016.06.205_bib23) 1975; 60
Brenner (10.1016/j.ijhydene.2016.06.205_bib28) 1963
Tian (10.1016/j.ijhydene.2016.06.205_bib34) 1984
Rauscher (10.1016/j.ijhydene.2016.06.205_bib17) 2016; 41
James (10.1016/j.ijhydene.2016.06.205_bib25) 2013; 3
Luo (10.1016/j.ijhydene.2016.06.205_bib22) 2007; 26
References_xml – volume: 448
  start-page: 87
  year: 1998
  end-page: 93
  ident: bib27
  article-title: Hydrogen evolution reaction on smooth Ni
  publication-title: J Electroanal Chem
– volume: 737
  start-page: 226
  year: 2015
  end-page: 234
  ident: bib29
  article-title: Investigation of the electrodeposition kinetics of Ni-Mo alloys in the presence of magnetic field
  publication-title: J Electroanal Chem
– start-page: 86
  year: 2002
  end-page: 92
  ident: bib33
  article-title: An introduction to electrochemical impedance spectroscopy
– start-page: 268
  year: 1984
  end-page: 270
  ident: bib34
  article-title: Electrochemical research methods
– volume: 245
  start-page: 114
  year: 2006
  end-page: 121
  ident: bib10
  article-title: Electrocatalytic properties of electrodeposited Ni-15Mo cathodes for the HER in acid solutions: synergistic electronic effect
  publication-title: J Mol Catal A-Chem
– volume: 46
  start-page: 191
  year: 2016
  end-page: 204
  ident: bib7
  article-title: Effect of electrolysis parameters of Ni–Mo alloy on the electrocatalytic activity for hydrogen evaluation and their stability in alkali medium
  publication-title: J Appl Electrochem
– volume: 144
  start-page: 1672
  year: 1997
  end-page: 1680
  ident: bib31
  article-title: Induce codeposition, Ⅲ. molybdenum alloys with nickel, cobalt and iron
  publication-title: J Electrochem Soc
– volume: 39
  start-page: 3055
  year: 2014
  end-page: 3060
  ident: bib14
  article-title: Noble fabrication of Ni-Mo cathode for alkalinewater electrolysis and alkaline polymer electrolyte water electrolysis
  publication-title: Int J Hydrogen Energy
– volume: 33
  start-page: 3676
  year: 2008
  end-page: 3687
  ident: bib13
  article-title: Electrodeposition of Ni-Mo alloy coatings and their characterization as cathodes for hydrogen evolution in sodium hydroxide solution
  publication-title: Int J Hydrogen Energy
– volume: 129
  start-page: 1
  year: 2014
  end-page: 10
  ident: bib5
  article-title: Regulating product distribution in deoxygenation of methyl laurate on silica-supported Ni-Mo phosphides: effect of Ni/Mo ratio
  publication-title: Fuel
– year: 1973
  ident: bib32
  article-title: Powder diffraction file joint committee on powder diffraction standards
– volume: 52
  start-page: 79
  year: 2009
  end-page: 91
  ident: bib15
  article-title: EIS characte-rization of Ni/Zn and Ni-Co/Zn stainless steel based electrodeposits for the hydrogen evolution reaction
  publication-title: ECS Trans
– volume: 39
  start-page: 1932
  year: 2014
  end-page: 1940
  ident: bib21
  article-title: In situ activation with Mo of Ni-Co alloys for hydrogen evolution reaction
  publication-title: Int J Hydrogen Energy
– volume: 69
  start-page: 65
  year: 2013
  end-page: 68
  ident: bib1
  article-title: The thermal stability of Ni–Mo and Ni-W thin films: solute segregation and planar faults
  publication-title: Scr Mater
– volume: 35
  start-page: 5194
  year: 2010
  end-page: 5201
  ident: bib9
  article-title: A study on pulse plating amorphous Ni-Mo alloy coating used as HER cathode in alkaline medium
  publication-title: Int J Hydrogen Energy
– volume: 3
  start-page: 908
  year: 2008
  end-page: 916
  ident: bib18
  article-title: Electrochemical characterization of Ni-Mo-Fe composite film in alkaline solution
  publication-title: Int J Electrochem Sc
– volume: 38
  start-page: 3948
  year: 2013
  end-page: 3955
  ident: bib4
  article-title: Catalytic steam reforming of bio-oil aqueous fraction for hydrogen production over Ni–Mo supported on modified sepiolite catalysts
  publication-title: Int J Hydrogen Energy
– volume: 150–151
  start-page: 275
  year: 2014
  end-page: 287
  ident: bib3
  article-title: Hydrodeoxygenation and hydrocracking of solvolysed lignocellulosic biomass by oxide, reduced and sulphide form of NiMo, Ni, Mo and Pd catalysts
  publication-title: Appl Catal B-Environ
– volume: 39
  start-page: 4794
  year: 2014
  end-page: 4802
  ident: bib20
  article-title: Synthesis and electrocatalytic hydrogen evolution performance of Ni-Mo-Cu alloy coating electrode
  publication-title: Int J Hydrogen Energy
– volume: 621
  start-page: 351
  year: 2015
  end-page: 356
  ident: bib2
  article-title: Ni–Mo and Co–Mo alloy nanoparticles for catalytic chemical vapor deposition synthesis of carbon nanotubes
  publication-title: J Alloy Comd
– volume: 138
  start-page: 1316
  year: 1991
  end-page: 1321
  ident: bib24
  article-title: Low hydrogen overpotential nanocrystalline Ni-Mo cathodes for alkaline water electrolysis
  publication-title: J Electrochem Soc
– start-page: 413
  year: 1963
  end-page: 455
  ident: bib28
  article-title: Electrodeposition of alloys principles and practice
– volume: 369
  start-page: 224
  year: 2016
  end-page: 231
  ident: bib19
  article-title: Electrodeposition and characterization of Ni–Mo–ZrO
  publication-title: Appl Surf Sci
– volume: 3
  start-page: 166
  year: 2013
  end-page: 169
  ident: bib25
  article-title: Ni-Mo nanopowders for efficient electrochemical hydrogen evolution
  publication-title: ACS Catal
– volume: 41
  start-page: 2165
  year: 2016
  end-page: 2176
  ident: bib17
  article-title: Ni-Mo-B alloys as cathode material for alkaline water electrolysis
  publication-title: Int J Hydrogen Energy
– volume: 54
  start-page: 1053
  year: 1958
  end-page: 1063
  ident: bib11
  article-title: The rate of electrolytic hydrogen evolution and the heat of adsorption of hydrogen
  publication-title: Trans Faraday Soc
– volume: 24
  start-page: 10
  year: 2015
  end-page: 15
  ident: bib26
  article-title: Surface morphology and electrochemical characterization of electrodeposited Ni-Mo nanocomposites as cathodes for hydrogen evolution
  publication-title: Chin Phys B
– volume: 226
  start-page: 179
  year: 2005
  end-page: 197
  ident: bib16
  article-title: Characterization of Ni, NiMo, NiW and NiFe electroactive coatings as electrocatalysts for hydrogen evolution in an acidic medium
  publication-title: J Mol Catal A-Chem
– volume: 366
  start-page: 353
  year: 2016
  end-page: 358
  ident: bib8
  article-title: Investigation of hydrogen evolution activity for the nickel, nickel-molybdenum nickel-graphite composite and nickel-reduced graphene oxide composite coatings
  publication-title: Appl Surf Sci
– volume: 145
  start-page: 523
  year: 1998
  end-page: 527
  ident: bib30
  article-title: Determination of chemical species and their composition in Ni-Mo alloy plating baths by factor analysis of visible absorption spectra
  publication-title: J Electrochem Soc
– volume: 667
  start-page: 280
  year: 2016
  end-page: 285
  ident: bib12
  article-title: Electrochemical characteristics of the amorphous-nanocrystal Ni-Mo cathodes in sodium hydroxide solution
  publication-title: Eng Mater
– volume: 182
  start-page: 102
  year: 2016
  end-page: 108
  ident: bib6
  article-title: Efficient Ni–Mo hydrodesulfurization catalyst prepared through Keggin polyoxometalate
  publication-title: Appl Catal B Environ
– volume: 60
  start-page: 89
  year: 1975
  end-page: 96
  ident: bib23
  article-title: Evaluation of electrocatalysts for water electrolysis in alkaline solutions
  publication-title: J Electroanal Chem
– volume: 26
  start-page: 2005
  year: 2007
  end-page: 2011
  ident: bib22
  article-title: A new method to improve surface morphology of Ni-Fe-Mo-Co alloy electrode and its catalytic activity for HER
  publication-title: Rare Met
– volume: 41
  start-page: 2165
  issue: 4
  year: 2016
  ident: 10.1016/j.ijhydene.2016.06.205_bib17
  article-title: Ni-Mo-B alloys as cathode material for alkaline water electrolysis
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2015.12.132
– year: 1973
  ident: 10.1016/j.ijhydene.2016.06.205_bib32
– volume: 145
  start-page: 523
  issue: 2
  year: 1998
  ident: 10.1016/j.ijhydene.2016.06.205_bib30
  article-title: Determination of chemical species and their composition in Ni-Mo alloy plating baths by factor analysis of visible absorption spectra
  publication-title: J Electrochem Soc
  doi: 10.1149/1.1838297
– volume: 35
  start-page: 5194
  year: 2010
  ident: 10.1016/j.ijhydene.2016.06.205_bib9
  article-title: A study on pulse plating amorphous Ni-Mo alloy coating used as HER cathode in alkaline medium
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2010.03.093
– volume: 52
  start-page: 79
  issue: 32
  year: 2009
  ident: 10.1016/j.ijhydene.2016.06.205_bib15
  article-title: EIS characte-rization of Ni/Zn and Ni-Co/Zn stainless steel based electrodeposits for the hydrogen evolution reaction
  publication-title: ECS Trans
– volume: 621
  start-page: 351
  year: 2015
  ident: 10.1016/j.ijhydene.2016.06.205_bib2
  article-title: Ni–Mo and Co–Mo alloy nanoparticles for catalytic chemical vapor deposition synthesis of carbon nanotubes
  publication-title: J Alloy Comd
  doi: 10.1016/j.jallcom.2014.09.220
– volume: 39
  start-page: 4794
  year: 2014
  ident: 10.1016/j.ijhydene.2016.06.205_bib20
  article-title: Synthesis and electrocatalytic hydrogen evolution performance of Ni-Mo-Cu alloy coating electrode
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2014.01.091
– volume: 3
  start-page: 166
  year: 2013
  ident: 10.1016/j.ijhydene.2016.06.205_bib25
  article-title: Ni-Mo nanopowders for efficient electrochemical hydrogen evolution
  publication-title: ACS Catal
  doi: 10.1021/cs300691m
– volume: 144
  start-page: 1672
  issue: 5
  year: 1997
  ident: 10.1016/j.ijhydene.2016.06.205_bib31
  article-title: Induce codeposition, Ⅲ. molybdenum alloys with nickel, cobalt and iron
  publication-title: J Electrochem Soc
  doi: 10.1149/1.1837658
– volume: 667
  start-page: 280
  year: 2016
  ident: 10.1016/j.ijhydene.2016.06.205_bib12
  article-title: Electrochemical characteristics of the amorphous-nanocrystal Ni-Mo cathodes in sodium hydroxide solution
  publication-title: Eng Mater
– volume: 182
  start-page: 102
  year: 2016
  ident: 10.1016/j.ijhydene.2016.06.205_bib6
  article-title: Efficient Ni–Mo hydrodesulfurization catalyst prepared through Keggin polyoxometalate
  publication-title: Appl Catal B Environ
  doi: 10.1016/j.apcatb.2015.09.018
– volume: 38
  start-page: 3948
  year: 2013
  ident: 10.1016/j.ijhydene.2016.06.205_bib4
  article-title: Catalytic steam reforming of bio-oil aqueous fraction for hydrogen production over Ni–Mo supported on modified sepiolite catalysts
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2013.01.117
– volume: 737
  start-page: 226
  issue: 15
  year: 2015
  ident: 10.1016/j.ijhydene.2016.06.205_bib29
  article-title: Investigation of the electrodeposition kinetics of Ni-Mo alloys in the presence of magnetic field
  publication-title: J Electroanal Chem
  doi: 10.1016/j.jelechem.2014.10.014
– volume: 245
  start-page: 114
  issue: 22
  year: 2006
  ident: 10.1016/j.ijhydene.2016.06.205_bib10
  article-title: Electrocatalytic properties of electrodeposited Ni-15Mo cathodes for the HER in acid solutions: synergistic electronic effect
  publication-title: J Mol Catal A-Chem
  doi: 10.1016/j.molcata.2005.09.040
– volume: 39
  start-page: 3055
  year: 2014
  ident: 10.1016/j.ijhydene.2016.06.205_bib14
  article-title: Noble fabrication of Ni-Mo cathode for alkalinewater electrolysis and alkaline polymer electrolyte water electrolysis
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2013.12.053
– volume: 54
  start-page: 1053
  year: 1958
  ident: 10.1016/j.ijhydene.2016.06.205_bib11
  article-title: The rate of electrolytic hydrogen evolution and the heat of adsorption of hydrogen
  publication-title: Trans Faraday Soc
  doi: 10.1039/tf9585401053
– start-page: 413
  year: 1963
  ident: 10.1016/j.ijhydene.2016.06.205_bib28
– volume: 150–151
  start-page: 275
  year: 2014
  ident: 10.1016/j.ijhydene.2016.06.205_bib3
  article-title: Hydrodeoxygenation and hydrocracking of solvolysed lignocellulosic biomass by oxide, reduced and sulphide form of NiMo, Ni, Mo and Pd catalysts
  publication-title: Appl Catal B-Environ
  doi: 10.1016/j.apcatb.2013.12.030
– volume: 226
  start-page: 179
  year: 2005
  ident: 10.1016/j.ijhydene.2016.06.205_bib16
  article-title: Characterization of Ni, NiMo, NiW and NiFe electroactive coatings as electrocatalysts for hydrogen evolution in an acidic medium
  publication-title: J Mol Catal A-Chem
  doi: 10.1016/j.molcata.2004.10.029
– volume: 366
  start-page: 353
  year: 2016
  ident: 10.1016/j.ijhydene.2016.06.205_bib8
  article-title: Investigation of hydrogen evolution activity for the nickel, nickel-molybdenum nickel-graphite composite and nickel-reduced graphene oxide composite coatings
  publication-title: Appl Surf Sci
  doi: 10.1016/j.apsusc.2016.01.114
– volume: 26
  start-page: 2005
  issue: 3
  year: 2007
  ident: 10.1016/j.ijhydene.2016.06.205_bib22
  article-title: A new method to improve surface morphology of Ni-Fe-Mo-Co alloy electrode and its catalytic activity for HER
  publication-title: Rare Met
  doi: 10.1016/S1001-0521(07)60202-2
– volume: 129
  start-page: 1
  year: 2014
  ident: 10.1016/j.ijhydene.2016.06.205_bib5
  article-title: Regulating product distribution in deoxygenation of methyl laurate on silica-supported Ni-Mo phosphides: effect of Ni/Mo ratio
  publication-title: Fuel
  doi: 10.1016/j.fuel.2014.03.049
– start-page: 268
  year: 1984
  ident: 10.1016/j.ijhydene.2016.06.205_bib34
– start-page: 86
  year: 2002
  ident: 10.1016/j.ijhydene.2016.06.205_bib33
– volume: 39
  start-page: 1932
  year: 2014
  ident: 10.1016/j.ijhydene.2016.06.205_bib21
  article-title: In situ activation with Mo of Ni-Co alloys for hydrogen evolution reaction
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2013.11.093
– volume: 448
  start-page: 87
  year: 1998
  ident: 10.1016/j.ijhydene.2016.06.205_bib27
  article-title: Hydrogen evolution reaction on smooth Ni(1-x) + Mo(x) alloys (0 ≤ x ≤ 0125)
  publication-title: J Electroanal Chem
  doi: 10.1016/S0022-0728(98)00011-4
– volume: 69
  start-page: 65
  year: 2013
  ident: 10.1016/j.ijhydene.2016.06.205_bib1
  article-title: The thermal stability of Ni–Mo and Ni-W thin films: solute segregation and planar faults
  publication-title: Scr Mater
  doi: 10.1016/j.scriptamat.2013.03.006
– volume: 3
  start-page: 908
  year: 2008
  ident: 10.1016/j.ijhydene.2016.06.205_bib18
  article-title: Electrochemical characterization of Ni-Mo-Fe composite film in alkaline solution
  publication-title: Int J Electrochem Sc
  doi: 10.1016/S1452-3981(23)15490-3
– volume: 46
  start-page: 191
  issue: 2
  year: 2016
  ident: 10.1016/j.ijhydene.2016.06.205_bib7
  article-title: Effect of electrolysis parameters of Ni–Mo alloy on the electrocatalytic activity for hydrogen evaluation and their stability in alkali medium
  publication-title: J Appl Electrochem
  doi: 10.1007/s10800-015-0908-y
– volume: 60
  start-page: 89
  year: 1975
  ident: 10.1016/j.ijhydene.2016.06.205_bib23
  article-title: Evaluation of electrocatalysts for water electrolysis in alkaline solutions
  publication-title: J Electroanal Chem
  doi: 10.1016/S0022-0728(75)80205-1
– volume: 138
  start-page: 1316
  year: 1991
  ident: 10.1016/j.ijhydene.2016.06.205_bib24
  article-title: Low hydrogen overpotential nanocrystalline Ni-Mo cathodes for alkaline water electrolysis
  publication-title: J Electrochem Soc
  doi: 10.1149/1.2085778
– volume: 24
  start-page: 10
  year: 2015
  ident: 10.1016/j.ijhydene.2016.06.205_bib26
  article-title: Surface morphology and electrochemical characterization of electrodeposited Ni-Mo nanocomposites as cathodes for hydrogen evolution
  publication-title: Chin Phys B
  doi: 10.1088/1674-1056/24/10/108202
– volume: 33
  start-page: 3676
  year: 2008
  ident: 10.1016/j.ijhydene.2016.06.205_bib13
  article-title: Electrodeposition of Ni-Mo alloy coatings and their characterization as cathodes for hydrogen evolution in sodium hydroxide solution
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2008.04.039
– volume: 369
  start-page: 224
  year: 2016
  ident: 10.1016/j.ijhydene.2016.06.205_bib19
  article-title: Electrodeposition and characterization of Ni–Mo–ZrO2 composite coatings
  publication-title: Appl Surf Sci
  doi: 10.1016/j.apsusc.2016.02.086
SSID ssj0017049
Score 2.4370267
Snippet In the study, the electrodeposition mechanism of Ni–Mo alloy was investigated. Potentiostatic deposition showed that the presence of MoO42− could reduce the...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 13341
SubjectTerms Current efficiency
Electrodeposition mechanism
Hydrogen evolution
Ni-Mo alloy
Potentiostatic deposition
Title Electrodeposition mechanism and characterization of Ni–Mo alloy and its electrocatalytic performance for hydrogen evolution
URI https://dx.doi.org/10.1016/j.ijhydene.2016.06.205
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6KXvQgPrE-yh68xuax2SRHkZaq2IsKvYXd7Cym2KS0VehB8T_4D_0l7jSbWkHw4CkPdkiyO4-PzXwzhJyF0teujoUjBY8dBsbmhHDB8TBfUWWAsBmzLfq898CuB-GgQS5rLgymVVrfX_n0hbe2d9p2NtvjPG_fGd-LFJzE2KzRqnCADHYWoZafvy3TPLzIQmAz2MHRKyzh4Xk-fJwb88ZymR7HOp4-trH7LUCtBJ3uNtmyaJFeVC-0QxpQ7JLNlRqCe-S1UzWyUVDnX9ERIJ03n46oKBTNliWZK8YlLTXt55_vH7clxb_u88WofDaltiXOYkdnbp5Ix9-sAmpOqPmMSWk0jsKL1dh98tDt3F_2HNtTwcmCKJ45Ioo9CGKeAEiRaO2DZFqIUHIptAGHifZjZLNCpGKDXpiQ2kt04itloADXLDgga0VZwCGhjGkIE6FcUJJxF2QovSBTcSA4F14ETRLWE5lmtuA49r14SuvMsmFaL0CKC5C63BzDJmkv5cZVyY0_JZJ6ndIfypOauPCH7NE_ZI_JBl7hFrMXnZC12eQZTg1GmcnWQglbZP3i6qbX_wKWiO04
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1BOQAHxCp2fOAams1OckQIVLZeAKm3yI7HIhW0FRSkHpD4B_6QL8HTOKVISBw4JUoySmKPx0_2vDcAh1yFxjep9JQUqRejHXNS-ugFlK-oCyTYTNkWbdG6iy86vDMDJzUXhtIqXeyvYvo4WrsrTdeazUFZNm9s7CUKTmbHrPUq3pmFOVKn4g2YOz6_bLUnmwmJQ8H2eY8MpojC3aOyez-yI5wUMwNBUp4hVbL7bY6amnfOlmHJAUZ2XH3TCsxgbxUWp2QE1-DttKplo7FOwWKPSIze8vmRyZ5mxUSVuSJdsr5h7fLz_eO6z2jjfTR-qhw-M1cVZ7yoM7JvZINvYgGzJ8z-xlPfOh3DV-e063B3dnp70vJcWQWviJJ06MkkDTBKRYaoZGZMiCo2UnIllDQWH2YmTInQiolOLYCJpTJBZrJQa4sGhImjDWj0-j3cBBbHBnkmtY9axcJHxVUQFTqNpBAySHALeN2QeeE0x6n0xUNeJ5d187oDcuqA3Bf2yLegObEbVKobf1pkdT_lP_wnt1PDH7bb_7A9gPnW7fVVfnXevtyBBbpDK85BsguN4dML7lnIMlT7ziW_AKr77-k
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrodeposition+mechanism+and+characterization+of+Ni%E2%80%93Mo+alloy+and+its+electrocatalytic+performance+for+hydrogen+evolution&rft.jtitle=International+journal+of+hydrogen+energy&rft.au=Xu%2C+Chao&rft.au=Zhou%2C+Jian-bo&rft.au=Zeng%2C+Ming&rft.au=Fu%2C+Xin-ling&rft.date=2016-08-17&rft.pub=Elsevier+Ltd&rft.issn=0360-3199&rft.eissn=1879-3487&rft.volume=41&rft.issue=31&rft.spage=13341&rft.epage=13349&rft_id=info:doi/10.1016%2Fj.ijhydene.2016.06.205&rft.externalDocID=S036031991531795X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-3199&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-3199&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-3199&client=summon