Preparation of YbAlN piezoelectric thin film by sputtering and influence of Yb concentration on properties and crystal structure
Aluminum nitride (AlN) is a key material for piezoelectric micro-electromechanical systems (MEMS). Since the discovery of the increase in AlN piezo performance by scandium (Sc) doping, many groups have investigated other effective dopants. However, another effective single dopant has not yet been ex...
Saved in:
Published in | Ceramics international Vol. 47; no. 11; pp. 16029 - 16036 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.06.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Aluminum nitride (AlN) is a key material for piezoelectric micro-electromechanical systems (MEMS). Since the discovery of the increase in AlN piezo performance by scandium (Sc) doping, many groups have investigated other effective dopants. However, another effective single dopant has not yet been experimentally demonstrated, although potential effectiveness has been indicated by theoretical calculations. In this study, we propose ytterbium (Yb) as an effective dopant. The sputtering conditions for YbxAl1 − xN films were optimized by design of experiments (DoE). Consequently, high-quality YbxAl1 − xN films were obtained. YbxAl1 − xN with x values ranging from 0 to 0.37 demonstrate good piezo response. A maximum d33 of ~12 pC/N, which is approximately twice the value of non-doped AlN, is achieved. According to crystallographic analysis using X-ray diffraction, the influence of Yb concentration on the crystal structure was similar to that of Sc with differences observed at high Yb concentration. |
---|---|
AbstractList | Aluminum nitride (AlN) is a key material for piezoelectric micro-electromechanical systems (MEMS). Since the discovery of the increase in AlN piezo performance by scandium (Sc) doping, many groups have investigated other effective dopants. However, another effective single dopant has not yet been experimentally demonstrated, although potential effectiveness has been indicated by theoretical calculations. In this study, we propose ytterbium (Yb) as an effective dopant. The sputtering conditions for YbxAl1 − xN films were optimized by design of experiments (DoE). Consequently, high-quality YbxAl1 − xN films were obtained. YbxAl1 − xN with x values ranging from 0 to 0.37 demonstrate good piezo response. A maximum d33 of ~12 pC/N, which is approximately twice the value of non-doped AlN, is achieved. According to crystallographic analysis using X-ray diffraction, the influence of Yb concentration on the crystal structure was similar to that of Sc with differences observed at high Yb concentration. |
Author | Akiyama, Morito Anggraini, Sri Ayu Yamada, Hiroshi Hirata, Kenji Uehara, Masato Amano, Yuki |
Author_xml | – sequence: 1 givenname: Masato orcidid: 0000-0001-5614-647X surname: Uehara fullname: Uehara, Masato email: m.uehara@aist.go.jp organization: Sensing System Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 807-1, Shuku-machi, Tosu, Saga, 841-0052, Japan – sequence: 2 givenname: Yuki surname: Amano fullname: Amano, Yuki organization: Department of Molecular and Material Sciences, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasugakoen, Kasuga, Fukuoka, 816-8580, Japan – sequence: 3 givenname: Sri Ayu surname: Anggraini fullname: Anggraini, Sri Ayu organization: Sensing System Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 807-1, Shuku-machi, Tosu, Saga, 841-0052, Japan – sequence: 4 givenname: Kenji surname: Hirata fullname: Hirata, Kenji organization: Sensing System Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 807-1, Shuku-machi, Tosu, Saga, 841-0052, Japan – sequence: 5 givenname: Hiroshi surname: Yamada fullname: Yamada, Hiroshi organization: Sensing System Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 807-1, Shuku-machi, Tosu, Saga, 841-0052, Japan – sequence: 6 givenname: Morito surname: Akiyama fullname: Akiyama, Morito organization: Sensing System Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 807-1, Shuku-machi, Tosu, Saga, 841-0052, Japan |
BookMark | eNqFkMtOwzAQRS1UJNrCLyD_QIIfaexKLKgqXlIFLGDBynKcMbhKnch2kcqKTydt6YZNVzOLOVd3zggNfOsBoUtKckpoebXMDQS9cj7ljDCaE5ZTIU7QkErBMz6dlAM0JEywTMqCnaFRjEvSg9OCDNHPS4BOB51c63Fr8Xs1a55w5-C7hQZMCs7g9Ok8tq5Z4WqDY7dOCYLzH1j7GjtvmzV4A3sYm7bffToEetyFtoOQHMTdvQmbmHSDYwprk9YBztGp1U2Ei785Rm93t6_zh2zxfP84ny0yw4VMmRZccMplpQvoy1umpYba2FpLVljNOROaQS2rGqytYMI0lMQSyWxFJ1QYPkbX-1wT2hgDWGVc2rXsy7pGUaK2NtVSHWyqrU1FmOpt9nj5D--CW-mwOQ7e7EHon_tyEFQ0biusdqH3q-rWHYv4BWUXmrk |
CitedBy_id | crossref_primary_10_1016_j_sna_2022_114067 crossref_primary_10_1002_pssr_202300087 crossref_primary_10_1021_acsaelm_2c00995 crossref_primary_10_1080_10408436_2024_2406247 crossref_primary_10_35848_1347_4065_ac124f crossref_primary_10_1016_j_nanoen_2023_108390 crossref_primary_10_1016_j_physb_2023_415470 crossref_primary_10_2109_jcersj2_21190 crossref_primary_10_1016_j_jeurceramsoc_2023_06_050 crossref_primary_10_1039_D3TC04764D crossref_primary_10_1103_PhysRevMaterials_6_034405 crossref_primary_10_1007_s43673_023_00104_4 crossref_primary_10_1039_D4NR01837K crossref_primary_10_5188_ijsmer_25_115 crossref_primary_10_1016_j_apenergy_2024_122901 crossref_primary_10_1016_j_mattod_2024_12_011 crossref_primary_10_1016_j_jallcom_2024_174330 |
Cites_doi | 10.2109/jcersj2.118.1166 10.1016/j.surfcoat.2016.11.083 10.1016/j.apsusc.2013.01.005 10.1016/j.actamat.2015.08.019 10.1002/adma.200802611 10.1103/PhysRevApplied.9.034026 10.1016/0003-682X(94)90091-4 10.1063/1.4993254 10.1103/PhysRevLett.104.137601 10.1557/mrs.2012.268 10.1557/mrs.2012.273 10.1063/1.4788728 10.1109/MMW.2003.1266067 10.1063/1.4990533 10.1109/TUFFC.2014.006846 10.1109/TUFFC.2005.1503959 10.1063/1.3251072 10.1021/acsomega.9b01912 10.1109/TUFFC.2005.1504003 10.1023/B:JECR.0000033998.72845.51 10.1063/1.5066613 10.1016/j.reffit.2016.11.014 10.1016/j.matlet.2017.12.111 10.1063/1.4948343 10.1016/S0924-0136(01)00583-0 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd and Techna Group S.r.l. |
Copyright_xml | – notice: 2021 Elsevier Ltd and Techna Group S.r.l. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.ceramint.2021.02.177 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-3956 |
EndPage | 16036 |
ExternalDocumentID | 10_1016_j_ceramint_2021_02_177 S0272884221005526 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29B 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABJNI ABMAC ABXRA ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SMS SPC SPCBC SSM SSZ T5K ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- RIG RNS SEW SSH WUQ XPP |
ID | FETCH-LOGICAL-c378t-a7373138ba4e001f2a8aedcfda824fa3327a2ed8bdeffbe52ae60f082fb1517c3 |
IEDL.DBID | .~1 |
ISSN | 0272-8842 |
IngestDate | Tue Jul 01 03:38:49 EDT 2025 Thu Apr 24 23:01:11 EDT 2025 Fri Feb 23 02:45:14 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | Piezoelectricity And ytterbium Design of experimental Sputtering Aluminum nitride Crystal structure |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c378t-a7373138ba4e001f2a8aedcfda824fa3327a2ed8bdeffbe52ae60f082fb1517c3 |
ORCID | 0000-0001-5614-647X |
PageCount | 8 |
ParticipantIDs | crossref_citationtrail_10_1016_j_ceramint_2021_02_177 crossref_primary_10_1016_j_ceramint_2021_02_177 elsevier_sciencedirect_doi_10_1016_j_ceramint_2021_02_177 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-06-01 2021-06-00 |
PublicationDateYYYYMMDD | 2021-06-01 |
PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Ceramics international |
PublicationYear | 2021 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Daoust, Coia, Desjardins, Masut (bib17) 2017 Yanagitani, Jia (bib18) 2019 Lakin (bib1) 2003; 4 Eom, Trolier-McKinstry (bib5) 2012; 37 Trolier-Mckinstry, Muralt (bib6) 2004; 12 Yokoyama, Iwazaki, Onda, Nishihara, Sasajima, Ueda (bib9) 2015; 62 Manna, Brennecka, Stevanović, Ciobanu (bib13) 2017; 122 Hu, Tai, Yang (bib16) 2018; 217 Akiyama, Kano, Teshigahara (bib8) 2009; 95 Uehara, Shigemoto, Fujio, Nagase, Aida, Umeda, Akiyama (bib11) 2017; 111 Hirata, Yamada, Uehara, Anggraini, Akiyama (bib31) 2019; 4 Mayrhofer, Riedl, Euchner, Stöger-Pollach, Mayrhofer, Bittner, Schmid (bib12) 2015; 100 Momida, Oguchi (bib34) 2018; 11 Iriarte, Bjurstrom, Westlinder, Engelmark, Katardjiev (bib27) 2005; 52 Singh, Sharma, Wupardrasta, Desai (bib21) 2016; 2 Reusch, Katus, Holc, Pletschen, Kirste, Zuerbig, Iankov, Reindl, Ambacher, Lebedev (bib24) 2015 Silva, Neves, Rocha, Silva, Valente (bib22) 2020 Turner, Fuierer, Newnham, Shrout (bib3) 1994; 41 Yang (bib20) 2001; 113 Iwazaki, Yokoyama, Nishihara, Ueda (bib32) 2015; 8 Akiyama, Kamohara, Kano, Teshigahara, Takeuchi, Kawahara (bib7) 2009; 21 Umeda, Kawai, Honda, Akiyama, Kato, Fukura (bib23) 2013 Yoshikawa, Reusch, Holc, Iankov, Zuerbig, Zukauskaite, Nebel, Ambacher, Lebedev (bib25) 2016; 108 Uehara, Mizuno, Aida, Yamada, Umeda, Akiyama (bib26) 2019; 114 Manna, Talley, Gorai, Mangum, Zakutayev, Brennecka, Stevanović, Ciobanu (bib14) 2018; 9 Talley, Millican, Mangum, Siol, Musgrave, Gorman, Holder, Zakutayev, Brennecka (bib28) 2018; 2 Tasnadi, Alling, Hoglund, Wingqvist, Birch, Hultman, Abrikosov (bib30) 2010; 104 Lakin (bib2) 2005; 52 Piazza, Felmetsger, Muralt, Olsson, Ruby (bib4) 2012; 37 Yokoyama, Iwazaki, Nishihara, Tsutsumi (bib10) 2016 Akiyama, Umeda, Honda, Nagase (bib33) 2013; 102 Akiyama, Tabaru, Nishikubo, Teshigahara, Kano (bib19) 2010; 118 Zywitzki, Modes, Barth, Bartzsch, Frach (bib29) 2017; 309 Liu, Zeng, Tang, Pan (bib15) 2013; 270 Momida (10.1016/j.ceramint.2021.02.177_bib34) 2018; 11 Akiyama (10.1016/j.ceramint.2021.02.177_bib7) 2009; 21 Yoshikawa (10.1016/j.ceramint.2021.02.177_bib25) 2016; 108 Yang (10.1016/j.ceramint.2021.02.177_bib20) 2001; 113 Tasnadi (10.1016/j.ceramint.2021.02.177_bib30) 2010; 104 Yanagitani (10.1016/j.ceramint.2021.02.177_bib18) 2019 Lakin (10.1016/j.ceramint.2021.02.177_bib2) 2005; 52 Piazza (10.1016/j.ceramint.2021.02.177_bib4) 2012; 37 Talley (10.1016/j.ceramint.2021.02.177_bib28) 2018; 2 Akiyama (10.1016/j.ceramint.2021.02.177_bib19) 2010; 118 Reusch (10.1016/j.ceramint.2021.02.177_bib24) 2015 Turner (10.1016/j.ceramint.2021.02.177_bib3) 1994; 41 Manna (10.1016/j.ceramint.2021.02.177_bib14) 2018; 9 Akiyama (10.1016/j.ceramint.2021.02.177_bib33) 2013; 102 Lakin (10.1016/j.ceramint.2021.02.177_bib1) 2003; 4 Daoust (10.1016/j.ceramint.2021.02.177_bib17) 2017 Umeda (10.1016/j.ceramint.2021.02.177_bib23) 2013 Zywitzki (10.1016/j.ceramint.2021.02.177_bib29) 2017; 309 Hu (10.1016/j.ceramint.2021.02.177_bib16) 2018; 217 Trolier-Mckinstry (10.1016/j.ceramint.2021.02.177_bib6) 2004; 12 Uehara (10.1016/j.ceramint.2021.02.177_bib26) 2019; 114 Silva (10.1016/j.ceramint.2021.02.177_bib22) 2020 Mayrhofer (10.1016/j.ceramint.2021.02.177_bib12) 2015; 100 Yokoyama (10.1016/j.ceramint.2021.02.177_bib9) 2015; 62 Iwazaki (10.1016/j.ceramint.2021.02.177_bib32) 2015; 8 Singh (10.1016/j.ceramint.2021.02.177_bib21) 2016; 2 Hirata (10.1016/j.ceramint.2021.02.177_bib31) 2019; 4 Liu (10.1016/j.ceramint.2021.02.177_bib15) 2013; 270 Manna (10.1016/j.ceramint.2021.02.177_bib13) 2017; 122 Uehara (10.1016/j.ceramint.2021.02.177_bib11) 2017; 111 Iriarte (10.1016/j.ceramint.2021.02.177_bib27) 2005; 52 Akiyama (10.1016/j.ceramint.2021.02.177_bib8) 2009; 95 Yokoyama (10.1016/j.ceramint.2021.02.177_bib10) 2016 Eom (10.1016/j.ceramint.2021.02.177_bib5) 2012; 37 |
References_xml | – volume: 37 start-page: 1051 year: 2012 end-page: 1061 ident: bib4 article-title: Piezoelectric aluminum nitride thin films for microelectromechanical systems publication-title: MRS Bull. – volume: 37 start-page: 1007 year: 2012 end-page: 1017 ident: bib5 article-title: Thin-film piezoelectric MEMS publication-title: MRS Bull. – volume: 12 start-page: 11 year: 2004 ident: bib6 article-title: Thin film piezoelectrics for MEMS publication-title: J. Electroceram. – volume: 21 start-page: 593 year: 2009 ident: bib7 article-title: Enhancement of piezoelectric response in scandium aluminum nitride alloy thin films prepared by dual reactive cosputtering publication-title: Adv. Mater. – volume: 111 year: 2017 ident: bib11 article-title: Giant increase in piezoelectric coefficient of AlN by Mg-Nb simultaneous addition and multiple chemical states of Nb publication-title: Appl. Phys. Lett. – volume: 52 start-page: 707 year: 2005 end-page: 716 ident: bib2 article-title: Thin film resonator technology publication-title: IEEE Trans. Ultrason. Ferroelectrics Freq. Contr. – start-page: 259 year: 2020 ident: bib22 article-title: Optimization of continuous-flow heterogeneous catalytic oligomerization of 1-butene by design of experiments and response surface methodology publication-title: Fuel – volume: 95 year: 2009 ident: bib8 article-title: Influence of growth temperature and scandium concentration on piezoelectric response of scandium aluminum nitride alloy thin films publication-title: Appl. Phys. Lett. – volume: 270 start-page: 225 year: 2013 end-page: 230 ident: bib15 article-title: Enhancement of piezoelectric response of diluted Ta doped AlN publication-title: Appl. Surf. Sci. – volume: 2 year: 2018 ident: bib28 article-title: Implications of heterostructural alloying for enhanced piezoelectric performance of (Al,Sc)N publication-title: Phys. Rev. Mater. – start-page: 733 year: 2013 end-page: 736 ident: bib23 article-title: Piezoelectric properties of ScAlN thin films for piezo-MEMS devices publication-title: Proc. IEEE Micr. Elect. – volume: 118 start-page: 1166 year: 2010 end-page: 1169 ident: bib19 article-title: Preparation of scandium aluminum nitride thin films by using scandium aluminum alloy sputtering target and design of experiments publication-title: J. Ceram. Soc. Jpn. – year: 2016 ident: bib10 article-title: Dopant concentration dependence of electromechanical coupling coefficients of co-doped AlN thin films for BAW devices publication-title: Proc. IEEE Ultrason. Sym. – start-page: 1291 year: 2015 end-page: 1294 ident: bib24 article-title: Aluminium Nitride Membranes with Embedded Buried Idt Electrodes for Novel Flexural Plate Wave Devices, Proc. 2015 Transducers - 2015 18th International Conference on Solid-State Sensors – volume: 102 year: 2013 ident: bib33 article-title: Influence of scandium concentration on power generation figure of merit of scandium aluminum nitride thin films publication-title: Appl. Phys. Lett. – volume: 217 start-page: 281 year: 2018 end-page: 283 ident: bib16 article-title: Preparation and characterization of Er-doped AlN films by RF magnetron sputtering publication-title: Mater. Lett. – volume: 114 year: 2019 ident: bib26 article-title: Increase in the piezoelectric response of scandium-doped gallium nitride thin films sputtered using a metal interlayer for piezo MEMS publication-title: Appl. Phys. Lett. – volume: 62 start-page: 1007 year: 2015 end-page: 1015 ident: bib9 article-title: Highly piezoelectric co-doped AlN thin films for wideband FBAR applications publication-title: Proc. IEEE Ultrason. Sym. – volume: 11 year: 2018 ident: bib34 article-title: Effects of lattice parameters on piezoelectric constants in wurtzite materials: a theoretical study using first-principles and statistical-learning methods publication-title: APEX – volume: 41 start-page: 299 year: 1994 end-page: 324 ident: bib3 article-title: Materials for high temperature acoustic and vibration sensors: A review publication-title: Appl. Acoust. – volume: 4 start-page: 15081 year: 2019 end-page: 15086 ident: bib31 article-title: First-Principles study of piezoelectric properties and bonding analysis in (Mg, X, Al)N solid solutions (X = Nb, Ti, Zr, Hf) publication-title: ACS Omega – volume: 113 start-page: 521 year: 2001 end-page: 526 ident: bib20 article-title: Plasma surface hardening of ASSAB 760 steel specimens with Taguchi optimisation of the processing parameters publication-title: J. Mater. Process. Technol. – volume: 309 start-page: 417 year: 2017 end-page: 422 ident: bib29 article-title: Effect of scandium content on structure and piezoelectric properties of AlScN films deposited by reactive pulse magnetron sputtering publication-title: Surf. Coating. Technol. – volume: 52 start-page: 1170 year: 2005 end-page: 1174 ident: bib27 article-title: Synthesis of c-axis-oriented AlN thin films on high-conducting layers: Al, Mo, Ti, TiN, and Ni publication-title: IEEE Trans. Ultrason. Ferroelectrics Freq. Contr. – volume: 9 year: 2018 ident: bib14 article-title: Enhanced piezoelectric response of AlN via CrN alloying publication-title: Physical Review Applied – volume: 2 start-page: S165 year: 2016 end-page: S170 ident: bib21 article-title: Selection of amine combination for CO publication-title: Resource-Efficient Technologies – volume: 104 year: 2010 ident: bib30 article-title: Origin of the anomalous piezoelectric response in wurtzite Sc publication-title: Phys. Rev. Lett. – year: 2017 ident: bib17 article-title: Piezoelectric alloy films publication-title: US Patent – volume: 108 year: 2016 ident: bib25 article-title: Enhanced actuation of nanocrystalline diamond microelectromechanical disk resonators with AlN layers publication-title: Appl. Phys. Lett. – volume: 122 year: 2017 ident: bib13 article-title: Tuning the piezoelectric and mechanical properties of the AlN system via alloying with YN and BN publication-title: J. Appl. Phys. – volume: 100 start-page: 81 year: 2015 end-page: 89 ident: bib12 article-title: Microstructure and piezoelectric response of Y publication-title: Acta Mater. – volume: 4 start-page: 61 year: 2003 end-page: 67 ident: bib1 article-title: A review of thin-film resonator technology publication-title: IEEE Microw. Mag. – start-page: 894 year: 2019 end-page: 899 ident: bib18 article-title: ScAlN polarization inverted resonators and enhancement of publication-title: Proc. 2019 IEEE International Ultrasonics Symposium – volume: 8 year: 2015 ident: bib32 article-title: Highly enhanced piezoelectric property of co-doped AlN publication-title: APEX – volume: 118 start-page: 1166 year: 2010 ident: 10.1016/j.ceramint.2021.02.177_bib19 article-title: Preparation of scandium aluminum nitride thin films by using scandium aluminum alloy sputtering target and design of experiments publication-title: J. Ceram. Soc. Jpn. doi: 10.2109/jcersj2.118.1166 – volume: 309 start-page: 417 year: 2017 ident: 10.1016/j.ceramint.2021.02.177_bib29 article-title: Effect of scandium content on structure and piezoelectric properties of AlScN films deposited by reactive pulse magnetron sputtering publication-title: Surf. Coating. Technol. doi: 10.1016/j.surfcoat.2016.11.083 – start-page: 733 year: 2013 ident: 10.1016/j.ceramint.2021.02.177_bib23 article-title: Piezoelectric properties of ScAlN thin films for piezo-MEMS devices publication-title: Proc. IEEE Micr. Elect. – volume: 270 start-page: 225 year: 2013 ident: 10.1016/j.ceramint.2021.02.177_bib15 article-title: Enhancement of piezoelectric response of diluted Ta doped AlN publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2013.01.005 – volume: 100 start-page: 81 year: 2015 ident: 10.1016/j.ceramint.2021.02.177_bib12 article-title: Microstructure and piezoelectric response of YxAl1−xN thin films publication-title: Acta Mater. doi: 10.1016/j.actamat.2015.08.019 – year: 2017 ident: 10.1016/j.ceramint.2021.02.177_bib17 article-title: Piezoelectric alloy films – start-page: 894 year: 2019 ident: 10.1016/j.ceramint.2021.02.177_bib18 article-title: ScAlN polarization inverted resonators and enhancement of kt2 in new YbAlN materials for BAW devices – volume: 21 start-page: 593 year: 2009 ident: 10.1016/j.ceramint.2021.02.177_bib7 article-title: Enhancement of piezoelectric response in scandium aluminum nitride alloy thin films prepared by dual reactive cosputtering publication-title: Adv. Mater. doi: 10.1002/adma.200802611 – volume: 9 year: 2018 ident: 10.1016/j.ceramint.2021.02.177_bib14 article-title: Enhanced piezoelectric response of AlN via CrN alloying publication-title: Physical Review Applied doi: 10.1103/PhysRevApplied.9.034026 – volume: 41 start-page: 299 year: 1994 ident: 10.1016/j.ceramint.2021.02.177_bib3 article-title: Materials for high temperature acoustic and vibration sensors: A review publication-title: Appl. Acoust. doi: 10.1016/0003-682X(94)90091-4 – volume: 122 year: 2017 ident: 10.1016/j.ceramint.2021.02.177_bib13 article-title: Tuning the piezoelectric and mechanical properties of the AlN system via alloying with YN and BN publication-title: J. Appl. Phys. doi: 10.1063/1.4993254 – volume: 104 year: 2010 ident: 10.1016/j.ceramint.2021.02.177_bib30 article-title: Origin of the anomalous piezoelectric response in wurtzite ScxAl1-xN alloys publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.104.137601 – volume: 37 start-page: 1051 year: 2012 ident: 10.1016/j.ceramint.2021.02.177_bib4 article-title: Piezoelectric aluminum nitride thin films for microelectromechanical systems publication-title: MRS Bull. doi: 10.1557/mrs.2012.268 – volume: 37 start-page: 1007 year: 2012 ident: 10.1016/j.ceramint.2021.02.177_bib5 article-title: Thin-film piezoelectric MEMS publication-title: MRS Bull. doi: 10.1557/mrs.2012.273 – year: 2016 ident: 10.1016/j.ceramint.2021.02.177_bib10 article-title: Dopant concentration dependence of electromechanical coupling coefficients of co-doped AlN thin films for BAW devices publication-title: Proc. IEEE Ultrason. Sym. – volume: 102 year: 2013 ident: 10.1016/j.ceramint.2021.02.177_bib33 article-title: Influence of scandium concentration on power generation figure of merit of scandium aluminum nitride thin films publication-title: Appl. Phys. Lett. doi: 10.1063/1.4788728 – volume: 4 start-page: 61 year: 2003 ident: 10.1016/j.ceramint.2021.02.177_bib1 article-title: A review of thin-film resonator technology publication-title: IEEE Microw. Mag. doi: 10.1109/MMW.2003.1266067 – volume: 2 year: 2018 ident: 10.1016/j.ceramint.2021.02.177_bib28 article-title: Implications of heterostructural alloying for enhanced piezoelectric performance of (Al,Sc)N publication-title: Phys. Rev. Mater. – volume: 111 year: 2017 ident: 10.1016/j.ceramint.2021.02.177_bib11 article-title: Giant increase in piezoelectric coefficient of AlN by Mg-Nb simultaneous addition and multiple chemical states of Nb publication-title: Appl. Phys. Lett. doi: 10.1063/1.4990533 – volume: 62 start-page: 1007 year: 2015 ident: 10.1016/j.ceramint.2021.02.177_bib9 article-title: Highly piezoelectric co-doped AlN thin films for wideband FBAR applications publication-title: Proc. IEEE Ultrason. Sym. doi: 10.1109/TUFFC.2014.006846 – volume: 52 start-page: 707 year: 2005 ident: 10.1016/j.ceramint.2021.02.177_bib2 article-title: Thin film resonator technology publication-title: IEEE Trans. Ultrason. Ferroelectrics Freq. Contr. doi: 10.1109/TUFFC.2005.1503959 – volume: 95 year: 2009 ident: 10.1016/j.ceramint.2021.02.177_bib8 article-title: Influence of growth temperature and scandium concentration on piezoelectric response of scandium aluminum nitride alloy thin films publication-title: Appl. Phys. Lett. doi: 10.1063/1.3251072 – volume: 4 start-page: 15081 year: 2019 ident: 10.1016/j.ceramint.2021.02.177_bib31 article-title: First-Principles study of piezoelectric properties and bonding analysis in (Mg, X, Al)N solid solutions (X = Nb, Ti, Zr, Hf) publication-title: ACS Omega doi: 10.1021/acsomega.9b01912 – volume: 52 start-page: 1170 year: 2005 ident: 10.1016/j.ceramint.2021.02.177_bib27 article-title: Synthesis of c-axis-oriented AlN thin films on high-conducting layers: Al, Mo, Ti, TiN, and Ni publication-title: IEEE Trans. Ultrason. Ferroelectrics Freq. Contr. doi: 10.1109/TUFFC.2005.1504003 – volume: 12 start-page: 11 year: 2004 ident: 10.1016/j.ceramint.2021.02.177_bib6 article-title: Thin film piezoelectrics for MEMS publication-title: J. Electroceram. doi: 10.1023/B:JECR.0000033998.72845.51 – volume: 114 year: 2019 ident: 10.1016/j.ceramint.2021.02.177_bib26 article-title: Increase in the piezoelectric response of scandium-doped gallium nitride thin films sputtered using a metal interlayer for piezo MEMS publication-title: Appl. Phys. Lett. doi: 10.1063/1.5066613 – volume: 2 start-page: S165 year: 2016 ident: 10.1016/j.ceramint.2021.02.177_bib21 article-title: Selection of amine combination for CO2 capture in a packed bed scrubber publication-title: Resource-Efficient Technologies doi: 10.1016/j.reffit.2016.11.014 – start-page: 1291 year: 2015 ident: 10.1016/j.ceramint.2021.02.177_bib24 – volume: 217 start-page: 281 year: 2018 ident: 10.1016/j.ceramint.2021.02.177_bib16 article-title: Preparation and characterization of Er-doped AlN films by RF magnetron sputtering publication-title: Mater. Lett. doi: 10.1016/j.matlet.2017.12.111 – start-page: 259 year: 2020 ident: 10.1016/j.ceramint.2021.02.177_bib22 article-title: Optimization of continuous-flow heterogeneous catalytic oligomerization of 1-butene by design of experiments and response surface methodology publication-title: Fuel – volume: 8 year: 2015 ident: 10.1016/j.ceramint.2021.02.177_bib32 article-title: Highly enhanced piezoelectric property of co-doped AlN publication-title: APEX – volume: 11 year: 2018 ident: 10.1016/j.ceramint.2021.02.177_bib34 article-title: Effects of lattice parameters on piezoelectric constants in wurtzite materials: a theoretical study using first-principles and statistical-learning methods publication-title: APEX – volume: 108 year: 2016 ident: 10.1016/j.ceramint.2021.02.177_bib25 article-title: Enhanced actuation of nanocrystalline diamond microelectromechanical disk resonators with AlN layers publication-title: Appl. Phys. Lett. doi: 10.1063/1.4948343 – volume: 113 start-page: 521 year: 2001 ident: 10.1016/j.ceramint.2021.02.177_bib20 article-title: Plasma surface hardening of ASSAB 760 steel specimens with Taguchi optimisation of the processing parameters publication-title: J. Mater. Process. Technol. doi: 10.1016/S0924-0136(01)00583-0 |
SSID | ssj0016940 |
Score | 2.4108036 |
Snippet | Aluminum nitride (AlN) is a key material for piezoelectric micro-electromechanical systems (MEMS). Since the discovery of the increase in AlN piezo performance... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 16029 |
SubjectTerms | Aluminum nitride And ytterbium Crystal structure Design of experimental Piezoelectricity Sputtering |
Title | Preparation of YbAlN piezoelectric thin film by sputtering and influence of Yb concentration on properties and crystal structure |
URI | https://dx.doi.org/10.1016/j.ceramint.2021.02.177 |
Volume | 47 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS-RAEG7Evehh0XWX9TX0Ya9xkk4nnRwHUWZddlhYBT2F6hdGxp4Qx4MexJ9udToZZmHBg8eE_kKoqq6qbqq-IuSHLnMBNlZRqUFGHCyLygx0ZNMEPXIR60T5Buffs3x6xS-us-sNcjr0wviyyt73B5_eeev-zbiX5rip6_FfPFCxouAMDy1xljFPu8258FZ-8rIq80jykod7FoE7H1evdQnfnSjTwn3tfE0l67g7EyH-H6DWgs75DvncZ4t0En5ol2wY94Vsr3EI7pHXP60J_N0LRxeW3sjJfEab2jwvwoibWtHlbe2oref3VD7Rh6abTY1gCk7TephSEsBU-T5Gtxw-6Gjjr-tbz7varVftEyaUcxqIZx9b85VcnZ9dnk6jfqxCpFJRLCMQqUiTtJDADQrIMijAaGU1FIxbSFMmgKGepDbWSpMxMHlsMVWwEtMDodJvZNMtnPlOqBLW5p6hGSDnmhkJCM7zUmJaUsaG75NskGWles5xP_piXg3FZXfVoIPK66CKWYU62CfjFa4JrBvvIspBVdU_9lNhaHgHe_AB7CHZ8k-heOyIbKLszTGmKUs56uxwRD5Nfv6azt4AwOzt3g |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6V7QE4IJ6iPH3gGjbrJHZyXFVUW9qukGilcrLGL5Fq643CcignfjrjdVItElIPXJN8UeTPmRnbM98AfLCNkOhzkzUWdVai51lToc18MSOLXOd2ZmKB89lSLC7Kz5fV5R4cjrUwMa1ysP3Jpm-t9XBlOozmtGvb6VdaUPG6LjktWvKq4uIe7Ed1qmoC-_Pjk8Xy9jBBNGXaapH08xNgp1D46qNxPV63IaZV8q1850zKf_uoHb9z9BgeDQEjm6dvegJ7LjyFhzsygs_g95feJQnvdWBrz77p-WrJutb9WqcuN61hm-9tYL5dXTN9w3502_bUBGYYLGvHRiUJzEwsZQyb8YWBdXHHvo_Sq9vnTX9DMeWKJe3Zn717DhdHn84PF9nQWSEzhaw3GcpCFrOi1lg6GiDPsUZnjbdY89JjUXCJnKjS1nmvXcXRidxTtOA1RQjSFC9gEtbBvQRmpPciijQjitJyp5HAQjSaIpMmd-UBVONYKjPIjsfuFys15pddqZEDFTlQOVfEwQFMb3FdEt64E9GMVKm_ppAi73AH9tV_YN_D_cX52ak6PV6evIYH8U7KJXsDE-LBvaWoZaPfDbPyD97L8I8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Preparation+of+YbAlN+piezoelectric+thin+film+by+sputtering+and+influence+of+Yb+concentration+on+properties+and+crystal+structure&rft.jtitle=Ceramics+international&rft.au=Uehara%2C+Masato&rft.au=Amano%2C+Yuki&rft.au=Anggraini%2C+Sri+Ayu&rft.au=Hirata%2C+Kenji&rft.date=2021-06-01&rft.pub=Elsevier+Ltd&rft.issn=0272-8842&rft.eissn=1873-3956&rft.volume=47&rft.issue=11&rft.spage=16029&rft.epage=16036&rft_id=info:doi/10.1016%2Fj.ceramint.2021.02.177&rft.externalDocID=S0272884221005526 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0272-8842&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0272-8842&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0272-8842&client=summon |