Preparation of YbAlN piezoelectric thin film by sputtering and influence of Yb concentration on properties and crystal structure

Aluminum nitride (AlN) is a key material for piezoelectric micro-electromechanical systems (MEMS). Since the discovery of the increase in AlN piezo performance by scandium (Sc) doping, many groups have investigated other effective dopants. However, another effective single dopant has not yet been ex...

Full description

Saved in:
Bibliographic Details
Published inCeramics international Vol. 47; no. 11; pp. 16029 - 16036
Main Authors Uehara, Masato, Amano, Yuki, Anggraini, Sri Ayu, Hirata, Kenji, Yamada, Hiroshi, Akiyama, Morito
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.06.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Aluminum nitride (AlN) is a key material for piezoelectric micro-electromechanical systems (MEMS). Since the discovery of the increase in AlN piezo performance by scandium (Sc) doping, many groups have investigated other effective dopants. However, another effective single dopant has not yet been experimentally demonstrated, although potential effectiveness has been indicated by theoretical calculations. In this study, we propose ytterbium (Yb) as an effective dopant. The sputtering conditions for YbxAl1 − xN films were optimized by design of experiments (DoE). Consequently, high-quality YbxAl1 − xN films were obtained. YbxAl1 − xN with x values ranging from 0 to 0.37 demonstrate good piezo response. A maximum d33 of ~12 pC/N, which is approximately twice the value of non-doped AlN, is achieved. According to crystallographic analysis using X-ray diffraction, the influence of Yb concentration on the crystal structure was similar to that of Sc with differences observed at high Yb concentration.
AbstractList Aluminum nitride (AlN) is a key material for piezoelectric micro-electromechanical systems (MEMS). Since the discovery of the increase in AlN piezo performance by scandium (Sc) doping, many groups have investigated other effective dopants. However, another effective single dopant has not yet been experimentally demonstrated, although potential effectiveness has been indicated by theoretical calculations. In this study, we propose ytterbium (Yb) as an effective dopant. The sputtering conditions for YbxAl1 − xN films were optimized by design of experiments (DoE). Consequently, high-quality YbxAl1 − xN films were obtained. YbxAl1 − xN with x values ranging from 0 to 0.37 demonstrate good piezo response. A maximum d33 of ~12 pC/N, which is approximately twice the value of non-doped AlN, is achieved. According to crystallographic analysis using X-ray diffraction, the influence of Yb concentration on the crystal structure was similar to that of Sc with differences observed at high Yb concentration.
Author Akiyama, Morito
Anggraini, Sri Ayu
Yamada, Hiroshi
Hirata, Kenji
Uehara, Masato
Amano, Yuki
Author_xml – sequence: 1
  givenname: Masato
  orcidid: 0000-0001-5614-647X
  surname: Uehara
  fullname: Uehara, Masato
  email: m.uehara@aist.go.jp
  organization: Sensing System Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 807-1, Shuku-machi, Tosu, Saga, 841-0052, Japan
– sequence: 2
  givenname: Yuki
  surname: Amano
  fullname: Amano, Yuki
  organization: Department of Molecular and Material Sciences, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasugakoen, Kasuga, Fukuoka, 816-8580, Japan
– sequence: 3
  givenname: Sri Ayu
  surname: Anggraini
  fullname: Anggraini, Sri Ayu
  organization: Sensing System Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 807-1, Shuku-machi, Tosu, Saga, 841-0052, Japan
– sequence: 4
  givenname: Kenji
  surname: Hirata
  fullname: Hirata, Kenji
  organization: Sensing System Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 807-1, Shuku-machi, Tosu, Saga, 841-0052, Japan
– sequence: 5
  givenname: Hiroshi
  surname: Yamada
  fullname: Yamada, Hiroshi
  organization: Sensing System Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 807-1, Shuku-machi, Tosu, Saga, 841-0052, Japan
– sequence: 6
  givenname: Morito
  surname: Akiyama
  fullname: Akiyama, Morito
  organization: Sensing System Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 807-1, Shuku-machi, Tosu, Saga, 841-0052, Japan
BookMark eNqFkMtOwzAQRS1UJNrCLyD_QIIfaexKLKgqXlIFLGDBynKcMbhKnch2kcqKTydt6YZNVzOLOVd3zggNfOsBoUtKckpoebXMDQS9cj7ljDCaE5ZTIU7QkErBMz6dlAM0JEywTMqCnaFRjEvSg9OCDNHPS4BOB51c63Fr8Xs1a55w5-C7hQZMCs7g9Ok8tq5Z4WqDY7dOCYLzH1j7GjtvmzV4A3sYm7bffToEetyFtoOQHMTdvQmbmHSDYwprk9YBztGp1U2Ei785Rm93t6_zh2zxfP84ny0yw4VMmRZccMplpQvoy1umpYba2FpLVljNOROaQS2rGqytYMI0lMQSyWxFJ1QYPkbX-1wT2hgDWGVc2rXsy7pGUaK2NtVSHWyqrU1FmOpt9nj5D--CW-mwOQ7e7EHon_tyEFQ0biusdqH3q-rWHYv4BWUXmrk
CitedBy_id crossref_primary_10_1016_j_sna_2022_114067
crossref_primary_10_1002_pssr_202300087
crossref_primary_10_1021_acsaelm_2c00995
crossref_primary_10_1080_10408436_2024_2406247
crossref_primary_10_35848_1347_4065_ac124f
crossref_primary_10_1016_j_nanoen_2023_108390
crossref_primary_10_1016_j_physb_2023_415470
crossref_primary_10_2109_jcersj2_21190
crossref_primary_10_1016_j_jeurceramsoc_2023_06_050
crossref_primary_10_1039_D3TC04764D
crossref_primary_10_1103_PhysRevMaterials_6_034405
crossref_primary_10_1007_s43673_023_00104_4
crossref_primary_10_1039_D4NR01837K
crossref_primary_10_5188_ijsmer_25_115
crossref_primary_10_1016_j_apenergy_2024_122901
crossref_primary_10_1016_j_mattod_2024_12_011
crossref_primary_10_1016_j_jallcom_2024_174330
Cites_doi 10.2109/jcersj2.118.1166
10.1016/j.surfcoat.2016.11.083
10.1016/j.apsusc.2013.01.005
10.1016/j.actamat.2015.08.019
10.1002/adma.200802611
10.1103/PhysRevApplied.9.034026
10.1016/0003-682X(94)90091-4
10.1063/1.4993254
10.1103/PhysRevLett.104.137601
10.1557/mrs.2012.268
10.1557/mrs.2012.273
10.1063/1.4788728
10.1109/MMW.2003.1266067
10.1063/1.4990533
10.1109/TUFFC.2014.006846
10.1109/TUFFC.2005.1503959
10.1063/1.3251072
10.1021/acsomega.9b01912
10.1109/TUFFC.2005.1504003
10.1023/B:JECR.0000033998.72845.51
10.1063/1.5066613
10.1016/j.reffit.2016.11.014
10.1016/j.matlet.2017.12.111
10.1063/1.4948343
10.1016/S0924-0136(01)00583-0
ContentType Journal Article
Copyright 2021 Elsevier Ltd and Techna Group S.r.l.
Copyright_xml – notice: 2021 Elsevier Ltd and Techna Group S.r.l.
DBID AAYXX
CITATION
DOI 10.1016/j.ceramint.2021.02.177
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-3956
EndPage 16036
ExternalDocumentID 10_1016_j_ceramint_2021_02_177
S0272884221005526
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29B
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABJNI
ABMAC
ABXRA
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SMS
SPC
SPCBC
SSM
SSZ
T5K
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
RIG
RNS
SEW
SSH
WUQ
XPP
ID FETCH-LOGICAL-c378t-a7373138ba4e001f2a8aedcfda824fa3327a2ed8bdeffbe52ae60f082fb1517c3
IEDL.DBID .~1
ISSN 0272-8842
IngestDate Tue Jul 01 03:38:49 EDT 2025
Thu Apr 24 23:01:11 EDT 2025
Fri Feb 23 02:45:14 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Piezoelectricity
And ytterbium
Design of experimental
Sputtering
Aluminum nitride
Crystal structure
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c378t-a7373138ba4e001f2a8aedcfda824fa3327a2ed8bdeffbe52ae60f082fb1517c3
ORCID 0000-0001-5614-647X
PageCount 8
ParticipantIDs crossref_citationtrail_10_1016_j_ceramint_2021_02_177
crossref_primary_10_1016_j_ceramint_2021_02_177
elsevier_sciencedirect_doi_10_1016_j_ceramint_2021_02_177
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-06-01
2021-06-00
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-01
  day: 01
PublicationDecade 2020
PublicationTitle Ceramics international
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Daoust, Coia, Desjardins, Masut (bib17) 2017
Yanagitani, Jia (bib18) 2019
Lakin (bib1) 2003; 4
Eom, Trolier-McKinstry (bib5) 2012; 37
Trolier-Mckinstry, Muralt (bib6) 2004; 12
Yokoyama, Iwazaki, Onda, Nishihara, Sasajima, Ueda (bib9) 2015; 62
Manna, Brennecka, Stevanović, Ciobanu (bib13) 2017; 122
Hu, Tai, Yang (bib16) 2018; 217
Akiyama, Kano, Teshigahara (bib8) 2009; 95
Uehara, Shigemoto, Fujio, Nagase, Aida, Umeda, Akiyama (bib11) 2017; 111
Hirata, Yamada, Uehara, Anggraini, Akiyama (bib31) 2019; 4
Mayrhofer, Riedl, Euchner, Stöger-Pollach, Mayrhofer, Bittner, Schmid (bib12) 2015; 100
Momida, Oguchi (bib34) 2018; 11
Iriarte, Bjurstrom, Westlinder, Engelmark, Katardjiev (bib27) 2005; 52
Singh, Sharma, Wupardrasta, Desai (bib21) 2016; 2
Reusch, Katus, Holc, Pletschen, Kirste, Zuerbig, Iankov, Reindl, Ambacher, Lebedev (bib24) 2015
Silva, Neves, Rocha, Silva, Valente (bib22) 2020
Turner, Fuierer, Newnham, Shrout (bib3) 1994; 41
Yang (bib20) 2001; 113
Iwazaki, Yokoyama, Nishihara, Ueda (bib32) 2015; 8
Akiyama, Kamohara, Kano, Teshigahara, Takeuchi, Kawahara (bib7) 2009; 21
Umeda, Kawai, Honda, Akiyama, Kato, Fukura (bib23) 2013
Yoshikawa, Reusch, Holc, Iankov, Zuerbig, Zukauskaite, Nebel, Ambacher, Lebedev (bib25) 2016; 108
Uehara, Mizuno, Aida, Yamada, Umeda, Akiyama (bib26) 2019; 114
Manna, Talley, Gorai, Mangum, Zakutayev, Brennecka, Stevanović, Ciobanu (bib14) 2018; 9
Talley, Millican, Mangum, Siol, Musgrave, Gorman, Holder, Zakutayev, Brennecka (bib28) 2018; 2
Tasnadi, Alling, Hoglund, Wingqvist, Birch, Hultman, Abrikosov (bib30) 2010; 104
Lakin (bib2) 2005; 52
Piazza, Felmetsger, Muralt, Olsson, Ruby (bib4) 2012; 37
Yokoyama, Iwazaki, Nishihara, Tsutsumi (bib10) 2016
Akiyama, Umeda, Honda, Nagase (bib33) 2013; 102
Akiyama, Tabaru, Nishikubo, Teshigahara, Kano (bib19) 2010; 118
Zywitzki, Modes, Barth, Bartzsch, Frach (bib29) 2017; 309
Liu, Zeng, Tang, Pan (bib15) 2013; 270
Momida (10.1016/j.ceramint.2021.02.177_bib34) 2018; 11
Akiyama (10.1016/j.ceramint.2021.02.177_bib7) 2009; 21
Yoshikawa (10.1016/j.ceramint.2021.02.177_bib25) 2016; 108
Yang (10.1016/j.ceramint.2021.02.177_bib20) 2001; 113
Tasnadi (10.1016/j.ceramint.2021.02.177_bib30) 2010; 104
Yanagitani (10.1016/j.ceramint.2021.02.177_bib18) 2019
Lakin (10.1016/j.ceramint.2021.02.177_bib2) 2005; 52
Piazza (10.1016/j.ceramint.2021.02.177_bib4) 2012; 37
Talley (10.1016/j.ceramint.2021.02.177_bib28) 2018; 2
Akiyama (10.1016/j.ceramint.2021.02.177_bib19) 2010; 118
Reusch (10.1016/j.ceramint.2021.02.177_bib24) 2015
Turner (10.1016/j.ceramint.2021.02.177_bib3) 1994; 41
Manna (10.1016/j.ceramint.2021.02.177_bib14) 2018; 9
Akiyama (10.1016/j.ceramint.2021.02.177_bib33) 2013; 102
Lakin (10.1016/j.ceramint.2021.02.177_bib1) 2003; 4
Daoust (10.1016/j.ceramint.2021.02.177_bib17) 2017
Umeda (10.1016/j.ceramint.2021.02.177_bib23) 2013
Zywitzki (10.1016/j.ceramint.2021.02.177_bib29) 2017; 309
Hu (10.1016/j.ceramint.2021.02.177_bib16) 2018; 217
Trolier-Mckinstry (10.1016/j.ceramint.2021.02.177_bib6) 2004; 12
Uehara (10.1016/j.ceramint.2021.02.177_bib26) 2019; 114
Silva (10.1016/j.ceramint.2021.02.177_bib22) 2020
Mayrhofer (10.1016/j.ceramint.2021.02.177_bib12) 2015; 100
Yokoyama (10.1016/j.ceramint.2021.02.177_bib9) 2015; 62
Iwazaki (10.1016/j.ceramint.2021.02.177_bib32) 2015; 8
Singh (10.1016/j.ceramint.2021.02.177_bib21) 2016; 2
Hirata (10.1016/j.ceramint.2021.02.177_bib31) 2019; 4
Liu (10.1016/j.ceramint.2021.02.177_bib15) 2013; 270
Manna (10.1016/j.ceramint.2021.02.177_bib13) 2017; 122
Uehara (10.1016/j.ceramint.2021.02.177_bib11) 2017; 111
Iriarte (10.1016/j.ceramint.2021.02.177_bib27) 2005; 52
Akiyama (10.1016/j.ceramint.2021.02.177_bib8) 2009; 95
Yokoyama (10.1016/j.ceramint.2021.02.177_bib10) 2016
Eom (10.1016/j.ceramint.2021.02.177_bib5) 2012; 37
References_xml – volume: 37
  start-page: 1051
  year: 2012
  end-page: 1061
  ident: bib4
  article-title: Piezoelectric aluminum nitride thin films for microelectromechanical systems
  publication-title: MRS Bull.
– volume: 37
  start-page: 1007
  year: 2012
  end-page: 1017
  ident: bib5
  article-title: Thin-film piezoelectric MEMS
  publication-title: MRS Bull.
– volume: 12
  start-page: 11
  year: 2004
  ident: bib6
  article-title: Thin film piezoelectrics for MEMS
  publication-title: J. Electroceram.
– volume: 21
  start-page: 593
  year: 2009
  ident: bib7
  article-title: Enhancement of piezoelectric response in scandium aluminum nitride alloy thin films prepared by dual reactive cosputtering
  publication-title: Adv. Mater.
– volume: 111
  year: 2017
  ident: bib11
  article-title: Giant increase in piezoelectric coefficient of AlN by Mg-Nb simultaneous addition and multiple chemical states of Nb
  publication-title: Appl. Phys. Lett.
– volume: 52
  start-page: 707
  year: 2005
  end-page: 716
  ident: bib2
  article-title: Thin film resonator technology
  publication-title: IEEE Trans. Ultrason. Ferroelectrics Freq. Contr.
– start-page: 259
  year: 2020
  ident: bib22
  article-title: Optimization of continuous-flow heterogeneous catalytic oligomerization of 1-butene by design of experiments and response surface methodology
  publication-title: Fuel
– volume: 95
  year: 2009
  ident: bib8
  article-title: Influence of growth temperature and scandium concentration on piezoelectric response of scandium aluminum nitride alloy thin films
  publication-title: Appl. Phys. Lett.
– volume: 270
  start-page: 225
  year: 2013
  end-page: 230
  ident: bib15
  article-title: Enhancement of piezoelectric response of diluted Ta doped AlN
  publication-title: Appl. Surf. Sci.
– volume: 2
  year: 2018
  ident: bib28
  article-title: Implications of heterostructural alloying for enhanced piezoelectric performance of (Al,Sc)N
  publication-title: Phys. Rev. Mater.
– start-page: 733
  year: 2013
  end-page: 736
  ident: bib23
  article-title: Piezoelectric properties of ScAlN thin films for piezo-MEMS devices
  publication-title: Proc. IEEE Micr. Elect.
– volume: 118
  start-page: 1166
  year: 2010
  end-page: 1169
  ident: bib19
  article-title: Preparation of scandium aluminum nitride thin films by using scandium aluminum alloy sputtering target and design of experiments
  publication-title: J. Ceram. Soc. Jpn.
– year: 2016
  ident: bib10
  article-title: Dopant concentration dependence of electromechanical coupling coefficients of co-doped AlN thin films for BAW devices
  publication-title: Proc. IEEE Ultrason. Sym.
– start-page: 1291
  year: 2015
  end-page: 1294
  ident: bib24
  article-title: Aluminium Nitride Membranes with Embedded Buried Idt Electrodes for Novel Flexural Plate Wave Devices, Proc. 2015 Transducers - 2015 18th International Conference on Solid-State Sensors
– volume: 102
  year: 2013
  ident: bib33
  article-title: Influence of scandium concentration on power generation figure of merit of scandium aluminum nitride thin films
  publication-title: Appl. Phys. Lett.
– volume: 217
  start-page: 281
  year: 2018
  end-page: 283
  ident: bib16
  article-title: Preparation and characterization of Er-doped AlN films by RF magnetron sputtering
  publication-title: Mater. Lett.
– volume: 114
  year: 2019
  ident: bib26
  article-title: Increase in the piezoelectric response of scandium-doped gallium nitride thin films sputtered using a metal interlayer for piezo MEMS
  publication-title: Appl. Phys. Lett.
– volume: 62
  start-page: 1007
  year: 2015
  end-page: 1015
  ident: bib9
  article-title: Highly piezoelectric co-doped AlN thin films for wideband FBAR applications
  publication-title: Proc. IEEE Ultrason. Sym.
– volume: 11
  year: 2018
  ident: bib34
  article-title: Effects of lattice parameters on piezoelectric constants in wurtzite materials: a theoretical study using first-principles and statistical-learning methods
  publication-title: APEX
– volume: 41
  start-page: 299
  year: 1994
  end-page: 324
  ident: bib3
  article-title: Materials for high temperature acoustic and vibration sensors: A review
  publication-title: Appl. Acoust.
– volume: 4
  start-page: 15081
  year: 2019
  end-page: 15086
  ident: bib31
  article-title: First-Principles study of piezoelectric properties and bonding analysis in (Mg, X, Al)N solid solutions (X = Nb, Ti, Zr, Hf)
  publication-title: ACS Omega
– volume: 113
  start-page: 521
  year: 2001
  end-page: 526
  ident: bib20
  article-title: Plasma surface hardening of ASSAB 760 steel specimens with Taguchi optimisation of the processing parameters
  publication-title: J. Mater. Process. Technol.
– volume: 309
  start-page: 417
  year: 2017
  end-page: 422
  ident: bib29
  article-title: Effect of scandium content on structure and piezoelectric properties of AlScN films deposited by reactive pulse magnetron sputtering
  publication-title: Surf. Coating. Technol.
– volume: 52
  start-page: 1170
  year: 2005
  end-page: 1174
  ident: bib27
  article-title: Synthesis of c-axis-oriented AlN thin films on high-conducting layers: Al, Mo, Ti, TiN, and Ni
  publication-title: IEEE Trans. Ultrason. Ferroelectrics Freq. Contr.
– volume: 9
  year: 2018
  ident: bib14
  article-title: Enhanced piezoelectric response of AlN via CrN alloying
  publication-title: Physical Review Applied
– volume: 2
  start-page: S165
  year: 2016
  end-page: S170
  ident: bib21
  article-title: Selection of amine combination for CO
  publication-title: Resource-Efficient Technologies
– volume: 104
  year: 2010
  ident: bib30
  article-title: Origin of the anomalous piezoelectric response in wurtzite Sc
  publication-title: Phys. Rev. Lett.
– year: 2017
  ident: bib17
  article-title: Piezoelectric alloy films
  publication-title: US Patent
– volume: 108
  year: 2016
  ident: bib25
  article-title: Enhanced actuation of nanocrystalline diamond microelectromechanical disk resonators with AlN layers
  publication-title: Appl. Phys. Lett.
– volume: 122
  year: 2017
  ident: bib13
  article-title: Tuning the piezoelectric and mechanical properties of the AlN system via alloying with YN and BN
  publication-title: J. Appl. Phys.
– volume: 100
  start-page: 81
  year: 2015
  end-page: 89
  ident: bib12
  article-title: Microstructure and piezoelectric response of Y
  publication-title: Acta Mater.
– volume: 4
  start-page: 61
  year: 2003
  end-page: 67
  ident: bib1
  article-title: A review of thin-film resonator technology
  publication-title: IEEE Microw. Mag.
– start-page: 894
  year: 2019
  end-page: 899
  ident: bib18
  article-title: ScAlN polarization inverted resonators and enhancement of
  publication-title: Proc. 2019 IEEE International Ultrasonics Symposium
– volume: 8
  year: 2015
  ident: bib32
  article-title: Highly enhanced piezoelectric property of co-doped AlN
  publication-title: APEX
– volume: 118
  start-page: 1166
  year: 2010
  ident: 10.1016/j.ceramint.2021.02.177_bib19
  article-title: Preparation of scandium aluminum nitride thin films by using scandium aluminum alloy sputtering target and design of experiments
  publication-title: J. Ceram. Soc. Jpn.
  doi: 10.2109/jcersj2.118.1166
– volume: 309
  start-page: 417
  year: 2017
  ident: 10.1016/j.ceramint.2021.02.177_bib29
  article-title: Effect of scandium content on structure and piezoelectric properties of AlScN films deposited by reactive pulse magnetron sputtering
  publication-title: Surf. Coating. Technol.
  doi: 10.1016/j.surfcoat.2016.11.083
– start-page: 733
  year: 2013
  ident: 10.1016/j.ceramint.2021.02.177_bib23
  article-title: Piezoelectric properties of ScAlN thin films for piezo-MEMS devices
  publication-title: Proc. IEEE Micr. Elect.
– volume: 270
  start-page: 225
  year: 2013
  ident: 10.1016/j.ceramint.2021.02.177_bib15
  article-title: Enhancement of piezoelectric response of diluted Ta doped AlN
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2013.01.005
– volume: 100
  start-page: 81
  year: 2015
  ident: 10.1016/j.ceramint.2021.02.177_bib12
  article-title: Microstructure and piezoelectric response of YxAl1−xN thin films
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2015.08.019
– year: 2017
  ident: 10.1016/j.ceramint.2021.02.177_bib17
  article-title: Piezoelectric alloy films
– start-page: 894
  year: 2019
  ident: 10.1016/j.ceramint.2021.02.177_bib18
  article-title: ScAlN polarization inverted resonators and enhancement of kt2 in new YbAlN materials for BAW devices
– volume: 21
  start-page: 593
  year: 2009
  ident: 10.1016/j.ceramint.2021.02.177_bib7
  article-title: Enhancement of piezoelectric response in scandium aluminum nitride alloy thin films prepared by dual reactive cosputtering
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200802611
– volume: 9
  year: 2018
  ident: 10.1016/j.ceramint.2021.02.177_bib14
  article-title: Enhanced piezoelectric response of AlN via CrN alloying
  publication-title: Physical Review Applied
  doi: 10.1103/PhysRevApplied.9.034026
– volume: 41
  start-page: 299
  year: 1994
  ident: 10.1016/j.ceramint.2021.02.177_bib3
  article-title: Materials for high temperature acoustic and vibration sensors: A review
  publication-title: Appl. Acoust.
  doi: 10.1016/0003-682X(94)90091-4
– volume: 122
  year: 2017
  ident: 10.1016/j.ceramint.2021.02.177_bib13
  article-title: Tuning the piezoelectric and mechanical properties of the AlN system via alloying with YN and BN
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4993254
– volume: 104
  year: 2010
  ident: 10.1016/j.ceramint.2021.02.177_bib30
  article-title: Origin of the anomalous piezoelectric response in wurtzite ScxAl1-xN alloys
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.104.137601
– volume: 37
  start-page: 1051
  year: 2012
  ident: 10.1016/j.ceramint.2021.02.177_bib4
  article-title: Piezoelectric aluminum nitride thin films for microelectromechanical systems
  publication-title: MRS Bull.
  doi: 10.1557/mrs.2012.268
– volume: 37
  start-page: 1007
  year: 2012
  ident: 10.1016/j.ceramint.2021.02.177_bib5
  article-title: Thin-film piezoelectric MEMS
  publication-title: MRS Bull.
  doi: 10.1557/mrs.2012.273
– year: 2016
  ident: 10.1016/j.ceramint.2021.02.177_bib10
  article-title: Dopant concentration dependence of electromechanical coupling coefficients of co-doped AlN thin films for BAW devices
  publication-title: Proc. IEEE Ultrason. Sym.
– volume: 102
  year: 2013
  ident: 10.1016/j.ceramint.2021.02.177_bib33
  article-title: Influence of scandium concentration on power generation figure of merit of scandium aluminum nitride thin films
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4788728
– volume: 4
  start-page: 61
  year: 2003
  ident: 10.1016/j.ceramint.2021.02.177_bib1
  article-title: A review of thin-film resonator technology
  publication-title: IEEE Microw. Mag.
  doi: 10.1109/MMW.2003.1266067
– volume: 2
  year: 2018
  ident: 10.1016/j.ceramint.2021.02.177_bib28
  article-title: Implications of heterostructural alloying for enhanced piezoelectric performance of (Al,Sc)N
  publication-title: Phys. Rev. Mater.
– volume: 111
  year: 2017
  ident: 10.1016/j.ceramint.2021.02.177_bib11
  article-title: Giant increase in piezoelectric coefficient of AlN by Mg-Nb simultaneous addition and multiple chemical states of Nb
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4990533
– volume: 62
  start-page: 1007
  year: 2015
  ident: 10.1016/j.ceramint.2021.02.177_bib9
  article-title: Highly piezoelectric co-doped AlN thin films for wideband FBAR applications
  publication-title: Proc. IEEE Ultrason. Sym.
  doi: 10.1109/TUFFC.2014.006846
– volume: 52
  start-page: 707
  year: 2005
  ident: 10.1016/j.ceramint.2021.02.177_bib2
  article-title: Thin film resonator technology
  publication-title: IEEE Trans. Ultrason. Ferroelectrics Freq. Contr.
  doi: 10.1109/TUFFC.2005.1503959
– volume: 95
  year: 2009
  ident: 10.1016/j.ceramint.2021.02.177_bib8
  article-title: Influence of growth temperature and scandium concentration on piezoelectric response of scandium aluminum nitride alloy thin films
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3251072
– volume: 4
  start-page: 15081
  year: 2019
  ident: 10.1016/j.ceramint.2021.02.177_bib31
  article-title: First-Principles study of piezoelectric properties and bonding analysis in (Mg, X, Al)N solid solutions (X = Nb, Ti, Zr, Hf)
  publication-title: ACS Omega
  doi: 10.1021/acsomega.9b01912
– volume: 52
  start-page: 1170
  year: 2005
  ident: 10.1016/j.ceramint.2021.02.177_bib27
  article-title: Synthesis of c-axis-oriented AlN thin films on high-conducting layers: Al, Mo, Ti, TiN, and Ni
  publication-title: IEEE Trans. Ultrason. Ferroelectrics Freq. Contr.
  doi: 10.1109/TUFFC.2005.1504003
– volume: 12
  start-page: 11
  year: 2004
  ident: 10.1016/j.ceramint.2021.02.177_bib6
  article-title: Thin film piezoelectrics for MEMS
  publication-title: J. Electroceram.
  doi: 10.1023/B:JECR.0000033998.72845.51
– volume: 114
  year: 2019
  ident: 10.1016/j.ceramint.2021.02.177_bib26
  article-title: Increase in the piezoelectric response of scandium-doped gallium nitride thin films sputtered using a metal interlayer for piezo MEMS
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5066613
– volume: 2
  start-page: S165
  year: 2016
  ident: 10.1016/j.ceramint.2021.02.177_bib21
  article-title: Selection of amine combination for CO2 capture in a packed bed scrubber
  publication-title: Resource-Efficient Technologies
  doi: 10.1016/j.reffit.2016.11.014
– start-page: 1291
  year: 2015
  ident: 10.1016/j.ceramint.2021.02.177_bib24
– volume: 217
  start-page: 281
  year: 2018
  ident: 10.1016/j.ceramint.2021.02.177_bib16
  article-title: Preparation and characterization of Er-doped AlN films by RF magnetron sputtering
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2017.12.111
– start-page: 259
  year: 2020
  ident: 10.1016/j.ceramint.2021.02.177_bib22
  article-title: Optimization of continuous-flow heterogeneous catalytic oligomerization of 1-butene by design of experiments and response surface methodology
  publication-title: Fuel
– volume: 8
  year: 2015
  ident: 10.1016/j.ceramint.2021.02.177_bib32
  article-title: Highly enhanced piezoelectric property of co-doped AlN
  publication-title: APEX
– volume: 11
  year: 2018
  ident: 10.1016/j.ceramint.2021.02.177_bib34
  article-title: Effects of lattice parameters on piezoelectric constants in wurtzite materials: a theoretical study using first-principles and statistical-learning methods
  publication-title: APEX
– volume: 108
  year: 2016
  ident: 10.1016/j.ceramint.2021.02.177_bib25
  article-title: Enhanced actuation of nanocrystalline diamond microelectromechanical disk resonators with AlN layers
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4948343
– volume: 113
  start-page: 521
  year: 2001
  ident: 10.1016/j.ceramint.2021.02.177_bib20
  article-title: Plasma surface hardening of ASSAB 760 steel specimens with Taguchi optimisation of the processing parameters
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/S0924-0136(01)00583-0
SSID ssj0016940
Score 2.4108036
Snippet Aluminum nitride (AlN) is a key material for piezoelectric micro-electromechanical systems (MEMS). Since the discovery of the increase in AlN piezo performance...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 16029
SubjectTerms Aluminum nitride
And ytterbium
Crystal structure
Design of experimental
Piezoelectricity
Sputtering
Title Preparation of YbAlN piezoelectric thin film by sputtering and influence of Yb concentration on properties and crystal structure
URI https://dx.doi.org/10.1016/j.ceramint.2021.02.177
Volume 47
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS-RAEG7Evehh0XWX9TX0Ya9xkk4nnRwHUWZddlhYBT2F6hdGxp4Qx4MexJ9udToZZmHBg8eE_kKoqq6qbqq-IuSHLnMBNlZRqUFGHCyLygx0ZNMEPXIR60T5Buffs3x6xS-us-sNcjr0wviyyt73B5_eeev-zbiX5rip6_FfPFCxouAMDy1xljFPu8258FZ-8rIq80jykod7FoE7H1evdQnfnSjTwn3tfE0l67g7EyH-H6DWgs75DvncZ4t0En5ol2wY94Vsr3EI7pHXP60J_N0LRxeW3sjJfEab2jwvwoibWtHlbe2oref3VD7Rh6abTY1gCk7TephSEsBU-T5Gtxw-6Gjjr-tbz7varVftEyaUcxqIZx9b85VcnZ9dnk6jfqxCpFJRLCMQqUiTtJDADQrIMijAaGU1FIxbSFMmgKGepDbWSpMxMHlsMVWwEtMDodJvZNMtnPlOqBLW5p6hGSDnmhkJCM7zUmJaUsaG75NskGWles5xP_piXg3FZXfVoIPK66CKWYU62CfjFa4JrBvvIspBVdU_9lNhaHgHe_AB7CHZ8k-heOyIbKLszTGmKUs56uxwRD5Nfv6azt4AwOzt3g
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6V7QE4IJ6iPH3gGjbrJHZyXFVUW9qukGilcrLGL5Fq643CcignfjrjdVItElIPXJN8UeTPmRnbM98AfLCNkOhzkzUWdVai51lToc18MSOLXOd2ZmKB89lSLC7Kz5fV5R4cjrUwMa1ysP3Jpm-t9XBlOozmtGvb6VdaUPG6LjktWvKq4uIe7Ed1qmoC-_Pjk8Xy9jBBNGXaapH08xNgp1D46qNxPV63IaZV8q1850zKf_uoHb9z9BgeDQEjm6dvegJ7LjyFhzsygs_g95feJQnvdWBrz77p-WrJutb9WqcuN61hm-9tYL5dXTN9w3502_bUBGYYLGvHRiUJzEwsZQyb8YWBdXHHvo_Sq9vnTX9DMeWKJe3Zn717DhdHn84PF9nQWSEzhaw3GcpCFrOi1lg6GiDPsUZnjbdY89JjUXCJnKjS1nmvXcXRidxTtOA1RQjSFC9gEtbBvQRmpPciijQjitJyp5HAQjSaIpMmd-UBVONYKjPIjsfuFys15pddqZEDFTlQOVfEwQFMb3FdEt64E9GMVKm_ppAi73AH9tV_YN_D_cX52ak6PV6evIYH8U7KJXsDE-LBvaWoZaPfDbPyD97L8I8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Preparation+of+YbAlN+piezoelectric+thin+film+by+sputtering+and+influence+of+Yb+concentration+on+properties+and+crystal+structure&rft.jtitle=Ceramics+international&rft.au=Uehara%2C+Masato&rft.au=Amano%2C+Yuki&rft.au=Anggraini%2C+Sri+Ayu&rft.au=Hirata%2C+Kenji&rft.date=2021-06-01&rft.pub=Elsevier+Ltd&rft.issn=0272-8842&rft.eissn=1873-3956&rft.volume=47&rft.issue=11&rft.spage=16029&rft.epage=16036&rft_id=info:doi/10.1016%2Fj.ceramint.2021.02.177&rft.externalDocID=S0272884221005526
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0272-8842&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0272-8842&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0272-8842&client=summon