General fixed-point method for solving the linear complementarity problem
In this paper, we consider numerical methods for the linear complementarity problem (LCP). By introducing a positive diagonal parameter matrix, the LCP is transformed into an equivalent fixed-point equation and the equivalence is proved. Based on such equation, the general fixed-point (GFP) method w...
Saved in:
Published in | AIMS mathematics Vol. 6; no. 11; pp. 11904 - 11920 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
AIMS Press
01.01.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this paper, we consider numerical methods for the linear complementarity problem (LCP). By introducing a positive diagonal parameter matrix, the LCP is transformed into an equivalent fixed-point equation and the equivalence is proved. Based on such equation, the general fixed-point (GFP) method with two cases are proposed and analyzed when the system matrix is a $ P $-matrix. In addition, we provide several concrete sufficient conditions for the proposed method when the system matrix is a symmetric positive definite matrix or an $ H_{+} $-matrix. Meanwhile, we discuss the optimal case for the proposed method. The numerical experiments show that the GFP method is effective and practical. |
---|---|
ISSN: | 2473-6988 2473-6988 |
DOI: | 10.3934/math.2021691 |