Topology optimization of multi-material negative Poisson’s ratio metamaterials using a reconciled level set method
Metamaterials are defined as a family of rationally designed artificial materials which can provide extraordinary effective properties compared with their nature counterparts. This paper proposes a level set based method for topology optimization of both single and multiple-material Negative Poisson...
Saved in:
Published in | Computer aided design Vol. 83; pp. 15 - 32 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier Ltd
01.02.2017
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Metamaterials are defined as a family of rationally designed artificial materials which can provide extraordinary effective properties compared with their nature counterparts. This paper proposes a level set based method for topology optimization of both single and multiple-material Negative Poisson’s Ratio (NPR) metamaterials. For multi-material topology optimization, the conventional level set method is advanced with a new approach exploiting the reconciled level set (RLS) method. The proposed method simplifies the multi-material topology optimization by evolving each individual material with a single level set function and reconciling the result level set field with the Merriman–Bence–Osher (MBO) operator. The NPR metamaterial design problem is recast as a variational problem, where the effective elastic properties of the spatially periodic microstructure are formulated as the strain energy functionals under uniform displacement boundary conditions. The adjoint variable method is utilized to derive the shape sensitivities by combining the general linear elastic equation with a weak imposition of Dirichlet boundary conditions. The design velocity field is constructed using the steepest descent method and integrated with the level set method. Both single and multiple-material mechanical metamaterials are achieved in 2D and 3D with different Poisson’s ratios and volumes. Benchmark designs are fabricated with multi-material 3D printing at high resolution. The effective auxetic properties of the achieved designs are verified through finite element simulations and characterized using experimental tests as well.
•A multi-material topology optimization approach exploiting the reconciled level-set method.•The boundary of each individual material is evolved with a single level set function.•Multiple level set functions are reconciled with the Merriman–Bence–Osher (MBO) operator.•Both 2D and 3D multi-material designs were obtained and used for validate the proposed method. |
---|---|
AbstractList | Metamaterials are defined as a family of rationally designed artificial materials which can provide extraordinary effective properties compared with their nature counterparts. This paper proposes a level set based method for topology optimization of both single and multiple-material Negative Poisson’s Ratio (NPR) metamaterials. For multi-material topology optimization, the conventional level set method is advanced with a new approach exploiting the reconciled level set (RLS) method. The proposed method simplifies the multi-material topology optimization by evolving each individual material with a single level set function and reconciling the result level set field with the Merriman–Bence–Osher (MBO) operator. The NPR metamaterial design problem is recast as a variational problem, where the effective elastic properties of the spatially periodic microstructure are formulated as the strain energy functionals under uniform displacement boundary conditions. The adjoint variable method is utilized to derive the shape sensitivities by combining the general linear elastic equation with a weak imposition of Dirichlet boundary conditions. The design velocity field is constructed using the steepest descent method and integrated with the level set method. Both single and multiple-material mechanical metamaterials are achieved in 2D and 3D with different Poisson’s ratios and volumes. Benchmark designs are fabricated with multi-material 3D printing at high resolution. The effective auxetic properties of the achieved designs are verified through finite element simulations and characterized using experimental tests as well.
•A multi-material topology optimization approach exploiting the reconciled level-set method.•The boundary of each individual material is evolved with a single level set function.•Multiple level set functions are reconciled with the Merriman–Bence–Osher (MBO) operator.•Both 2D and 3D multi-material designs were obtained and used for validate the proposed method. Metamaterials are defined as a family of rationally designed artificial materials which can provide extraordinary effective properties compared with their nature counterparts. This paper proposes a level set based method for topology optimization of both single and multiple-material Negative Poisson’s Ratio (NPR) metamaterials. For multi-material topology optimization, the conventional level set method is advanced with a new approach exploiting the reconciled level set (RLS) method. The proposed method simplifies the multi-material topology optimization by evolving each individual material with a single level set function and reconciling the result level set field with the Merriman–Bence–Osher (MBO) operator. The NPR metamaterial design problem is recast as a variational problem, where the effective elastic properties of the spatially periodic microstructure are formulated as the strain energy functionals under uniform displacement boundary conditions. The adjoint variable method is utilized to derive the shape sensitivities by combining the general linear elastic equation with a weak imposition of Dirichlet boundary conditions. The design velocity field is constructed using the steepest descent method and integrated with the level set method. Both single and multiple-material mechanical metamaterials are achieved in 2D and 3D with different Poisson’s ratios and volumes. Benchmark designs are fabricated with multi-material 3D printing at high resolution. The effective auxetic properties of the achieved designs are verified through finite element simulations and characterized using experimental tests as well. |
Author | Chen, Shikui Wang, Lifeng Li, Tiantian Wang, Xiao Vogiatzis, Panagiotis |
Author_xml | – sequence: 1 givenname: Panagiotis surname: Vogiatzis fullname: Vogiatzis, Panagiotis – sequence: 2 givenname: Shikui surname: Chen fullname: Chen, Shikui email: shikui.chen@stonybrook.edu – sequence: 3 givenname: Xiao surname: Wang fullname: Wang, Xiao – sequence: 4 givenname: Tiantian surname: Li fullname: Li, Tiantian – sequence: 5 givenname: Lifeng surname: Wang fullname: Wang, Lifeng |
BookMark | eNp9kMtuGyEUQFGVSHUeH5AdUtYzvTAznkFZRVaaVoqULpI1wnBxsGbABWwpXeU3-nv9kuA63XThFVfiHNA9Z-TEB4-EXDGoGbD5l3Wtlal5GWsQNYD4RGZs6EXF50N3QmYADKq2HbrP5CylNQBw1ogZyU9hE8aweqVhk93kfqnsgqfB0mk7ZldNKmN0aqQeV-Vqh_RHcCkF_-ftd6JxT9MJs_rHJbpNzq-oohF18NqNaOiIOxxpwrxHX4K5IKe2oHj5cZ6T5693T4tv1cPj_ffF7UOlm37IlWrLPq1hwi45Mtty7DschAHb9WCM4mBANUsO1rK5UMs5E7ofmsE0ygqheHNOrg_vbmL4ucWU5Tpsoy9fSiY49F3DRF8odqB0DClFtHIT3aTiq2Qg93HlWpa4ch9XgpAlbnH6_xzt8t90OSo3HjVvDiaWxXcOo0zaoddoXCmWpQnuiP0OAKeZgA |
CitedBy_id | crossref_primary_10_1016_j_matdes_2020_109098 crossref_primary_10_1016_j_cad_2021_103069 crossref_primary_10_1016_j_ijheatmasstransfer_2022_123720 crossref_primary_10_1016_j_ijheatmasstransfer_2023_123964 crossref_primary_10_1016_j_matdes_2022_111213 crossref_primary_10_1177_0095244320938411 crossref_primary_10_1016_j_cma_2019_02_026 crossref_primary_10_1016_j_cma_2024_117587 crossref_primary_10_1016_j_actamat_2024_119877 crossref_primary_10_1016_j_apm_2024_115895 crossref_primary_10_1016_j_matdes_2019_108424 crossref_primary_10_4028_p_86kmf2 crossref_primary_10_1016_j_ijsolstr_2024_112749 crossref_primary_10_1007_s00366_023_01880_1 crossref_primary_10_1016_j_finmec_2022_100100 crossref_primary_10_1016_j_matdes_2018_01_034 crossref_primary_10_1016_j_ijengsci_2018_06_005 crossref_primary_10_1142_S1758825123500485 crossref_primary_10_1007_s11831_022_09786_9 crossref_primary_10_1016_j_finel_2021_103649 crossref_primary_10_1016_j_eml_2023_101985 crossref_primary_10_1016_j_cma_2020_113377 crossref_primary_10_1115_1_4053814 crossref_primary_10_1016_j_compstruct_2021_114065 crossref_primary_10_1016_j_ijmecsci_2022_108015 crossref_primary_10_1142_S1758825121501027 crossref_primary_10_1016_j_mechmat_2022_104337 crossref_primary_10_1007_s00158_022_03193_1 crossref_primary_10_1016_j_cma_2017_09_012 crossref_primary_10_1016_j_sna_2022_113776 crossref_primary_10_1002_nme_6813 crossref_primary_10_1016_j_taml_2023_100485 crossref_primary_10_1016_j_cma_2019_07_014 crossref_primary_10_1016_j_addma_2020_101502 crossref_primary_10_1016_j_cma_2023_116027 crossref_primary_10_1088_1748_3190_ab3b12 crossref_primary_10_1016_j_matdes_2022_111448 crossref_primary_10_1007_s11465_019_0530_5 crossref_primary_10_1093_nsr_nwaf053 crossref_primary_10_1016_j_cma_2017_10_011 crossref_primary_10_1016_j_cma_2018_10_034 crossref_primary_10_1007_s00158_017_1786_1 crossref_primary_10_1007_s00158_023_03663_0 crossref_primary_10_1088_1361_665X_aaa61c crossref_primary_10_1088_1361_665X_acd91c crossref_primary_10_3390_app11177834 crossref_primary_10_1016_j_eml_2020_100992 crossref_primary_10_1016_j_compstruc_2018_10_006 crossref_primary_10_2139_ssrn_4196939 crossref_primary_10_1007_s11012_019_00981_w crossref_primary_10_1088_1361_665X_ad8325 crossref_primary_10_1016_j_ijengsci_2019_01_006 crossref_primary_10_1007_s00158_020_02648_7 crossref_primary_10_1007_s00158_023_03580_2 crossref_primary_10_1016_j_matdes_2021_110098 crossref_primary_10_1007_s00158_023_03657_y crossref_primary_10_1016_j_matlet_2025_138105 crossref_primary_10_1080_17452759_2019_1584944 crossref_primary_10_1115_1_4047917 crossref_primary_10_1177_1081286518810739 crossref_primary_10_1108_RPJ_11_2020_0274 crossref_primary_10_1016_j_addma_2022_102742 crossref_primary_10_1016_j_compstruct_2024_118684 crossref_primary_10_1080_17452759_2019_1647488 crossref_primary_10_1126_sciadv_aao7005 crossref_primary_10_1007_s00158_018_2097_x crossref_primary_10_2478_candc_2024_0009 crossref_primary_10_1016_j_engstruct_2019_109997 crossref_primary_10_1016_j_ijnonlinmec_2021_103887 crossref_primary_10_1088_1361_6420_ad2eca crossref_primary_10_1016_j_compstruct_2017_05_001 crossref_primary_10_1016_j_cma_2019_06_028 crossref_primary_10_32604_cmes_2021_015688 crossref_primary_10_1016_j_mechmat_2022_104234 crossref_primary_10_1115_1_4050401 crossref_primary_10_1016_j_compstruct_2018_01_108 crossref_primary_10_1061__ASCE_EM_1943_7889_0002149 crossref_primary_10_1080_27660400_2024_2320691 crossref_primary_10_1007_s10853_023_09212_w crossref_primary_10_1016_j_mechmat_2021_103811 crossref_primary_10_1016_j_cma_2017_11_032 crossref_primary_10_1016_j_cma_2022_115057 crossref_primary_10_1115_1_4042616 crossref_primary_10_1115_1_4046812 crossref_primary_10_1016_j_eml_2020_100934 crossref_primary_10_1016_j_ijmecsci_2020_105638 crossref_primary_10_1016_j_eml_2024_102269 crossref_primary_10_3390_polym15081927 crossref_primary_10_1007_s10999_022_09600_1 crossref_primary_10_3846_aviation_2024_22596 crossref_primary_10_1002_zamm_201700154 crossref_primary_10_1016_j_tws_2021_108188 crossref_primary_10_1007_s00158_021_02988_y crossref_primary_10_1080_10255842_2022_2100988 crossref_primary_10_1007_s00158_018_1994_3 crossref_primary_10_1016_j_ijsolstr_2023_112116 crossref_primary_10_1016_j_compstruct_2023_116800 crossref_primary_10_1115_1_4047345 crossref_primary_10_1016_j_engstruct_2024_118807 crossref_primary_10_1016_j_ijmecsci_2020_106169 crossref_primary_10_1115_1_4047352 crossref_primary_10_1007_s00158_023_03732_4 crossref_primary_10_1016_j_ijmecsci_2020_106205 crossref_primary_10_1016_j_compstruct_2018_04_002 crossref_primary_10_1016_j_compstruct_2022_115385 crossref_primary_10_1016_j_compstruct_2022_116074 crossref_primary_10_1098_rspa_2019_0234 crossref_primary_10_1007_s00158_023_03612_x crossref_primary_10_1016_j_ijmecsci_2024_109393 crossref_primary_10_1002_nme_7374 crossref_primary_10_1080_0951192X_2019_1605202 crossref_primary_10_1016_j_ijmecsci_2022_107572 crossref_primary_10_1016_j_coco_2023_101656 crossref_primary_10_1016_j_cma_2021_114394 crossref_primary_10_1016_j_ijmecsci_2024_109557 crossref_primary_10_1016_j_compstruct_2018_04_058 crossref_primary_10_1016_j_mtcomm_2021_103006 crossref_primary_10_1016_j_compscitech_2018_08_009 crossref_primary_10_1016_j_matt_2020_08_023 crossref_primary_10_1115_1_4064634 crossref_primary_10_1016_j_compstruct_2022_116318 crossref_primary_10_1016_j_matdes_2018_11_002 crossref_primary_10_3390_app8060941 crossref_primary_10_1016_j_ijmecsci_2022_107920 crossref_primary_10_1088_1361_665X_ac3f78 crossref_primary_10_3390_ma17143591 crossref_primary_10_32604_cmes_2022_017842 crossref_primary_10_1115_1_4038977 crossref_primary_10_1063_1_5064864 crossref_primary_10_1016_j_mtcomm_2024_110900 crossref_primary_10_1007_s00158_019_02422_4 crossref_primary_10_3390_a17100460 crossref_primary_10_1016_j_addma_2020_101562 crossref_primary_10_1088_2053_1591_aaf9d7 crossref_primary_10_1142_S175882512550005X crossref_primary_10_1016_j_matdes_2020_109286 crossref_primary_10_1016_j_cma_2019_05_029 crossref_primary_10_1115_1_4046916 crossref_primary_10_1115_1_4042835 crossref_primary_10_1002_nme_7669 crossref_primary_10_1063_5_0004724 crossref_primary_10_1016_j_eml_2023_102100 crossref_primary_10_1016_j_cirp_2020_05_006 crossref_primary_10_1016_j_mser_2023_100725 crossref_primary_10_1007_s00158_023_03729_z crossref_primary_10_1016_j_matdes_2020_108751 crossref_primary_10_1115_1_4045301 crossref_primary_10_1088_2515_7639_ad33a4 crossref_primary_10_1007_s00161_019_00851_6 crossref_primary_10_2139_ssrn_4162435 crossref_primary_10_1038_s41598_017_09218_w crossref_primary_10_1007_s00158_022_03448_x crossref_primary_10_1016_j_cma_2024_116839 crossref_primary_10_1016_j_mechmat_2022_104386 crossref_primary_10_1016_j_cma_2021_113749 crossref_primary_10_1177_14644207241247236 crossref_primary_10_1016_j_cad_2020_102864 crossref_primary_10_1016_j_compstruc_2021_106624 crossref_primary_10_1016_j_ijmecsci_2023_108584 crossref_primary_10_1017_S0890060423000100 crossref_primary_10_3390_ma15134483 crossref_primary_10_1016_j_cma_2021_114496 crossref_primary_10_1016_j_matdes_2020_109437 crossref_primary_10_1016_j_compstruct_2025_118968 crossref_primary_10_1016_j_engstruct_2022_115009 crossref_primary_10_1080_0305215X_2024_2400558 crossref_primary_10_1016_j_compstruc_2021_106574 crossref_primary_10_1007_s00158_020_02525_3 crossref_primary_10_1088_1361_665X_ab2eb6 crossref_primary_10_1002_nme_7620 crossref_primary_10_1016_j_ijnonlinmec_2024_104935 crossref_primary_10_1002_lpor_202200038 crossref_primary_10_1016_j_tws_2024_112183 crossref_primary_10_1016_j_cma_2019_07_020 crossref_primary_10_1002_nme_5549 crossref_primary_10_1039_C7SM02052J crossref_primary_10_1088_1361_665X_acc36c crossref_primary_10_1007_s00466_023_02328_5 crossref_primary_10_1016_j_cma_2020_113154 crossref_primary_10_1016_j_matdes_2018_08_032 crossref_primary_10_1016_j_compstruct_2020_113360 crossref_primary_10_1007_s00158_023_03541_9 crossref_primary_10_1111_cgf_142633 crossref_primary_10_1016_j_cemconcomp_2023_105266 crossref_primary_10_1016_j_enganabound_2024_105811 crossref_primary_10_1088_2631_7990_ace668 crossref_primary_10_1016_j_ijmecsci_2023_108249 crossref_primary_10_1016_j_compstruct_2019_111020 crossref_primary_10_1002_nme_6001 crossref_primary_10_1016_j_cma_2020_113306 |
Cites_doi | 10.1002/nme.1536 10.1002/nme.2478 10.1016/0021-9991(88)90002-2 10.1115/1.2806807 10.1002/adma.201004090 10.1006/jcph.1994.1105 10.1002/adma.201502485 10.1006/jcph.2000.6581 10.1016/j.jcp.2007.08.011 10.1063/1.4921101 10.1016/j.mechmat.2013.09.018 10.1002/adma.201301986 10.1016/S0045-7949(98)00131-X 10.1115/1.1909206 10.1007/BF00036481 10.1016/S1631-073X(02)02412-3 10.1006/jcph.2001.6789 10.1090/S0025-5718-06-01835-7 10.1002/adfm.201000282 10.1063/1.4767224 10.1016/j.jcp.2003.09.032 10.1115/1.1388075 10.1243/09544100JAERO185 10.1016/0020-7683(94)90154-6 10.1007/BF00369853 10.1016/S0045-7949(98)00133-3 10.1126/science.235.4792.1038 10.1002/adma.200901956 10.12989/imm.2008.1.2.191 10.1016/j.cad.2004.03.007 10.1002/(SICI)1521-4095(200005)12:9<617::AID-ADMA617>3.0.CO;2-3 10.1002/nme.824 10.1016/0021-8928(85)90011-5 10.1007/s004190050117 10.1016/S0045-7949(98)00132-1 10.1002/(SICI)1521-4095(199910)11:14<1186::AID-ADMA1186>3.0.CO;2-K 10.1016/j.eml.2015.05.002 10.1016/0167-6636(94)00069-7 10.1137/0523084 10.1016/j.cma.2003.10.008 10.1016/j.commatsci.2012.02.012 10.1002/nme.3197 10.1103/PhysRevLett.100.245502 10.1016/0022-247X(79)90211-7 10.1007/BF00042531 10.1007/s001580050174 10.1007/s10409-006-0045-2 10.1007/3-540-17616-0 10.1016/S0045-7825(01)00252-3 10.1016/S0045-7825(02)00559-5 10.1016/j.cma.2010.04.008 10.1002/pssb.200982031 10.1002/adma.19930050416 10.1007/s00158-013-0978-6 10.7712/seeccm-2013.2009 |
ContentType | Journal Article |
Copyright | 2016 Copyright Elsevier BV Feb 2017 |
Copyright_xml | – notice: 2016 – notice: Copyright Elsevier BV Feb 2017 |
DBID | AAYXX CITATION 7SC 7TB 8FD F28 FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1016/j.cad.2016.09.009 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-2685 |
EndPage | 32 |
ExternalDocumentID | 10_1016_j_cad_2016_09_009 S0010448516301154 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AAXUO AAYFN ABAOU ABBOA ABEFU ABFNM ABFRF ABMAC ABXDB ABYKQ ACAZW ACBEA ACDAQ ACGFO ACGFS ACIWK ACKIV ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA K-O KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG RNS ROL RPZ RXW SBC SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSW SSZ T5K TAE TN5 TWZ VOH WUQ XFK XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7SC 7TB 8FD EFKBS F28 FR3 JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c378t-a42014d19fb2e1f42e75e89d0f570dda20d0a3b20ff169ab619c7838d3af99a23 |
IEDL.DBID | .~1 |
ISSN | 0010-4485 |
IngestDate | Fri Jul 25 04:25:55 EDT 2025 Thu Apr 24 22:52:22 EDT 2025 Tue Jul 01 03:34:35 EDT 2025 Fri Feb 23 02:28:12 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Topology optimization Negative Poisson’s ratio Reconciled level set method Metamaterial Multi-material |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c378t-a42014d19fb2e1f42e75e89d0f570dda20d0a3b20ff169ab619c7838d3af99a23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 1920753197 |
PQPubID | 2045267 |
PageCount | 18 |
ParticipantIDs | proquest_journals_1920753197 crossref_primary_10_1016_j_cad_2016_09_009 crossref_citationtrail_10_1016_j_cad_2016_09_009 elsevier_sciencedirect_doi_10_1016_j_cad_2016_09_009 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-02-01 |
PublicationDateYYYYMMDD | 2017-02-01 |
PublicationDate_xml | – month: 02 year: 2017 text: 2017-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Computer aided design |
PublicationYear | 2017 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Gao, Zhang (br000275) 2011; 88 Lakes (br000025) 1987; 235 Sigmund, Maute (br000105) 2013; 48 Sethian, Wiegmann (br000220) 2000; 163 Osher, Santosa (br000225) 2001; 171 Wang, Wang (br000250) 2006; 13 Ciambella, Bezazi, Saccomandi, Scarpa (br000065) 2015; 117 Andreassen, Lazarov, Sigmund (br000145) 2014; 69 Almgren (br000080) 1985; 15 Schwerdtfeger, Wein, Leugering, Singer, Körner, Stingl, Schury (br000140) 2011; 23 Belytschko, Xiao, Parimi (br000240) 2003; 57 Sigmund (br000115) 1995; 20 Clausen, Wang, Jensen, Sigmund, Lewis (br000155) 2015; 27 Wang, Wang (br000280) 2004; 193 Bensoussan, Lions, Papanicolaou (br000205) 2011 Bertoldi, Reis, Willshaw, Mullin (br000045) 2010; 22 Hollister, Kikuchi (br000215) 1992; 10 Allaire, Craig (br000325) 2007 Allaire, Jouve, Toader (br000230) 2002; 334 Aleshin, Raevski (br000070) 2012; 112 Shan, Kang, Zhao, Fang, Bertoldi (br000150) 2015; 4 Wang, Wang (br000235) 2004; 6 Theocaris, Stavroulakis, Panagiotopoulos (br000085) 1997; 67 Allaire G, Jouve F, Michailidis G. Structural and multi-functional optimization using multiple phases and a level-set method, 2013. Babaee, Shim, Weaver, Chen, Patel, Bertoldi (br000050) 2013; 25 Sigmund (br000110) 1994; 31 Hassani, Hinton (br000190) 1998; 69 Allaire, Jouve, Toader (br000170) 2004; 194 Li, Tai (br000305) 2007; 4 Belytschko, Liu, Moran (br000340) 2000 Chen, Lakes (br000020) 1996; 118 Rozvany (br000100) 2001; 21 Wang, Wang (br000120) 2005; 37 Gao T, Zhang W, Duysinx P. Comparison of volume constraint and mass constraint in structural topology optimization with multiple materials. In: Book of abstracts and proceeding of the 2nd international conference on engineering optimization, 2010. Prawoto (br000210) 2012; 58 Wang, Wang (br000245) 2006; 65 Donoghue, Alderson, Evans (br000015) 2009; 246 Zhang, Dai, Wang, Sun, Bassir (br000130) 2007; 23 Evans, Alderson (br000035) 2000; 12 Choi, Lakes (br000010) 1996; 80 Hassani, Hinton (br000200) 1998; 69 Eschenauer, Olhoff (br000095) 2001; 54 Kolpakov (br000075) 1985; 49 Sigmund (br000265) 2001; 190 Zhang, Chen, Osher (br000315) 2008; 1 Allaire, De Gournay, Jouve, Toader (br000125) 2005; 34 Wei, Wang (br000300) 2009; 78 Lakes (br000040) 1993; 5 Fedkiw, Osher (br000260) 2002; 44 Xu, Arias, Brittain, Zhao, Grzybowski, Torquato, Whitesides (br000135) 1999; 11 Wang, Wang, Guo (br000165) 2003; 192 Liu Q. Literature review: materials with negative Poisson’s ratios and potential applications to aerospace and defence. In: DTIC Document, 2006. Cioranescu, Paulin (br000175) 1979; 71 Haug, Choi, Komkov (br000330) 1986 Wang, Boyce (br000055) 2010; 20 Luo, Wang, Tong, Wang (br000255) 2007; 227 Allaire (br000185) 1992; 23 Wang, Wang, Mei, Chen (br000285) 2005; 127 Song, Zhou, Xu, Xu, Bai (br000060) 2008; 100 Osher, Sethian (br000160) 1988; 79 Merriman, Bence, Osher (br000310) 1994; 112 Lie, Lysaker, Tai (br000295) 2006; 75 Hassani, Hinton (br000195) 1998; 69 Alderson, Alderson (br000030) 2007; 221 Chen, Gonella, Chen, Liu (br000320) 2010; 199 Bendsoe, Sigmund (br000090) 2003 Choi, Kim (br000335) 2005 Sanchez-Palencia E, Zaoui A. Homogenization techniques for composite media. In: Homogenization techniques for composite media, 1987. Sigmund (10.1016/j.cad.2016.09.009_br000115) 1995; 20 Andreassen (10.1016/j.cad.2016.09.009_br000145) 2014; 69 Eschenauer (10.1016/j.cad.2016.09.009_br000095) 2001; 54 Lakes (10.1016/j.cad.2016.09.009_br000025) 1987; 235 Kolpakov (10.1016/j.cad.2016.09.009_br000075) 1985; 49 Belytschko (10.1016/j.cad.2016.09.009_br000240) 2003; 57 Hassani (10.1016/j.cad.2016.09.009_br000200) 1998; 69 10.1016/j.cad.2016.09.009_br000005 Evans (10.1016/j.cad.2016.09.009_br000035) 2000; 12 Fedkiw (10.1016/j.cad.2016.09.009_br000260) 2002; 44 Bendsoe (10.1016/j.cad.2016.09.009_br000090) 2003 Clausen (10.1016/j.cad.2016.09.009_br000155) 2015; 27 Sethian (10.1016/j.cad.2016.09.009_br000220) 2000; 163 Luo (10.1016/j.cad.2016.09.009_br000255) 2007; 227 Osher (10.1016/j.cad.2016.09.009_br000160) 1988; 79 Wang (10.1016/j.cad.2016.09.009_br000120) 2005; 37 Allaire (10.1016/j.cad.2016.09.009_br000185) 1992; 23 Bertoldi (10.1016/j.cad.2016.09.009_br000045) 2010; 22 Gao (10.1016/j.cad.2016.09.009_br000275) 2011; 88 Choi (10.1016/j.cad.2016.09.009_br000335) 2005 Donoghue (10.1016/j.cad.2016.09.009_br000015) 2009; 246 Sigmund (10.1016/j.cad.2016.09.009_br000110) 1994; 31 Wang (10.1016/j.cad.2016.09.009_br000250) 2006; 13 10.1016/j.cad.2016.09.009_br000290 Zhang (10.1016/j.cad.2016.09.009_br000315) 2008; 1 Allaire (10.1016/j.cad.2016.09.009_br000230) 2002; 334 Wei (10.1016/j.cad.2016.09.009_br000300) 2009; 78 Theocaris (10.1016/j.cad.2016.09.009_br000085) 1997; 67 Hassani (10.1016/j.cad.2016.09.009_br000190) 1998; 69 Alderson (10.1016/j.cad.2016.09.009_br000030) 2007; 221 Allaire (10.1016/j.cad.2016.09.009_br000170) 2004; 194 Wang (10.1016/j.cad.2016.09.009_br000165) 2003; 192 Merriman (10.1016/j.cad.2016.09.009_br000310) 1994; 112 Haug (10.1016/j.cad.2016.09.009_br000330) 1986 Babaee (10.1016/j.cad.2016.09.009_br000050) 2013; 25 Song (10.1016/j.cad.2016.09.009_br000060) 2008; 100 Sigmund (10.1016/j.cad.2016.09.009_br000105) 2013; 48 Prawoto (10.1016/j.cad.2016.09.009_br000210) 2012; 58 Wang (10.1016/j.cad.2016.09.009_br000280) 2004; 193 Chen (10.1016/j.cad.2016.09.009_br000320) 2010; 199 Zhang (10.1016/j.cad.2016.09.009_br000130) 2007; 23 10.1016/j.cad.2016.09.009_br000180 Lie (10.1016/j.cad.2016.09.009_br000295) 2006; 75 Rozvany (10.1016/j.cad.2016.09.009_br000100) 2001; 21 Allaire (10.1016/j.cad.2016.09.009_br000325) 2007 Almgren (10.1016/j.cad.2016.09.009_br000080) 1985; 15 Wang (10.1016/j.cad.2016.09.009_br000055) 2010; 20 Lakes (10.1016/j.cad.2016.09.009_br000040) 1993; 5 Wang (10.1016/j.cad.2016.09.009_br000235) 2004; 6 Wang (10.1016/j.cad.2016.09.009_br000285) 2005; 127 Shan (10.1016/j.cad.2016.09.009_br000150) 2015; 4 10.1016/j.cad.2016.09.009_br000270 Ciambella (10.1016/j.cad.2016.09.009_br000065) 2015; 117 Cioranescu (10.1016/j.cad.2016.09.009_br000175) 1979; 71 Osher (10.1016/j.cad.2016.09.009_br000225) 2001; 171 Aleshin (10.1016/j.cad.2016.09.009_br000070) 2012; 112 Hassani (10.1016/j.cad.2016.09.009_br000195) 1998; 69 Xu (10.1016/j.cad.2016.09.009_br000135) 1999; 11 Wang (10.1016/j.cad.2016.09.009_br000245) 2006; 65 Sigmund (10.1016/j.cad.2016.09.009_br000265) 2001; 190 Allaire (10.1016/j.cad.2016.09.009_br000125) 2005; 34 Li (10.1016/j.cad.2016.09.009_br000305) 2007; 4 Chen (10.1016/j.cad.2016.09.009_br000020) 1996; 118 Bensoussan (10.1016/j.cad.2016.09.009_br000205) 2011 Schwerdtfeger (10.1016/j.cad.2016.09.009_br000140) 2011; 23 Hollister (10.1016/j.cad.2016.09.009_br000215) 1992; 10 Choi (10.1016/j.cad.2016.09.009_br000010) 1996; 80 Belytschko (10.1016/j.cad.2016.09.009_br000340) 2000 |
References_xml | – volume: 48 start-page: 1031 year: 2013 end-page: 1055 ident: br000105 article-title: Topology optimization approaches publication-title: Struct Multidiscip Optim – volume: 80 start-page: 73 year: 1996 end-page: 83 ident: br000010 article-title: Fracture toughness of re-entrant foam materials with a negative Poisson’s ratio: experiment and analysis publication-title: Int J Fract – volume: 20 start-page: 3025 year: 2010 end-page: 3030 ident: br000055 article-title: Bioinspired structural material exhibiting post-yield lateral expansion and volumetric energy dissipation during tension publication-title: Adv Funct Mater – year: 1986 ident: br000330 article-title: Design sensitivity analysis of structural systems – volume: 44 start-page: 77 year: 2002 ident: br000260 article-title: Level set methods and dynamic implicit surfaces publication-title: Surfaces – volume: 13 start-page: 119 year: 2006 end-page: 147 ident: br000250 article-title: Structural shape and topology optimization using implicit free boundary parameterization method publication-title: Comput Model Eng Sci – volume: 23 start-page: 1482 year: 1992 end-page: 1518 ident: br000185 article-title: Homogenization and two-scale convergence publication-title: SIAM J Math Anal – volume: 31 start-page: 2313 year: 1994 end-page: 2329 ident: br000110 article-title: Materials with prescribed constitutive parameters: An inverse homogenization problem publication-title: Internat J Solids Structures – year: 2007 ident: br000325 article-title: Numerical analysis and optimization – volume: 69 start-page: 719 year: 1998 end-page: 738 ident: br000195 article-title: A review of homogenization and topology opimization II—analytical and numerical solution of homogenization equations publication-title: Comput Struct – volume: 4 start-page: 291 year: 2007 end-page: 305 ident: br000305 article-title: Piecewise constant level set methods for multiphase motion publication-title: Int J Numer Anal Model – volume: 58 start-page: 140 year: 2012 end-page: 153 ident: br000210 article-title: Seeing auxetic materials from the mechanics point of view: A structural review on the negative Poisson’s ratio publication-title: Comput Mater Sci – volume: 10 start-page: 73 year: 1992 end-page: 95 ident: br000215 article-title: A comparison of homogenization and standard mechanics analyses for periodic porous composites publication-title: Comput Mech – reference: Liu Q. Literature review: materials with negative Poisson’s ratios and potential applications to aerospace and defence. In: DTIC Document, 2006. – volume: 54 start-page: 331 year: 2001 end-page: 390 ident: br000095 article-title: Topology optimization of continuum structures: A review* publication-title: Appl Mech Rev – year: 2003 ident: br000090 article-title: Topology optimization: Theory, methods and applications – volume: 69 start-page: 1 year: 2014 end-page: 10 ident: br000145 article-title: Design of manufacturable 3D extremal elastic microstructure publication-title: Mech Mater – volume: 75 start-page: 1155 year: 2006 end-page: 1174 ident: br000295 article-title: A variant of the level set method and applications to image segmentation publication-title: Math Comp – volume: 34 start-page: 59 year: 2005 ident: br000125 article-title: Structural optimization using topological and shape sensitivity via a level set method publication-title: Control Cybern – volume: 112 year: 2012 ident: br000070 article-title: Negative Poisson’s ratio and Piezoelectric anisotropy of tetragonal ferroelectric single crystals publication-title: J Appl Phys – reference: Gao T, Zhang W, Duysinx P. Comparison of volume constraint and mass constraint in structural topology optimization with multiple materials. In: Book of abstracts and proceeding of the 2nd international conference on engineering optimization, 2010. – volume: 199 start-page: 2532 year: 2010 end-page: 2543 ident: br000320 article-title: A level set approach for optimal design of smart energy harvesters publication-title: Comput Methods Appl Mech Engrg – volume: 193 start-page: 469 year: 2004 end-page: 496 ident: br000280 article-title: Color level sets: a multi-phase method for structural topology optimization with multiple materials publication-title: Comput Methods Appl Mech Engrg – year: 2005 ident: br000335 article-title: Structural sensitivity analysis and optimization 1: Linear systems – volume: 71 start-page: 590 year: 1979 end-page: 607 ident: br000175 article-title: Homogenization in open sets with holes publication-title: J Math Anal Appl – volume: 227 start-page: 680 year: 2007 end-page: 705 ident: br000255 article-title: Shape and topology optimization of compliant mechanisms using a parameterization level set method publication-title: J Comput Phys – volume: 79 start-page: 12 year: 1988 end-page: 49 ident: br000160 article-title: Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton–Jacobi formulations publication-title: J Comput Phys – volume: 192 start-page: 227 year: 2003 end-page: 246 ident: br000165 article-title: A level set method for structural topology optimization publication-title: Comput Methods Appl Mech Engrg – volume: 4 start-page: 96 year: 2015 end-page: 102 ident: br000150 article-title: Design of planar isotropic negative Poisson’s ratio structures publication-title: Extreme Mech Lett – year: 2011 ident: br000205 article-title: Asymptotic analysis for periodic structures – volume: 127 start-page: 941 year: 2005 end-page: 956 ident: br000285 article-title: Design of multimaterial compliant mechanisms using level-set methods publication-title: J Mech Des – volume: 117 year: 2015 ident: br000065 article-title: Nonlinear elasticity of auxetic open cell foams modeled as continuum solids publication-title: J Appl Phys – volume: 20 start-page: 351 year: 1995 end-page: 368 ident: br000115 article-title: Tailoring materials with prescribed elastic properties publication-title: Mech Mater – volume: 11 start-page: 1186 year: 1999 ident: br000135 article-title: Making negative Poisson’s ratio microstructures by soft lithography publication-title: Adv Mater – volume: 78 start-page: 379 year: 2009 end-page: 402 ident: br000300 article-title: Piecewise constant level set method for structural topology optimization publication-title: Internat J Numer Methods Engrg – volume: 246 start-page: 2011 year: 2009 end-page: 2017 ident: br000015 article-title: The fracture toughness of composite laminates with a negative Poisson’s ratio publication-title: Phys Status Solidi (b) – volume: 22 start-page: 361 year: 2010 end-page: 366 ident: br000045 article-title: Negative Poisson’s ratio behavior induced by an elastic instability publication-title: Adv Mater – volume: 194 start-page: 363 year: 2004 end-page: 393 ident: br000170 article-title: Structural optimization using sensitivity analysis and a level-set method publication-title: J Comput Phys – volume: 118 start-page: 285 year: 1996 end-page: 288 ident: br000020 article-title: Micromechanical analysis of dynamic behavior of conventional and negative Poisson’s ratio foams publication-title: J Eng Mater Technol – volume: 15 start-page: 427 year: 1985 end-page: 430 ident: br000080 article-title: An isotropic three-dimensional structure with Poisson’s ratio=−1 publication-title: J Elasticity – volume: 21 start-page: 90 year: 2001 end-page: 108 ident: br000100 article-title: Aims, scope, methods, history and unified terminology of computer-aided topology optimization in structural mechanics publication-title: Struct Multidiscip Optim – volume: 57 start-page: 1177 year: 2003 end-page: 1196 ident: br000240 article-title: Topology optimization with implicitly function and regularization publication-title: Int J Numer Method Eng – volume: 65 start-page: 2060 year: 2006 end-page: 2090 ident: br000245 article-title: Radial basis functions and level set method for structural topology optimization publication-title: Int J Numer Method Eng – volume: 163 start-page: 489 year: 2000 end-page: 528 ident: br000220 article-title: Structural boundary design via level set and immersed interface methods publication-title: J Comput Phys – volume: 221 start-page: 565 year: 2007 end-page: 575 ident: br000030 article-title: Auxetic materials publication-title: Proc Inst Mech Eng G – volume: 12 start-page: 617 year: 2000 end-page: 628 ident: br000035 article-title: Auxetic materials: Functional materials and structures from lateral thinking! publication-title: Adv Mater – volume: 190 start-page: 6605 year: 2001 end-page: 6627 ident: br000265 article-title: Design of multiphysics actuators using topology optimization–Part II: Two-material structures publication-title: Comput Methods Appl Mech Engrg – volume: 100 year: 2008 ident: br000060 article-title: Effect of a negative Poisson ratio in the tension of ceramics publication-title: Phys Rev Lett – volume: 27 start-page: 5523 year: 2015 end-page: 5527 ident: br000155 article-title: Topology optimized architectures with programmable Poisson’s ratio over large deformations publication-title: Adv Mater – volume: 23 start-page: 77 year: 2007 end-page: 89 ident: br000130 article-title: Using strain energy-based prediction of effective elastic properties in topology optimization of material microstructures publication-title: Acta Mech Sin – volume: 171 start-page: 272 year: 2001 end-page: 288 ident: br000225 article-title: Level set methods for optimization problems involving geometry and constraints. I. frequencies of a two-density inhomogeneous drum publication-title: J Comput Phys – volume: 67 start-page: 274 year: 1997 end-page: 286 ident: br000085 article-title: Negative Poisson’s ratios in composites with star-shaped inclusions: a numerical homogenization approach publication-title: Arch Appl Mech – volume: 25 start-page: 5044 year: 2013 end-page: 5049 ident: br000050 article-title: 3D Soft metamaterials with negative Poisson’s ratio publication-title: Adv Mater – volume: 37 start-page: 321 year: 2005 end-page: 337 ident: br000120 article-title: A level-set based variational method for design and optimization of heterogeneous objects publication-title: Comput-Aided Des – volume: 69 start-page: 707 year: 1998 end-page: 717 ident: br000190 article-title: A review of homogenization and topology optimization I—homogenization theory for media with periodic structure publication-title: Comput Struct – year: 2000 ident: br000340 article-title: Nonlinear finite elements for continua and structures – volume: 235 start-page: 1038 year: 1987 end-page: 1040 ident: br000025 article-title: Foam structures with a negative Poisson’s ratio publication-title: Science – volume: 1 start-page: 178 year: 2008 end-page: 191 ident: br000315 article-title: A multiple level set method for modeling grain boundary evolution of polycrystalline materials publication-title: Interact Multiscale Mech – volume: 69 start-page: 739 year: 1998 end-page: 756 ident: br000200 article-title: A review of homogenization and topology optimization III—topology optimization using optimality criteria publication-title: Comput Struct – volume: 6 start-page: 373 year: 2004 end-page: 395 ident: br000235 article-title: PDE-driven level sets, shape sensitivity, and curvature flow for structural topology optimization publication-title: Comput Model Eng Sci – reference: Sanchez-Palencia E, Zaoui A. Homogenization techniques for composite media. In: Homogenization techniques for composite media, 1987. – volume: 334 start-page: 1 year: 2002 end-page: 6 ident: br000230 article-title: A level-set method for shape optimization publication-title: C R Acad Sci., Paris Ser I – reference: Allaire G, Jouve F, Michailidis G. Structural and multi-functional optimization using multiple phases and a level-set method, 2013. – volume: 23 start-page: 2650 year: 2011 end-page: 2654 ident: br000140 article-title: Design of auxetic structures via mathematical optimization publication-title: Adv Mater – volume: 49 start-page: 739 year: 1985 end-page: 745 ident: br000075 article-title: Determination of the average characteristics of elastic frameworks publication-title: J Appl Math Mech – volume: 88 start-page: 774 year: 2011 end-page: 796 ident: br000275 article-title: A mass constraint formulation for structural topology optimization with multiphase materials publication-title: Internat J Numer Methods Engrg – volume: 5 start-page: 293 year: 1993 end-page: 296 ident: br000040 article-title: Advances in negative Poisson’s ratio materials publication-title: Adv Mater – volume: 112 start-page: 334 year: 1994 end-page: 363 ident: br000310 article-title: Motion of multiple junctions: A level set approach publication-title: J Comput Phys – volume: 65 start-page: 2060 year: 2006 ident: 10.1016/j.cad.2016.09.009_br000245 article-title: Radial basis functions and level set method for structural topology optimization publication-title: Int J Numer Method Eng doi: 10.1002/nme.1536 – volume: 78 start-page: 379 year: 2009 ident: 10.1016/j.cad.2016.09.009_br000300 article-title: Piecewise constant level set method for structural topology optimization publication-title: Internat J Numer Methods Engrg doi: 10.1002/nme.2478 – volume: 79 start-page: 12 year: 1988 ident: 10.1016/j.cad.2016.09.009_br000160 article-title: Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton–Jacobi formulations publication-title: J Comput Phys doi: 10.1016/0021-9991(88)90002-2 – volume: 118 start-page: 285 year: 1996 ident: 10.1016/j.cad.2016.09.009_br000020 article-title: Micromechanical analysis of dynamic behavior of conventional and negative Poisson’s ratio foams publication-title: J Eng Mater Technol doi: 10.1115/1.2806807 – volume: 23 start-page: 2650 year: 2011 ident: 10.1016/j.cad.2016.09.009_br000140 article-title: Design of auxetic structures via mathematical optimization publication-title: Adv Mater doi: 10.1002/adma.201004090 – volume: 112 start-page: 334 year: 1994 ident: 10.1016/j.cad.2016.09.009_br000310 article-title: Motion of multiple junctions: A level set approach publication-title: J Comput Phys doi: 10.1006/jcph.1994.1105 – volume: 27 start-page: 5523 year: 2015 ident: 10.1016/j.cad.2016.09.009_br000155 article-title: Topology optimized architectures with programmable Poisson’s ratio over large deformations publication-title: Adv Mater doi: 10.1002/adma.201502485 – volume: 163 start-page: 489 year: 2000 ident: 10.1016/j.cad.2016.09.009_br000220 article-title: Structural boundary design via level set and immersed interface methods publication-title: J Comput Phys doi: 10.1006/jcph.2000.6581 – volume: 6 start-page: 373 year: 2004 ident: 10.1016/j.cad.2016.09.009_br000235 article-title: PDE-driven level sets, shape sensitivity, and curvature flow for structural topology optimization publication-title: Comput Model Eng Sci – volume: 227 start-page: 680 year: 2007 ident: 10.1016/j.cad.2016.09.009_br000255 article-title: Shape and topology optimization of compliant mechanisms using a parameterization level set method publication-title: J Comput Phys doi: 10.1016/j.jcp.2007.08.011 – volume: 117 year: 2015 ident: 10.1016/j.cad.2016.09.009_br000065 article-title: Nonlinear elasticity of auxetic open cell foams modeled as continuum solids publication-title: J Appl Phys doi: 10.1063/1.4921101 – volume: 69 start-page: 1 year: 2014 ident: 10.1016/j.cad.2016.09.009_br000145 article-title: Design of manufacturable 3D extremal elastic microstructure publication-title: Mech Mater doi: 10.1016/j.mechmat.2013.09.018 – volume: 25 start-page: 5044 year: 2013 ident: 10.1016/j.cad.2016.09.009_br000050 article-title: 3D Soft metamaterials with negative Poisson’s ratio publication-title: Adv Mater doi: 10.1002/adma.201301986 – volume: 69 start-page: 707 year: 1998 ident: 10.1016/j.cad.2016.09.009_br000190 article-title: A review of homogenization and topology optimization I—homogenization theory for media with periodic structure publication-title: Comput Struct doi: 10.1016/S0045-7949(98)00131-X – volume: 127 start-page: 941 year: 2005 ident: 10.1016/j.cad.2016.09.009_br000285 article-title: Design of multimaterial compliant mechanisms using level-set methods publication-title: J Mech Des doi: 10.1115/1.1909206 – year: 2000 ident: 10.1016/j.cad.2016.09.009_br000340 – volume: 80 start-page: 73 year: 1996 ident: 10.1016/j.cad.2016.09.009_br000010 article-title: Fracture toughness of re-entrant foam materials with a negative Poisson’s ratio: experiment and analysis publication-title: Int J Fract doi: 10.1007/BF00036481 – volume: 334 start-page: 1 year: 2002 ident: 10.1016/j.cad.2016.09.009_br000230 article-title: A level-set method for shape optimization publication-title: C R Acad Sci., Paris Ser I doi: 10.1016/S1631-073X(02)02412-3 – ident: 10.1016/j.cad.2016.09.009_br000005 – volume: 171 start-page: 272 year: 2001 ident: 10.1016/j.cad.2016.09.009_br000225 article-title: Level set methods for optimization problems involving geometry and constraints. I. frequencies of a two-density inhomogeneous drum publication-title: J Comput Phys doi: 10.1006/jcph.2001.6789 – volume: 75 start-page: 1155 year: 2006 ident: 10.1016/j.cad.2016.09.009_br000295 article-title: A variant of the level set method and applications to image segmentation publication-title: Math Comp doi: 10.1090/S0025-5718-06-01835-7 – volume: 20 start-page: 3025 year: 2010 ident: 10.1016/j.cad.2016.09.009_br000055 article-title: Bioinspired structural material exhibiting post-yield lateral expansion and volumetric energy dissipation during tension publication-title: Adv Funct Mater doi: 10.1002/adfm.201000282 – year: 2003 ident: 10.1016/j.cad.2016.09.009_br000090 – volume: 112 year: 2012 ident: 10.1016/j.cad.2016.09.009_br000070 article-title: Negative Poisson’s ratio and Piezoelectric anisotropy of tetragonal ferroelectric single crystals publication-title: J Appl Phys doi: 10.1063/1.4767224 – volume: 194 start-page: 363 year: 2004 ident: 10.1016/j.cad.2016.09.009_br000170 article-title: Structural optimization using sensitivity analysis and a level-set method publication-title: J Comput Phys doi: 10.1016/j.jcp.2003.09.032 – volume: 54 start-page: 331 year: 2001 ident: 10.1016/j.cad.2016.09.009_br000095 article-title: Topology optimization of continuum structures: A review* publication-title: Appl Mech Rev doi: 10.1115/1.1388075 – volume: 221 start-page: 565 year: 2007 ident: 10.1016/j.cad.2016.09.009_br000030 article-title: Auxetic materials publication-title: Proc Inst Mech Eng G doi: 10.1243/09544100JAERO185 – year: 2011 ident: 10.1016/j.cad.2016.09.009_br000205 – volume: 31 start-page: 2313 year: 1994 ident: 10.1016/j.cad.2016.09.009_br000110 article-title: Materials with prescribed constitutive parameters: An inverse homogenization problem publication-title: Internat J Solids Structures doi: 10.1016/0020-7683(94)90154-6 – volume: 10 start-page: 73 year: 1992 ident: 10.1016/j.cad.2016.09.009_br000215 article-title: A comparison of homogenization and standard mechanics analyses for periodic porous composites publication-title: Comput Mech doi: 10.1007/BF00369853 – volume: 44 start-page: 77 year: 2002 ident: 10.1016/j.cad.2016.09.009_br000260 article-title: Level set methods and dynamic implicit surfaces publication-title: Surfaces – volume: 69 start-page: 739 year: 1998 ident: 10.1016/j.cad.2016.09.009_br000200 article-title: A review of homogenization and topology optimization III—topology optimization using optimality criteria publication-title: Comput Struct doi: 10.1016/S0045-7949(98)00133-3 – volume: 34 start-page: 59 year: 2005 ident: 10.1016/j.cad.2016.09.009_br000125 article-title: Structural optimization using topological and shape sensitivity via a level set method publication-title: Control Cybern – volume: 235 start-page: 1038 year: 1987 ident: 10.1016/j.cad.2016.09.009_br000025 article-title: Foam structures with a negative Poisson’s ratio publication-title: Science doi: 10.1126/science.235.4792.1038 – year: 2005 ident: 10.1016/j.cad.2016.09.009_br000335 – volume: 22 start-page: 361 year: 2010 ident: 10.1016/j.cad.2016.09.009_br000045 article-title: Negative Poisson’s ratio behavior induced by an elastic instability publication-title: Adv Mater doi: 10.1002/adma.200901956 – volume: 1 start-page: 178 year: 2008 ident: 10.1016/j.cad.2016.09.009_br000315 article-title: A multiple level set method for modeling grain boundary evolution of polycrystalline materials publication-title: Interact Multiscale Mech doi: 10.12989/imm.2008.1.2.191 – year: 1986 ident: 10.1016/j.cad.2016.09.009_br000330 – volume: 37 start-page: 321 year: 2005 ident: 10.1016/j.cad.2016.09.009_br000120 article-title: A level-set based variational method for design and optimization of heterogeneous objects publication-title: Comput-Aided Des doi: 10.1016/j.cad.2004.03.007 – volume: 12 start-page: 617 year: 2000 ident: 10.1016/j.cad.2016.09.009_br000035 article-title: Auxetic materials: Functional materials and structures from lateral thinking! publication-title: Adv Mater doi: 10.1002/(SICI)1521-4095(200005)12:9<617::AID-ADMA617>3.0.CO;2-3 – volume: 57 start-page: 1177 year: 2003 ident: 10.1016/j.cad.2016.09.009_br000240 article-title: Topology optimization with implicitly function and regularization publication-title: Int J Numer Method Eng doi: 10.1002/nme.824 – volume: 49 start-page: 739 year: 1985 ident: 10.1016/j.cad.2016.09.009_br000075 article-title: Determination of the average characteristics of elastic frameworks publication-title: J Appl Math Mech doi: 10.1016/0021-8928(85)90011-5 – year: 2007 ident: 10.1016/j.cad.2016.09.009_br000325 – volume: 67 start-page: 274 year: 1997 ident: 10.1016/j.cad.2016.09.009_br000085 article-title: Negative Poisson’s ratios in composites with star-shaped inclusions: a numerical homogenization approach publication-title: Arch Appl Mech doi: 10.1007/s004190050117 – volume: 69 start-page: 719 year: 1998 ident: 10.1016/j.cad.2016.09.009_br000195 article-title: A review of homogenization and topology opimization II—analytical and numerical solution of homogenization equations publication-title: Comput Struct doi: 10.1016/S0045-7949(98)00132-1 – volume: 11 start-page: 1186 year: 1999 ident: 10.1016/j.cad.2016.09.009_br000135 article-title: Making negative Poisson’s ratio microstructures by soft lithography publication-title: Adv Mater doi: 10.1002/(SICI)1521-4095(199910)11:14<1186::AID-ADMA1186>3.0.CO;2-K – volume: 4 start-page: 96 year: 2015 ident: 10.1016/j.cad.2016.09.009_br000150 article-title: Design of planar isotropic negative Poisson’s ratio structures publication-title: Extreme Mech Lett doi: 10.1016/j.eml.2015.05.002 – volume: 20 start-page: 351 year: 1995 ident: 10.1016/j.cad.2016.09.009_br000115 article-title: Tailoring materials with prescribed elastic properties publication-title: Mech Mater doi: 10.1016/0167-6636(94)00069-7 – volume: 4 start-page: 291 year: 2007 ident: 10.1016/j.cad.2016.09.009_br000305 article-title: Piecewise constant level set methods for multiphase motion publication-title: Int J Numer Anal Model – volume: 23 start-page: 1482 year: 1992 ident: 10.1016/j.cad.2016.09.009_br000185 article-title: Homogenization and two-scale convergence publication-title: SIAM J Math Anal doi: 10.1137/0523084 – volume: 193 start-page: 469 year: 2004 ident: 10.1016/j.cad.2016.09.009_br000280 article-title: Color level sets: a multi-phase method for structural topology optimization with multiple materials publication-title: Comput Methods Appl Mech Engrg doi: 10.1016/j.cma.2003.10.008 – volume: 58 start-page: 140 year: 2012 ident: 10.1016/j.cad.2016.09.009_br000210 article-title: Seeing auxetic materials from the mechanics point of view: A structural review on the negative Poisson’s ratio publication-title: Comput Mater Sci doi: 10.1016/j.commatsci.2012.02.012 – volume: 88 start-page: 774 year: 2011 ident: 10.1016/j.cad.2016.09.009_br000275 article-title: A mass constraint formulation for structural topology optimization with multiphase materials publication-title: Internat J Numer Methods Engrg doi: 10.1002/nme.3197 – volume: 100 year: 2008 ident: 10.1016/j.cad.2016.09.009_br000060 article-title: Effect of a negative Poisson ratio in the tension of ceramics publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.100.245502 – volume: 71 start-page: 590 year: 1979 ident: 10.1016/j.cad.2016.09.009_br000175 article-title: Homogenization in open sets with holes publication-title: J Math Anal Appl doi: 10.1016/0022-247X(79)90211-7 – volume: 15 start-page: 427 year: 1985 ident: 10.1016/j.cad.2016.09.009_br000080 article-title: An isotropic three-dimensional structure with Poisson’s ratio=−1 publication-title: J Elasticity doi: 10.1007/BF00042531 – volume: 21 start-page: 90 year: 2001 ident: 10.1016/j.cad.2016.09.009_br000100 article-title: Aims, scope, methods, history and unified terminology of computer-aided topology optimization in structural mechanics publication-title: Struct Multidiscip Optim doi: 10.1007/s001580050174 – volume: 13 start-page: 119 year: 2006 ident: 10.1016/j.cad.2016.09.009_br000250 article-title: Structural shape and topology optimization using implicit free boundary parameterization method publication-title: Comput Model Eng Sci – volume: 23 start-page: 77 year: 2007 ident: 10.1016/j.cad.2016.09.009_br000130 article-title: Using strain energy-based prediction of effective elastic properties in topology optimization of material microstructures publication-title: Acta Mech Sin doi: 10.1007/s10409-006-0045-2 – ident: 10.1016/j.cad.2016.09.009_br000180 doi: 10.1007/3-540-17616-0 – volume: 190 start-page: 6605 year: 2001 ident: 10.1016/j.cad.2016.09.009_br000265 article-title: Design of multiphysics actuators using topology optimization–Part II: Two-material structures publication-title: Comput Methods Appl Mech Engrg doi: 10.1016/S0045-7825(01)00252-3 – volume: 192 start-page: 227 year: 2003 ident: 10.1016/j.cad.2016.09.009_br000165 article-title: A level set method for structural topology optimization publication-title: Comput Methods Appl Mech Engrg doi: 10.1016/S0045-7825(02)00559-5 – ident: 10.1016/j.cad.2016.09.009_br000270 – volume: 199 start-page: 2532 year: 2010 ident: 10.1016/j.cad.2016.09.009_br000320 article-title: A level set approach for optimal design of smart energy harvesters publication-title: Comput Methods Appl Mech Engrg doi: 10.1016/j.cma.2010.04.008 – volume: 246 start-page: 2011 year: 2009 ident: 10.1016/j.cad.2016.09.009_br000015 article-title: The fracture toughness of composite laminates with a negative Poisson’s ratio publication-title: Phys Status Solidi (b) doi: 10.1002/pssb.200982031 – volume: 5 start-page: 293 year: 1993 ident: 10.1016/j.cad.2016.09.009_br000040 article-title: Advances in negative Poisson’s ratio materials publication-title: Adv Mater doi: 10.1002/adma.19930050416 – volume: 48 start-page: 1031 year: 2013 ident: 10.1016/j.cad.2016.09.009_br000105 article-title: Topology optimization approaches publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-013-0978-6 – ident: 10.1016/j.cad.2016.09.009_br000290 doi: 10.7712/seeccm-2013.2009 |
SSID | ssj0002139 |
Score | 2.5869884 |
Snippet | Metamaterials are defined as a family of rationally designed artificial materials which can provide extraordinary effective properties compared with their... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 15 |
SubjectTerms | Boundary conditions Design Dirichlet problem Elastic properties Finite element method Functionals High resolution Metamaterial Metamaterials Multi-material Negative Poisson’s ratio Properties (attributes) Reconciled level set method Steepest descent method Strain Three dimensional printing Topology optimization |
Title | Topology optimization of multi-material negative Poisson’s ratio metamaterials using a reconciled level set method |
URI | https://dx.doi.org/10.1016/j.cad.2016.09.009 https://www.proquest.com/docview/1920753197 |
Volume | 83 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iFz2IT3yTgyehmrZp0xyXRVkVxcMueAt5Loq24taDF_Fv-Pf8JU7S1heyB68lKelkMvOFfvMNQvsmk5yq1EQARmVEdaGiwsJx5zYn1ClA2EGO4eIyH4zo2XV2PYP6XS2Mp1W2sb-J6SFat0-OWmsePdzc-BpfuEpQQAx5GkRlfAU7Zd7LD1--aB5JnDYQGBbgR3d_NgPHS0svFhrnQerUcxL_zk2_onRIPSdLaLHFjLjXLGsZzdhyBS18UxJcRfWwaXbwjCuIAfdtcSWuHA6MwQhwaXA1XNpxkPrGVxWYvCrfX98mOHgBvre17MZNsCfEj7HE4casIXYYfOcJRnhia9z0nV5Do5PjYX8QtQ0VIp2yoo4khY-lJuZOJTZ2NLEsswU3xGWMGCMTYohMVUKci3MuFVyuNCvSwqTScS6TdB3NllVpNxC2zFgG519yZuGOlRWkoJRrpaV2JFZsE5HOlEK3auO-6cWd6GhltwKsL7z1BeECrL-JDj6nPDRSG9MG025_xA9_EZAKpk3b6fZStId1IgDkAnCCWMS2_vfWbTSf-GwfyNw7aLZ-fLK7gFVqtReccQ_N9U7PB5cft6fq2w |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV29Tt4wFLUQHaBDVWhRaSl4aBekgJM4cTwwVC3o41cMHxKb8S-iggQ1qRAL4jV4Dt6oT9Jrx-FPFUMl1siJkmv73HOV43MR-mIKyanKTQJkVCZUVyqpLGx3bktCnQKGHewYdvfK0QHdOiwOJ9DtcBbGyyoj9veYHtA6XlmN0Vw9PznxZ3yhlKDAGMo8mMpEZeW2vbyAuq1d2_wBk_w1yzbWx99HSWwtkOicVV0iKSQ-alLuVGZTRzPLCltxQ1zBiDEyI4bIXGXEubTkUkGZoVmVVyaXjnPp3Q4A919RgAvfNmHl6l5XkqV5z7nhi_3rDb9Sg6hMS-9OmpbBW9WLIP-dDJ-khZDrNt6iN5Gk4m99HGbQhK1n0esH1oXvUDfuuytc4gZA5yye5sSNw0GimAARDmsb1_Y4eIvj_QbmuKn_XN-0OCw7fGY7OYxrsVfgH2OJQ4muAawMPvWKJtzaDveNrt-jgxcJ8xyarJvafkDYMmMZAI7kzEJRV1SkopRrpaV2JFVsHpEhlEJHe3PfZeNUDDq2nwKiL3z0BeECoj-Plu9uOe-9PZ4bTIf5EY8WqIDc89xtC8NciogOrQBWDUwNwI99_L-nLqGp0Xh3R-xs7m1_QtOZpxpBSb6AJrtfv-1nIEqdWgwLE6Ojl94JfwFgTCak |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Topology+optimization+of+multi-material+negative+Poisson%E2%80%99s+ratio+metamaterials+using+a+reconciled+level+set+method&rft.jtitle=Computer+aided+design&rft.au=Vogiatzis%2C+Panagiotis&rft.au=Chen%2C+Shikui&rft.au=Wang%2C+Xiao&rft.au=Li%2C+Tiantian&rft.date=2017-02-01&rft.pub=Elsevier+BV&rft.issn=0010-4485&rft.eissn=1879-2685&rft.volume=83&rft.spage=15&rft_id=info:doi/10.1016%2Fj.cad.2016.09.009&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4485&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4485&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4485&client=summon |