Topology optimization of multi-material negative Poisson’s ratio metamaterials using a reconciled level set method

Metamaterials are defined as a family of rationally designed artificial materials which can provide extraordinary effective properties compared with their nature counterparts. This paper proposes a level set based method for topology optimization of both single and multiple-material Negative Poisson...

Full description

Saved in:
Bibliographic Details
Published inComputer aided design Vol. 83; pp. 15 - 32
Main Authors Vogiatzis, Panagiotis, Chen, Shikui, Wang, Xiao, Li, Tiantian, Wang, Lifeng
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier Ltd 01.02.2017
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Metamaterials are defined as a family of rationally designed artificial materials which can provide extraordinary effective properties compared with their nature counterparts. This paper proposes a level set based method for topology optimization of both single and multiple-material Negative Poisson’s Ratio (NPR) metamaterials. For multi-material topology optimization, the conventional level set method is advanced with a new approach exploiting the reconciled level set (RLS) method. The proposed method simplifies the multi-material topology optimization by evolving each individual material with a single level set function and reconciling the result level set field with the Merriman–Bence–Osher (MBO) operator. The NPR metamaterial design problem is recast as a variational problem, where the effective elastic properties of the spatially periodic microstructure are formulated as the strain energy functionals under uniform displacement boundary conditions. The adjoint variable method is utilized to derive the shape sensitivities by combining the general linear elastic equation with a weak imposition of Dirichlet boundary conditions. The design velocity field is constructed using the steepest descent method and integrated with the level set method. Both single and multiple-material mechanical metamaterials are achieved in 2D and 3D with different Poisson’s ratios and volumes. Benchmark designs are fabricated with multi-material 3D printing at high resolution. The effective auxetic properties of the achieved designs are verified through finite element simulations and characterized using experimental tests as well. •A multi-material topology optimization approach exploiting the reconciled level-set method.•The boundary of each individual material is evolved with a single level set function.•Multiple level set functions are reconciled with the Merriman–Bence–Osher (MBO) operator.•Both 2D and 3D multi-material designs were obtained and used for validate the proposed method.
AbstractList Metamaterials are defined as a family of rationally designed artificial materials which can provide extraordinary effective properties compared with their nature counterparts. This paper proposes a level set based method for topology optimization of both single and multiple-material Negative Poisson’s Ratio (NPR) metamaterials. For multi-material topology optimization, the conventional level set method is advanced with a new approach exploiting the reconciled level set (RLS) method. The proposed method simplifies the multi-material topology optimization by evolving each individual material with a single level set function and reconciling the result level set field with the Merriman–Bence–Osher (MBO) operator. The NPR metamaterial design problem is recast as a variational problem, where the effective elastic properties of the spatially periodic microstructure are formulated as the strain energy functionals under uniform displacement boundary conditions. The adjoint variable method is utilized to derive the shape sensitivities by combining the general linear elastic equation with a weak imposition of Dirichlet boundary conditions. The design velocity field is constructed using the steepest descent method and integrated with the level set method. Both single and multiple-material mechanical metamaterials are achieved in 2D and 3D with different Poisson’s ratios and volumes. Benchmark designs are fabricated with multi-material 3D printing at high resolution. The effective auxetic properties of the achieved designs are verified through finite element simulations and characterized using experimental tests as well. •A multi-material topology optimization approach exploiting the reconciled level-set method.•The boundary of each individual material is evolved with a single level set function.•Multiple level set functions are reconciled with the Merriman–Bence–Osher (MBO) operator.•Both 2D and 3D multi-material designs were obtained and used for validate the proposed method.
Metamaterials are defined as a family of rationally designed artificial materials which can provide extraordinary effective properties compared with their nature counterparts. This paper proposes a level set based method for topology optimization of both single and multiple-material Negative Poisson’s Ratio (NPR) metamaterials. For multi-material topology optimization, the conventional level set method is advanced with a new approach exploiting the reconciled level set (RLS) method. The proposed method simplifies the multi-material topology optimization by evolving each individual material with a single level set function and reconciling the result level set field with the Merriman–Bence–Osher (MBO) operator. The NPR metamaterial design problem is recast as a variational problem, where the effective elastic properties of the spatially periodic microstructure are formulated as the strain energy functionals under uniform displacement boundary conditions. The adjoint variable method is utilized to derive the shape sensitivities by combining the general linear elastic equation with a weak imposition of Dirichlet boundary conditions. The design velocity field is constructed using the steepest descent method and integrated with the level set method. Both single and multiple-material mechanical metamaterials are achieved in 2D and 3D with different Poisson’s ratios and volumes. Benchmark designs are fabricated with multi-material 3D printing at high resolution. The effective auxetic properties of the achieved designs are verified through finite element simulations and characterized using experimental tests as well.
Author Chen, Shikui
Wang, Lifeng
Li, Tiantian
Wang, Xiao
Vogiatzis, Panagiotis
Author_xml – sequence: 1
  givenname: Panagiotis
  surname: Vogiatzis
  fullname: Vogiatzis, Panagiotis
– sequence: 2
  givenname: Shikui
  surname: Chen
  fullname: Chen, Shikui
  email: shikui.chen@stonybrook.edu
– sequence: 3
  givenname: Xiao
  surname: Wang
  fullname: Wang, Xiao
– sequence: 4
  givenname: Tiantian
  surname: Li
  fullname: Li, Tiantian
– sequence: 5
  givenname: Lifeng
  surname: Wang
  fullname: Wang, Lifeng
BookMark eNp9kMtuGyEUQFGVSHUeH5AdUtYzvTAznkFZRVaaVoqULpI1wnBxsGbABWwpXeU3-nv9kuA63XThFVfiHNA9Z-TEB4-EXDGoGbD5l3Wtlal5GWsQNYD4RGZs6EXF50N3QmYADKq2HbrP5CylNQBw1ogZyU9hE8aweqVhk93kfqnsgqfB0mk7ZldNKmN0aqQeV-Vqh_RHcCkF_-ftd6JxT9MJs_rHJbpNzq-oohF18NqNaOiIOxxpwrxHX4K5IKe2oHj5cZ6T5693T4tv1cPj_ffF7UOlm37IlWrLPq1hwi45Mtty7DschAHb9WCM4mBANUsO1rK5UMs5E7ofmsE0ygqheHNOrg_vbmL4ucWU5Tpsoy9fSiY49F3DRF8odqB0DClFtHIT3aTiq2Qg93HlWpa4ch9XgpAlbnH6_xzt8t90OSo3HjVvDiaWxXcOo0zaoddoXCmWpQnuiP0OAKeZgA
CitedBy_id crossref_primary_10_1016_j_matdes_2020_109098
crossref_primary_10_1016_j_cad_2021_103069
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123720
crossref_primary_10_1016_j_ijheatmasstransfer_2023_123964
crossref_primary_10_1016_j_matdes_2022_111213
crossref_primary_10_1177_0095244320938411
crossref_primary_10_1016_j_cma_2019_02_026
crossref_primary_10_1016_j_cma_2024_117587
crossref_primary_10_1016_j_actamat_2024_119877
crossref_primary_10_1016_j_apm_2024_115895
crossref_primary_10_1016_j_matdes_2019_108424
crossref_primary_10_4028_p_86kmf2
crossref_primary_10_1016_j_ijsolstr_2024_112749
crossref_primary_10_1007_s00366_023_01880_1
crossref_primary_10_1016_j_finmec_2022_100100
crossref_primary_10_1016_j_matdes_2018_01_034
crossref_primary_10_1016_j_ijengsci_2018_06_005
crossref_primary_10_1142_S1758825123500485
crossref_primary_10_1007_s11831_022_09786_9
crossref_primary_10_1016_j_finel_2021_103649
crossref_primary_10_1016_j_eml_2023_101985
crossref_primary_10_1016_j_cma_2020_113377
crossref_primary_10_1115_1_4053814
crossref_primary_10_1016_j_compstruct_2021_114065
crossref_primary_10_1016_j_ijmecsci_2022_108015
crossref_primary_10_1142_S1758825121501027
crossref_primary_10_1016_j_mechmat_2022_104337
crossref_primary_10_1007_s00158_022_03193_1
crossref_primary_10_1016_j_cma_2017_09_012
crossref_primary_10_1016_j_sna_2022_113776
crossref_primary_10_1002_nme_6813
crossref_primary_10_1016_j_taml_2023_100485
crossref_primary_10_1016_j_cma_2019_07_014
crossref_primary_10_1016_j_addma_2020_101502
crossref_primary_10_1016_j_cma_2023_116027
crossref_primary_10_1088_1748_3190_ab3b12
crossref_primary_10_1016_j_matdes_2022_111448
crossref_primary_10_1007_s11465_019_0530_5
crossref_primary_10_1093_nsr_nwaf053
crossref_primary_10_1016_j_cma_2017_10_011
crossref_primary_10_1016_j_cma_2018_10_034
crossref_primary_10_1007_s00158_017_1786_1
crossref_primary_10_1007_s00158_023_03663_0
crossref_primary_10_1088_1361_665X_aaa61c
crossref_primary_10_1088_1361_665X_acd91c
crossref_primary_10_3390_app11177834
crossref_primary_10_1016_j_eml_2020_100992
crossref_primary_10_1016_j_compstruc_2018_10_006
crossref_primary_10_2139_ssrn_4196939
crossref_primary_10_1007_s11012_019_00981_w
crossref_primary_10_1088_1361_665X_ad8325
crossref_primary_10_1016_j_ijengsci_2019_01_006
crossref_primary_10_1007_s00158_020_02648_7
crossref_primary_10_1007_s00158_023_03580_2
crossref_primary_10_1016_j_matdes_2021_110098
crossref_primary_10_1007_s00158_023_03657_y
crossref_primary_10_1016_j_matlet_2025_138105
crossref_primary_10_1080_17452759_2019_1584944
crossref_primary_10_1115_1_4047917
crossref_primary_10_1177_1081286518810739
crossref_primary_10_1108_RPJ_11_2020_0274
crossref_primary_10_1016_j_addma_2022_102742
crossref_primary_10_1016_j_compstruct_2024_118684
crossref_primary_10_1080_17452759_2019_1647488
crossref_primary_10_1126_sciadv_aao7005
crossref_primary_10_1007_s00158_018_2097_x
crossref_primary_10_2478_candc_2024_0009
crossref_primary_10_1016_j_engstruct_2019_109997
crossref_primary_10_1016_j_ijnonlinmec_2021_103887
crossref_primary_10_1088_1361_6420_ad2eca
crossref_primary_10_1016_j_compstruct_2017_05_001
crossref_primary_10_1016_j_cma_2019_06_028
crossref_primary_10_32604_cmes_2021_015688
crossref_primary_10_1016_j_mechmat_2022_104234
crossref_primary_10_1115_1_4050401
crossref_primary_10_1016_j_compstruct_2018_01_108
crossref_primary_10_1061__ASCE_EM_1943_7889_0002149
crossref_primary_10_1080_27660400_2024_2320691
crossref_primary_10_1007_s10853_023_09212_w
crossref_primary_10_1016_j_mechmat_2021_103811
crossref_primary_10_1016_j_cma_2017_11_032
crossref_primary_10_1016_j_cma_2022_115057
crossref_primary_10_1115_1_4042616
crossref_primary_10_1115_1_4046812
crossref_primary_10_1016_j_eml_2020_100934
crossref_primary_10_1016_j_ijmecsci_2020_105638
crossref_primary_10_1016_j_eml_2024_102269
crossref_primary_10_3390_polym15081927
crossref_primary_10_1007_s10999_022_09600_1
crossref_primary_10_3846_aviation_2024_22596
crossref_primary_10_1002_zamm_201700154
crossref_primary_10_1016_j_tws_2021_108188
crossref_primary_10_1007_s00158_021_02988_y
crossref_primary_10_1080_10255842_2022_2100988
crossref_primary_10_1007_s00158_018_1994_3
crossref_primary_10_1016_j_ijsolstr_2023_112116
crossref_primary_10_1016_j_compstruct_2023_116800
crossref_primary_10_1115_1_4047345
crossref_primary_10_1016_j_engstruct_2024_118807
crossref_primary_10_1016_j_ijmecsci_2020_106169
crossref_primary_10_1115_1_4047352
crossref_primary_10_1007_s00158_023_03732_4
crossref_primary_10_1016_j_ijmecsci_2020_106205
crossref_primary_10_1016_j_compstruct_2018_04_002
crossref_primary_10_1016_j_compstruct_2022_115385
crossref_primary_10_1016_j_compstruct_2022_116074
crossref_primary_10_1098_rspa_2019_0234
crossref_primary_10_1007_s00158_023_03612_x
crossref_primary_10_1016_j_ijmecsci_2024_109393
crossref_primary_10_1002_nme_7374
crossref_primary_10_1080_0951192X_2019_1605202
crossref_primary_10_1016_j_ijmecsci_2022_107572
crossref_primary_10_1016_j_coco_2023_101656
crossref_primary_10_1016_j_cma_2021_114394
crossref_primary_10_1016_j_ijmecsci_2024_109557
crossref_primary_10_1016_j_compstruct_2018_04_058
crossref_primary_10_1016_j_mtcomm_2021_103006
crossref_primary_10_1016_j_compscitech_2018_08_009
crossref_primary_10_1016_j_matt_2020_08_023
crossref_primary_10_1115_1_4064634
crossref_primary_10_1016_j_compstruct_2022_116318
crossref_primary_10_1016_j_matdes_2018_11_002
crossref_primary_10_3390_app8060941
crossref_primary_10_1016_j_ijmecsci_2022_107920
crossref_primary_10_1088_1361_665X_ac3f78
crossref_primary_10_3390_ma17143591
crossref_primary_10_32604_cmes_2022_017842
crossref_primary_10_1115_1_4038977
crossref_primary_10_1063_1_5064864
crossref_primary_10_1016_j_mtcomm_2024_110900
crossref_primary_10_1007_s00158_019_02422_4
crossref_primary_10_3390_a17100460
crossref_primary_10_1016_j_addma_2020_101562
crossref_primary_10_1088_2053_1591_aaf9d7
crossref_primary_10_1142_S175882512550005X
crossref_primary_10_1016_j_matdes_2020_109286
crossref_primary_10_1016_j_cma_2019_05_029
crossref_primary_10_1115_1_4046916
crossref_primary_10_1115_1_4042835
crossref_primary_10_1002_nme_7669
crossref_primary_10_1063_5_0004724
crossref_primary_10_1016_j_eml_2023_102100
crossref_primary_10_1016_j_cirp_2020_05_006
crossref_primary_10_1016_j_mser_2023_100725
crossref_primary_10_1007_s00158_023_03729_z
crossref_primary_10_1016_j_matdes_2020_108751
crossref_primary_10_1115_1_4045301
crossref_primary_10_1088_2515_7639_ad33a4
crossref_primary_10_1007_s00161_019_00851_6
crossref_primary_10_2139_ssrn_4162435
crossref_primary_10_1038_s41598_017_09218_w
crossref_primary_10_1007_s00158_022_03448_x
crossref_primary_10_1016_j_cma_2024_116839
crossref_primary_10_1016_j_mechmat_2022_104386
crossref_primary_10_1016_j_cma_2021_113749
crossref_primary_10_1177_14644207241247236
crossref_primary_10_1016_j_cad_2020_102864
crossref_primary_10_1016_j_compstruc_2021_106624
crossref_primary_10_1016_j_ijmecsci_2023_108584
crossref_primary_10_1017_S0890060423000100
crossref_primary_10_3390_ma15134483
crossref_primary_10_1016_j_cma_2021_114496
crossref_primary_10_1016_j_matdes_2020_109437
crossref_primary_10_1016_j_compstruct_2025_118968
crossref_primary_10_1016_j_engstruct_2022_115009
crossref_primary_10_1080_0305215X_2024_2400558
crossref_primary_10_1016_j_compstruc_2021_106574
crossref_primary_10_1007_s00158_020_02525_3
crossref_primary_10_1088_1361_665X_ab2eb6
crossref_primary_10_1002_nme_7620
crossref_primary_10_1016_j_ijnonlinmec_2024_104935
crossref_primary_10_1002_lpor_202200038
crossref_primary_10_1016_j_tws_2024_112183
crossref_primary_10_1016_j_cma_2019_07_020
crossref_primary_10_1002_nme_5549
crossref_primary_10_1039_C7SM02052J
crossref_primary_10_1088_1361_665X_acc36c
crossref_primary_10_1007_s00466_023_02328_5
crossref_primary_10_1016_j_cma_2020_113154
crossref_primary_10_1016_j_matdes_2018_08_032
crossref_primary_10_1016_j_compstruct_2020_113360
crossref_primary_10_1007_s00158_023_03541_9
crossref_primary_10_1111_cgf_142633
crossref_primary_10_1016_j_cemconcomp_2023_105266
crossref_primary_10_1016_j_enganabound_2024_105811
crossref_primary_10_1088_2631_7990_ace668
crossref_primary_10_1016_j_ijmecsci_2023_108249
crossref_primary_10_1016_j_compstruct_2019_111020
crossref_primary_10_1002_nme_6001
crossref_primary_10_1016_j_cma_2020_113306
Cites_doi 10.1002/nme.1536
10.1002/nme.2478
10.1016/0021-9991(88)90002-2
10.1115/1.2806807
10.1002/adma.201004090
10.1006/jcph.1994.1105
10.1002/adma.201502485
10.1006/jcph.2000.6581
10.1016/j.jcp.2007.08.011
10.1063/1.4921101
10.1016/j.mechmat.2013.09.018
10.1002/adma.201301986
10.1016/S0045-7949(98)00131-X
10.1115/1.1909206
10.1007/BF00036481
10.1016/S1631-073X(02)02412-3
10.1006/jcph.2001.6789
10.1090/S0025-5718-06-01835-7
10.1002/adfm.201000282
10.1063/1.4767224
10.1016/j.jcp.2003.09.032
10.1115/1.1388075
10.1243/09544100JAERO185
10.1016/0020-7683(94)90154-6
10.1007/BF00369853
10.1016/S0045-7949(98)00133-3
10.1126/science.235.4792.1038
10.1002/adma.200901956
10.12989/imm.2008.1.2.191
10.1016/j.cad.2004.03.007
10.1002/(SICI)1521-4095(200005)12:9<617::AID-ADMA617>3.0.CO;2-3
10.1002/nme.824
10.1016/0021-8928(85)90011-5
10.1007/s004190050117
10.1016/S0045-7949(98)00132-1
10.1002/(SICI)1521-4095(199910)11:14<1186::AID-ADMA1186>3.0.CO;2-K
10.1016/j.eml.2015.05.002
10.1016/0167-6636(94)00069-7
10.1137/0523084
10.1016/j.cma.2003.10.008
10.1016/j.commatsci.2012.02.012
10.1002/nme.3197
10.1103/PhysRevLett.100.245502
10.1016/0022-247X(79)90211-7
10.1007/BF00042531
10.1007/s001580050174
10.1007/s10409-006-0045-2
10.1007/3-540-17616-0
10.1016/S0045-7825(01)00252-3
10.1016/S0045-7825(02)00559-5
10.1016/j.cma.2010.04.008
10.1002/pssb.200982031
10.1002/adma.19930050416
10.1007/s00158-013-0978-6
10.7712/seeccm-2013.2009
ContentType Journal Article
Copyright 2016
Copyright Elsevier BV Feb 2017
Copyright_xml – notice: 2016
– notice: Copyright Elsevier BV Feb 2017
DBID AAYXX
CITATION
7SC
7TB
8FD
F28
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1016/j.cad.2016.09.009
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-2685
EndPage 32
ExternalDocumentID 10_1016_j_cad_2016_09_009
S0010448516301154
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABAOU
ABBOA
ABEFU
ABFNM
ABFRF
ABMAC
ABXDB
ABYKQ
ACAZW
ACBEA
ACDAQ
ACGFO
ACGFS
ACIWK
ACKIV
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
K-O
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
RXW
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
TAE
TN5
TWZ
VOH
WUQ
XFK
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7SC
7TB
8FD
EFKBS
F28
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c378t-a42014d19fb2e1f42e75e89d0f570dda20d0a3b20ff169ab619c7838d3af99a23
IEDL.DBID .~1
ISSN 0010-4485
IngestDate Fri Jul 25 04:25:55 EDT 2025
Thu Apr 24 22:52:22 EDT 2025
Tue Jul 01 03:34:35 EDT 2025
Fri Feb 23 02:28:12 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Topology optimization
Negative Poisson’s ratio
Reconciled level set method
Metamaterial
Multi-material
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c378t-a42014d19fb2e1f42e75e89d0f570dda20d0a3b20ff169ab619c7838d3af99a23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1920753197
PQPubID 2045267
PageCount 18
ParticipantIDs proquest_journals_1920753197
crossref_primary_10_1016_j_cad_2016_09_009
crossref_citationtrail_10_1016_j_cad_2016_09_009
elsevier_sciencedirect_doi_10_1016_j_cad_2016_09_009
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-02-01
PublicationDateYYYYMMDD 2017-02-01
PublicationDate_xml – month: 02
  year: 2017
  text: 2017-02-01
  day: 01
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Computer aided design
PublicationYear 2017
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Gao, Zhang (br000275) 2011; 88
Lakes (br000025) 1987; 235
Sigmund, Maute (br000105) 2013; 48
Sethian, Wiegmann (br000220) 2000; 163
Osher, Santosa (br000225) 2001; 171
Wang, Wang (br000250) 2006; 13
Ciambella, Bezazi, Saccomandi, Scarpa (br000065) 2015; 117
Andreassen, Lazarov, Sigmund (br000145) 2014; 69
Almgren (br000080) 1985; 15
Schwerdtfeger, Wein, Leugering, Singer, Körner, Stingl, Schury (br000140) 2011; 23
Belytschko, Xiao, Parimi (br000240) 2003; 57
Sigmund (br000115) 1995; 20
Clausen, Wang, Jensen, Sigmund, Lewis (br000155) 2015; 27
Wang, Wang (br000280) 2004; 193
Bensoussan, Lions, Papanicolaou (br000205) 2011
Bertoldi, Reis, Willshaw, Mullin (br000045) 2010; 22
Hollister, Kikuchi (br000215) 1992; 10
Allaire, Craig (br000325) 2007
Allaire, Jouve, Toader (br000230) 2002; 334
Aleshin, Raevski (br000070) 2012; 112
Shan, Kang, Zhao, Fang, Bertoldi (br000150) 2015; 4
Wang, Wang (br000235) 2004; 6
Theocaris, Stavroulakis, Panagiotopoulos (br000085) 1997; 67
Allaire G, Jouve F, Michailidis G. Structural and multi-functional optimization using multiple phases and a level-set method, 2013.
Babaee, Shim, Weaver, Chen, Patel, Bertoldi (br000050) 2013; 25
Sigmund (br000110) 1994; 31
Hassani, Hinton (br000190) 1998; 69
Allaire, Jouve, Toader (br000170) 2004; 194
Li, Tai (br000305) 2007; 4
Belytschko, Liu, Moran (br000340) 2000
Chen, Lakes (br000020) 1996; 118
Rozvany (br000100) 2001; 21
Wang, Wang (br000120) 2005; 37
Gao T, Zhang W, Duysinx P. Comparison of volume constraint and mass constraint in structural topology optimization with multiple materials. In: Book of abstracts and proceeding of the 2nd international conference on engineering optimization, 2010.
Prawoto (br000210) 2012; 58
Wang, Wang (br000245) 2006; 65
Donoghue, Alderson, Evans (br000015) 2009; 246
Zhang, Dai, Wang, Sun, Bassir (br000130) 2007; 23
Evans, Alderson (br000035) 2000; 12
Choi, Lakes (br000010) 1996; 80
Hassani, Hinton (br000200) 1998; 69
Eschenauer, Olhoff (br000095) 2001; 54
Kolpakov (br000075) 1985; 49
Sigmund (br000265) 2001; 190
Zhang, Chen, Osher (br000315) 2008; 1
Allaire, De Gournay, Jouve, Toader (br000125) 2005; 34
Wei, Wang (br000300) 2009; 78
Lakes (br000040) 1993; 5
Fedkiw, Osher (br000260) 2002; 44
Xu, Arias, Brittain, Zhao, Grzybowski, Torquato, Whitesides (br000135) 1999; 11
Wang, Wang, Guo (br000165) 2003; 192
Liu Q. Literature review: materials with negative Poisson’s ratios and potential applications to aerospace and defence. In: DTIC Document, 2006.
Cioranescu, Paulin (br000175) 1979; 71
Haug, Choi, Komkov (br000330) 1986
Wang, Boyce (br000055) 2010; 20
Luo, Wang, Tong, Wang (br000255) 2007; 227
Allaire (br000185) 1992; 23
Wang, Wang, Mei, Chen (br000285) 2005; 127
Song, Zhou, Xu, Xu, Bai (br000060) 2008; 100
Osher, Sethian (br000160) 1988; 79
Merriman, Bence, Osher (br000310) 1994; 112
Lie, Lysaker, Tai (br000295) 2006; 75
Hassani, Hinton (br000195) 1998; 69
Alderson, Alderson (br000030) 2007; 221
Chen, Gonella, Chen, Liu (br000320) 2010; 199
Bendsoe, Sigmund (br000090) 2003
Choi, Kim (br000335) 2005
Sanchez-Palencia E, Zaoui A. Homogenization techniques for composite media. In: Homogenization techniques for composite media, 1987.
Sigmund (10.1016/j.cad.2016.09.009_br000115) 1995; 20
Andreassen (10.1016/j.cad.2016.09.009_br000145) 2014; 69
Eschenauer (10.1016/j.cad.2016.09.009_br000095) 2001; 54
Lakes (10.1016/j.cad.2016.09.009_br000025) 1987; 235
Kolpakov (10.1016/j.cad.2016.09.009_br000075) 1985; 49
Belytschko (10.1016/j.cad.2016.09.009_br000240) 2003; 57
Hassani (10.1016/j.cad.2016.09.009_br000200) 1998; 69
10.1016/j.cad.2016.09.009_br000005
Evans (10.1016/j.cad.2016.09.009_br000035) 2000; 12
Fedkiw (10.1016/j.cad.2016.09.009_br000260) 2002; 44
Bendsoe (10.1016/j.cad.2016.09.009_br000090) 2003
Clausen (10.1016/j.cad.2016.09.009_br000155) 2015; 27
Sethian (10.1016/j.cad.2016.09.009_br000220) 2000; 163
Luo (10.1016/j.cad.2016.09.009_br000255) 2007; 227
Osher (10.1016/j.cad.2016.09.009_br000160) 1988; 79
Wang (10.1016/j.cad.2016.09.009_br000120) 2005; 37
Allaire (10.1016/j.cad.2016.09.009_br000185) 1992; 23
Bertoldi (10.1016/j.cad.2016.09.009_br000045) 2010; 22
Gao (10.1016/j.cad.2016.09.009_br000275) 2011; 88
Choi (10.1016/j.cad.2016.09.009_br000335) 2005
Donoghue (10.1016/j.cad.2016.09.009_br000015) 2009; 246
Sigmund (10.1016/j.cad.2016.09.009_br000110) 1994; 31
Wang (10.1016/j.cad.2016.09.009_br000250) 2006; 13
10.1016/j.cad.2016.09.009_br000290
Zhang (10.1016/j.cad.2016.09.009_br000315) 2008; 1
Allaire (10.1016/j.cad.2016.09.009_br000230) 2002; 334
Wei (10.1016/j.cad.2016.09.009_br000300) 2009; 78
Theocaris (10.1016/j.cad.2016.09.009_br000085) 1997; 67
Hassani (10.1016/j.cad.2016.09.009_br000190) 1998; 69
Alderson (10.1016/j.cad.2016.09.009_br000030) 2007; 221
Allaire (10.1016/j.cad.2016.09.009_br000170) 2004; 194
Wang (10.1016/j.cad.2016.09.009_br000165) 2003; 192
Merriman (10.1016/j.cad.2016.09.009_br000310) 1994; 112
Haug (10.1016/j.cad.2016.09.009_br000330) 1986
Babaee (10.1016/j.cad.2016.09.009_br000050) 2013; 25
Song (10.1016/j.cad.2016.09.009_br000060) 2008; 100
Sigmund (10.1016/j.cad.2016.09.009_br000105) 2013; 48
Prawoto (10.1016/j.cad.2016.09.009_br000210) 2012; 58
Wang (10.1016/j.cad.2016.09.009_br000280) 2004; 193
Chen (10.1016/j.cad.2016.09.009_br000320) 2010; 199
Zhang (10.1016/j.cad.2016.09.009_br000130) 2007; 23
10.1016/j.cad.2016.09.009_br000180
Lie (10.1016/j.cad.2016.09.009_br000295) 2006; 75
Rozvany (10.1016/j.cad.2016.09.009_br000100) 2001; 21
Allaire (10.1016/j.cad.2016.09.009_br000325) 2007
Almgren (10.1016/j.cad.2016.09.009_br000080) 1985; 15
Wang (10.1016/j.cad.2016.09.009_br000055) 2010; 20
Lakes (10.1016/j.cad.2016.09.009_br000040) 1993; 5
Wang (10.1016/j.cad.2016.09.009_br000235) 2004; 6
Wang (10.1016/j.cad.2016.09.009_br000285) 2005; 127
Shan (10.1016/j.cad.2016.09.009_br000150) 2015; 4
10.1016/j.cad.2016.09.009_br000270
Ciambella (10.1016/j.cad.2016.09.009_br000065) 2015; 117
Cioranescu (10.1016/j.cad.2016.09.009_br000175) 1979; 71
Osher (10.1016/j.cad.2016.09.009_br000225) 2001; 171
Aleshin (10.1016/j.cad.2016.09.009_br000070) 2012; 112
Hassani (10.1016/j.cad.2016.09.009_br000195) 1998; 69
Xu (10.1016/j.cad.2016.09.009_br000135) 1999; 11
Wang (10.1016/j.cad.2016.09.009_br000245) 2006; 65
Sigmund (10.1016/j.cad.2016.09.009_br000265) 2001; 190
Allaire (10.1016/j.cad.2016.09.009_br000125) 2005; 34
Li (10.1016/j.cad.2016.09.009_br000305) 2007; 4
Chen (10.1016/j.cad.2016.09.009_br000020) 1996; 118
Bensoussan (10.1016/j.cad.2016.09.009_br000205) 2011
Schwerdtfeger (10.1016/j.cad.2016.09.009_br000140) 2011; 23
Hollister (10.1016/j.cad.2016.09.009_br000215) 1992; 10
Choi (10.1016/j.cad.2016.09.009_br000010) 1996; 80
Belytschko (10.1016/j.cad.2016.09.009_br000340) 2000
References_xml – volume: 48
  start-page: 1031
  year: 2013
  end-page: 1055
  ident: br000105
  article-title: Topology optimization approaches
  publication-title: Struct Multidiscip Optim
– volume: 80
  start-page: 73
  year: 1996
  end-page: 83
  ident: br000010
  article-title: Fracture toughness of re-entrant foam materials with a negative Poisson’s ratio: experiment and analysis
  publication-title: Int J Fract
– volume: 20
  start-page: 3025
  year: 2010
  end-page: 3030
  ident: br000055
  article-title: Bioinspired structural material exhibiting post-yield lateral expansion and volumetric energy dissipation during tension
  publication-title: Adv Funct Mater
– year: 1986
  ident: br000330
  article-title: Design sensitivity analysis of structural systems
– volume: 44
  start-page: 77
  year: 2002
  ident: br000260
  article-title: Level set methods and dynamic implicit surfaces
  publication-title: Surfaces
– volume: 13
  start-page: 119
  year: 2006
  end-page: 147
  ident: br000250
  article-title: Structural shape and topology optimization using implicit free boundary parameterization method
  publication-title: Comput Model Eng Sci
– volume: 23
  start-page: 1482
  year: 1992
  end-page: 1518
  ident: br000185
  article-title: Homogenization and two-scale convergence
  publication-title: SIAM J Math Anal
– volume: 31
  start-page: 2313
  year: 1994
  end-page: 2329
  ident: br000110
  article-title: Materials with prescribed constitutive parameters: An inverse homogenization problem
  publication-title: Internat J Solids Structures
– year: 2007
  ident: br000325
  article-title: Numerical analysis and optimization
– volume: 69
  start-page: 719
  year: 1998
  end-page: 738
  ident: br000195
  article-title: A review of homogenization and topology opimization II—analytical and numerical solution of homogenization equations
  publication-title: Comput Struct
– volume: 4
  start-page: 291
  year: 2007
  end-page: 305
  ident: br000305
  article-title: Piecewise constant level set methods for multiphase motion
  publication-title: Int J Numer Anal Model
– volume: 58
  start-page: 140
  year: 2012
  end-page: 153
  ident: br000210
  article-title: Seeing auxetic materials from the mechanics point of view: A structural review on the negative Poisson’s ratio
  publication-title: Comput Mater Sci
– volume: 10
  start-page: 73
  year: 1992
  end-page: 95
  ident: br000215
  article-title: A comparison of homogenization and standard mechanics analyses for periodic porous composites
  publication-title: Comput Mech
– reference: Liu Q. Literature review: materials with negative Poisson’s ratios and potential applications to aerospace and defence. In: DTIC Document, 2006.
– volume: 54
  start-page: 331
  year: 2001
  end-page: 390
  ident: br000095
  article-title: Topology optimization of continuum structures: A review*
  publication-title: Appl Mech Rev
– year: 2003
  ident: br000090
  article-title: Topology optimization: Theory, methods and applications
– volume: 69
  start-page: 1
  year: 2014
  end-page: 10
  ident: br000145
  article-title: Design of manufacturable 3D extremal elastic microstructure
  publication-title: Mech Mater
– volume: 75
  start-page: 1155
  year: 2006
  end-page: 1174
  ident: br000295
  article-title: A variant of the level set method and applications to image segmentation
  publication-title: Math Comp
– volume: 34
  start-page: 59
  year: 2005
  ident: br000125
  article-title: Structural optimization using topological and shape sensitivity via a level set method
  publication-title: Control Cybern
– volume: 112
  year: 2012
  ident: br000070
  article-title: Negative Poisson’s ratio and Piezoelectric anisotropy of tetragonal ferroelectric single crystals
  publication-title: J Appl Phys
– reference: Gao T, Zhang W, Duysinx P. Comparison of volume constraint and mass constraint in structural topology optimization with multiple materials. In: Book of abstracts and proceeding of the 2nd international conference on engineering optimization, 2010.
– volume: 199
  start-page: 2532
  year: 2010
  end-page: 2543
  ident: br000320
  article-title: A level set approach for optimal design of smart energy harvesters
  publication-title: Comput Methods Appl Mech Engrg
– volume: 193
  start-page: 469
  year: 2004
  end-page: 496
  ident: br000280
  article-title: Color level sets: a multi-phase method for structural topology optimization with multiple materials
  publication-title: Comput Methods Appl Mech Engrg
– year: 2005
  ident: br000335
  article-title: Structural sensitivity analysis and optimization 1: Linear systems
– volume: 71
  start-page: 590
  year: 1979
  end-page: 607
  ident: br000175
  article-title: Homogenization in open sets with holes
  publication-title: J Math Anal Appl
– volume: 227
  start-page: 680
  year: 2007
  end-page: 705
  ident: br000255
  article-title: Shape and topology optimization of compliant mechanisms using a parameterization level set method
  publication-title: J Comput Phys
– volume: 79
  start-page: 12
  year: 1988
  end-page: 49
  ident: br000160
  article-title: Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton–Jacobi formulations
  publication-title: J Comput Phys
– volume: 192
  start-page: 227
  year: 2003
  end-page: 246
  ident: br000165
  article-title: A level set method for structural topology optimization
  publication-title: Comput Methods Appl Mech Engrg
– volume: 4
  start-page: 96
  year: 2015
  end-page: 102
  ident: br000150
  article-title: Design of planar isotropic negative Poisson’s ratio structures
  publication-title: Extreme Mech Lett
– year: 2011
  ident: br000205
  article-title: Asymptotic analysis for periodic structures
– volume: 127
  start-page: 941
  year: 2005
  end-page: 956
  ident: br000285
  article-title: Design of multimaterial compliant mechanisms using level-set methods
  publication-title: J Mech Des
– volume: 117
  year: 2015
  ident: br000065
  article-title: Nonlinear elasticity of auxetic open cell foams modeled as continuum solids
  publication-title: J Appl Phys
– volume: 20
  start-page: 351
  year: 1995
  end-page: 368
  ident: br000115
  article-title: Tailoring materials with prescribed elastic properties
  publication-title: Mech Mater
– volume: 11
  start-page: 1186
  year: 1999
  ident: br000135
  article-title: Making negative Poisson’s ratio microstructures by soft lithography
  publication-title: Adv Mater
– volume: 78
  start-page: 379
  year: 2009
  end-page: 402
  ident: br000300
  article-title: Piecewise constant level set method for structural topology optimization
  publication-title: Internat J Numer Methods Engrg
– volume: 246
  start-page: 2011
  year: 2009
  end-page: 2017
  ident: br000015
  article-title: The fracture toughness of composite laminates with a negative Poisson’s ratio
  publication-title: Phys Status Solidi (b)
– volume: 22
  start-page: 361
  year: 2010
  end-page: 366
  ident: br000045
  article-title: Negative Poisson’s ratio behavior induced by an elastic instability
  publication-title: Adv Mater
– volume: 194
  start-page: 363
  year: 2004
  end-page: 393
  ident: br000170
  article-title: Structural optimization using sensitivity analysis and a level-set method
  publication-title: J Comput Phys
– volume: 118
  start-page: 285
  year: 1996
  end-page: 288
  ident: br000020
  article-title: Micromechanical analysis of dynamic behavior of conventional and negative Poisson’s ratio foams
  publication-title: J Eng Mater Technol
– volume: 15
  start-page: 427
  year: 1985
  end-page: 430
  ident: br000080
  article-title: An isotropic three-dimensional structure with Poisson’s ratio=−1
  publication-title: J Elasticity
– volume: 21
  start-page: 90
  year: 2001
  end-page: 108
  ident: br000100
  article-title: Aims, scope, methods, history and unified terminology of computer-aided topology optimization in structural mechanics
  publication-title: Struct Multidiscip Optim
– volume: 57
  start-page: 1177
  year: 2003
  end-page: 1196
  ident: br000240
  article-title: Topology optimization with implicitly function and regularization
  publication-title: Int J Numer Method Eng
– volume: 65
  start-page: 2060
  year: 2006
  end-page: 2090
  ident: br000245
  article-title: Radial basis functions and level set method for structural topology optimization
  publication-title: Int J Numer Method Eng
– volume: 163
  start-page: 489
  year: 2000
  end-page: 528
  ident: br000220
  article-title: Structural boundary design via level set and immersed interface methods
  publication-title: J Comput Phys
– volume: 221
  start-page: 565
  year: 2007
  end-page: 575
  ident: br000030
  article-title: Auxetic materials
  publication-title: Proc Inst Mech Eng G
– volume: 12
  start-page: 617
  year: 2000
  end-page: 628
  ident: br000035
  article-title: Auxetic materials: Functional materials and structures from lateral thinking!
  publication-title: Adv Mater
– volume: 190
  start-page: 6605
  year: 2001
  end-page: 6627
  ident: br000265
  article-title: Design of multiphysics actuators using topology optimization–Part II: Two-material structures
  publication-title: Comput Methods Appl Mech Engrg
– volume: 100
  year: 2008
  ident: br000060
  article-title: Effect of a negative Poisson ratio in the tension of ceramics
  publication-title: Phys Rev Lett
– volume: 27
  start-page: 5523
  year: 2015
  end-page: 5527
  ident: br000155
  article-title: Topology optimized architectures with programmable Poisson’s ratio over large deformations
  publication-title: Adv Mater
– volume: 23
  start-page: 77
  year: 2007
  end-page: 89
  ident: br000130
  article-title: Using strain energy-based prediction of effective elastic properties in topology optimization of material microstructures
  publication-title: Acta Mech Sin
– volume: 171
  start-page: 272
  year: 2001
  end-page: 288
  ident: br000225
  article-title: Level set methods for optimization problems involving geometry and constraints. I. frequencies of a two-density inhomogeneous drum
  publication-title: J Comput Phys
– volume: 67
  start-page: 274
  year: 1997
  end-page: 286
  ident: br000085
  article-title: Negative Poisson’s ratios in composites with star-shaped inclusions: a numerical homogenization approach
  publication-title: Arch Appl Mech
– volume: 25
  start-page: 5044
  year: 2013
  end-page: 5049
  ident: br000050
  article-title: 3D Soft metamaterials with negative Poisson’s ratio
  publication-title: Adv Mater
– volume: 37
  start-page: 321
  year: 2005
  end-page: 337
  ident: br000120
  article-title: A level-set based variational method for design and optimization of heterogeneous objects
  publication-title: Comput-Aided Des
– volume: 69
  start-page: 707
  year: 1998
  end-page: 717
  ident: br000190
  article-title: A review of homogenization and topology optimization I—homogenization theory for media with periodic structure
  publication-title: Comput Struct
– year: 2000
  ident: br000340
  article-title: Nonlinear finite elements for continua and structures
– volume: 235
  start-page: 1038
  year: 1987
  end-page: 1040
  ident: br000025
  article-title: Foam structures with a negative Poisson’s ratio
  publication-title: Science
– volume: 1
  start-page: 178
  year: 2008
  end-page: 191
  ident: br000315
  article-title: A multiple level set method for modeling grain boundary evolution of polycrystalline materials
  publication-title: Interact Multiscale Mech
– volume: 69
  start-page: 739
  year: 1998
  end-page: 756
  ident: br000200
  article-title: A review of homogenization and topology optimization III—topology optimization using optimality criteria
  publication-title: Comput Struct
– volume: 6
  start-page: 373
  year: 2004
  end-page: 395
  ident: br000235
  article-title: PDE-driven level sets, shape sensitivity, and curvature flow for structural topology optimization
  publication-title: Comput Model Eng Sci
– reference: Sanchez-Palencia E, Zaoui A. Homogenization techniques for composite media. In: Homogenization techniques for composite media, 1987.
– volume: 334
  start-page: 1
  year: 2002
  end-page: 6
  ident: br000230
  article-title: A level-set method for shape optimization
  publication-title: C R Acad Sci., Paris Ser I
– reference: Allaire G, Jouve F, Michailidis G. Structural and multi-functional optimization using multiple phases and a level-set method, 2013.
– volume: 23
  start-page: 2650
  year: 2011
  end-page: 2654
  ident: br000140
  article-title: Design of auxetic structures via mathematical optimization
  publication-title: Adv Mater
– volume: 49
  start-page: 739
  year: 1985
  end-page: 745
  ident: br000075
  article-title: Determination of the average characteristics of elastic frameworks
  publication-title: J Appl Math Mech
– volume: 88
  start-page: 774
  year: 2011
  end-page: 796
  ident: br000275
  article-title: A mass constraint formulation for structural topology optimization with multiphase materials
  publication-title: Internat J Numer Methods Engrg
– volume: 5
  start-page: 293
  year: 1993
  end-page: 296
  ident: br000040
  article-title: Advances in negative Poisson’s ratio materials
  publication-title: Adv Mater
– volume: 112
  start-page: 334
  year: 1994
  end-page: 363
  ident: br000310
  article-title: Motion of multiple junctions: A level set approach
  publication-title: J Comput Phys
– volume: 65
  start-page: 2060
  year: 2006
  ident: 10.1016/j.cad.2016.09.009_br000245
  article-title: Radial basis functions and level set method for structural topology optimization
  publication-title: Int J Numer Method Eng
  doi: 10.1002/nme.1536
– volume: 78
  start-page: 379
  year: 2009
  ident: 10.1016/j.cad.2016.09.009_br000300
  article-title: Piecewise constant level set method for structural topology optimization
  publication-title: Internat J Numer Methods Engrg
  doi: 10.1002/nme.2478
– volume: 79
  start-page: 12
  year: 1988
  ident: 10.1016/j.cad.2016.09.009_br000160
  article-title: Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton–Jacobi formulations
  publication-title: J Comput Phys
  doi: 10.1016/0021-9991(88)90002-2
– volume: 118
  start-page: 285
  year: 1996
  ident: 10.1016/j.cad.2016.09.009_br000020
  article-title: Micromechanical analysis of dynamic behavior of conventional and negative Poisson’s ratio foams
  publication-title: J Eng Mater Technol
  doi: 10.1115/1.2806807
– volume: 23
  start-page: 2650
  year: 2011
  ident: 10.1016/j.cad.2016.09.009_br000140
  article-title: Design of auxetic structures via mathematical optimization
  publication-title: Adv Mater
  doi: 10.1002/adma.201004090
– volume: 112
  start-page: 334
  year: 1994
  ident: 10.1016/j.cad.2016.09.009_br000310
  article-title: Motion of multiple junctions: A level set approach
  publication-title: J Comput Phys
  doi: 10.1006/jcph.1994.1105
– volume: 27
  start-page: 5523
  year: 2015
  ident: 10.1016/j.cad.2016.09.009_br000155
  article-title: Topology optimized architectures with programmable Poisson’s ratio over large deformations
  publication-title: Adv Mater
  doi: 10.1002/adma.201502485
– volume: 163
  start-page: 489
  year: 2000
  ident: 10.1016/j.cad.2016.09.009_br000220
  article-title: Structural boundary design via level set and immersed interface methods
  publication-title: J Comput Phys
  doi: 10.1006/jcph.2000.6581
– volume: 6
  start-page: 373
  year: 2004
  ident: 10.1016/j.cad.2016.09.009_br000235
  article-title: PDE-driven level sets, shape sensitivity, and curvature flow for structural topology optimization
  publication-title: Comput Model Eng Sci
– volume: 227
  start-page: 680
  year: 2007
  ident: 10.1016/j.cad.2016.09.009_br000255
  article-title: Shape and topology optimization of compliant mechanisms using a parameterization level set method
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2007.08.011
– volume: 117
  year: 2015
  ident: 10.1016/j.cad.2016.09.009_br000065
  article-title: Nonlinear elasticity of auxetic open cell foams modeled as continuum solids
  publication-title: J Appl Phys
  doi: 10.1063/1.4921101
– volume: 69
  start-page: 1
  year: 2014
  ident: 10.1016/j.cad.2016.09.009_br000145
  article-title: Design of manufacturable 3D extremal elastic microstructure
  publication-title: Mech Mater
  doi: 10.1016/j.mechmat.2013.09.018
– volume: 25
  start-page: 5044
  year: 2013
  ident: 10.1016/j.cad.2016.09.009_br000050
  article-title: 3D Soft metamaterials with negative Poisson’s ratio
  publication-title: Adv Mater
  doi: 10.1002/adma.201301986
– volume: 69
  start-page: 707
  year: 1998
  ident: 10.1016/j.cad.2016.09.009_br000190
  article-title: A review of homogenization and topology optimization I—homogenization theory for media with periodic structure
  publication-title: Comput Struct
  doi: 10.1016/S0045-7949(98)00131-X
– volume: 127
  start-page: 941
  year: 2005
  ident: 10.1016/j.cad.2016.09.009_br000285
  article-title: Design of multimaterial compliant mechanisms using level-set methods
  publication-title: J Mech Des
  doi: 10.1115/1.1909206
– year: 2000
  ident: 10.1016/j.cad.2016.09.009_br000340
– volume: 80
  start-page: 73
  year: 1996
  ident: 10.1016/j.cad.2016.09.009_br000010
  article-title: Fracture toughness of re-entrant foam materials with a negative Poisson’s ratio: experiment and analysis
  publication-title: Int J Fract
  doi: 10.1007/BF00036481
– volume: 334
  start-page: 1
  year: 2002
  ident: 10.1016/j.cad.2016.09.009_br000230
  article-title: A level-set method for shape optimization
  publication-title: C R Acad Sci., Paris Ser I
  doi: 10.1016/S1631-073X(02)02412-3
– ident: 10.1016/j.cad.2016.09.009_br000005
– volume: 171
  start-page: 272
  year: 2001
  ident: 10.1016/j.cad.2016.09.009_br000225
  article-title: Level set methods for optimization problems involving geometry and constraints. I. frequencies of a two-density inhomogeneous drum
  publication-title: J Comput Phys
  doi: 10.1006/jcph.2001.6789
– volume: 75
  start-page: 1155
  year: 2006
  ident: 10.1016/j.cad.2016.09.009_br000295
  article-title: A variant of the level set method and applications to image segmentation
  publication-title: Math Comp
  doi: 10.1090/S0025-5718-06-01835-7
– volume: 20
  start-page: 3025
  year: 2010
  ident: 10.1016/j.cad.2016.09.009_br000055
  article-title: Bioinspired structural material exhibiting post-yield lateral expansion and volumetric energy dissipation during tension
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.201000282
– year: 2003
  ident: 10.1016/j.cad.2016.09.009_br000090
– volume: 112
  year: 2012
  ident: 10.1016/j.cad.2016.09.009_br000070
  article-title: Negative Poisson’s ratio and Piezoelectric anisotropy of tetragonal ferroelectric single crystals
  publication-title: J Appl Phys
  doi: 10.1063/1.4767224
– volume: 194
  start-page: 363
  year: 2004
  ident: 10.1016/j.cad.2016.09.009_br000170
  article-title: Structural optimization using sensitivity analysis and a level-set method
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2003.09.032
– volume: 54
  start-page: 331
  year: 2001
  ident: 10.1016/j.cad.2016.09.009_br000095
  article-title: Topology optimization of continuum structures: A review*
  publication-title: Appl Mech Rev
  doi: 10.1115/1.1388075
– volume: 221
  start-page: 565
  year: 2007
  ident: 10.1016/j.cad.2016.09.009_br000030
  article-title: Auxetic materials
  publication-title: Proc Inst Mech Eng G
  doi: 10.1243/09544100JAERO185
– year: 2011
  ident: 10.1016/j.cad.2016.09.009_br000205
– volume: 31
  start-page: 2313
  year: 1994
  ident: 10.1016/j.cad.2016.09.009_br000110
  article-title: Materials with prescribed constitutive parameters: An inverse homogenization problem
  publication-title: Internat J Solids Structures
  doi: 10.1016/0020-7683(94)90154-6
– volume: 10
  start-page: 73
  year: 1992
  ident: 10.1016/j.cad.2016.09.009_br000215
  article-title: A comparison of homogenization and standard mechanics analyses for periodic porous composites
  publication-title: Comput Mech
  doi: 10.1007/BF00369853
– volume: 44
  start-page: 77
  year: 2002
  ident: 10.1016/j.cad.2016.09.009_br000260
  article-title: Level set methods and dynamic implicit surfaces
  publication-title: Surfaces
– volume: 69
  start-page: 739
  year: 1998
  ident: 10.1016/j.cad.2016.09.009_br000200
  article-title: A review of homogenization and topology optimization III—topology optimization using optimality criteria
  publication-title: Comput Struct
  doi: 10.1016/S0045-7949(98)00133-3
– volume: 34
  start-page: 59
  year: 2005
  ident: 10.1016/j.cad.2016.09.009_br000125
  article-title: Structural optimization using topological and shape sensitivity via a level set method
  publication-title: Control Cybern
– volume: 235
  start-page: 1038
  year: 1987
  ident: 10.1016/j.cad.2016.09.009_br000025
  article-title: Foam structures with a negative Poisson’s ratio
  publication-title: Science
  doi: 10.1126/science.235.4792.1038
– year: 2005
  ident: 10.1016/j.cad.2016.09.009_br000335
– volume: 22
  start-page: 361
  year: 2010
  ident: 10.1016/j.cad.2016.09.009_br000045
  article-title: Negative Poisson’s ratio behavior induced by an elastic instability
  publication-title: Adv Mater
  doi: 10.1002/adma.200901956
– volume: 1
  start-page: 178
  year: 2008
  ident: 10.1016/j.cad.2016.09.009_br000315
  article-title: A multiple level set method for modeling grain boundary evolution of polycrystalline materials
  publication-title: Interact Multiscale Mech
  doi: 10.12989/imm.2008.1.2.191
– year: 1986
  ident: 10.1016/j.cad.2016.09.009_br000330
– volume: 37
  start-page: 321
  year: 2005
  ident: 10.1016/j.cad.2016.09.009_br000120
  article-title: A level-set based variational method for design and optimization of heterogeneous objects
  publication-title: Comput-Aided Des
  doi: 10.1016/j.cad.2004.03.007
– volume: 12
  start-page: 617
  year: 2000
  ident: 10.1016/j.cad.2016.09.009_br000035
  article-title: Auxetic materials: Functional materials and structures from lateral thinking!
  publication-title: Adv Mater
  doi: 10.1002/(SICI)1521-4095(200005)12:9<617::AID-ADMA617>3.0.CO;2-3
– volume: 57
  start-page: 1177
  year: 2003
  ident: 10.1016/j.cad.2016.09.009_br000240
  article-title: Topology optimization with implicitly function and regularization
  publication-title: Int J Numer Method Eng
  doi: 10.1002/nme.824
– volume: 49
  start-page: 739
  year: 1985
  ident: 10.1016/j.cad.2016.09.009_br000075
  article-title: Determination of the average characteristics of elastic frameworks
  publication-title: J Appl Math Mech
  doi: 10.1016/0021-8928(85)90011-5
– year: 2007
  ident: 10.1016/j.cad.2016.09.009_br000325
– volume: 67
  start-page: 274
  year: 1997
  ident: 10.1016/j.cad.2016.09.009_br000085
  article-title: Negative Poisson’s ratios in composites with star-shaped inclusions: a numerical homogenization approach
  publication-title: Arch Appl Mech
  doi: 10.1007/s004190050117
– volume: 69
  start-page: 719
  year: 1998
  ident: 10.1016/j.cad.2016.09.009_br000195
  article-title: A review of homogenization and topology opimization II—analytical and numerical solution of homogenization equations
  publication-title: Comput Struct
  doi: 10.1016/S0045-7949(98)00132-1
– volume: 11
  start-page: 1186
  year: 1999
  ident: 10.1016/j.cad.2016.09.009_br000135
  article-title: Making negative Poisson’s ratio microstructures by soft lithography
  publication-title: Adv Mater
  doi: 10.1002/(SICI)1521-4095(199910)11:14<1186::AID-ADMA1186>3.0.CO;2-K
– volume: 4
  start-page: 96
  year: 2015
  ident: 10.1016/j.cad.2016.09.009_br000150
  article-title: Design of planar isotropic negative Poisson’s ratio structures
  publication-title: Extreme Mech Lett
  doi: 10.1016/j.eml.2015.05.002
– volume: 20
  start-page: 351
  year: 1995
  ident: 10.1016/j.cad.2016.09.009_br000115
  article-title: Tailoring materials with prescribed elastic properties
  publication-title: Mech Mater
  doi: 10.1016/0167-6636(94)00069-7
– volume: 4
  start-page: 291
  year: 2007
  ident: 10.1016/j.cad.2016.09.009_br000305
  article-title: Piecewise constant level set methods for multiphase motion
  publication-title: Int J Numer Anal Model
– volume: 23
  start-page: 1482
  year: 1992
  ident: 10.1016/j.cad.2016.09.009_br000185
  article-title: Homogenization and two-scale convergence
  publication-title: SIAM J Math Anal
  doi: 10.1137/0523084
– volume: 193
  start-page: 469
  year: 2004
  ident: 10.1016/j.cad.2016.09.009_br000280
  article-title: Color level sets: a multi-phase method for structural topology optimization with multiple materials
  publication-title: Comput Methods Appl Mech Engrg
  doi: 10.1016/j.cma.2003.10.008
– volume: 58
  start-page: 140
  year: 2012
  ident: 10.1016/j.cad.2016.09.009_br000210
  article-title: Seeing auxetic materials from the mechanics point of view: A structural review on the negative Poisson’s ratio
  publication-title: Comput Mater Sci
  doi: 10.1016/j.commatsci.2012.02.012
– volume: 88
  start-page: 774
  year: 2011
  ident: 10.1016/j.cad.2016.09.009_br000275
  article-title: A mass constraint formulation for structural topology optimization with multiphase materials
  publication-title: Internat J Numer Methods Engrg
  doi: 10.1002/nme.3197
– volume: 100
  year: 2008
  ident: 10.1016/j.cad.2016.09.009_br000060
  article-title: Effect of a negative Poisson ratio in the tension of ceramics
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.100.245502
– volume: 71
  start-page: 590
  year: 1979
  ident: 10.1016/j.cad.2016.09.009_br000175
  article-title: Homogenization in open sets with holes
  publication-title: J Math Anal Appl
  doi: 10.1016/0022-247X(79)90211-7
– volume: 15
  start-page: 427
  year: 1985
  ident: 10.1016/j.cad.2016.09.009_br000080
  article-title: An isotropic three-dimensional structure with Poisson’s ratio=−1
  publication-title: J Elasticity
  doi: 10.1007/BF00042531
– volume: 21
  start-page: 90
  year: 2001
  ident: 10.1016/j.cad.2016.09.009_br000100
  article-title: Aims, scope, methods, history and unified terminology of computer-aided topology optimization in structural mechanics
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s001580050174
– volume: 13
  start-page: 119
  year: 2006
  ident: 10.1016/j.cad.2016.09.009_br000250
  article-title: Structural shape and topology optimization using implicit free boundary parameterization method
  publication-title: Comput Model Eng Sci
– volume: 23
  start-page: 77
  year: 2007
  ident: 10.1016/j.cad.2016.09.009_br000130
  article-title: Using strain energy-based prediction of effective elastic properties in topology optimization of material microstructures
  publication-title: Acta Mech Sin
  doi: 10.1007/s10409-006-0045-2
– ident: 10.1016/j.cad.2016.09.009_br000180
  doi: 10.1007/3-540-17616-0
– volume: 190
  start-page: 6605
  year: 2001
  ident: 10.1016/j.cad.2016.09.009_br000265
  article-title: Design of multiphysics actuators using topology optimization–Part II: Two-material structures
  publication-title: Comput Methods Appl Mech Engrg
  doi: 10.1016/S0045-7825(01)00252-3
– volume: 192
  start-page: 227
  year: 2003
  ident: 10.1016/j.cad.2016.09.009_br000165
  article-title: A level set method for structural topology optimization
  publication-title: Comput Methods Appl Mech Engrg
  doi: 10.1016/S0045-7825(02)00559-5
– ident: 10.1016/j.cad.2016.09.009_br000270
– volume: 199
  start-page: 2532
  year: 2010
  ident: 10.1016/j.cad.2016.09.009_br000320
  article-title: A level set approach for optimal design of smart energy harvesters
  publication-title: Comput Methods Appl Mech Engrg
  doi: 10.1016/j.cma.2010.04.008
– volume: 246
  start-page: 2011
  year: 2009
  ident: 10.1016/j.cad.2016.09.009_br000015
  article-title: The fracture toughness of composite laminates with a negative Poisson’s ratio
  publication-title: Phys Status Solidi (b)
  doi: 10.1002/pssb.200982031
– volume: 5
  start-page: 293
  year: 1993
  ident: 10.1016/j.cad.2016.09.009_br000040
  article-title: Advances in negative Poisson’s ratio materials
  publication-title: Adv Mater
  doi: 10.1002/adma.19930050416
– volume: 48
  start-page: 1031
  year: 2013
  ident: 10.1016/j.cad.2016.09.009_br000105
  article-title: Topology optimization approaches
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-013-0978-6
– ident: 10.1016/j.cad.2016.09.009_br000290
  doi: 10.7712/seeccm-2013.2009
SSID ssj0002139
Score 2.5869884
Snippet Metamaterials are defined as a family of rationally designed artificial materials which can provide extraordinary effective properties compared with their...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 15
SubjectTerms Boundary conditions
Design
Dirichlet problem
Elastic properties
Finite element method
Functionals
High resolution
Metamaterial
Metamaterials
Multi-material
Negative Poisson’s ratio
Properties (attributes)
Reconciled level set method
Steepest descent method
Strain
Three dimensional printing
Topology optimization
Title Topology optimization of multi-material negative Poisson’s ratio metamaterials using a reconciled level set method
URI https://dx.doi.org/10.1016/j.cad.2016.09.009
https://www.proquest.com/docview/1920753197
Volume 83
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iFz2IT3yTgyehmrZp0xyXRVkVxcMueAt5Loq24taDF_Fv-Pf8JU7S1heyB68lKelkMvOFfvMNQvsmk5yq1EQARmVEdaGiwsJx5zYn1ClA2EGO4eIyH4zo2XV2PYP6XS2Mp1W2sb-J6SFat0-OWmsePdzc-BpfuEpQQAx5GkRlfAU7Zd7LD1--aB5JnDYQGBbgR3d_NgPHS0svFhrnQerUcxL_zk2_onRIPSdLaLHFjLjXLGsZzdhyBS18UxJcRfWwaXbwjCuIAfdtcSWuHA6MwQhwaXA1XNpxkPrGVxWYvCrfX98mOHgBvre17MZNsCfEj7HE4casIXYYfOcJRnhia9z0nV5Do5PjYX8QtQ0VIp2yoo4khY-lJuZOJTZ2NLEsswU3xGWMGCMTYohMVUKci3MuFVyuNCvSwqTScS6TdB3NllVpNxC2zFgG519yZuGOlRWkoJRrpaV2JFZsE5HOlEK3auO-6cWd6GhltwKsL7z1BeECrL-JDj6nPDRSG9MG025_xA9_EZAKpk3b6fZStId1IgDkAnCCWMS2_vfWbTSf-GwfyNw7aLZ-fLK7gFVqtReccQ_N9U7PB5cft6fq2w
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV29Tt4wFLUQHaBDVWhRaSl4aBekgJM4cTwwVC3o41cMHxKb8S-iggQ1qRAL4jV4Dt6oT9Jrx-FPFUMl1siJkmv73HOV43MR-mIKyanKTQJkVCZUVyqpLGx3bktCnQKGHewYdvfK0QHdOiwOJ9DtcBbGyyoj9veYHtA6XlmN0Vw9PznxZ3yhlKDAGMo8mMpEZeW2vbyAuq1d2_wBk_w1yzbWx99HSWwtkOicVV0iKSQ-alLuVGZTRzPLCltxQ1zBiDEyI4bIXGXEubTkUkGZoVmVVyaXjnPp3Q4A919RgAvfNmHl6l5XkqV5z7nhi_3rDb9Sg6hMS-9OmpbBW9WLIP-dDJ-khZDrNt6iN5Gk4m99HGbQhK1n0esH1oXvUDfuuytc4gZA5yye5sSNw0GimAARDmsb1_Y4eIvj_QbmuKn_XN-0OCw7fGY7OYxrsVfgH2OJQ4muAawMPvWKJtzaDveNrt-jgxcJ8xyarJvafkDYMmMZAI7kzEJRV1SkopRrpaV2JFVsHpEhlEJHe3PfZeNUDDq2nwKiL3z0BeECoj-Plu9uOe-9PZ4bTIf5EY8WqIDc89xtC8NciogOrQBWDUwNwI99_L-nLqGp0Xh3R-xs7m1_QtOZpxpBSb6AJrtfv-1nIEqdWgwLE6Ojl94JfwFgTCak
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Topology+optimization+of+multi-material+negative+Poisson%E2%80%99s+ratio+metamaterials+using+a+reconciled+level+set+method&rft.jtitle=Computer+aided+design&rft.au=Vogiatzis%2C+Panagiotis&rft.au=Chen%2C+Shikui&rft.au=Wang%2C+Xiao&rft.au=Li%2C+Tiantian&rft.date=2017-02-01&rft.pub=Elsevier+BV&rft.issn=0010-4485&rft.eissn=1879-2685&rft.volume=83&rft.spage=15&rft_id=info:doi/10.1016%2Fj.cad.2016.09.009&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4485&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4485&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4485&client=summon