Reducing uncertainty accumulation in wind-integrated electrical grid
Implementing microgrids has become a major trend in the electric power industry to move toward energy sustainability. One approach for implementing microgrids is to introduce renewable energy. With the inclusion of renewable energy in a microgrid, an appropriate energy storage capacity is needed to...
Saved in:
Published in | Energy (Oxford) Vol. 141; pp. 1072 - 1083 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
15.12.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Implementing microgrids has become a major trend in the electric power industry to move toward energy sustainability. One approach for implementing microgrids is to introduce renewable energy. With the inclusion of renewable energy in a microgrid, an appropriate energy storage capacity is needed to cope with uncertainty variation resulting from renewable energy generation fluctuation. This study proposes a probability-based dispatch strategy for determining energy storage capacity with consideration of wind and load fluctuation. The wind and load models are constructed based on their trends and uncertainty variations. The wavelet packet analysis method and the moving average technique are used to extract the trends of wind energy and load. Log-normal and extreme value distributions are used to model the uncertainties from wind speed and load. This research improves an existing method with reduced uncertainty accumulation, resulting in a more suitable battery size. To validate the proposed method, a real-time operating simulation is used to observe the behavior of a wind-integrated electrical grid. Results show that the proposed method can reduce the effects of uncertainty variation caused by wind and load. A smaller energy storage capacity with higher reliability is also obtained through optimization.
•Consider uncertainties in generation and usage of power.•Provide a power dispatch strategy to account for uncertainty.•Obtain the optimal equipment size without uncertainty accumulation.•Obtain at least 98.9% operational reliability. |
---|---|
AbstractList | Implementing microgrids has become a major trend in the electric power industry to move toward energy sustainability. One approach for implementing microgrids is to introduce renewable energy. With the inclusion of renewable energy in a microgrid, an appropriate energy storage capacity is needed to cope with uncertainty variation resulting from renewable energy generation fluctuation. This study proposes a probability-based dispatch strategy for determining energy storage capacity with consideration of wind and load fluctuation. The wind and load models are constructed based on their trends and uncertainty variations. The wavelet packet analysis method and the moving average technique are used to extract the trends of wind energy and load. Log-normal and extreme value distributions are used to model the uncertainties from wind speed and load. This research improves an existing method with reduced uncertainty accumulation, resulting in a more suitable battery size. To validate the proposed method, a real-time operating simulation is used to observe the behavior of a wind-integrated electrical grid. Results show that the proposed method can reduce the effects of uncertainty variation caused by wind and load. A smaller energy storage capacity with higher reliability is also obtained through optimization.
•Consider uncertainties in generation and usage of power.•Provide a power dispatch strategy to account for uncertainty.•Obtain the optimal equipment size without uncertainty accumulation.•Obtain at least 98.9% operational reliability. Implementing microgrids has become a major trend in the electric power industry to move toward energy sustainability. One approach for implementing microgrids is to introduce renewable energy. With the inclusion of renewable energy in a microgrid, an appropriate energy storage capacity is needed to cope with uncertainty variation resulting from renewable energy generation fluctuation. This study proposes a probability-based dispatch strategy for determining energy storage capacity with consideration of wind and load fluctuation. The wind and load models are constructed based on their trends and uncertainty variations. The wavelet packet analysis method and the moving average technique are used to extract the trends of wind energy and load. Log-normal and extreme value distributions are used to model the uncertainties from wind speed and load. This research improves an existing method with reduced uncertainty accumulation, resulting in a more suitable battery size. To validate the proposed method, a real-time operating simulation is used to observe the behavior of a wind-integrated electrical grid. Results show that the proposed method can reduce the effects of uncertainty variation caused by wind and load. A smaller energy storage capacity with higher reliability is also obtained through optimization. |
Author | Chan, Kuei-Yuan Hung, Tzu-Chieh Chong, John |
Author_xml | – sequence: 1 givenname: Tzu-Chieh surname: Hung fullname: Hung, Tzu-Chieh – sequence: 2 givenname: John surname: Chong fullname: Chong, John – sequence: 3 givenname: Kuei-Yuan surname: Chan fullname: Chan, Kuei-Yuan email: chanky@ntu.edu.tw |
BookMark | eNqFkDFPwzAQhT0UibbwDxgysiTYSRonDEioUECqhIS6W875ErlKnWI7oP57HMLEANNJ79473fsWZGZ6g4RcMZowyoqbfYIGbXtKUsp4kBJK2YzMaVbQeJXn6TlZOLenlK7KqpqThzdUA2jTRoMBtF5q40-RBBgOQye97k2kTfSpjYrDBlsrPaoIOwRvNcguaq1WF-SskZ3Dy5-5JLvN4279HG9fn17W99sYMl76WGYNhbQqqpxDg4rxXPK0zhjItKxZeI4VoKRiqgwGpvJGSb7iDIqqBpnV2ZJcT2ePtn8f0Hlx0A6w66TBfnAiHVtVnNE8WG8nK9jeOYuNAO2_63grdScYFSMtsRcTLTHSGtVAK4TzX-Gj1QdpT__F7qYYBgQfGq1woDFQVdoGXEL1-u8DX-Hoi-U |
CitedBy_id | crossref_primary_10_1016_j_enbuild_2025_115335 crossref_primary_10_1109_ACCESS_2019_2955112 crossref_primary_10_1016_j_energy_2020_118434 crossref_primary_10_1016_j_energy_2022_124188 crossref_primary_10_3390_en11071749 crossref_primary_10_3390_app8101900 crossref_primary_10_1109_ACCESS_2020_3029273 crossref_primary_10_3390_en11092278 |
Cites_doi | 10.1049/iet-rpg.2009.0107 10.1109/TSTE.2016.2599074 10.1016/j.apcbee.2013.05.078 10.1016/j.enconman.2016.06.053 10.1016/j.renene.2015.07.021 10.1016/j.apenergy.2010.03.027 10.1016/S0165-1684(02)00318-3 10.1016/j.enbuild.2015.11.045 10.1016/j.renene.2006.03.001 10.1260/030952408786411976 10.1016/j.renene.2015.02.023 |
ContentType | Journal Article |
Copyright | 2017 Elsevier Ltd |
Copyright_xml | – notice: 2017 Elsevier Ltd |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.energy.2017.10.001 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Environmental Sciences |
EndPage | 1083 |
ExternalDocumentID | 10_1016_j_energy_2017_10_001 S0360544217316705 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SES SPC SPCBC SSR SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 6TJ AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AHHHB AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SEW SSH WUQ 7S9 L.6 |
ID | FETCH-LOGICAL-c378t-a3f0c296947cfed174a72b31ca28b154416cdad1d847c1d4fda7571c69bca3b3 |
IEDL.DBID | .~1 |
ISSN | 0360-5442 |
IngestDate | Thu Jul 10 19:22:17 EDT 2025 Tue Jul 01 00:53:12 EDT 2025 Thu Apr 24 22:54:41 EDT 2025 Fri Feb 23 02:33:55 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Electricity demand forecasting Wind energy forecasting Energy storage sizing Microgrid Design under uncertainty Power dispatch |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c378t-a3f0c296947cfed174a72b31ca28b154416cdad1d847c1d4fda7571c69bca3b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2000597104 |
PQPubID | 24069 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2000597104 crossref_citationtrail_10_1016_j_energy_2017_10_001 crossref_primary_10_1016_j_energy_2017_10_001 elsevier_sciencedirect_doi_10_1016_j_energy_2017_10_001 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-12-15 |
PublicationDateYYYYMMDD | 2017-12-15 |
PublicationDate_xml | – month: 12 year: 2017 text: 2017-12-15 day: 15 |
PublicationDecade | 2010 |
PublicationTitle | Energy (Oxford) |
PublicationYear | 2017 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Mallick, Khraief, Shahbaz, Loganathan (bib9) 2016 Peik-herfeh, Seifi, Sheikh-El-Eslami (bib13) 2014; 24 Dutta, Sharma (bib15) 2012 Brekken, Yokochi, von Jouanne, Yen, Hapke, Halamay (bib18) 2011; 2 Brockwell, Davis (bib24) 2002 Ahwide, Spena, El-Kafrawy (bib3) 2013; 5 Chadwick (bib1) 2013 Baker, Hug, Li (bib19) Jan 2017; 8 Li, Gao, Cheng, Liang (bib12) 2014 Taiwan power company. Dinler, Okumus (bib5) 2016; 123 Al Buflasa, Infield, Watson, Thomson (bib6) 2008; 32 Hwang, Chae, Horesh, Lee (bib10) 2016; 111 Whitefoot, Mechtenberg, Peters, Papalambros (bib21) 2011 Enercon product overview. Roy, Kedare, Bandyopadhyay (bib16) 2010; 87 2015. Hung, Chan (bib22) 2015; 137 Mohseni-Bonab, Rabiee, Mohammadi-Ivatloo (bib11) 2016; 85 Nowicka-Zagrajek, Weron (bib7) 2002; 82 Safdarian, Fotuhi-Firuzabad, Lehtonen, Aghazadeh, Ozdemir (bib8) 2013 Chen, Li, Shi, Luo, Zhan, Shi (bib17) 2012 Lu, Schroeder, Kim, Shanbhag (bib23) 2010; 132 Mc Garrigle, Leahy (bib4) 2015; 80 Yuan, Li, Wang (bib14) 2011; 5 Bloom, Townsend, Palchak, Novacheck, King, Barrows (bib20) August 2016 Nigim, Parker (bib2) 2007; 32 Department of statistics, ministry of the interior. Al Buflasa (10.1016/j.energy.2017.10.001_bib6) 2008; 32 Brockwell (10.1016/j.energy.2017.10.001_bib24) 2002 Whitefoot (10.1016/j.energy.2017.10.001_bib21) 2011 Chadwick (10.1016/j.energy.2017.10.001_bib1) 2013 Chen (10.1016/j.energy.2017.10.001_bib17) 2012 Baker (10.1016/j.energy.2017.10.001_bib19) 2017; 8 Roy (10.1016/j.energy.2017.10.001_bib16) 2010; 87 Bloom (10.1016/j.energy.2017.10.001_bib20) 2016 Safdarian (10.1016/j.energy.2017.10.001_bib8) 2013 Nowicka-Zagrajek (10.1016/j.energy.2017.10.001_bib7) 2002; 82 Brekken (10.1016/j.energy.2017.10.001_bib18) 2011; 2 Yuan (10.1016/j.energy.2017.10.001_bib14) 2011; 5 Dutta (10.1016/j.energy.2017.10.001_bib15) 2012 Dinler (10.1016/j.energy.2017.10.001_bib5) 2016; 123 Mc Garrigle (10.1016/j.energy.2017.10.001_bib4) 2015; 80 Li (10.1016/j.energy.2017.10.001_bib12) 2014 Lu (10.1016/j.energy.2017.10.001_bib23) 2010; 132 Nigim (10.1016/j.energy.2017.10.001_bib2) 2007; 32 Peik-herfeh (10.1016/j.energy.2017.10.001_bib13) 2014; 24 Hung (10.1016/j.energy.2017.10.001_bib22) 2015; 137 Hwang (10.1016/j.energy.2017.10.001_bib10) 2016; 111 Mallick (10.1016/j.energy.2017.10.001_bib9) 2016 10.1016/j.energy.2017.10.001_bib27 10.1016/j.energy.2017.10.001_bib26 10.1016/j.energy.2017.10.001_bib25 Ahwide (10.1016/j.energy.2017.10.001_bib3) 2013; 5 Mohseni-Bonab (10.1016/j.energy.2017.10.001_bib11) 2016; 85 |
References_xml | – start-page: 3303 year: 2014 end-page: 3308 ident: bib12 article-title: Two step optimal dispatch based on multiple scenarios technique for active distribution system with the uncertainties of intermittent distributed generation and load considered publication-title: Power system technology (POWERCON), 2014 international conference – volume: 137 start-page: 1 year: 2015 end-page: 10 ident: bib22 article-title: Component size optimization of a wind-integrated microgrid system with dispatch strategy and resource uncertainty publication-title: J Mech Des – volume: 2 start-page: 69 year: 2011 end-page: 77 ident: bib18 article-title: Optimal energy storage sizing and control for wind power applications publication-title: IEEE Trans Sustain Energy – volume: 82 start-page: 1903 year: 2002 end-page: 1915 ident: bib7 article-title: Modeling electricity loads in California: ARMA models with hyperbolic noise publication-title: Signal Process – volume: 85 start-page: 598 year: 2016 end-page: 609 ident: bib11 article-title: Voltage stability constrained multi-objective optimal reactive power dispatch under load and wind power uncertainties: a stochastic approach publication-title: Renew Energy – volume: 32 start-page: 638 year: 2007 end-page: 648 ident: bib2 article-title: Heuristic and probabilistic wind power availability estimation procedures: improved tools for technology and site selection publication-title: Renew Energy – volume: 132 start-page: 101007 year: 2010 ident: bib23 article-title: Hybrid power/energy generation through multidisciplinary and multilevel design optimization with complementarity constraints publication-title: J Mech Des – volume: 87 start-page: 2712 year: 2010 end-page: 2727 ident: bib16 article-title: Optimum sizing of wind-battery systems incorporating resource uncertainty publication-title: Appl Energy – year: 2002 ident: bib24 article-title: Introduction to time series and forecasting – reference: Taiwan power company. – start-page: 122 year: 2013 end-page: 126 ident: bib8 article-title: A new approach for long-term electricity load forecasting publication-title: Electrical and Electronics Engineering (ELECO), 2013 8th international conference – reference: , 2015. – volume: 5 start-page: 451 year: 2013 end-page: 467 ident: bib3 article-title: Estimation of electricity generation in Libya using processing technology of wind available data: the case study in derna publication-title: APCBEE Proced – volume: 24 start-page: 43 year: 2014 end-page: 63 ident: bib13 article-title: Two-stage approach for optimal dispatch of distributed energy resources in distribution networks considering virtual power plant concept publication-title: Electr Power Syst Res – volume: 123 start-page: 362 year: 2016 end-page: 371 ident: bib5 article-title: Current status of wind energy forecasting and a hybrid method for hourly predictions publication-title: Energy Convers Manag – volume: 5 start-page: 194 year: 2011 end-page: 201 ident: bib14 article-title: Optimal operation strategy of energy storage unit in wind power integration based on stochastic programming publication-title: IET Renew Power Gener – reference: Enercon product overview. – start-page: 1 year: 2012 end-page: 7 ident: bib15 article-title: Optimal storage sizing for integrating wind and load forecast uncertainties publication-title: Innovative smart grid technologies (ISGT), 2012 IEEE PES – reference: Department of statistics, ministry of the interior. – start-page: 341 year: 2011 end-page: 350 ident: bib21 article-title: Optimal component sizing and forward-looking dispatch of an electrical microgrid for energy storage planning publication-title: Proceedings of the ASME 2011 international design engineering technical conferences & computers and information in engineering conference – year: August 2016 ident: bib20 article-title: Eastern renewable generation integration study – volume: 32 start-page: 439 year: 2008 end-page: 448 ident: bib6 article-title: Wind resource assessment for the Kingdom of Bahrain publication-title: Wind Eng – volume: 80 start-page: 517 year: 2015 end-page: 524 ident: bib4 article-title: Quantifying the value of improved wind energy forecasts in a pool-based electricity market publication-title: Renew Energy – start-page: 65 year: 2013 end-page: 71 ident: bib1 article-title: How a smarter grid could have prevented the 2003 U.S. cascading blackout publication-title: 2013 IEEE power and energy conference at Illinois (PECI) – start-page: 382 year: 2012 end-page: 387 ident: bib17 article-title: Energy storage sizing for dispatchability of wind farm publication-title: Environment and Electrical Engineering (EEEIC), 2012 11th international conference – year: 2016 ident: bib9 article-title: Estimation of electricity demand function for Algeria: revisit of time series analysis publication-title: Renew Sustain Energy Rev – volume: 111 start-page: 184 year: 2016 end-page: 194 ident: bib10 article-title: Artificial neural network model for forecasting sub-hourly electricity usage in commercial buildings publication-title: Energy Build – volume: 8 start-page: 331 year: Jan 2017 end-page: 340 ident: bib19 article-title: Energy storage sizing taking into account forecast uncertainties and receding horizon operation publication-title: IEEE Trans Sustain Energy – volume: 5 start-page: 194 issue: 2 year: 2011 ident: 10.1016/j.energy.2017.10.001_bib14 article-title: Optimal operation strategy of energy storage unit in wind power integration based on stochastic programming publication-title: IET Renew Power Gener doi: 10.1049/iet-rpg.2009.0107 – volume: 8 start-page: 331 issue: 1 year: 2017 ident: 10.1016/j.energy.2017.10.001_bib19 article-title: Energy storage sizing taking into account forecast uncertainties and receding horizon operation publication-title: IEEE Trans Sustain Energy doi: 10.1109/TSTE.2016.2599074 – start-page: 341 year: 2011 ident: 10.1016/j.energy.2017.10.001_bib21 article-title: Optimal component sizing and forward-looking dispatch of an electrical microgrid for energy storage planning – year: 2016 ident: 10.1016/j.energy.2017.10.001_bib9 article-title: Estimation of electricity demand function for Algeria: revisit of time series analysis publication-title: Renew Sustain Energy Rev – volume: 5 start-page: 451 issue: January year: 2013 ident: 10.1016/j.energy.2017.10.001_bib3 article-title: Estimation of electricity generation in Libya using processing technology of wind available data: the case study in derna publication-title: APCBEE Proced doi: 10.1016/j.apcbee.2013.05.078 – volume: 123 start-page: 362 year: 2016 ident: 10.1016/j.energy.2017.10.001_bib5 article-title: Current status of wind energy forecasting and a hybrid method for hourly predictions publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2016.06.053 – volume: 85 start-page: 598 year: 2016 ident: 10.1016/j.energy.2017.10.001_bib11 article-title: Voltage stability constrained multi-objective optimal reactive power dispatch under load and wind power uncertainties: a stochastic approach publication-title: Renew Energy doi: 10.1016/j.renene.2015.07.021 – year: 2016 ident: 10.1016/j.energy.2017.10.001_bib20 – ident: 10.1016/j.energy.2017.10.001_bib26 – start-page: 3303 year: 2014 ident: 10.1016/j.energy.2017.10.001_bib12 article-title: Two step optimal dispatch based on multiple scenarios technique for active distribution system with the uncertainties of intermittent distributed generation and load considered – start-page: 382 year: 2012 ident: 10.1016/j.energy.2017.10.001_bib17 article-title: Energy storage sizing for dispatchability of wind farm – volume: 87 start-page: 2712 issue: 8 year: 2010 ident: 10.1016/j.energy.2017.10.001_bib16 article-title: Optimum sizing of wind-battery systems incorporating resource uncertainty publication-title: Appl Energy doi: 10.1016/j.apenergy.2010.03.027 – volume: 82 start-page: 1903 issue: 12 year: 2002 ident: 10.1016/j.energy.2017.10.001_bib7 article-title: Modeling electricity loads in California: ARMA models with hyperbolic noise publication-title: Signal Process doi: 10.1016/S0165-1684(02)00318-3 – volume: 2 start-page: 69 issue: 1 year: 2011 ident: 10.1016/j.energy.2017.10.001_bib18 article-title: Optimal energy storage sizing and control for wind power applications publication-title: IEEE Trans Sustain Energy – year: 2002 ident: 10.1016/j.energy.2017.10.001_bib24 – volume: 111 start-page: 184 year: 2016 ident: 10.1016/j.energy.2017.10.001_bib10 article-title: Artificial neural network model for forecasting sub-hourly electricity usage in commercial buildings publication-title: Energy Build doi: 10.1016/j.enbuild.2015.11.045 – volume: 24 start-page: 43 issue: 1 year: 2014 ident: 10.1016/j.energy.2017.10.001_bib13 article-title: Two-stage approach for optimal dispatch of distributed energy resources in distribution networks considering virtual power plant concept publication-title: Electr Power Syst Res – volume: 32 start-page: 638 issue: 4 year: 2007 ident: 10.1016/j.energy.2017.10.001_bib2 article-title: Heuristic and probabilistic wind power availability estimation procedures: improved tools for technology and site selection publication-title: Renew Energy doi: 10.1016/j.renene.2006.03.001 – volume: 32 start-page: 439 issue: 5 year: 2008 ident: 10.1016/j.energy.2017.10.001_bib6 article-title: Wind resource assessment for the Kingdom of Bahrain publication-title: Wind Eng doi: 10.1260/030952408786411976 – volume: 132 start-page: 101007 issue: 10 year: 2010 ident: 10.1016/j.energy.2017.10.001_bib23 article-title: Hybrid power/energy generation through multidisciplinary and multilevel design optimization with complementarity constraints publication-title: J Mech Des – start-page: 65 year: 2013 ident: 10.1016/j.energy.2017.10.001_bib1 article-title: How a smarter grid could have prevented the 2003 U.S. cascading blackout – volume: 137 start-page: 1 issue: 4 year: 2015 ident: 10.1016/j.energy.2017.10.001_bib22 article-title: Component size optimization of a wind-integrated microgrid system with dispatch strategy and resource uncertainty publication-title: J Mech Des – ident: 10.1016/j.energy.2017.10.001_bib25 – volume: 80 start-page: 517 year: 2015 ident: 10.1016/j.energy.2017.10.001_bib4 article-title: Quantifying the value of improved wind energy forecasts in a pool-based electricity market publication-title: Renew Energy doi: 10.1016/j.renene.2015.02.023 – ident: 10.1016/j.energy.2017.10.001_bib27 – start-page: 122 year: 2013 ident: 10.1016/j.energy.2017.10.001_bib8 article-title: A new approach for long-term electricity load forecasting – start-page: 1 year: 2012 ident: 10.1016/j.energy.2017.10.001_bib15 article-title: Optimal storage sizing for integrating wind and load forecast uncertainties |
SSID | ssj0005899 |
Score | 2.2732503 |
Snippet | Implementing microgrids has become a major trend in the electric power industry to move toward energy sustainability. One approach for implementing microgrids... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1072 |
SubjectTerms | batteries Design under uncertainty electric power industry Electricity demand forecasting energy Energy storage sizing Microgrid Power dispatch sustainable development uncertainty wavelet Wind energy forecasting wind power wind speed |
Title | Reducing uncertainty accumulation in wind-integrated electrical grid |
URI | https://dx.doi.org/10.1016/j.energy.2017.10.001 https://www.proquest.com/docview/2000597104 |
Volume | 141 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5DD3oRnQ7nj1HBa7amTZvmOObGVNxBJ-xW0rSViXZj6xAv_u2-l7bzB8jAY8NLKS_Je1_o-95HyKUnU1973KcoSEl5xCEOateltp1IJwpkyjxkI9-N_OEjv5l4kxrpVVwYLKssY38R0020Lkc6pTc78-m08wCxF_AGB0yNbG7Tx5Rzgbu8_fGtzCMwGpJoTNG6os-ZGq_E8OuwwEu0TY0X-ys9_QrUJvsM9sleCRutbvFlB6SWZHWyU7GKl3XS6H8x1sCwPLLLQ3J1j81ZIUFZkMGK___5u6W0Xr2Wyl3WNLPe4GpO160jYqtQx8EFtJ4W0_iIjAf9cW9IS-kEql0R5FS5qa0d6UsudJrEcO1QwolcppUTREZ3zNexilkMyUmzmKexEp5g2peRVm7kNshWNsuSY2IFSFYFTCgYZ1xrR4lIQoaDg-tI7iu7SdzKYaEu24qjusVLWNWPPYeFm0N0M46Cm5uErmfNi7YaG-xFtRbhj-0RQuTfMPOiWroQTg7-DlFZMlstUYATsCUgLH7y77efkl18wvoW5p2RrXyxSs4BpeRRy2zDFtnuXt8OR59rm-as |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEB1Ke9CLaFX8NoLXtd1kk02Opbak9uOgFbyFzSaRiqZiW8R_70yyqSiI4HWzG8LM7swseW8ewKUbZJ52hcdIkJKJWGAc1I7D2u00sGM_yLhLbOTxxAvvxc2D-1CDbsWFIVilif1lTC-itRlpGWu2Xmez1h3GXqw3BNbUxOamPqYN6k7l1qHRGQzDyRfSwy9kJGk-owUVg66AeaUFxY4wXvKqgHnx3zLUj1hdJKD-NmyZytHqlB-3A7U0b8JGRSxeNGG_90Vaw4nm1C524fqW-rNijrIwiZUQgOWHpbRevRjxLmuWW-94O2fr7hGJVQrkkA-tx7dZsgfTfm_aDZlRT2Dakf6SKSdrazvwAiF1liZ481DSjh2ule3HhfSYpxOV8ATzk-aJyBIlXcm1F8RaObGzD_V8nqcHYPnEV8WyUHLBhda2knGASQ7Prh0IT7UPwakMFmnTWZwELp6jCkL2FJVmjsjMNIpmPgS2XvVadtb4Y76sfBF92yERBv8_Vl5Urovw8NAfEZWn89WCNDixvMQiSxz9--3nsBFOx6NoNJgMj2GTnhDchbsnUF--rdJTLFqW8ZnZlJ9Xp-ld |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reducing+uncertainty+accumulation+in+wind-integrated+electrical+grid&rft.jtitle=Energy+%28Oxford%29&rft.au=Hung%2C+Tzu-Chieh&rft.au=Chong%2C+John&rft.au=Chan%2C+Kuei-Yuan&rft.date=2017-12-15&rft.issn=0360-5442&rft.volume=141+p.1072-1083&rft.spage=1072&rft.epage=1083&rft_id=info:doi/10.1016%2Fj.energy.2017.10.001&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon |