Reducing uncertainty accumulation in wind-integrated electrical grid

Implementing microgrids has become a major trend in the electric power industry to move toward energy sustainability. One approach for implementing microgrids is to introduce renewable energy. With the inclusion of renewable energy in a microgrid, an appropriate energy storage capacity is needed to...

Full description

Saved in:
Bibliographic Details
Published inEnergy (Oxford) Vol. 141; pp. 1072 - 1083
Main Authors Hung, Tzu-Chieh, Chong, John, Chan, Kuei-Yuan
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 15.12.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Implementing microgrids has become a major trend in the electric power industry to move toward energy sustainability. One approach for implementing microgrids is to introduce renewable energy. With the inclusion of renewable energy in a microgrid, an appropriate energy storage capacity is needed to cope with uncertainty variation resulting from renewable energy generation fluctuation. This study proposes a probability-based dispatch strategy for determining energy storage capacity with consideration of wind and load fluctuation. The wind and load models are constructed based on their trends and uncertainty variations. The wavelet packet analysis method and the moving average technique are used to extract the trends of wind energy and load. Log-normal and extreme value distributions are used to model the uncertainties from wind speed and load. This research improves an existing method with reduced uncertainty accumulation, resulting in a more suitable battery size. To validate the proposed method, a real-time operating simulation is used to observe the behavior of a wind-integrated electrical grid. Results show that the proposed method can reduce the effects of uncertainty variation caused by wind and load. A smaller energy storage capacity with higher reliability is also obtained through optimization. •Consider uncertainties in generation and usage of power.•Provide a power dispatch strategy to account for uncertainty.•Obtain the optimal equipment size without uncertainty accumulation.•Obtain at least 98.9% operational reliability.
AbstractList Implementing microgrids has become a major trend in the electric power industry to move toward energy sustainability. One approach for implementing microgrids is to introduce renewable energy. With the inclusion of renewable energy in a microgrid, an appropriate energy storage capacity is needed to cope with uncertainty variation resulting from renewable energy generation fluctuation. This study proposes a probability-based dispatch strategy for determining energy storage capacity with consideration of wind and load fluctuation. The wind and load models are constructed based on their trends and uncertainty variations. The wavelet packet analysis method and the moving average technique are used to extract the trends of wind energy and load. Log-normal and extreme value distributions are used to model the uncertainties from wind speed and load. This research improves an existing method with reduced uncertainty accumulation, resulting in a more suitable battery size. To validate the proposed method, a real-time operating simulation is used to observe the behavior of a wind-integrated electrical grid. Results show that the proposed method can reduce the effects of uncertainty variation caused by wind and load. A smaller energy storage capacity with higher reliability is also obtained through optimization. •Consider uncertainties in generation and usage of power.•Provide a power dispatch strategy to account for uncertainty.•Obtain the optimal equipment size without uncertainty accumulation.•Obtain at least 98.9% operational reliability.
Implementing microgrids has become a major trend in the electric power industry to move toward energy sustainability. One approach for implementing microgrids is to introduce renewable energy. With the inclusion of renewable energy in a microgrid, an appropriate energy storage capacity is needed to cope with uncertainty variation resulting from renewable energy generation fluctuation. This study proposes a probability-based dispatch strategy for determining energy storage capacity with consideration of wind and load fluctuation. The wind and load models are constructed based on their trends and uncertainty variations. The wavelet packet analysis method and the moving average technique are used to extract the trends of wind energy and load. Log-normal and extreme value distributions are used to model the uncertainties from wind speed and load. This research improves an existing method with reduced uncertainty accumulation, resulting in a more suitable battery size. To validate the proposed method, a real-time operating simulation is used to observe the behavior of a wind-integrated electrical grid. Results show that the proposed method can reduce the effects of uncertainty variation caused by wind and load. A smaller energy storage capacity with higher reliability is also obtained through optimization.
Author Chan, Kuei-Yuan
Hung, Tzu-Chieh
Chong, John
Author_xml – sequence: 1
  givenname: Tzu-Chieh
  surname: Hung
  fullname: Hung, Tzu-Chieh
– sequence: 2
  givenname: John
  surname: Chong
  fullname: Chong, John
– sequence: 3
  givenname: Kuei-Yuan
  surname: Chan
  fullname: Chan, Kuei-Yuan
  email: chanky@ntu.edu.tw
BookMark eNqFkDFPwzAQhT0UibbwDxgysiTYSRonDEioUECqhIS6W875ErlKnWI7oP57HMLEANNJ79473fsWZGZ6g4RcMZowyoqbfYIGbXtKUsp4kBJK2YzMaVbQeJXn6TlZOLenlK7KqpqThzdUA2jTRoMBtF5q40-RBBgOQye97k2kTfSpjYrDBlsrPaoIOwRvNcguaq1WF-SskZ3Dy5-5JLvN4279HG9fn17W99sYMl76WGYNhbQqqpxDg4rxXPK0zhjItKxZeI4VoKRiqgwGpvJGSb7iDIqqBpnV2ZJcT2ePtn8f0Hlx0A6w66TBfnAiHVtVnNE8WG8nK9jeOYuNAO2_63grdScYFSMtsRcTLTHSGtVAK4TzX-Gj1QdpT__F7qYYBgQfGq1woDFQVdoGXEL1-u8DX-Hoi-U
CitedBy_id crossref_primary_10_1016_j_enbuild_2025_115335
crossref_primary_10_1109_ACCESS_2019_2955112
crossref_primary_10_1016_j_energy_2020_118434
crossref_primary_10_1016_j_energy_2022_124188
crossref_primary_10_3390_en11071749
crossref_primary_10_3390_app8101900
crossref_primary_10_1109_ACCESS_2020_3029273
crossref_primary_10_3390_en11092278
Cites_doi 10.1049/iet-rpg.2009.0107
10.1109/TSTE.2016.2599074
10.1016/j.apcbee.2013.05.078
10.1016/j.enconman.2016.06.053
10.1016/j.renene.2015.07.021
10.1016/j.apenergy.2010.03.027
10.1016/S0165-1684(02)00318-3
10.1016/j.enbuild.2015.11.045
10.1016/j.renene.2006.03.001
10.1260/030952408786411976
10.1016/j.renene.2015.02.023
ContentType Journal Article
Copyright 2017 Elsevier Ltd
Copyright_xml – notice: 2017 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.energy.2017.10.001
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
EndPage 1083
ExternalDocumentID 10_1016_j_energy_2017_10_001
S0360544217316705
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
SSH
WUQ
7S9
L.6
ID FETCH-LOGICAL-c378t-a3f0c296947cfed174a72b31ca28b154416cdad1d847c1d4fda7571c69bca3b3
IEDL.DBID .~1
ISSN 0360-5442
IngestDate Thu Jul 10 19:22:17 EDT 2025
Tue Jul 01 00:53:12 EDT 2025
Thu Apr 24 22:54:41 EDT 2025
Fri Feb 23 02:33:55 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Electricity demand forecasting
Wind energy forecasting
Energy storage sizing
Microgrid
Design under uncertainty
Power dispatch
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c378t-a3f0c296947cfed174a72b31ca28b154416cdad1d847c1d4fda7571c69bca3b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2000597104
PQPubID 24069
PageCount 12
ParticipantIDs proquest_miscellaneous_2000597104
crossref_citationtrail_10_1016_j_energy_2017_10_001
crossref_primary_10_1016_j_energy_2017_10_001
elsevier_sciencedirect_doi_10_1016_j_energy_2017_10_001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-12-15
PublicationDateYYYYMMDD 2017-12-15
PublicationDate_xml – month: 12
  year: 2017
  text: 2017-12-15
  day: 15
PublicationDecade 2010
PublicationTitle Energy (Oxford)
PublicationYear 2017
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Mallick, Khraief, Shahbaz, Loganathan (bib9) 2016
Peik-herfeh, Seifi, Sheikh-El-Eslami (bib13) 2014; 24
Dutta, Sharma (bib15) 2012
Brekken, Yokochi, von Jouanne, Yen, Hapke, Halamay (bib18) 2011; 2
Brockwell, Davis (bib24) 2002
Ahwide, Spena, El-Kafrawy (bib3) 2013; 5
Chadwick (bib1) 2013
Baker, Hug, Li (bib19) Jan 2017; 8
Li, Gao, Cheng, Liang (bib12) 2014
Taiwan power company.
Dinler, Okumus (bib5) 2016; 123
Al Buflasa, Infield, Watson, Thomson (bib6) 2008; 32
Hwang, Chae, Horesh, Lee (bib10) 2016; 111
Whitefoot, Mechtenberg, Peters, Papalambros (bib21) 2011
Enercon product overview.
Roy, Kedare, Bandyopadhyay (bib16) 2010; 87
2015.
Hung, Chan (bib22) 2015; 137
Mohseni-Bonab, Rabiee, Mohammadi-Ivatloo (bib11) 2016; 85
Nowicka-Zagrajek, Weron (bib7) 2002; 82
Safdarian, Fotuhi-Firuzabad, Lehtonen, Aghazadeh, Ozdemir (bib8) 2013
Chen, Li, Shi, Luo, Zhan, Shi (bib17) 2012
Lu, Schroeder, Kim, Shanbhag (bib23) 2010; 132
Mc Garrigle, Leahy (bib4) 2015; 80
Yuan, Li, Wang (bib14) 2011; 5
Bloom, Townsend, Palchak, Novacheck, King, Barrows (bib20) August 2016
Nigim, Parker (bib2) 2007; 32
Department of statistics, ministry of the interior.
Al Buflasa (10.1016/j.energy.2017.10.001_bib6) 2008; 32
Brockwell (10.1016/j.energy.2017.10.001_bib24) 2002
Whitefoot (10.1016/j.energy.2017.10.001_bib21) 2011
Chadwick (10.1016/j.energy.2017.10.001_bib1) 2013
Chen (10.1016/j.energy.2017.10.001_bib17) 2012
Baker (10.1016/j.energy.2017.10.001_bib19) 2017; 8
Roy (10.1016/j.energy.2017.10.001_bib16) 2010; 87
Bloom (10.1016/j.energy.2017.10.001_bib20) 2016
Safdarian (10.1016/j.energy.2017.10.001_bib8) 2013
Nowicka-Zagrajek (10.1016/j.energy.2017.10.001_bib7) 2002; 82
Brekken (10.1016/j.energy.2017.10.001_bib18) 2011; 2
Yuan (10.1016/j.energy.2017.10.001_bib14) 2011; 5
Dutta (10.1016/j.energy.2017.10.001_bib15) 2012
Dinler (10.1016/j.energy.2017.10.001_bib5) 2016; 123
Mc Garrigle (10.1016/j.energy.2017.10.001_bib4) 2015; 80
Li (10.1016/j.energy.2017.10.001_bib12) 2014
Lu (10.1016/j.energy.2017.10.001_bib23) 2010; 132
Nigim (10.1016/j.energy.2017.10.001_bib2) 2007; 32
Peik-herfeh (10.1016/j.energy.2017.10.001_bib13) 2014; 24
Hung (10.1016/j.energy.2017.10.001_bib22) 2015; 137
Hwang (10.1016/j.energy.2017.10.001_bib10) 2016; 111
Mallick (10.1016/j.energy.2017.10.001_bib9) 2016
10.1016/j.energy.2017.10.001_bib27
10.1016/j.energy.2017.10.001_bib26
10.1016/j.energy.2017.10.001_bib25
Ahwide (10.1016/j.energy.2017.10.001_bib3) 2013; 5
Mohseni-Bonab (10.1016/j.energy.2017.10.001_bib11) 2016; 85
References_xml – start-page: 3303
  year: 2014
  end-page: 3308
  ident: bib12
  article-title: Two step optimal dispatch based on multiple scenarios technique for active distribution system with the uncertainties of intermittent distributed generation and load considered
  publication-title: Power system technology (POWERCON), 2014 international conference
– volume: 137
  start-page: 1
  year: 2015
  end-page: 10
  ident: bib22
  article-title: Component size optimization of a wind-integrated microgrid system with dispatch strategy and resource uncertainty
  publication-title: J Mech Des
– volume: 2
  start-page: 69
  year: 2011
  end-page: 77
  ident: bib18
  article-title: Optimal energy storage sizing and control for wind power applications
  publication-title: IEEE Trans Sustain Energy
– volume: 82
  start-page: 1903
  year: 2002
  end-page: 1915
  ident: bib7
  article-title: Modeling electricity loads in California: ARMA models with hyperbolic noise
  publication-title: Signal Process
– volume: 85
  start-page: 598
  year: 2016
  end-page: 609
  ident: bib11
  article-title: Voltage stability constrained multi-objective optimal reactive power dispatch under load and wind power uncertainties: a stochastic approach
  publication-title: Renew Energy
– volume: 32
  start-page: 638
  year: 2007
  end-page: 648
  ident: bib2
  article-title: Heuristic and probabilistic wind power availability estimation procedures: improved tools for technology and site selection
  publication-title: Renew Energy
– volume: 132
  start-page: 101007
  year: 2010
  ident: bib23
  article-title: Hybrid power/energy generation through multidisciplinary and multilevel design optimization with complementarity constraints
  publication-title: J Mech Des
– volume: 87
  start-page: 2712
  year: 2010
  end-page: 2727
  ident: bib16
  article-title: Optimum sizing of wind-battery systems incorporating resource uncertainty
  publication-title: Appl Energy
– year: 2002
  ident: bib24
  article-title: Introduction to time series and forecasting
– reference: Taiwan power company.
– start-page: 122
  year: 2013
  end-page: 126
  ident: bib8
  article-title: A new approach for long-term electricity load forecasting
  publication-title: Electrical and Electronics Engineering (ELECO), 2013 8th international conference
– reference: , 2015.
– volume: 5
  start-page: 451
  year: 2013
  end-page: 467
  ident: bib3
  article-title: Estimation of electricity generation in Libya using processing technology of wind available data: the case study in derna
  publication-title: APCBEE Proced
– volume: 24
  start-page: 43
  year: 2014
  end-page: 63
  ident: bib13
  article-title: Two-stage approach for optimal dispatch of distributed energy resources in distribution networks considering virtual power plant concept
  publication-title: Electr Power Syst Res
– volume: 123
  start-page: 362
  year: 2016
  end-page: 371
  ident: bib5
  article-title: Current status of wind energy forecasting and a hybrid method for hourly predictions
  publication-title: Energy Convers Manag
– volume: 5
  start-page: 194
  year: 2011
  end-page: 201
  ident: bib14
  article-title: Optimal operation strategy of energy storage unit in wind power integration based on stochastic programming
  publication-title: IET Renew Power Gener
– reference: Enercon product overview.
– start-page: 1
  year: 2012
  end-page: 7
  ident: bib15
  article-title: Optimal storage sizing for integrating wind and load forecast uncertainties
  publication-title: Innovative smart grid technologies (ISGT), 2012 IEEE PES
– reference: Department of statistics, ministry of the interior.
– start-page: 341
  year: 2011
  end-page: 350
  ident: bib21
  article-title: Optimal component sizing and forward-looking dispatch of an electrical microgrid for energy storage planning
  publication-title: Proceedings of the ASME 2011 international design engineering technical conferences & computers and information in engineering conference
– year: August 2016
  ident: bib20
  article-title: Eastern renewable generation integration study
– volume: 32
  start-page: 439
  year: 2008
  end-page: 448
  ident: bib6
  article-title: Wind resource assessment for the Kingdom of Bahrain
  publication-title: Wind Eng
– volume: 80
  start-page: 517
  year: 2015
  end-page: 524
  ident: bib4
  article-title: Quantifying the value of improved wind energy forecasts in a pool-based electricity market
  publication-title: Renew Energy
– start-page: 65
  year: 2013
  end-page: 71
  ident: bib1
  article-title: How a smarter grid could have prevented the 2003 U.S. cascading blackout
  publication-title: 2013 IEEE power and energy conference at Illinois (PECI)
– start-page: 382
  year: 2012
  end-page: 387
  ident: bib17
  article-title: Energy storage sizing for dispatchability of wind farm
  publication-title: Environment and Electrical Engineering (EEEIC), 2012 11th international conference
– year: 2016
  ident: bib9
  article-title: Estimation of electricity demand function for Algeria: revisit of time series analysis
  publication-title: Renew Sustain Energy Rev
– volume: 111
  start-page: 184
  year: 2016
  end-page: 194
  ident: bib10
  article-title: Artificial neural network model for forecasting sub-hourly electricity usage in commercial buildings
  publication-title: Energy Build
– volume: 8
  start-page: 331
  year: Jan 2017
  end-page: 340
  ident: bib19
  article-title: Energy storage sizing taking into account forecast uncertainties and receding horizon operation
  publication-title: IEEE Trans Sustain Energy
– volume: 5
  start-page: 194
  issue: 2
  year: 2011
  ident: 10.1016/j.energy.2017.10.001_bib14
  article-title: Optimal operation strategy of energy storage unit in wind power integration based on stochastic programming
  publication-title: IET Renew Power Gener
  doi: 10.1049/iet-rpg.2009.0107
– volume: 8
  start-page: 331
  issue: 1
  year: 2017
  ident: 10.1016/j.energy.2017.10.001_bib19
  article-title: Energy storage sizing taking into account forecast uncertainties and receding horizon operation
  publication-title: IEEE Trans Sustain Energy
  doi: 10.1109/TSTE.2016.2599074
– start-page: 341
  year: 2011
  ident: 10.1016/j.energy.2017.10.001_bib21
  article-title: Optimal component sizing and forward-looking dispatch of an electrical microgrid for energy storage planning
– year: 2016
  ident: 10.1016/j.energy.2017.10.001_bib9
  article-title: Estimation of electricity demand function for Algeria: revisit of time series analysis
  publication-title: Renew Sustain Energy Rev
– volume: 5
  start-page: 451
  issue: January
  year: 2013
  ident: 10.1016/j.energy.2017.10.001_bib3
  article-title: Estimation of electricity generation in Libya using processing technology of wind available data: the case study in derna
  publication-title: APCBEE Proced
  doi: 10.1016/j.apcbee.2013.05.078
– volume: 123
  start-page: 362
  year: 2016
  ident: 10.1016/j.energy.2017.10.001_bib5
  article-title: Current status of wind energy forecasting and a hybrid method for hourly predictions
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2016.06.053
– volume: 85
  start-page: 598
  year: 2016
  ident: 10.1016/j.energy.2017.10.001_bib11
  article-title: Voltage stability constrained multi-objective optimal reactive power dispatch under load and wind power uncertainties: a stochastic approach
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2015.07.021
– year: 2016
  ident: 10.1016/j.energy.2017.10.001_bib20
– ident: 10.1016/j.energy.2017.10.001_bib26
– start-page: 3303
  year: 2014
  ident: 10.1016/j.energy.2017.10.001_bib12
  article-title: Two step optimal dispatch based on multiple scenarios technique for active distribution system with the uncertainties of intermittent distributed generation and load considered
– start-page: 382
  year: 2012
  ident: 10.1016/j.energy.2017.10.001_bib17
  article-title: Energy storage sizing for dispatchability of wind farm
– volume: 87
  start-page: 2712
  issue: 8
  year: 2010
  ident: 10.1016/j.energy.2017.10.001_bib16
  article-title: Optimum sizing of wind-battery systems incorporating resource uncertainty
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2010.03.027
– volume: 82
  start-page: 1903
  issue: 12
  year: 2002
  ident: 10.1016/j.energy.2017.10.001_bib7
  article-title: Modeling electricity loads in California: ARMA models with hyperbolic noise
  publication-title: Signal Process
  doi: 10.1016/S0165-1684(02)00318-3
– volume: 2
  start-page: 69
  issue: 1
  year: 2011
  ident: 10.1016/j.energy.2017.10.001_bib18
  article-title: Optimal energy storage sizing and control for wind power applications
  publication-title: IEEE Trans Sustain Energy
– year: 2002
  ident: 10.1016/j.energy.2017.10.001_bib24
– volume: 111
  start-page: 184
  year: 2016
  ident: 10.1016/j.energy.2017.10.001_bib10
  article-title: Artificial neural network model for forecasting sub-hourly electricity usage in commercial buildings
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2015.11.045
– volume: 24
  start-page: 43
  issue: 1
  year: 2014
  ident: 10.1016/j.energy.2017.10.001_bib13
  article-title: Two-stage approach for optimal dispatch of distributed energy resources in distribution networks considering virtual power plant concept
  publication-title: Electr Power Syst Res
– volume: 32
  start-page: 638
  issue: 4
  year: 2007
  ident: 10.1016/j.energy.2017.10.001_bib2
  article-title: Heuristic and probabilistic wind power availability estimation procedures: improved tools for technology and site selection
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2006.03.001
– volume: 32
  start-page: 439
  issue: 5
  year: 2008
  ident: 10.1016/j.energy.2017.10.001_bib6
  article-title: Wind resource assessment for the Kingdom of Bahrain
  publication-title: Wind Eng
  doi: 10.1260/030952408786411976
– volume: 132
  start-page: 101007
  issue: 10
  year: 2010
  ident: 10.1016/j.energy.2017.10.001_bib23
  article-title: Hybrid power/energy generation through multidisciplinary and multilevel design optimization with complementarity constraints
  publication-title: J Mech Des
– start-page: 65
  year: 2013
  ident: 10.1016/j.energy.2017.10.001_bib1
  article-title: How a smarter grid could have prevented the 2003 U.S. cascading blackout
– volume: 137
  start-page: 1
  issue: 4
  year: 2015
  ident: 10.1016/j.energy.2017.10.001_bib22
  article-title: Component size optimization of a wind-integrated microgrid system with dispatch strategy and resource uncertainty
  publication-title: J Mech Des
– ident: 10.1016/j.energy.2017.10.001_bib25
– volume: 80
  start-page: 517
  year: 2015
  ident: 10.1016/j.energy.2017.10.001_bib4
  article-title: Quantifying the value of improved wind energy forecasts in a pool-based electricity market
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2015.02.023
– ident: 10.1016/j.energy.2017.10.001_bib27
– start-page: 122
  year: 2013
  ident: 10.1016/j.energy.2017.10.001_bib8
  article-title: A new approach for long-term electricity load forecasting
– start-page: 1
  year: 2012
  ident: 10.1016/j.energy.2017.10.001_bib15
  article-title: Optimal storage sizing for integrating wind and load forecast uncertainties
SSID ssj0005899
Score 2.2732503
Snippet Implementing microgrids has become a major trend in the electric power industry to move toward energy sustainability. One approach for implementing microgrids...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1072
SubjectTerms batteries
Design under uncertainty
electric power industry
Electricity demand forecasting
energy
Energy storage sizing
Microgrid
Power dispatch
sustainable development
uncertainty
wavelet
Wind energy forecasting
wind power
wind speed
Title Reducing uncertainty accumulation in wind-integrated electrical grid
URI https://dx.doi.org/10.1016/j.energy.2017.10.001
https://www.proquest.com/docview/2000597104
Volume 141
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5DD3oRnQ7nj1HBa7amTZvmOObGVNxBJ-xW0rSViXZj6xAv_u2-l7bzB8jAY8NLKS_Je1_o-95HyKUnU1973KcoSEl5xCEOateltp1IJwpkyjxkI9-N_OEjv5l4kxrpVVwYLKssY38R0020Lkc6pTc78-m08wCxF_AGB0yNbG7Tx5Rzgbu8_fGtzCMwGpJoTNG6os-ZGq_E8OuwwEu0TY0X-ys9_QrUJvsM9sleCRutbvFlB6SWZHWyU7GKl3XS6H8x1sCwPLLLQ3J1j81ZIUFZkMGK___5u6W0Xr2Wyl3WNLPe4GpO160jYqtQx8EFtJ4W0_iIjAf9cW9IS-kEql0R5FS5qa0d6UsudJrEcO1QwolcppUTREZ3zNexilkMyUmzmKexEp5g2peRVm7kNshWNsuSY2IFSFYFTCgYZ1xrR4lIQoaDg-tI7iu7SdzKYaEu24qjusVLWNWPPYeFm0N0M46Cm5uErmfNi7YaG-xFtRbhj-0RQuTfMPOiWroQTg7-DlFZMlstUYATsCUgLH7y77efkl18wvoW5p2RrXyxSs4BpeRRy2zDFtnuXt8OR59rm-as
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEB1Ke9CLaFX8NoLXtd1kk02Opbak9uOgFbyFzSaRiqZiW8R_70yyqSiI4HWzG8LM7swseW8ewKUbZJ52hcdIkJKJWGAc1I7D2u00sGM_yLhLbOTxxAvvxc2D-1CDbsWFIVilif1lTC-itRlpGWu2Xmez1h3GXqw3BNbUxOamPqYN6k7l1qHRGQzDyRfSwy9kJGk-owUVg66AeaUFxY4wXvKqgHnx3zLUj1hdJKD-NmyZytHqlB-3A7U0b8JGRSxeNGG_90Vaw4nm1C524fqW-rNijrIwiZUQgOWHpbRevRjxLmuWW-94O2fr7hGJVQrkkA-tx7dZsgfTfm_aDZlRT2Dakf6SKSdrazvwAiF1liZ481DSjh2ule3HhfSYpxOV8ATzk-aJyBIlXcm1F8RaObGzD_V8nqcHYPnEV8WyUHLBhda2knGASQ7Prh0IT7UPwakMFmnTWZwELp6jCkL2FJVmjsjMNIpmPgS2XvVadtb4Y76sfBF92yERBv8_Vl5Urovw8NAfEZWn89WCNDixvMQiSxz9--3nsBFOx6NoNJgMj2GTnhDchbsnUF--rdJTLFqW8ZnZlJ9Xp-ld
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reducing+uncertainty+accumulation+in+wind-integrated+electrical+grid&rft.jtitle=Energy+%28Oxford%29&rft.au=Hung%2C+Tzu-Chieh&rft.au=Chong%2C+John&rft.au=Chan%2C+Kuei-Yuan&rft.date=2017-12-15&rft.issn=0360-5442&rft.volume=141+p.1072-1083&rft.spage=1072&rft.epage=1083&rft_id=info:doi/10.1016%2Fj.energy.2017.10.001&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon