Improved salp swarm algorithm based on gravitational search and multi-leader search strategies

The salp swarm algorithm (SSA) will converge prematurely and fall into local optimum when solving complex high-dimensional multimodal optimization tasks. This paper proposes an improved SSA (GMLSSA) based on gravitational search and multi-swarm search strategies. In the gravitational search strategy...

Full description

Saved in:
Bibliographic Details
Published inAIMS mathematics Vol. 8; no. 3; pp. 5099 - 5123
Main Authors Zhang, Xuncai, Liu, Guanhe, Zhao, Kai, Niu, Ying
Format Journal Article
LanguageEnglish
Published AIMS Press 01.01.2023
Subjects
Online AccessGet full text
ISSN2473-6988
2473-6988
DOI10.3934/math.2023256

Cover

Loading…
Abstract The salp swarm algorithm (SSA) will converge prematurely and fall into local optimum when solving complex high-dimensional multimodal optimization tasks. This paper proposes an improved SSA (GMLSSA) based on gravitational search and multi-swarm search strategies. In the gravitational search strategy, using multiple salp individuals to guide the location update of search agents can get rid of the limitation of individual guidance and improve the exploration ability of the algorithm. In the multi-swarm leader strategy, the original population is divided into several independent subgroups to increase population diversity and avoid falling into local optimization. In the experiment, 20 benchmark functions (including the well-known CEC 2014 function) were used to test the performance of the proposed GMLSSA in different dimensions, and the results were compared with the most advanced search algorithm and SSA variants. The experimental results are evaluated through four different analysis methods: numerical, stability, high-dimensional performance, and statistics. These results conclude that GMLSSA has better solution quality, convergence accuracy, and stability. In addition, GMLSSA is used to solve the tension/compression spring design problem (TCSD). The proposed GMLSSA is superior to other competitors in terms of solution quality, convergence accuracy, and stability.
AbstractList The salp swarm algorithm (SSA) will converge prematurely and fall into local optimum when solving complex high-dimensional multimodal optimization tasks. This paper proposes an improved SSA (GMLSSA) based on gravitational search and multi-swarm search strategies. In the gravitational search strategy, using multiple salp individuals to guide the location update of search agents can get rid of the limitation of individual guidance and improve the exploration ability of the algorithm. In the multi-swarm leader strategy, the original population is divided into several independent subgroups to increase population diversity and avoid falling into local optimization. In the experiment, 20 benchmark functions (including the well-known CEC 2014 function) were used to test the performance of the proposed GMLSSA in different dimensions, and the results were compared with the most advanced search algorithm and SSA variants. The experimental results are evaluated through four different analysis methods: numerical, stability, high-dimensional performance, and statistics. These results conclude that GMLSSA has better solution quality, convergence accuracy, and stability. In addition, GMLSSA is used to solve the tension/compression spring design problem (TCSD). The proposed GMLSSA is superior to other competitors in terms of solution quality, convergence accuracy, and stability.
Author Liu, Guanhe
Zhao, Kai
Zhang, Xuncai
Niu, Ying
Author_xml – sequence: 1
  givenname: Xuncai
  surname: Zhang
  fullname: Zhang, Xuncai
  organization: School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
– sequence: 2
  givenname: Guanhe
  surname: Liu
  fullname: Liu, Guanhe
  organization: School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
– sequence: 3
  givenname: Kai
  surname: Zhao
  fullname: Zhao, Kai
  organization: School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
– sequence: 4
  givenname: Ying
  surname: Niu
  fullname: Niu, Ying
  organization: School of Architecture Environment Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
BookMark eNptkNtKAzEQhoNUsNbe-QD7AG5NZrOnSykeCoI3eusym0zalN1NSWLFt3fVKiJezTDzz8fwnbLJ4AZi7FzwRVZn8rLHuFkAhwzy4ohNQZZZWtRVNfnVn7B5CFvOOQiQUMope171O-_2pJOA3S4Jr-j7BLu18zZu-qTFMK7ckKw97m3EaN2AXRIIvdokOOikf-miTTtCTf57HqLHSGtL4YwdG-wCzQ91xp5urh-Xd-n9w-1qeXWfqqysYlobkrJtCyIwldbABRhEoU2rWsgqUDS-nKusMIIQjQaCEkuoQRWl4dRmM7b64mqH22bnbY_-rXFom8-B8-sGfbSqo0YKIQtBCoRAyXXbllCByZXhea1FLkbWxRdLeReCJ_PDE7z5UN18qG4Oqsc4_Imrg6jRgu3-P3oH3rSG1w
CitedBy_id crossref_primary_10_1007_s10586_024_04447_x
crossref_primary_10_1002_dac_5786
crossref_primary_10_1007_s00521_024_10621_4
crossref_primary_10_1371_journal_pone_0288071
Cites_doi 10.1016/j.apm.2019.02.004
10.1109/4235.585893
10.1016/j.knosys.2018.05.009
10.1155/2018/6495362
10.1016/j.compstruc.2014.04.005
10.1007/s42235-022-00262-5
10.1007/s10898-007-9149-x
10.1016/j.compstruc.2014.07.012
10.1007/s12652-018-1031-9
10.1109/ACCESS.2019.2902306
10.1007/978-3-642-04944-6_14
10.1007/978-3-319-50920-4_19
10.1016/j.swevo.2018.02.013
10.1016/j.asoc.2017.10.040
10.1016/j.eswa.2019.113103
10.1016/j.advengsoft.2013.12.007
10.1016/j.apm.2009.09.002
10.1007/s00366-018-00696-8
10.1109/NABIC.2009.5393690
10.1016/j.ecoinf.2006.07.003
10.1007/s00521-014-1577-1
10.1016/j.renene.2017.12.051
10.1016/j.future.2020.03.055
10.1016/j.swevo.2017.09.002
10.1016/j.swevo.2011.02.002
10.1016/j.cnsns.2012.05.010
10.1016/j.jksuci.2018.06.003
10.1016/j.ins.2009.03.004
10.1016/j.advengsoft.2015.01.010
10.1016/j.knosys.2011.07.001
10.1016/j.swevo.2021.100989
10.1016/j.matcom.2022.05.029
10.1109/TIM.2018.2836058
10.1007/s10489-018-1158-6
10.1016/j.advengsoft.2017.07.002
10.1007/s10489-022-03438-y
10.1016/j.swevo.2019.04.002
10.1016/j.compstruc.2016.03.001
10.1007/s00366-020-01034-7
10.1016/j.asoc.2022.108653
10.1093/plankt/8.6.1091
10.1093/oso/9780195099713.001.0001
10.1016/j.apm.2015.10.040
10.1007/s00521-011-0523-8
10.1016/j.knosys.2014.07.025
10.1016/j.ins.2018.01.027
10.3390/en11102556
10.1016/j.jclepro.2019.01.150
10.1007/s00500-016-2474-6
10.1016/j.enconman.2018.10.069
10.1109/ACCESS.2019.2897580
10.1016/j.swevo.2016.11.003
10.1016/j.apm.2011.12.026
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.3934/math.2023256
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2473-6988
EndPage 5123
ExternalDocumentID oai_doaj_org_article_411461ec211a40dbb7282f5cf059d151
10_3934_math_2023256
GroupedDBID AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
CITATION
EBS
FRJ
GROUPED_DOAJ
IAO
ITC
M~E
OK1
RAN
ID FETCH-LOGICAL-c378t-9fe44bb6ee2f8dd2012faa1dfbcb2382ce0025c36f1eaafd2e27a7292c67f0eb3
IEDL.DBID DOA
ISSN 2473-6988
IngestDate Wed Aug 27 01:27:10 EDT 2025
Tue Jul 01 03:56:58 EDT 2025
Thu Apr 24 23:09:32 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c378t-9fe44bb6ee2f8dd2012faa1dfbcb2382ce0025c36f1eaafd2e27a7292c67f0eb3
OpenAccessLink https://doaj.org/article/411461ec211a40dbb7282f5cf059d151
PageCount 25
ParticipantIDs doaj_primary_oai_doaj_org_article_411461ec211a40dbb7282f5cf059d151
crossref_primary_10_3934_math_2023256
crossref_citationtrail_10_3934_math_2023256
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationTitle AIMS mathematics
PublicationYear 2023
Publisher AIMS Press
Publisher_xml – name: AIMS Press
References key-10.3934/math.2023256-41
key-10.3934/math.2023256-40
key-10.3934/math.2023256-43
key-10.3934/math.2023256-42
key-10.3934/math.2023256-45
key-10.3934/math.2023256-44
key-10.3934/math.2023256-47
key-10.3934/math.2023256-46
key-10.3934/math.2023256-9
key-10.3934/math.2023256-49
key-10.3934/math.2023256-8
key-10.3934/math.2023256-48
key-10.3934/math.2023256-5
key-10.3934/math.2023256-4
key-10.3934/math.2023256-7
key-10.3934/math.2023256-6
key-10.3934/math.2023256-1
key-10.3934/math.2023256-3
key-10.3934/math.2023256-2
key-10.3934/math.2023256-50
key-10.3934/math.2023256-52
key-10.3934/math.2023256-51
key-10.3934/math.2023256-10
key-10.3934/math.2023256-54
key-10.3934/math.2023256-53
key-10.3934/math.2023256-12
key-10.3934/math.2023256-11
key-10.3934/math.2023256-55
key-10.3934/math.2023256-14
cr-split#-key-10.3934/math.2023256-21.1
key-10.3934/math.2023256-13
cr-split#-key-10.3934/math.2023256-21.2
key-10.3934/math.2023256-16
key-10.3934/math.2023256-15
key-10.3934/math.2023256-18
key-10.3934/math.2023256-17
key-10.3934/math.2023256-19
key-10.3934/math.2023256-20
key-10.3934/math.2023256-23
key-10.3934/math.2023256-22
key-10.3934/math.2023256-25
key-10.3934/math.2023256-24
key-10.3934/math.2023256-27
key-10.3934/math.2023256-26
key-10.3934/math.2023256-29
key-10.3934/math.2023256-28
key-10.3934/math.2023256-30
key-10.3934/math.2023256-32
key-10.3934/math.2023256-31
key-10.3934/math.2023256-34
key-10.3934/math.2023256-33
key-10.3934/math.2023256-36
key-10.3934/math.2023256-35
key-10.3934/math.2023256-38
key-10.3934/math.2023256-37
key-10.3934/math.2023256-39
References_xml – ident: key-10.3934/math.2023256-2
  doi: 10.1016/j.apm.2019.02.004
– ident: key-10.3934/math.2023256-20
  doi: 10.1109/4235.585893
– ident: key-10.3934/math.2023256-37
  doi: 10.1016/j.knosys.2018.05.009
– ident: key-10.3934/math.2023256-50
  doi: 10.1155/2018/6495362
– ident: key-10.3934/math.2023256-53
  doi: 10.1016/j.compstruc.2014.04.005
– ident: key-10.3934/math.2023256-5
– ident: key-10.3934/math.2023256-44
  doi: 10.1007/s42235-022-00262-5
– ident: key-10.3934/math.2023256-48
  doi: 10.1007/s10898-007-9149-x
– ident: key-10.3934/math.2023256-54
  doi: 10.1016/j.compstruc.2014.07.012
– ident: key-10.3934/math.2023256-33
  doi: 10.1007/s12652-018-1031-9
– ident: key-10.3934/math.2023256-36
  doi: 10.1109/ACCESS.2019.2902306
– ident: key-10.3934/math.2023256-27
  doi: 10.1007/978-3-642-04944-6_14
– ident: key-10.3934/math.2023256-4
  doi: 10.1007/978-3-319-50920-4_19
– ident: key-10.3934/math.2023256-28
  doi: 10.1016/j.swevo.2018.02.013
– ident: key-10.3934/math.2023256-19
  doi: 10.1016/j.asoc.2017.10.040
– ident: key-10.3934/math.2023256-34
  doi: 10.1016/j.eswa.2019.113103
– ident: key-10.3934/math.2023256-22
  doi: 10.1016/j.advengsoft.2013.12.007
– ident: key-10.3934/math.2023256-6
  doi: 10.1016/j.apm.2009.09.002
– ident: key-10.3934/math.2023256-45
  doi: 10.1007/s00366-018-00696-8
– ident: #cr-split#-key-10.3934/math.2023256-21.1
  doi: 10.1109/NABIC.2009.5393690
– ident: #cr-split#-key-10.3934/math.2023256-21.2
– ident: key-10.3934/math.2023256-49
  doi: 10.1016/j.ecoinf.2006.07.003
– ident: key-10.3934/math.2023256-51
  doi: 10.1007/s00366-018-00696-8
– ident: key-10.3934/math.2023256-55
  doi: 10.1007/s00521-014-1577-1
– ident: key-10.3934/math.2023256-39
  doi: 10.1016/j.renene.2017.12.051
– ident: key-10.3934/math.2023256-29
  doi: 10.1016/j.future.2020.03.055
– ident: key-10.3934/math.2023256-13
  doi: 10.1016/j.swevo.2017.09.002
– ident: key-10.3934/math.2023256-52
  doi: 10.1016/j.swevo.2011.02.002
– ident: key-10.3934/math.2023256-26
  doi: 10.1016/j.cnsns.2012.05.010
– ident: key-10.3934/math.2023256-41
  doi: 10.1016/j.jksuci.2018.06.003
– ident: key-10.3934/math.2023256-46
  doi: 10.1016/j.ins.2009.03.004
– ident: key-10.3934/math.2023256-24
  doi: 10.1016/j.advengsoft.2015.01.010
– ident: key-10.3934/math.2023256-23
  doi: 10.1016/j.knosys.2011.07.001
– ident: key-10.3934/math.2023256-16
  doi: 10.1016/j.swevo.2021.100989
– ident: key-10.3934/math.2023256-43
  doi: 10.1016/j.matcom.2022.05.029
– ident: key-10.3934/math.2023256-11
  doi: 10.1109/TIM.2018.2836058
– ident: key-10.3934/math.2023256-35
  doi: 10.1007/s10489-018-1158-6
– ident: key-10.3934/math.2023256-30
  doi: 10.1016/j.advengsoft.2017.07.002
– ident: key-10.3934/math.2023256-42
  doi: 10.1007/s10489-022-03438-y
– ident: key-10.3934/math.2023256-3
  doi: 10.1016/j.swevo.2019.04.002
– ident: key-10.3934/math.2023256-25
  doi: 10.1016/j.compstruc.2016.03.001
– ident: key-10.3934/math.2023256-40
  doi: 10.1007/s00366-020-01034-7
– ident: key-10.3934/math.2023256-14
  doi: 10.1016/j.asoc.2022.108653
– ident: key-10.3934/math.2023256-47
  doi: 10.1093/plankt/8.6.1091
– ident: key-10.3934/math.2023256-1
  doi: 10.1093/oso/9780195099713.001.0001
– ident: key-10.3934/math.2023256-8
  doi: 10.1016/j.apm.2015.10.040
– ident: key-10.3934/math.2023256-9
  doi: 10.1007/s00521-011-0523-8
– ident: key-10.3934/math.2023256-7
  doi: 10.1016/j.knosys.2014.07.025
– ident: key-10.3934/math.2023256-12
  doi: 10.1016/j.ins.2018.01.027
– ident: key-10.3934/math.2023256-32
  doi: 10.3390/en11102556
– ident: key-10.3934/math.2023256-38
  doi: 10.1016/j.jclepro.2019.01.150
– ident: key-10.3934/math.2023256-17
  doi: 10.1007/s00500-016-2474-6
– ident: key-10.3934/math.2023256-31
  doi: 10.1016/j.enconman.2018.10.069
– ident: key-10.3934/math.2023256-15
  doi: 10.1109/ACCESS.2019.2897580
– ident: key-10.3934/math.2023256-18
  doi: 10.1016/j.swevo.2016.11.003
– ident: key-10.3934/math.2023256-10
  doi: 10.1016/j.apm.2011.12.026
SSID ssj0002124274
Score 2.2347968
Snippet The salp swarm algorithm (SSA) will converge prematurely and fall into local optimum when solving complex high-dimensional multimodal optimization tasks. This...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 5099
SubjectTerms gravitational search strategy
multi-leader search strategy
salp swarm optimization
tension/compression spring design problem
wilcoxon's rank-sum test
Title Improved salp swarm algorithm based on gravitational search and multi-leader search strategies
URI https://doaj.org/article/411461ec211a40dbb7282f5cf059d151
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELUQEwyIT1G-5AEmZDVxHDseAVFVSGWiUicif8LQplUTxN_nHKdVFsTCap0i52z5vZec3yF0y3mRKJl4YiXzhOWOEqVURmwumA74l2ThgvPklY-n7GWWz3qtvkJNWLQHjokbsnBtNnUGhIpiidVagEjwufHAC2zaXp6mgHk9MRXOYDiQGeitWOmeyYwNgf-Ffw9AIEKv6h4G9az6W0wZHaKDjgzihziJI7TjqmO0P9k6qdYn6D2qfmdxreYrXH-r9QKr-ccSRP3nAgcQsnhZ4dBGqLPbhifG_YtVZXFbMUjmbcXyZrxuNgYRp2g6en57GpOuJwIxmSgaIr1jTGvuHPWFtQDf1CuVWq-NBvSlxgUWYzLuU6eUt9RRoYBAU8OFT0A5n6Hdalm5c4SdK6iQ1impHeMewjXQHSVsIb20gg_Q_SZLpeneIPStmJcgHEJOy5DTssvpAN1to1fRKOOXuMeQ8G1MsLduB2DRy27Ry78W_eI_HnKJ9sKc4veUK7TbrL_cNTCMRt-0m-kHFwfRPA
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+salp+swarm+algorithm+based+on+gravitational+search+and+multi-leader+search+strategies&rft.jtitle=AIMS+mathematics&rft.au=Xuncai+Zhang&rft.au=Guanhe+Liu&rft.au=Kai+Zhao&rft.au=Ying+Niu&rft.date=2023-01-01&rft.pub=AIMS+Press&rft.eissn=2473-6988&rft.volume=8&rft.issue=3&rft.spage=5099&rft.epage=5123&rft_id=info:doi/10.3934%2Fmath.2023256&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_411461ec211a40dbb7282f5cf059d151
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon