Improved salp swarm algorithm based on gravitational search and multi-leader search strategies
The salp swarm algorithm (SSA) will converge prematurely and fall into local optimum when solving complex high-dimensional multimodal optimization tasks. This paper proposes an improved SSA (GMLSSA) based on gravitational search and multi-swarm search strategies. In the gravitational search strategy...
Saved in:
Published in | AIMS mathematics Vol. 8; no. 3; pp. 5099 - 5123 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
AIMS Press
01.01.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 2473-6988 2473-6988 |
DOI | 10.3934/math.2023256 |
Cover
Loading…
Abstract | The salp swarm algorithm (SSA) will converge prematurely and fall into local optimum when solving complex high-dimensional multimodal optimization tasks. This paper proposes an improved SSA (GMLSSA) based on gravitational search and multi-swarm search strategies. In the gravitational search strategy, using multiple salp individuals to guide the location update of search agents can get rid of the limitation of individual guidance and improve the exploration ability of the algorithm. In the multi-swarm leader strategy, the original population is divided into several independent subgroups to increase population diversity and avoid falling into local optimization. In the experiment, 20 benchmark functions (including the well-known CEC 2014 function) were used to test the performance of the proposed GMLSSA in different dimensions, and the results were compared with the most advanced search algorithm and SSA variants. The experimental results are evaluated through four different analysis methods: numerical, stability, high-dimensional performance, and statistics. These results conclude that GMLSSA has better solution quality, convergence accuracy, and stability. In addition, GMLSSA is used to solve the tension/compression spring design problem (TCSD). The proposed GMLSSA is superior to other competitors in terms of solution quality, convergence accuracy, and stability. |
---|---|
AbstractList | The salp swarm algorithm (SSA) will converge prematurely and fall into local optimum when solving complex high-dimensional multimodal optimization tasks. This paper proposes an improved SSA (GMLSSA) based on gravitational search and multi-swarm search strategies. In the gravitational search strategy, using multiple salp individuals to guide the location update of search agents can get rid of the limitation of individual guidance and improve the exploration ability of the algorithm. In the multi-swarm leader strategy, the original population is divided into several independent subgroups to increase population diversity and avoid falling into local optimization. In the experiment, 20 benchmark functions (including the well-known CEC 2014 function) were used to test the performance of the proposed GMLSSA in different dimensions, and the results were compared with the most advanced search algorithm and SSA variants. The experimental results are evaluated through four different analysis methods: numerical, stability, high-dimensional performance, and statistics. These results conclude that GMLSSA has better solution quality, convergence accuracy, and stability. In addition, GMLSSA is used to solve the tension/compression spring design problem (TCSD). The proposed GMLSSA is superior to other competitors in terms of solution quality, convergence accuracy, and stability. |
Author | Liu, Guanhe Zhao, Kai Zhang, Xuncai Niu, Ying |
Author_xml | – sequence: 1 givenname: Xuncai surname: Zhang fullname: Zhang, Xuncai organization: School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China – sequence: 2 givenname: Guanhe surname: Liu fullname: Liu, Guanhe organization: School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China – sequence: 3 givenname: Kai surname: Zhao fullname: Zhao, Kai organization: School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China – sequence: 4 givenname: Ying surname: Niu fullname: Niu, Ying organization: School of Architecture Environment Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China |
BookMark | eNptkNtKAzEQhoNUsNbe-QD7AG5NZrOnSykeCoI3eusym0zalN1NSWLFt3fVKiJezTDzz8fwnbLJ4AZi7FzwRVZn8rLHuFkAhwzy4ohNQZZZWtRVNfnVn7B5CFvOOQiQUMope171O-_2pJOA3S4Jr-j7BLu18zZu-qTFMK7ckKw97m3EaN2AXRIIvdokOOikf-miTTtCTf57HqLHSGtL4YwdG-wCzQ91xp5urh-Xd-n9w-1qeXWfqqysYlobkrJtCyIwldbABRhEoU2rWsgqUDS-nKusMIIQjQaCEkuoQRWl4dRmM7b64mqH22bnbY_-rXFom8-B8-sGfbSqo0YKIQtBCoRAyXXbllCByZXhea1FLkbWxRdLeReCJ_PDE7z5UN18qG4Oqsc4_Imrg6jRgu3-P3oH3rSG1w |
CitedBy_id | crossref_primary_10_1007_s10586_024_04447_x crossref_primary_10_1002_dac_5786 crossref_primary_10_1007_s00521_024_10621_4 crossref_primary_10_1371_journal_pone_0288071 |
Cites_doi | 10.1016/j.apm.2019.02.004 10.1109/4235.585893 10.1016/j.knosys.2018.05.009 10.1155/2018/6495362 10.1016/j.compstruc.2014.04.005 10.1007/s42235-022-00262-5 10.1007/s10898-007-9149-x 10.1016/j.compstruc.2014.07.012 10.1007/s12652-018-1031-9 10.1109/ACCESS.2019.2902306 10.1007/978-3-642-04944-6_14 10.1007/978-3-319-50920-4_19 10.1016/j.swevo.2018.02.013 10.1016/j.asoc.2017.10.040 10.1016/j.eswa.2019.113103 10.1016/j.advengsoft.2013.12.007 10.1016/j.apm.2009.09.002 10.1007/s00366-018-00696-8 10.1109/NABIC.2009.5393690 10.1016/j.ecoinf.2006.07.003 10.1007/s00521-014-1577-1 10.1016/j.renene.2017.12.051 10.1016/j.future.2020.03.055 10.1016/j.swevo.2017.09.002 10.1016/j.swevo.2011.02.002 10.1016/j.cnsns.2012.05.010 10.1016/j.jksuci.2018.06.003 10.1016/j.ins.2009.03.004 10.1016/j.advengsoft.2015.01.010 10.1016/j.knosys.2011.07.001 10.1016/j.swevo.2021.100989 10.1016/j.matcom.2022.05.029 10.1109/TIM.2018.2836058 10.1007/s10489-018-1158-6 10.1016/j.advengsoft.2017.07.002 10.1007/s10489-022-03438-y 10.1016/j.swevo.2019.04.002 10.1016/j.compstruc.2016.03.001 10.1007/s00366-020-01034-7 10.1016/j.asoc.2022.108653 10.1093/plankt/8.6.1091 10.1093/oso/9780195099713.001.0001 10.1016/j.apm.2015.10.040 10.1007/s00521-011-0523-8 10.1016/j.knosys.2014.07.025 10.1016/j.ins.2018.01.027 10.3390/en11102556 10.1016/j.jclepro.2019.01.150 10.1007/s00500-016-2474-6 10.1016/j.enconman.2018.10.069 10.1109/ACCESS.2019.2897580 10.1016/j.swevo.2016.11.003 10.1016/j.apm.2011.12.026 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.3934/math.2023256 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2473-6988 |
EndPage | 5123 |
ExternalDocumentID | oai_doaj_org_article_411461ec211a40dbb7282f5cf059d151 10_3934_math_2023256 |
GroupedDBID | AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV CITATION EBS FRJ GROUPED_DOAJ IAO ITC M~E OK1 RAN |
ID | FETCH-LOGICAL-c378t-9fe44bb6ee2f8dd2012faa1dfbcb2382ce0025c36f1eaafd2e27a7292c67f0eb3 |
IEDL.DBID | DOA |
ISSN | 2473-6988 |
IngestDate | Wed Aug 27 01:27:10 EDT 2025 Tue Jul 01 03:56:58 EDT 2025 Thu Apr 24 23:09:32 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c378t-9fe44bb6ee2f8dd2012faa1dfbcb2382ce0025c36f1eaafd2e27a7292c67f0eb3 |
OpenAccessLink | https://doaj.org/article/411461ec211a40dbb7282f5cf059d151 |
PageCount | 25 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_411461ec211a40dbb7282f5cf059d151 crossref_primary_10_3934_math_2023256 crossref_citationtrail_10_3934_math_2023256 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-01-01 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | AIMS mathematics |
PublicationYear | 2023 |
Publisher | AIMS Press |
Publisher_xml | – name: AIMS Press |
References | key-10.3934/math.2023256-41 key-10.3934/math.2023256-40 key-10.3934/math.2023256-43 key-10.3934/math.2023256-42 key-10.3934/math.2023256-45 key-10.3934/math.2023256-44 key-10.3934/math.2023256-47 key-10.3934/math.2023256-46 key-10.3934/math.2023256-9 key-10.3934/math.2023256-49 key-10.3934/math.2023256-8 key-10.3934/math.2023256-48 key-10.3934/math.2023256-5 key-10.3934/math.2023256-4 key-10.3934/math.2023256-7 key-10.3934/math.2023256-6 key-10.3934/math.2023256-1 key-10.3934/math.2023256-3 key-10.3934/math.2023256-2 key-10.3934/math.2023256-50 key-10.3934/math.2023256-52 key-10.3934/math.2023256-51 key-10.3934/math.2023256-10 key-10.3934/math.2023256-54 key-10.3934/math.2023256-53 key-10.3934/math.2023256-12 key-10.3934/math.2023256-11 key-10.3934/math.2023256-55 key-10.3934/math.2023256-14 cr-split#-key-10.3934/math.2023256-21.1 key-10.3934/math.2023256-13 cr-split#-key-10.3934/math.2023256-21.2 key-10.3934/math.2023256-16 key-10.3934/math.2023256-15 key-10.3934/math.2023256-18 key-10.3934/math.2023256-17 key-10.3934/math.2023256-19 key-10.3934/math.2023256-20 key-10.3934/math.2023256-23 key-10.3934/math.2023256-22 key-10.3934/math.2023256-25 key-10.3934/math.2023256-24 key-10.3934/math.2023256-27 key-10.3934/math.2023256-26 key-10.3934/math.2023256-29 key-10.3934/math.2023256-28 key-10.3934/math.2023256-30 key-10.3934/math.2023256-32 key-10.3934/math.2023256-31 key-10.3934/math.2023256-34 key-10.3934/math.2023256-33 key-10.3934/math.2023256-36 key-10.3934/math.2023256-35 key-10.3934/math.2023256-38 key-10.3934/math.2023256-37 key-10.3934/math.2023256-39 |
References_xml | – ident: key-10.3934/math.2023256-2 doi: 10.1016/j.apm.2019.02.004 – ident: key-10.3934/math.2023256-20 doi: 10.1109/4235.585893 – ident: key-10.3934/math.2023256-37 doi: 10.1016/j.knosys.2018.05.009 – ident: key-10.3934/math.2023256-50 doi: 10.1155/2018/6495362 – ident: key-10.3934/math.2023256-53 doi: 10.1016/j.compstruc.2014.04.005 – ident: key-10.3934/math.2023256-5 – ident: key-10.3934/math.2023256-44 doi: 10.1007/s42235-022-00262-5 – ident: key-10.3934/math.2023256-48 doi: 10.1007/s10898-007-9149-x – ident: key-10.3934/math.2023256-54 doi: 10.1016/j.compstruc.2014.07.012 – ident: key-10.3934/math.2023256-33 doi: 10.1007/s12652-018-1031-9 – ident: key-10.3934/math.2023256-36 doi: 10.1109/ACCESS.2019.2902306 – ident: key-10.3934/math.2023256-27 doi: 10.1007/978-3-642-04944-6_14 – ident: key-10.3934/math.2023256-4 doi: 10.1007/978-3-319-50920-4_19 – ident: key-10.3934/math.2023256-28 doi: 10.1016/j.swevo.2018.02.013 – ident: key-10.3934/math.2023256-19 doi: 10.1016/j.asoc.2017.10.040 – ident: key-10.3934/math.2023256-34 doi: 10.1016/j.eswa.2019.113103 – ident: key-10.3934/math.2023256-22 doi: 10.1016/j.advengsoft.2013.12.007 – ident: key-10.3934/math.2023256-6 doi: 10.1016/j.apm.2009.09.002 – ident: key-10.3934/math.2023256-45 doi: 10.1007/s00366-018-00696-8 – ident: #cr-split#-key-10.3934/math.2023256-21.1 doi: 10.1109/NABIC.2009.5393690 – ident: #cr-split#-key-10.3934/math.2023256-21.2 – ident: key-10.3934/math.2023256-49 doi: 10.1016/j.ecoinf.2006.07.003 – ident: key-10.3934/math.2023256-51 doi: 10.1007/s00366-018-00696-8 – ident: key-10.3934/math.2023256-55 doi: 10.1007/s00521-014-1577-1 – ident: key-10.3934/math.2023256-39 doi: 10.1016/j.renene.2017.12.051 – ident: key-10.3934/math.2023256-29 doi: 10.1016/j.future.2020.03.055 – ident: key-10.3934/math.2023256-13 doi: 10.1016/j.swevo.2017.09.002 – ident: key-10.3934/math.2023256-52 doi: 10.1016/j.swevo.2011.02.002 – ident: key-10.3934/math.2023256-26 doi: 10.1016/j.cnsns.2012.05.010 – ident: key-10.3934/math.2023256-41 doi: 10.1016/j.jksuci.2018.06.003 – ident: key-10.3934/math.2023256-46 doi: 10.1016/j.ins.2009.03.004 – ident: key-10.3934/math.2023256-24 doi: 10.1016/j.advengsoft.2015.01.010 – ident: key-10.3934/math.2023256-23 doi: 10.1016/j.knosys.2011.07.001 – ident: key-10.3934/math.2023256-16 doi: 10.1016/j.swevo.2021.100989 – ident: key-10.3934/math.2023256-43 doi: 10.1016/j.matcom.2022.05.029 – ident: key-10.3934/math.2023256-11 doi: 10.1109/TIM.2018.2836058 – ident: key-10.3934/math.2023256-35 doi: 10.1007/s10489-018-1158-6 – ident: key-10.3934/math.2023256-30 doi: 10.1016/j.advengsoft.2017.07.002 – ident: key-10.3934/math.2023256-42 doi: 10.1007/s10489-022-03438-y – ident: key-10.3934/math.2023256-3 doi: 10.1016/j.swevo.2019.04.002 – ident: key-10.3934/math.2023256-25 doi: 10.1016/j.compstruc.2016.03.001 – ident: key-10.3934/math.2023256-40 doi: 10.1007/s00366-020-01034-7 – ident: key-10.3934/math.2023256-14 doi: 10.1016/j.asoc.2022.108653 – ident: key-10.3934/math.2023256-47 doi: 10.1093/plankt/8.6.1091 – ident: key-10.3934/math.2023256-1 doi: 10.1093/oso/9780195099713.001.0001 – ident: key-10.3934/math.2023256-8 doi: 10.1016/j.apm.2015.10.040 – ident: key-10.3934/math.2023256-9 doi: 10.1007/s00521-011-0523-8 – ident: key-10.3934/math.2023256-7 doi: 10.1016/j.knosys.2014.07.025 – ident: key-10.3934/math.2023256-12 doi: 10.1016/j.ins.2018.01.027 – ident: key-10.3934/math.2023256-32 doi: 10.3390/en11102556 – ident: key-10.3934/math.2023256-38 doi: 10.1016/j.jclepro.2019.01.150 – ident: key-10.3934/math.2023256-17 doi: 10.1007/s00500-016-2474-6 – ident: key-10.3934/math.2023256-31 doi: 10.1016/j.enconman.2018.10.069 – ident: key-10.3934/math.2023256-15 doi: 10.1109/ACCESS.2019.2897580 – ident: key-10.3934/math.2023256-18 doi: 10.1016/j.swevo.2016.11.003 – ident: key-10.3934/math.2023256-10 doi: 10.1016/j.apm.2011.12.026 |
SSID | ssj0002124274 |
Score | 2.2347968 |
Snippet | The salp swarm algorithm (SSA) will converge prematurely and fall into local optimum when solving complex high-dimensional multimodal optimization tasks. This... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
StartPage | 5099 |
SubjectTerms | gravitational search strategy multi-leader search strategy salp swarm optimization tension/compression spring design problem wilcoxon's rank-sum test |
Title | Improved salp swarm algorithm based on gravitational search and multi-leader search strategies |
URI | https://doaj.org/article/411461ec211a40dbb7282f5cf059d151 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELUQEwyIT1G-5AEmZDVxHDseAVFVSGWiUicif8LQplUTxN_nHKdVFsTCap0i52z5vZec3yF0y3mRKJl4YiXzhOWOEqVURmwumA74l2ThgvPklY-n7GWWz3qtvkJNWLQHjokbsnBtNnUGhIpiidVagEjwufHAC2zaXp6mgHk9MRXOYDiQGeitWOmeyYwNgf-Ffw9AIEKv6h4G9az6W0wZHaKDjgzihziJI7TjqmO0P9k6qdYn6D2qfmdxreYrXH-r9QKr-ccSRP3nAgcQsnhZ4dBGqLPbhifG_YtVZXFbMUjmbcXyZrxuNgYRp2g6en57GpOuJwIxmSgaIr1jTGvuHPWFtQDf1CuVWq-NBvSlxgUWYzLuU6eUt9RRoYBAU8OFT0A5n6Hdalm5c4SdK6iQ1impHeMewjXQHSVsIb20gg_Q_SZLpeneIPStmJcgHEJOy5DTssvpAN1to1fRKOOXuMeQ8G1MsLduB2DRy27Ry78W_eI_HnKJ9sKc4veUK7TbrL_cNTCMRt-0m-kHFwfRPA |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+salp+swarm+algorithm+based+on+gravitational+search+and+multi-leader+search+strategies&rft.jtitle=AIMS+mathematics&rft.au=Xuncai+Zhang&rft.au=Guanhe+Liu&rft.au=Kai+Zhao&rft.au=Ying+Niu&rft.date=2023-01-01&rft.pub=AIMS+Press&rft.eissn=2473-6988&rft.volume=8&rft.issue=3&rft.spage=5099&rft.epage=5123&rft_id=info:doi/10.3934%2Fmath.2023256&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_411461ec211a40dbb7282f5cf059d151 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon |