Solitary wave solutions and integrability for generalized nonlocal complex modified Korteweg-de Vries (cmKdV) equations
In this paper, the reverse space cmKdV equation, the reverse time cmKdV equation and the reverse space-time cmKdV equation are constructed and each of three types diverse soliton solutions is derived based on the Hirota bilinear method. The Lax integrability of three types of nonlocal equations is s...
Saved in:
Published in | AIMS mathematics Vol. 6; no. 10; pp. 11046 - 11075 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
AIMS Press
01.01.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 2473-6988 2473-6988 |
DOI | 10.3934/math.2021641 |
Cover
Loading…
Abstract | In this paper, the reverse space cmKdV equation, the reverse time cmKdV equation and the reverse space-time cmKdV equation are constructed and each of three types diverse soliton solutions is derived based on the Hirota bilinear method. The Lax integrability of three types of nonlocal equations is studied from local equation by using variable transformations. Based on exact solution formulae of one- and two-soliton solutions of three types of nonlocal cmKdV equation, some figures are used to describe the soliton solutions. According to the dynamical behaviors, it can be found that these solutions possess novel properties which are different from the ones of classical cmKdV equation. |
---|---|
AbstractList | In this paper, the reverse space cmKdV equation, the reverse time cmKdV equation and the reverse space-time cmKdV equation are constructed and each of three types diverse soliton solutions is derived based on the Hirota bilinear method. The Lax integrability of three types of nonlocal equations is studied from local equation by using variable transformations. Based on exact solution formulae of one- and two-soliton solutions of three types of nonlocal cmKdV equation, some figures are used to describe the soliton solutions. According to the dynamical behaviors, it can be found that these solutions possess novel properties which are different from the ones of classical cmKdV equation. |
Author | Liu, Yaqing Zhang, Wen-Xin |
Author_xml | – sequence: 1 givenname: Wen-Xin surname: Zhang fullname: Zhang, Wen-Xin – sequence: 2 givenname: Yaqing surname: Liu fullname: Liu, Yaqing |
BookMark | eNptUVtLHTEQDmJBa33rD8hjC12b29kkj0XqBYU-tPU1zCaT00h2Y7OrR_315qiFUgoDM8x8883le0t2pzIhIe85O5JWqs8jLL-OBBO8V3yH7AulZddbY3b_ivfI4TxfM9ZQQgmt9snme8lpgfpAN3CHdC75dkllmilMgaZpwXWFITXIA42l0jVOWCGnRwy0zc_FQ6a-jDcZ7-lYQoqpVS5KXXCD6y4gvaoJZ_rBjxfh6iPF37fwzP-OvImQZzx89Qfk58nXH8dn3eW30_PjL5edl9osnUXro2qmEfrojeaWsxUHztDaYTDDymtEC9orkDauAjd68BGFNEx4JuQBOX_hDQWu3U1NY7vVFUjuOVHq2kFdks_oBA9C9oOBQUoFyK3sjfKCQ4jar4JqXOKFy9cyzxWj8-1123OWCik7ztxWCbdVwr0q0Zo-_dP0Z4n_wp8ANoaPvQ |
CitedBy_id | crossref_primary_10_1016_j_rinp_2023_107223 crossref_primary_10_1007_s11071_024_10743_3 crossref_primary_10_1016_j_chaos_2023_113214 crossref_primary_10_1016_j_padiff_2023_100566 crossref_primary_10_1088_1674_1056_ad1f4c crossref_primary_10_1007_s11082_023_04817_6 crossref_primary_10_1007_s11082_024_06291_0 crossref_primary_10_1142_S0217984923502585 crossref_primary_10_1016_j_chaos_2024_115010 crossref_primary_10_1007_s11071_023_08627_z crossref_primary_10_3934_math_2023793 crossref_primary_10_1007_s11082_023_05826_1 crossref_primary_10_3390_math11132810 crossref_primary_10_1016_j_rinp_2023_106822 crossref_primary_10_1016_j_physleta_2022_128393 crossref_primary_10_1142_S0217984921506235 |
Cites_doi | 10.1016/j.ijleo.2020.166042 10.1016/j.physd.2019.132180 10.1017/CBO9780511543043 10.1016/j.aml.2020.106209 10.1016/j.amc.2018.03.061 10.1186/s13662-020-03087-w 10.1103/PhysRevE.98.042202 10.1103/PhysRevLett.80.5243 10.1088/0253-6102/71/5/475 10.1016/j.rinp.2021.104035 10.1088/0951-7715/29/3/915 10.3390/sym11070884 10.1016/j.joes.2017.11.004 10.3390/sym13030512 10.1016/j.ijleo.2020.164574 10.1016/j.aml.2015.12.016 10.1134/S1560354721010068 10.1016/j.physd.2019.132170 10.1088/1572-9494/ab770b 10.1103/RevModPhys.71.463 10.1016/j.physleta.2019.02.031 10.1111/sapm.12195 10.1016/j.jksus.2019.01.007 10.1016/j.physleta.2018.10.011 10.1111/sapm.12153 10.1016/j.jmaa.2021.124980 10.1088/1751-8121/aa825b 10.3934/math.2021316 10.1140/epjp/s13360-021-01160-1 10.1088/1402-4896/ab8d02 10.1016/j.ijleo.2020.166247 10.1103/PhysRevLett.110.064105 10.1016/j.aml.2020.106246 10.1111/sapm.12215 10.1038/s41598-017-00844-y 10.1016/j.jmaa.2017.04.042 10.1016/j.cnsns.2018.07.013 10.1016/j.cnsns.2017.12.016 |
ContentType | Journal Article |
CorporateAuthor | School of Applied Science, Beijing Information Science and Technology University, Beijing 100192, China |
CorporateAuthor_xml | – name: School of Applied Science, Beijing Information Science and Technology University, Beijing 100192, China |
DBID | AAYXX CITATION DOA |
DOI | 10.3934/math.2021641 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2473-6988 |
EndPage | 11075 |
ExternalDocumentID | oai_doaj_org_article_21d236b8ab334ae193684c21adf7c5d4 10_3934_math_2021641 |
GroupedDBID | AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV CITATION EBS FRJ GROUPED_DOAJ IAO ITC M~E OK1 RAN |
ID | FETCH-LOGICAL-c378t-9e9cf4cf47ea6fc87191051a10e99bb8b5c7ee9a7c4a39f5d187bcfe23802c023 |
IEDL.DBID | DOA |
ISSN | 2473-6988 |
IngestDate | Wed Aug 27 01:30:23 EDT 2025 Tue Jul 01 03:56:49 EDT 2025 Thu Apr 24 23:02:15 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c378t-9e9cf4cf47ea6fc87191051a10e99bb8b5c7ee9a7c4a39f5d187bcfe23802c023 |
OpenAccessLink | https://doaj.org/article/21d236b8ab334ae193684c21adf7c5d4 |
PageCount | 30 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_21d236b8ab334ae193684c21adf7c5d4 crossref_citationtrail_10_3934_math_2021641 crossref_primary_10_3934_math_2021641 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-01 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | AIMS mathematics |
PublicationYear | 2021 |
Publisher | AIMS Press |
Publisher_xml | – name: AIMS Press |
References | key-10.3934/math.2021641-24 key-10.3934/math.2021641-25 key-10.3934/math.2021641-26 key-10.3934/math.2021641-27 key-10.3934/math.2021641-28 key-10.3934/math.2021641-29 key-10.3934/math.2021641-40 key-10.3934/math.2021641-6 key-10.3934/math.2021641-20 key-10.3934/math.2021641-7 key-10.3934/math.2021641-21 key-10.3934/math.2021641-8 key-10.3934/math.2021641-22 key-10.3934/math.2021641-9 key-10.3934/math.2021641-23 key-10.3934/math.2021641-13 key-10.3934/math.2021641-35 key-10.3934/math.2021641-14 key-10.3934/math.2021641-36 key-10.3934/math.2021641-15 key-10.3934/math.2021641-37 key-10.3934/math.2021641-16 key-10.3934/math.2021641-38 key-10.3934/math.2021641-17 key-10.3934/math.2021641-39 key-10.3934/math.2021641-18 key-10.3934/math.2021641-19 key-10.3934/math.2021641-30 key-10.3934/math.2021641-31 key-10.3934/math.2021641-10 key-10.3934/math.2021641-32 key-10.3934/math.2021641-11 key-10.3934/math.2021641-33 key-10.3934/math.2021641-12 key-10.3934/math.2021641-34 key-10.3934/math.2021641-2 key-10.3934/math.2021641-3 key-10.3934/math.2021641-4 key-10.3934/math.2021641-5 key-10.3934/math.2021641-1 |
References_xml | – ident: key-10.3934/math.2021641-13 doi: 10.1016/j.ijleo.2020.166042 – ident: key-10.3934/math.2021641-18 doi: 10.1016/j.physd.2019.132180 – ident: key-10.3934/math.2021641-39 doi: 10.1017/CBO9780511543043 – ident: key-10.3934/math.2021641-20 doi: 10.1016/j.aml.2020.106209 – ident: key-10.3934/math.2021641-10 doi: 10.1016/j.amc.2018.03.061 – ident: key-10.3934/math.2021641-23 doi: 10.1186/s13662-020-03087-w – ident: key-10.3934/math.2021641-36 doi: 10.1103/PhysRevE.98.042202 – ident: key-10.3934/math.2021641-9 doi: 10.1103/PhysRevE.98.042202 – ident: key-10.3934/math.2021641-2 doi: 10.1103/PhysRevLett.80.5243 – ident: key-10.3934/math.2021641-33 doi: 10.1088/0253-6102/71/5/475 – ident: key-10.3934/math.2021641-6 doi: 10.1016/j.rinp.2021.104035 – ident: key-10.3934/math.2021641-27 doi: 10.1088/0951-7715/29/3/915 – ident: key-10.3934/math.2021641-11 doi: 10.3390/sym11070884 – ident: key-10.3934/math.2021641-22 doi: 10.1016/j.joes.2017.11.004 – ident: key-10.3934/math.2021641-37 doi: 10.3390/sym13030512 – ident: key-10.3934/math.2021641-3 doi: 10.1016/j.ijleo.2020.164574 – ident: key-10.3934/math.2021641-15 doi: 10.1016/j.aml.2015.12.016 – ident: key-10.3934/math.2021641-4 doi: 10.1134/S1560354721010068 – ident: key-10.3934/math.2021641-34 doi: 10.1016/j.physd.2019.132170 – ident: key-10.3934/math.2021641-16 doi: 10.1088/1572-9494/ab770b – ident: key-10.3934/math.2021641-8 doi: 10.1103/RevModPhys.71.463 – ident: key-10.3934/math.2021641-31 doi: 10.1016/j.physleta.2019.02.031 – ident: key-10.3934/math.2021641-29 doi: 10.1111/sapm.12195 – ident: key-10.3934/math.2021641-21 doi: 10.1016/j.jksus.2019.01.007 – ident: key-10.3934/math.2021641-12 doi: 10.1016/j.physleta.2018.10.011 – ident: key-10.3934/math.2021641-28 doi: 10.1111/sapm.12153 – ident: key-10.3934/math.2021641-38 doi: 10.1016/j.jmaa.2021.124980 – ident: key-10.3934/math.2021641-24 doi: 10.1088/1751-8121/aa825b – ident: key-10.3934/math.2021641-40 doi: 10.3934/math.2021316 – ident: key-10.3934/math.2021641-7 doi: 10.1140/epjp/s13360-021-01160-1 – ident: key-10.3934/math.2021641-14 doi: 10.1088/1402-4896/ab8d02 – ident: key-10.3934/math.2021641-5 doi: 10.1016/j.ijleo.2020.166247 – ident: key-10.3934/math.2021641-1 doi: 10.1103/PhysRevLett.110.064105 – ident: key-10.3934/math.2021641-19 doi: 10.1016/j.aml.2020.106246 – ident: key-10.3934/math.2021641-17 doi: 10.1111/sapm.12215 – ident: key-10.3934/math.2021641-25 doi: 10.1038/s41598-017-00844-y – ident: key-10.3934/math.2021641-35 doi: 10.1016/j.jmaa.2017.04.042 – ident: key-10.3934/math.2021641-32 doi: 10.1016/j.cnsns.2018.07.013 – ident: key-10.3934/math.2021641-26 doi: 10.1016/j.cnsns.2017.12.016 – ident: key-10.3934/math.2021641-30 |
SSID | ssj0002124274 |
Score | 2.255187 |
Snippet | In this paper, the reverse space cmKdV equation, the reverse time cmKdV equation and the reverse space-time cmKdV equation are constructed and each of three... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
StartPage | 11046 |
SubjectTerms | hirota bilinear method integrability lax pair nonlocal cmkdv equation soliton solutions |
Title | Solitary wave solutions and integrability for generalized nonlocal complex modified Korteweg-de Vries (cmKdV) equations |
URI | https://doaj.org/article/21d236b8ab334ae193684c21adf7c5d4 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7Skx7EJ9YXOSgosnQf2U1yVLEUi160pbclj9lSsFXbaq2_3slmLfUgXoQ9LUMIkyHzfbsf3xByYiMDSWw1Fq-JAyZjEQgdQYBwH6w1Bde6FMjeZ60Ou-2lvaVRX04T5u2BfeIacWTjJNNC6SRhChBvZIKZOFK24Ca1pRMo9rwlMuXuYLyQGfItr3RPZMIaiP_cv4cY6UH0owctWfWXPaW5QdYrMEgv_SY2yQqMtsja3cJJdbJNZg9OoKbGczpT70AXlULVyNLK66HUt84pwk_a9y7Sg0-wFIl92aloKRuHDzp8toMCISdtO4XtDPqBBdp1XJmemWHbds8pvHrr78kO6TRvHq9bQTUsITAJF9NAgjQFw4eDygqDPAiBQBqpKAQptRY6NRxAKm6YSmSR2khwbQrAlh3GBjv3LqnhvmCPUIEUB2FeEWbSMpsxZUKbcYwBFuJBZnVy8Z2-3FRO4m6gxVOOjMIlO3fJzqtk18npIvrFO2j8EnflTmIR43yvyxdYDXlVDflf1bD_H4sckFW3J_-h5ZDUpuM3OELoMdXHZZV9AZln2kU |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solitary+wave+solutions+and+integrability+for+generalized+nonlocal+complex+modified+Korteweg-de+Vries+%28cmKdV%29+equations&rft.jtitle=AIMS+mathematics&rft.au=Wen-Xin+Zhang&rft.au=Yaqing+Liu&rft.date=2021-01-01&rft.pub=AIMS+Press&rft.eissn=2473-6988&rft.volume=6&rft.issue=10&rft.spage=11046&rft.epage=11075&rft_id=info:doi/10.3934%2Fmath.2021641&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_21d236b8ab334ae193684c21adf7c5d4 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon |