On classification of finite commutative chain rings

Let $ R $ be a finite commutative chain ring with invariants $ p, n, r, k, m. $ It is known that $ R $ is an extension over a Galois ring $ GR(p^n, r) $ by an Eisenstein polynomial of some degree $ k $. If $ p\nmid k, $ the enumeration of such rings is known. However, when $ p\mid k $, relatively li...

Full description

Saved in:
Bibliographic Details
Published inAIMS mathematics Vol. 7; no. 2; pp. 1742 - 1757
Main Authors Alabiad, Sami, Alkhamees, Yousef
Format Journal Article
LanguageEnglish
Published AIMS Press 01.01.2022
Subjects
Online AccessGet full text
ISSN2473-6988
2473-6988
DOI10.3934/math.2022100

Cover

Abstract Let $ R $ be a finite commutative chain ring with invariants $ p, n, r, k, m. $ It is known that $ R $ is an extension over a Galois ring $ GR(p^n, r) $ by an Eisenstein polynomial of some degree $ k $. If $ p\nmid k, $ the enumeration of such rings is known. However, when $ p\mid k $, relatively little is known about the classification of these rings. The main purpose of this article is to investigate the classification of all finite commutative chain rings with given invariants $ p, n, r, k, m $ up to isomorphism when $ p\mid k. $ Based on the notion of j-diagram initiated by Ayoub, the number of isomorphism classes of finite (complete) chain rings with $ (p-1)\nmid k $ is determined. In addition, we study the case $ (p-1)\mid k, $ and show that the classification is strongly dependent on Eisenstein polynomials not only on $ p, n, r, k, m. $ In this case, we classify finite (incomplete) chain rings under some conditions concerning the Eisenstein polynomials. These results yield immediate corollaries for p-adic fields, coding theory and geometry.
AbstractList Let $ R $ be a finite commutative chain ring with invariants $ p, n, r, k, m. $ It is known that $ R $ is an extension over a Galois ring $ GR(p^n, r) $ by an Eisenstein polynomial of some degree $ k $. If $ p\nmid k, $ the enumeration of such rings is known. However, when $ p\mid k $, relatively little is known about the classification of these rings. The main purpose of this article is to investigate the classification of all finite commutative chain rings with given invariants $ p, n, r, k, m $ up to isomorphism when $ p\mid k. $ Based on the notion of j-diagram initiated by Ayoub, the number of isomorphism classes of finite (complete) chain rings with $ (p-1)\nmid k $ is determined. In addition, we study the case $ (p-1)\mid k, $ and show that the classification is strongly dependent on Eisenstein polynomials not only on $ p, n, r, k, m. $ In this case, we classify finite (incomplete) chain rings under some conditions concerning the Eisenstein polynomials. These results yield immediate corollaries for p-adic fields, coding theory and geometry.
Author Alkhamees, Yousef
Alabiad, Sami
Author_xml – sequence: 1
  givenname: Sami
  surname: Alabiad
  fullname: Alabiad, Sami
– sequence: 2
  givenname: Yousef
  surname: Alkhamees
  fullname: Alkhamees, Yousef
BookMark eNptkMtKAzEUhoNUsNbufIB5AKfmnsxSipdCoZvuw5lMpk2ZmUgSBd_e6QURcXV-fv7zLb5bNBnC4BC6J3jBKsYfe8j7BcWUEoyv0JRyxUpZaT35lW_QPKUDxpgSyqniU8Q2Q2E7SMm33kL2YShCW7R-8NkVNvT9Rx7bzzHvwQ9F9MMu3aHrFrrk5pc7Q9uX5-3yrVxvXlfLp3VpmdK5rJwmtZCsprV2SmHHW6upxQ1I6SxpGi5JIySWRFmgHCpwQuOqVtpyAGAztDpjmwAH8x59D_HLBPDmVIS4MxCzt50zjFrZCoEF0w13SlaiUrUlVjOtpBTNyHo4s2wMKUXX_vAINkd95qjPXPSNc_pnbn0-2ckRfPf_0zdfR3TT
CitedBy_id crossref_primary_10_3934_math_2022284
crossref_primary_10_3390_math10214040
crossref_primary_10_3390_axioms13120877
crossref_primary_10_1007_s10623_023_01207_7
Cites_doi 10.1155/S0161171280000270
10.1006/ffta.2000.0317
10.1007/978-3-642-82465-4
10.1016/j.jfranklin.2012.05.014
10.1016/j.ffa.2015.01.004
10.3390/sym13020307
10.1016/0021-8693(73)90055-0
10.1007/BF01187385
10.1016/0022-314X(72)90070-4
10.1016/S0012-365X(97)00006-X
10.1017/CBO9781139171885
10.1007/978-1-4612-0853-2
ContentType Journal Article
CorporateAuthor Department of Mathematics, King Saud University, Riyadh 11451, Saudi Arabia
CorporateAuthor_xml – name: Department of Mathematics, King Saud University, Riyadh 11451, Saudi Arabia
DBID AAYXX
CITATION
DOA
DOI 10.3934/math.2022100
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2473-6988
EndPage 1757
ExternalDocumentID oai_doaj_org_article_32c6f550538d4e769597bc1c8387665d
10_3934_math_2022100
GroupedDBID AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
CITATION
EBS
FRJ
GROUPED_DOAJ
IAO
ITC
M~E
OK1
RAN
ID FETCH-LOGICAL-c378t-9e81b563b2b8e770e4fc82c0da66ec1dd461d560617ca24a9ae5809b78c4aaa3
IEDL.DBID DOA
ISSN 2473-6988
IngestDate Wed Aug 27 01:31:46 EDT 2025
Thu Apr 24 23:08:43 EDT 2025
Tue Jul 01 03:56:51 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c378t-9e81b563b2b8e770e4fc82c0da66ec1dd461d560617ca24a9ae5809b78c4aaa3
OpenAccessLink https://doaj.org/article/32c6f550538d4e769597bc1c8387665d
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_32c6f550538d4e769597bc1c8387665d
crossref_primary_10_3934_math_2022100
crossref_citationtrail_10_3934_math_2022100
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-01
  day: 01
PublicationDecade 2020
PublicationTitle AIMS mathematics
PublicationYear 2022
Publisher AIMS Press
Publisher_xml – name: AIMS Press
References key-10.3934/math.2022100-1
key-10.3934/math.2022100-2
key-10.3934/math.2022100-14
key-10.3934/math.2022100-3
key-10.3934/math.2022100-4
key-10.3934/math.2022100-5
key-10.3934/math.2022100-11
key-10.3934/math.2022100-6
key-10.3934/math.2022100-10
key-10.3934/math.2022100-7
key-10.3934/math.2022100-13
key-10.3934/math.2022100-8
key-10.3934/math.2022100-12
key-10.3934/math.2022100-9
References_xml – ident: key-10.3934/math.2022100-6
  doi: 10.1155/S0161171280000270
– ident: key-10.3934/math.2022100-7
  doi: 10.1006/ffta.2000.0317
– ident: key-10.3934/math.2022100-8
  doi: 10.1007/978-3-642-82465-4
– ident: key-10.3934/math.2022100-14
  doi: 10.1016/j.jfranklin.2012.05.014
– ident: key-10.3934/math.2022100-11
  doi: 10.1016/j.ffa.2015.01.004
– ident: key-10.3934/math.2022100-1
  doi: 10.3390/sym13020307
– ident: key-10.3934/math.2022100-4
  doi: 10.1016/0021-8693(73)90055-0
– ident: key-10.3934/math.2022100-9
  doi: 10.1007/BF01187385
– ident: key-10.3934/math.2022100-13
– ident: key-10.3934/math.2022100-12
– ident: key-10.3934/math.2022100-3
  doi: 10.1016/0022-314X(72)90070-4
– ident: key-10.3934/math.2022100-5
  doi: 10.1016/S0012-365X(97)00006-X
– ident: key-10.3934/math.2022100-2
  doi: 10.1017/CBO9781139171885
– ident: key-10.3934/math.2022100-10
  doi: 10.1007/978-1-4612-0853-2
SSID ssj0002124274
Score 2.1979816
Snippet Let $ R $ be a finite commutative chain ring with invariants $ p, n, r, k, m. $ It is known that $ R $ is an extension over a Galois ring $ GR(p^n, r) $ by an...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 1742
SubjectTerms finite chain rings
galois rings
isomorphism class
j-diagram
p-adic fields
Title On classification of finite commutative chain rings
URI https://doaj.org/article/32c6f550538d4e769597bc1c8387665d
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kJz2IT6wv9qAnCU2ym30cVSxFqF4q9BY2s7soSCo2_f_OJLHUg3jxGoaw-SaZ-WYz-w1jV8oZHzVAEkiBUDqVJZUtqgRzlQ1RhlS3B4WnT2ryIh_nxXxj1Bf1hHXywB1wI5GDikSjhfEyaGWRAVeQgRH4HavCU_RNbbpRTFEMxoAssd7qOt2FFXKE_I_-PeRY4qQ_ctCGVH-bU8Z7bLcng_y2W8Q-2wr1AduZrpVUl4dMPNcciOFSS0-LIl9EHt-IKnKg0x1NK93N4RVrfE67dMsjNhs_zO4nST_oIAGhTZPYgOSxUKLKKxO0ToOMYHJIvVMqQOa9VJlHaoJsA1wuSVC7MKmttAHpnBPHbFAv6nDCuBfgBfGmEAOmam-lzL3KAGmN8MbpIbv5fvISehFwmkXxXmIxQDiVhFPZ4zRk12vrj0784he7OwJxbUOS1e0FdGTZO7L8y5Gn_3GTM7ZNa-r2SM7ZoPlchQtkDU112b4gXwEjviQ
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+classification+of+finite+commutative+chain+rings&rft.jtitle=AIMS+mathematics&rft.au=Sami+Alabiad&rft.au=Yousef+Alkhamees&rft.date=2022-01-01&rft.pub=AIMS+Press&rft.eissn=2473-6988&rft.volume=7&rft.issue=2&rft.spage=1742&rft.epage=1757&rft_id=info:doi/10.3934%2Fmath.2022100&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_32c6f550538d4e769597bc1c8387665d
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon