On classification of finite commutative chain rings
Let $ R $ be a finite commutative chain ring with invariants $ p, n, r, k, m. $ It is known that $ R $ is an extension over a Galois ring $ GR(p^n, r) $ by an Eisenstein polynomial of some degree $ k $. If $ p\nmid k, $ the enumeration of such rings is known. However, when $ p\mid k $, relatively li...
Saved in:
Published in | AIMS mathematics Vol. 7; no. 2; pp. 1742 - 1757 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
AIMS Press
01.01.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 2473-6988 2473-6988 |
DOI | 10.3934/math.2022100 |
Cover
Abstract | Let $ R $ be a finite commutative chain ring with invariants $ p, n, r, k, m. $ It is known that $ R $ is an extension over a Galois ring $ GR(p^n, r) $ by an Eisenstein polynomial of some degree $ k $. If $ p\nmid k, $ the enumeration of such rings is known. However, when $ p\mid k $, relatively little is known about the classification of these rings. The main purpose of this article is to investigate the classification of all finite commutative chain rings with given invariants $ p, n, r, k, m $ up to isomorphism when $ p\mid k. $ Based on the notion of j-diagram initiated by Ayoub, the number of isomorphism classes of finite (complete) chain rings with $ (p-1)\nmid k $ is determined. In addition, we study the case $ (p-1)\mid k, $ and show that the classification is strongly dependent on Eisenstein polynomials not only on $ p, n, r, k, m. $ In this case, we classify finite (incomplete) chain rings under some conditions concerning the Eisenstein polynomials. These results yield immediate corollaries for p-adic fields, coding theory and geometry. |
---|---|
AbstractList | Let $ R $ be a finite commutative chain ring with invariants $ p, n, r, k, m. $ It is known that $ R $ is an extension over a Galois ring $ GR(p^n, r) $ by an Eisenstein polynomial of some degree $ k $. If $ p\nmid k, $ the enumeration of such rings is known. However, when $ p\mid k $, relatively little is known about the classification of these rings. The main purpose of this article is to investigate the classification of all finite commutative chain rings with given invariants $ p, n, r, k, m $ up to isomorphism when $ p\mid k. $ Based on the notion of j-diagram initiated by Ayoub, the number of isomorphism classes of finite (complete) chain rings with $ (p-1)\nmid k $ is determined. In addition, we study the case $ (p-1)\mid k, $ and show that the classification is strongly dependent on Eisenstein polynomials not only on $ p, n, r, k, m. $ In this case, we classify finite (incomplete) chain rings under some conditions concerning the Eisenstein polynomials. These results yield immediate corollaries for p-adic fields, coding theory and geometry. |
Author | Alkhamees, Yousef Alabiad, Sami |
Author_xml | – sequence: 1 givenname: Sami surname: Alabiad fullname: Alabiad, Sami – sequence: 2 givenname: Yousef surname: Alkhamees fullname: Alkhamees, Yousef |
BookMark | eNptkMtKAzEUhoNUsNbufIB5AKfmnsxSipdCoZvuw5lMpk2ZmUgSBd_e6QURcXV-fv7zLb5bNBnC4BC6J3jBKsYfe8j7BcWUEoyv0JRyxUpZaT35lW_QPKUDxpgSyqniU8Q2Q2E7SMm33kL2YShCW7R-8NkVNvT9Rx7bzzHvwQ9F9MMu3aHrFrrk5pc7Q9uX5-3yrVxvXlfLp3VpmdK5rJwmtZCsprV2SmHHW6upxQ1I6SxpGi5JIySWRFmgHCpwQuOqVtpyAGAztDpjmwAH8x59D_HLBPDmVIS4MxCzt50zjFrZCoEF0w13SlaiUrUlVjOtpBTNyHo4s2wMKUXX_vAINkd95qjPXPSNc_pnbn0-2ckRfPf_0zdfR3TT |
CitedBy_id | crossref_primary_10_3934_math_2022284 crossref_primary_10_3390_math10214040 crossref_primary_10_3390_axioms13120877 crossref_primary_10_1007_s10623_023_01207_7 |
Cites_doi | 10.1155/S0161171280000270 10.1006/ffta.2000.0317 10.1007/978-3-642-82465-4 10.1016/j.jfranklin.2012.05.014 10.1016/j.ffa.2015.01.004 10.3390/sym13020307 10.1016/0021-8693(73)90055-0 10.1007/BF01187385 10.1016/0022-314X(72)90070-4 10.1016/S0012-365X(97)00006-X 10.1017/CBO9781139171885 10.1007/978-1-4612-0853-2 |
ContentType | Journal Article |
CorporateAuthor | Department of Mathematics, King Saud University, Riyadh 11451, Saudi Arabia |
CorporateAuthor_xml | – name: Department of Mathematics, King Saud University, Riyadh 11451, Saudi Arabia |
DBID | AAYXX CITATION DOA |
DOI | 10.3934/math.2022100 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2473-6988 |
EndPage | 1757 |
ExternalDocumentID | oai_doaj_org_article_32c6f550538d4e769597bc1c8387665d 10_3934_math_2022100 |
GroupedDBID | AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV CITATION EBS FRJ GROUPED_DOAJ IAO ITC M~E OK1 RAN |
ID | FETCH-LOGICAL-c378t-9e81b563b2b8e770e4fc82c0da66ec1dd461d560617ca24a9ae5809b78c4aaa3 |
IEDL.DBID | DOA |
ISSN | 2473-6988 |
IngestDate | Wed Aug 27 01:31:46 EDT 2025 Thu Apr 24 23:08:43 EDT 2025 Tue Jul 01 03:56:51 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c378t-9e81b563b2b8e770e4fc82c0da66ec1dd461d560617ca24a9ae5809b78c4aaa3 |
OpenAccessLink | https://doaj.org/article/32c6f550538d4e769597bc1c8387665d |
PageCount | 16 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_32c6f550538d4e769597bc1c8387665d crossref_primary_10_3934_math_2022100 crossref_citationtrail_10_3934_math_2022100 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-01-01 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | AIMS mathematics |
PublicationYear | 2022 |
Publisher | AIMS Press |
Publisher_xml | – name: AIMS Press |
References | key-10.3934/math.2022100-1 key-10.3934/math.2022100-2 key-10.3934/math.2022100-14 key-10.3934/math.2022100-3 key-10.3934/math.2022100-4 key-10.3934/math.2022100-5 key-10.3934/math.2022100-11 key-10.3934/math.2022100-6 key-10.3934/math.2022100-10 key-10.3934/math.2022100-7 key-10.3934/math.2022100-13 key-10.3934/math.2022100-8 key-10.3934/math.2022100-12 key-10.3934/math.2022100-9 |
References_xml | – ident: key-10.3934/math.2022100-6 doi: 10.1155/S0161171280000270 – ident: key-10.3934/math.2022100-7 doi: 10.1006/ffta.2000.0317 – ident: key-10.3934/math.2022100-8 doi: 10.1007/978-3-642-82465-4 – ident: key-10.3934/math.2022100-14 doi: 10.1016/j.jfranklin.2012.05.014 – ident: key-10.3934/math.2022100-11 doi: 10.1016/j.ffa.2015.01.004 – ident: key-10.3934/math.2022100-1 doi: 10.3390/sym13020307 – ident: key-10.3934/math.2022100-4 doi: 10.1016/0021-8693(73)90055-0 – ident: key-10.3934/math.2022100-9 doi: 10.1007/BF01187385 – ident: key-10.3934/math.2022100-13 – ident: key-10.3934/math.2022100-12 – ident: key-10.3934/math.2022100-3 doi: 10.1016/0022-314X(72)90070-4 – ident: key-10.3934/math.2022100-5 doi: 10.1016/S0012-365X(97)00006-X – ident: key-10.3934/math.2022100-2 doi: 10.1017/CBO9781139171885 – ident: key-10.3934/math.2022100-10 doi: 10.1007/978-1-4612-0853-2 |
SSID | ssj0002124274 |
Score | 2.1979816 |
Snippet | Let $ R $ be a finite commutative chain ring with invariants $ p, n, r, k, m. $ It is known that $ R $ is an extension over a Galois ring $ GR(p^n, r) $ by an... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
StartPage | 1742 |
SubjectTerms | finite chain rings galois rings isomorphism class j-diagram p-adic fields |
Title | On classification of finite commutative chain rings |
URI | https://doaj.org/article/32c6f550538d4e769597bc1c8387665d |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kJz2IT6wv9qAnCU2ym30cVSxFqF4q9BY2s7soSCo2_f_OJLHUg3jxGoaw-SaZ-WYz-w1jV8oZHzVAEkiBUDqVJZUtqgRzlQ1RhlS3B4WnT2ryIh_nxXxj1Bf1hHXywB1wI5GDikSjhfEyaGWRAVeQgRH4HavCU_RNbbpRTFEMxoAssd7qOt2FFXKE_I_-PeRY4qQ_ctCGVH-bU8Z7bLcng_y2W8Q-2wr1AduZrpVUl4dMPNcciOFSS0-LIl9EHt-IKnKg0x1NK93N4RVrfE67dMsjNhs_zO4nST_oIAGhTZPYgOSxUKLKKxO0ToOMYHJIvVMqQOa9VJlHaoJsA1wuSVC7MKmttAHpnBPHbFAv6nDCuBfgBfGmEAOmam-lzL3KAGmN8MbpIbv5fvISehFwmkXxXmIxQDiVhFPZ4zRk12vrj0784he7OwJxbUOS1e0FdGTZO7L8y5Gn_3GTM7ZNa-r2SM7ZoPlchQtkDU112b4gXwEjviQ |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+classification+of+finite+commutative+chain+rings&rft.jtitle=AIMS+mathematics&rft.au=Sami+Alabiad&rft.au=Yousef+Alkhamees&rft.date=2022-01-01&rft.pub=AIMS+Press&rft.eissn=2473-6988&rft.volume=7&rft.issue=2&rft.spage=1742&rft.epage=1757&rft_id=info:doi/10.3934%2Fmath.2022100&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_32c6f550538d4e769597bc1c8387665d |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon |