An accurate FSI-SPH modeling of challenging fluid-structure interaction problems in two and three dimensions
The recently developed FSI-SPH model (Sun et al., 2019c), by combining the multi-resolution δ+-SPH scheme and a Total Lagrangian SPH method, is further extended for more complex three-dimensional (3D) Fluid Structure Interaction (FSI) problems. The FSI-SPH model is strengthened with advanced numeric...
Saved in:
Published in | Ocean engineering Vol. 221; p. 108552 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.02.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The recently developed FSI-SPH model (Sun et al., 2019c), by combining the multi-resolution δ+-SPH scheme and a Total Lagrangian SPH method, is further extended for more complex three-dimensional (3D) Fluid Structure Interaction (FSI) problems. The FSI-SPH model is strengthened with advanced numerical techniques, in which a combination of the Particle Shifting Technique (PST) and the Tensile Instability Control (TIC) is adopted to prevent flow voids induced by the tensile instability. The Adaptive Particle Refinement (APR) is used to refine particles in the boundary layer region and coarsen particles in the far-field to increase local accuracy but reduce overall computational cost. Moreover, the δ+-SPH and Total Lagrangian SPH solvers are coupled through a Modified Sequential Staggered (MSS) algorithm which, on one hand, ensures the numerical accuracy and stability and, on the other hand, improves the efficiency when magnitudes of time steps between the two solvers differ from each other significantly. In the numerical results, challenging 2D and 3D FSI cases are simulated to test the accuracy of the proposed FSI-SPH model. A new FSI benchmark with free-surface is proposed to highlight the advantage of this FSI-SPH model in simulating free-surface viscous flows. In addition, 3D effects in the FSI dam-breaking and sloshing cases are investigated.
•Multi-resolution δ+-SPH model is accurately and efficiently coupled with the Total Lagrangian SPH model.•Complex three-dimensional (3D) Fluid Structure Interaction (FSI) problems are simulated and validated.•A new benchmark named FSI4 is proposed.•The 3D effects in the FSI dam-breaking and sloshing cases are highlighted. |
---|---|
AbstractList | The recently developed FSI-SPH model (Sun et al., 2019c), by combining the multi-resolution δ+-SPH scheme and a Total Lagrangian SPH method, is further extended for more complex three-dimensional (3D) Fluid Structure Interaction (FSI) problems. The FSI-SPH model is strengthened with advanced numerical techniques, in which a combination of the Particle Shifting Technique (PST) and the Tensile Instability Control (TIC) is adopted to prevent flow voids induced by the tensile instability. The Adaptive Particle Refinement (APR) is used to refine particles in the boundary layer region and coarsen particles in the far-field to increase local accuracy but reduce overall computational cost. Moreover, the δ+-SPH and Total Lagrangian SPH solvers are coupled through a Modified Sequential Staggered (MSS) algorithm which, on one hand, ensures the numerical accuracy and stability and, on the other hand, improves the efficiency when magnitudes of time steps between the two solvers differ from each other significantly. In the numerical results, challenging 2D and 3D FSI cases are simulated to test the accuracy of the proposed FSI-SPH model. A new FSI benchmark with free-surface is proposed to highlight the advantage of this FSI-SPH model in simulating free-surface viscous flows. In addition, 3D effects in the FSI dam-breaking and sloshing cases are investigated.
•Multi-resolution δ+-SPH model is accurately and efficiently coupled with the Total Lagrangian SPH model.•Complex three-dimensional (3D) Fluid Structure Interaction (FSI) problems are simulated and validated.•A new benchmark named FSI4 is proposed.•The 3D effects in the FSI dam-breaking and sloshing cases are highlighted. |
ArticleNumber | 108552 |
Author | Sun, Peng-Nan Zhang, A-Man Oger, Guillaume Le Touzé, David |
Author_xml | – sequence: 1 givenname: Peng-Nan surname: Sun fullname: Sun, Peng-Nan email: sunpn@mail.sysu.edu.cn organization: School of Marine Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, China – sequence: 2 givenname: David surname: Le Touzé fullname: Le Touzé, David email: david.letouze@ec-nantes.fr organization: Ecole Centrale Nantes, LHEEA Lab. (ECN and CNRS), Nantes, 44300, France – sequence: 3 givenname: Guillaume surname: Oger fullname: Oger, Guillaume email: guillaume.oger@ec-nantes.fr organization: Ecole Centrale Nantes, LHEEA Lab. (ECN and CNRS), Nantes, 44300, France – sequence: 4 givenname: A-Man surname: Zhang fullname: Zhang, A-Man email: zhangaman@hrbeu.edu.cn organization: College of Shipbuilding Engineering, Harbin Engineering University, Harbin, 150001, China |
BookMark | eNqFkM9KAzEQh4NUsK2-guQFtib7J7sLHizF2kJBoXoO2WTSpuwmJUkV395dqhcvPQ0zzPdj5pugkXUWELqnZEYJZQ-HmZMgLNjdLCXpMKyKIr1CY1qVWVKkRTVCY0LSOqkIrW7QJIQDIYQxko1RO7dYSHnyIgJebtfJ9m2FO6egNXaHncZyL9q2zx5a3Z6MSkL0JxlPHrCxEbyQ0TiLj941LXShH-L45bCwCse9B8DKdGBDvxNu0bUWbYC73zpFH8vn98Uq2by-rBfzTSKzsopJXeQZlCTPSZPWNFcNyWpCtQApQKVaMhA6pyUrFWtYrnOhiW5yphqlVZnVkE3R4zlXeheCB82liWI4M3phWk4JH8zxA_8zxwdz_Gyux9k__OhNJ_z3ZfDpDEL_3KcBz4M0YCUo40FGrpy5FPEDDvqRMg |
CitedBy_id | crossref_primary_10_1063_5_0221300 crossref_primary_10_3390_pr11113079 crossref_primary_10_1007_s11804_022_00260_3 crossref_primary_10_1016_j_apm_2025_116104 crossref_primary_10_1016_j_oceaneng_2024_117523 crossref_primary_10_1007_s00707_023_03763_4 crossref_primary_10_1142_S252980702340002X crossref_primary_10_1007_s40571_024_00892_y crossref_primary_10_1016_j_oceaneng_2021_110205 crossref_primary_10_1016_j_euromechflu_2022_04_006 crossref_primary_10_1016_j_euromechflu_2022_04_005 crossref_primary_10_1002_fld_5083 crossref_primary_10_1063_5_0188986 crossref_primary_10_1016_j_apm_2024_115661 crossref_primary_10_1016_j_jcp_2023_112056 crossref_primary_10_1007_s10409_022_22053_x crossref_primary_10_1016_j_oceaneng_2021_110100 crossref_primary_10_1016_j_cma_2024_117179 crossref_primary_10_1016_j_oceaneng_2023_115077 crossref_primary_10_1063_5_0175947 crossref_primary_10_1063_5_0226161 crossref_primary_10_1016_j_oceaneng_2025_120528 crossref_primary_10_1007_s40571_023_00631_9 crossref_primary_10_1016_j_camwa_2023_06_008 crossref_primary_10_1016_j_compstruc_2022_106847 crossref_primary_10_1016_j_cma_2022_115788 crossref_primary_10_1016_j_tsep_2025_103508 crossref_primary_10_1007_s11804_022_00284_9 crossref_primary_10_1016_j_cma_2024_117209 crossref_primary_10_1016_j_apor_2021_102938 crossref_primary_10_26599_RSM_2024_9435353 crossref_primary_10_1016_j_apor_2021_102775 crossref_primary_10_1016_j_enganabound_2025_106173 crossref_primary_10_1063_5_0133782 crossref_primary_10_1016_j_euromechflu_2022_07_007 crossref_primary_10_1063_5_0179348 crossref_primary_10_1007_s40997_023_00686_2 crossref_primary_10_1016_j_enganabound_2024_105848 crossref_primary_10_1177_10775463221135679 crossref_primary_10_1016_j_apor_2021_102774 crossref_primary_10_1142_S0219876222500049 crossref_primary_10_1016_j_enganabound_2023_01_035 crossref_primary_10_1016_j_jnnfm_2022_104905 crossref_primary_10_1016_j_compgeo_2024_106284 crossref_primary_10_1016_j_jer_2023_100081 crossref_primary_10_1016_j_jcp_2022_111762 crossref_primary_10_1016_j_oceaneng_2021_109487 crossref_primary_10_1016_j_euromechflu_2022_02_014 crossref_primary_10_1016_j_enganabound_2023_07_010 crossref_primary_10_1016_j_taml_2023_100463 crossref_primary_10_1016_j_jcp_2023_112233 crossref_primary_10_1016_j_oceaneng_2024_117017 crossref_primary_10_1016_j_apor_2021_102822 crossref_primary_10_3390_en15020502 crossref_primary_10_1155_2023_4060591 crossref_primary_10_1007_s11804_022_00265_y crossref_primary_10_1088_1742_6596_2865_1_012041 crossref_primary_10_1016_j_enganabound_2021_10_023 crossref_primary_10_1007_s40819_022_01322_4 crossref_primary_10_1016_j_oceaneng_2022_111623 crossref_primary_10_1016_j_camwa_2024_11_008 crossref_primary_10_1016_j_oceaneng_2022_110537 crossref_primary_10_1016_j_cma_2023_115989 crossref_primary_10_1145_3649888 crossref_primary_10_1007_s11804_023_00344_8 crossref_primary_10_1016_j_jfluidstructs_2023_103864 crossref_primary_10_1016_j_apm_2022_07_031 crossref_primary_10_3390_app15010357 crossref_primary_10_3390_jmse11081483 crossref_primary_10_1007_s42241_022_0042_3 crossref_primary_10_1016_j_cma_2023_115915 crossref_primary_10_1063_5_0169801 crossref_primary_10_1002_nme_7043 crossref_primary_10_1016_j_aej_2025_02_068 crossref_primary_10_1360_SSPMA_2022_0205 crossref_primary_10_1016_j_oceaneng_2022_113110 crossref_primary_10_1016_j_cma_2024_117255 crossref_primary_10_1016_j_jfluidstructs_2023_104049 crossref_primary_10_1016_j_euromechflu_2022_03_011 crossref_primary_10_1016_j_cma_2022_115356 crossref_primary_10_1016_j_cma_2024_117015 crossref_primary_10_1016_j_enganabound_2021_05_007 crossref_primary_10_1016_j_oceaneng_2023_114582 crossref_primary_10_1016_j_apor_2025_104498 crossref_primary_10_1016_j_enganabound_2023_09_023 crossref_primary_10_1016_j_enganabound_2024_105754 crossref_primary_10_1016_j_jfluidstructs_2022_103732 crossref_primary_10_1016_j_oceaneng_2023_116484 crossref_primary_10_1016_j_oceaneng_2025_120601 crossref_primary_10_1007_s40571_021_00451_9 crossref_primary_10_1115_1_4051266 crossref_primary_10_1016_j_cpc_2021_108008 crossref_primary_10_1016_j_oceaneng_2021_109679 crossref_primary_10_1108_WJE_03_2021_0125 crossref_primary_10_1016_j_enganabound_2023_02_028 crossref_primary_10_1142_S0219876224500105 crossref_primary_10_1007_s40571_022_00463_z crossref_primary_10_1016_j_compstruc_2025_107673 crossref_primary_10_1088_1742_6596_2865_1_012026 crossref_primary_10_1360_SSPMA_2022_0333 crossref_primary_10_1016_j_jcp_2022_111533 crossref_primary_10_3390_biology12071026 crossref_primary_10_3390_jmse11050978 crossref_primary_10_1016_j_apm_2021_08_014 crossref_primary_10_1016_j_coastaleng_2024_104658 crossref_primary_10_1016_j_apor_2021_102734 crossref_primary_10_1016_j_enganabound_2024_105764 crossref_primary_10_1007_s40430_024_04926_7 crossref_primary_10_1016_j_oceaneng_2023_114270 crossref_primary_10_1016_j_oceaneng_2022_113581 crossref_primary_10_1016_j_oceaneng_2024_119853 crossref_primary_10_1007_s40571_023_00591_0 crossref_primary_10_3390_pr13010042 crossref_primary_10_1016_j_cma_2021_114522 crossref_primary_10_1016_j_apm_2024_06_010 crossref_primary_10_1016_j_cma_2022_115659 crossref_primary_10_1016_j_apm_2022_10_037 crossref_primary_10_1007_s11804_024_00541_z crossref_primary_10_1016_j_apor_2021_102906 crossref_primary_10_32604_cmes_2023_044094 crossref_primary_10_1017_S1446181123000160 crossref_primary_10_1063_5_0226743 crossref_primary_10_1016_j_jcp_2023_112270 crossref_primary_10_1016_j_jhydrol_2023_129581 crossref_primary_10_1016_j_jfluidstructs_2023_103855 crossref_primary_10_1016_j_oceaneng_2024_119061 crossref_primary_10_1016_j_euromechflu_2022_01_007 crossref_primary_10_1063_5_0216702 crossref_primary_10_1016_j_cmpb_2024_108034 crossref_primary_10_1063_5_0204040 crossref_primary_10_1016_j_apor_2023_103476 crossref_primary_10_1080_17445302_2024_2317040 crossref_primary_10_1016_j_compstruc_2025_107653 crossref_primary_10_1029_2021JF006587 |
Cites_doi | 10.1007/s42241-020-0042-0 10.1016/j.euromechflu.2012.02.002 10.1016/j.apor.2018.10.020 10.1016/j.oceaneng.2015.01.019 10.1016/j.jfluidstructs.2019.02.002 10.1007/s42241-019-0058-5 10.1080/13588265.2017.1359462 10.1007/s42241-020-0044-y 10.1016/j.jfluidstructs.2019.06.004 10.1016/j.coastaleng.2019.103617 10.1016/j.apor.2018.01.004 10.1016/j.jcp.2012.05.005 10.1016/j.jfluidstructs.2013.05.010 10.1016/j.jcp.2013.10.047 10.1016/j.compfluid.2019.06.030 10.1016/j.cma.2018.08.004 10.1007/s11831-010-9040-7 10.1016/j.cma.2019.06.033 10.1016/j.jfluidstructs.2015.01.014 10.1108/EC-12-2013-0306 10.1016/j.oceaneng.2016.03.040 10.1016/j.cpc.2018.05.012 10.1016/j.cma.2019.01.045 10.1016/j.jcp.2020.109255 10.1016/j.jfluidstructs.2020.102942 10.1016/j.cma.2019.07.024 10.1016/j.oceaneng.2019.05.034 10.1146/annurev.fluid.36.050802.122128 10.1016/j.coastaleng.2015.11.007 10.1080/10618562.2017.1324149 10.1016/j.compfluid.2016.11.008 10.1142/S0578563417500103 10.1016/j.cma.2016.03.027 10.1016/j.compstruc.2014.12.011 10.1016/j.jfluidstructs.2019.07.005 10.1002/1097-0207(20000810)48:10<1445::AID-NME831>3.0.CO;2-9 10.2514/1.J051621 10.1016/j.jcp.2011.10.027 10.1016/j.oceaneng.2019.106845 10.1002/1097-0207(20000730)48:9<1359::AID-NME829>3.0.CO;2-U 10.1016/j.apor.2015.02.002 10.1007/s42241-018-0004-y 10.1016/j.jcp.2010.01.019 10.1007/s42241-018-0042-5 10.1515/ijnsns-2012-0100 10.1016/j.cma.2010.12.016 10.1016/j.cpc.2017.11.016 10.1007/s42241-018-0006-9 10.1016/j.oceaneng.2017.12.008 10.1016/j.enganabound.2019.03.033 10.1016/j.cma.2010.02.019 10.1007/s11433-018-9357-0 10.1016/j.taml.2018.02.007 10.1063/1.5124613 10.1016/j.cpc.2012.02.032 10.1063/1.4978274 10.1016/j.jcp.2014.05.040 10.1016/j.compfluid.2018.11.024 10.1016/S0021-9991(03)00324-3 10.1088/0034-4885/68/8/R01 10.1016/j.jcp.2017.10.041 10.1016/j.cma.2016.10.028 10.1016/j.cpc.2009.11.002 10.1016/S1001-6058(16)60730-8 10.1016/j.compfluid.2015.03.029 10.1016/j.jfluidstructs.2018.04.012 10.1016/j.cpc.2017.04.005 10.1016/j.cma.2014.04.001 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd |
Copyright_xml | – notice: 2020 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.oceaneng.2020.108552 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Oceanography |
EISSN | 1873-5258 |
ExternalDocumentID | 10_1016_j_oceaneng_2020_108552 S0029801820314608 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JM 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHJVU AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KCYFY KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SPC SPCBC SSJ SST SSZ T5K TAE TN5 XPP ZMT ~02 ~G- 29N 6TJ AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACKIV ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- RIG SAC SET SEW SSH WUQ |
ID | FETCH-LOGICAL-c378t-9543e70440b2914db03901faecaed2fc6eaf41767d6b64f4af0fb46dbdfd739e3 |
IEDL.DBID | .~1 |
ISSN | 0029-8018 |
IngestDate | Thu Apr 24 22:52:20 EDT 2025 Tue Jul 01 02:14:43 EDT 2025 Fri Feb 23 02:48:05 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | δ+-SPH Smoothed particle hydrodynamics FSI-SPH Tensile instability Fluid-structure interaction Viscous flow |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c378t-9543e70440b2914db03901faecaed2fc6eaf41767d6b64f4af0fb46dbdfd739e3 |
ParticipantIDs | crossref_citationtrail_10_1016_j_oceaneng_2020_108552 crossref_primary_10_1016_j_oceaneng_2020_108552 elsevier_sciencedirect_doi_10_1016_j_oceaneng_2020_108552 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-02-01 2021-02-00 |
PublicationDateYYYYMMDD | 2021-02-01 |
PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Ocean engineering |
PublicationYear | 2021 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Khayyer, Gotoh, Falahaty, Shimizu (bib30) 2018; 232 Antuono, Colagrossi, Marrone, Molteni (bib2) 2010; 181 Tsurudome, Liang, Shimizu, Khayyer, Gotoh (bib66) 2020; 32 Siemann, Schwinn, Scherer, Kohlgrüber (bib52) 2018; 23 He, Gao, Xu (bib25) 2018; 30 Sun, Colagrossi, Zhang (bib56) 2018; 8 Dorschner, Chikatamarla, Karlin (bib14) 2018; 97 Turek, Hron (bib67) 2006 Adami, Hu, Adams (bib1) 2012; 231 Colagrossi, Landrini (bib11) 2003; 191 Colagrossi, Antuono, Le Touzé (bib9) 2009; 79 Di Mascio, Antuono, Colagrossi, Marrone (bib13) 2017; 29 He, Zhang, Huang, Liu (bib22) 2020; 156 Hermange, Oger, Le Chenadec, Le Touzé (bib26) 2019; 355 Sun, Colagrossi, Marrone, Zhang (bib60) 2016; 305 Oger, Vergnaud, Bouscasse, Ohana, Zarim, De Leffe, Bannier, Chiron, Jus, Garnier (bib48) 2020; 32 Tian, Dai, Luo, Doyle, Rousseau (bib65) 2014; 258 Yang, Liu, Peng, Huang (bib71) 2016; 108 Fourey, Hermange, Le Touzé, Oger (bib17) 2017; 217 Zhang, Sun, Ming, Colagrossi (bib73) 2017; 29 Nasar, Rogers, Revell, Stansby (bib46) 2019; 179 Bouscasse, Antuono, Colagrossi, Lugni (bib6) 2013; 14 Chiron, Oger, De Leffe, Le Touzé (bib8) 2018; 354 Randles, Libersky (bib50) 2000; 48 Zhang, Long, Chang, Liu (bib77) 2019; 356 Marrone, Colagrossi, Di Mascio, Le Touzé (bib41) 2015; 54 Ni, Feng, Huang, Zhao, Li (bib47) 2020; 196 Federico, Marrone, Colagrossi, Aristodemo, Antuono (bib16) 2012; 34 Li, Favier (bib33) 2017; 143 Zhang, Wan (bib75) 2018; 152 Bhardwaj, Mittal (bib5) 2012; 50 Barcarolo, Le Touzé, Oger, de Vuyst (bib3) 2014; 273 Liu, Liu (bib37) 2010; 17 Sun, Zhang, Marrone, Ming (bib59) 2018; 72 Khayyer, Tsuruta, Shimizu, Gotoh (bib31) 2019; 82 Bouscasse, Colagrossi, Marrone, Antuono (bib7) 2013; 42 Belytschko, Guo, Kam Liu, Ping Xiao (bib4) 2000; 48 Zhang, Tang, Wan (bib74) 2016 Williamson, Govardhan (bib70) 2004; 36 He, Gao, Xu, Ren, Wang (bib24) 2019; 185 Marrone, Colagrossi, Chiron, De Leffe, Le Touzé (bib40) 2018; 30 Sun, Colagrossi, Marrone, Antuono, Zhang (bib54) 2018; 224 Vera (bib68) 2015 Hu, Long, Xiao, Han, Gu (bib27) 2014; 276 Tafuni, Dominguez, Vacondio, Crespo (bib64) 2018; 342 Gao, He, Xu, Wang (bib19) 2018 Falahaty, Khayyer, Gotoh (bib15) 2018; 81 Monaghan (bib45) 2005; 68 Han, Hu (bib21) 2018; 30 Li, Cao, Le Touzé (bib32) 2019; 190 Mayrhofer, Laurence, Rogers, Violeau (bib43) 2015; 115 Peng, Bauinger, Szewc, Wu, Cao (bib49) 2019; 31 Sun, Ming, Zhang (bib62) 2015; 98 Vignjevic, Reveles, Campbell (bib69) 2006 Zhang, Khalid, Long, Chang, Liu (bib76) 2020; 94 Sun, Colagrossi, Le Touzé, Zhang (bib53) 2019; 90 Degroote, Souto-Iglesias, Van Paepegem, Annerel, Bruggeman, Vierendeels (bib12) 2010; 199 Lind, Xu, Stansby, Rogers (bib36) 2012; 231 Sun, Colagrossi, Marrone, Antuono, Zhang (bib55) 2019; 348 Liao, Hu, Sueyoshi (bib34) 2015; 50 Hammani (bib20) 2020 Jiang, Ren, Yuan, Zhou, Wang (bib29) 2020; 407 Ganzenmüller, Hiermaier, May (bib18) 2015; 150 Lin, Naceur, Coutellier, Laksimi (bib35) 2015; 32 Ming, Zhang, Xue, Wang (bib44) 2016; 117 He, Tofighi, Yildiz, Lei, Suleman (bib23) 2017; 31 Sun, Colagrossi, Marrone, Zhang (bib61) 2017; 315 Sun, Xi, Sun (bib63) 2019; 90 Colagrossi, Bouscasse, Antuono, Marrone (bib10) 2012; 183 Sun, Le Touzé, Zhang (bib57) 2019; 104 Marrone, Antuono, Colagrossi, Colicchio, Le Touzé, Graziani (bib39) 2011; 200 Zhan, Peng, Zhang, Wu (bib72) 2019; 86 Iafrati, Grizzi, Olivieri (bib28) 2019 Rudnicki (bib51) 2014 Liu, Zhang (bib38) 2019; 62 Marrone, Colagrossi, Le Touzé, Graziani (bib42) 2010; 229 Sun, Luo, Le Touzé, Zhang (bib58) 2019; 31 Zheng, Shao, Khayyer, Duan, Ma, Liao (bib78) 2017; 59 Sun (10.1016/j.oceaneng.2020.108552_bib53) 2019; 90 Vera (10.1016/j.oceaneng.2020.108552_bib68) 2015 He (10.1016/j.oceaneng.2020.108552_bib22) 2020; 156 Marrone (10.1016/j.oceaneng.2020.108552_bib41) 2015; 54 Li (10.1016/j.oceaneng.2020.108552_bib32) 2019; 190 Oger (10.1016/j.oceaneng.2020.108552_bib48) 2020; 32 Zhang (10.1016/j.oceaneng.2020.108552_bib74) 2016 Sun (10.1016/j.oceaneng.2020.108552_bib61) 2017; 315 Sun (10.1016/j.oceaneng.2020.108552_bib56) 2018; 8 He (10.1016/j.oceaneng.2020.108552_bib23) 2017; 31 Colagrossi (10.1016/j.oceaneng.2020.108552_bib10) 2012; 183 Bouscasse (10.1016/j.oceaneng.2020.108552_bib7) 2013; 42 Peng (10.1016/j.oceaneng.2020.108552_bib49) 2019; 31 Yang (10.1016/j.oceaneng.2020.108552_bib71) 2016; 108 Turek (10.1016/j.oceaneng.2020.108552_bib67) 2006 Zhang (10.1016/j.oceaneng.2020.108552_bib76) 2020; 94 Randles (10.1016/j.oceaneng.2020.108552_bib50) 2000; 48 Sun (10.1016/j.oceaneng.2020.108552_bib55) 2019; 348 Sun (10.1016/j.oceaneng.2020.108552_bib59) 2018; 72 Hammani (10.1016/j.oceaneng.2020.108552_bib20) 2020 Iafrati (10.1016/j.oceaneng.2020.108552_bib28) 2019 Tian (10.1016/j.oceaneng.2020.108552_bib65) 2014; 258 Zhan (10.1016/j.oceaneng.2020.108552_bib72) 2019; 86 Liu (10.1016/j.oceaneng.2020.108552_bib38) 2019; 62 Bhardwaj (10.1016/j.oceaneng.2020.108552_bib5) 2012; 50 Gao (10.1016/j.oceaneng.2020.108552_bib19) 2018 Jiang (10.1016/j.oceaneng.2020.108552_bib29) 2020; 407 Sun (10.1016/j.oceaneng.2020.108552_bib58) 2019; 31 Zhang (10.1016/j.oceaneng.2020.108552_bib77) 2019; 356 Zhang (10.1016/j.oceaneng.2020.108552_bib75) 2018; 152 Federico (10.1016/j.oceaneng.2020.108552_bib16) 2012; 34 Degroote (10.1016/j.oceaneng.2020.108552_bib12) 2010; 199 Zheng (10.1016/j.oceaneng.2020.108552_bib78) 2017; 59 Falahaty (10.1016/j.oceaneng.2020.108552_bib15) 2018; 81 Ganzenmüller (10.1016/j.oceaneng.2020.108552_bib18) 2015; 150 Sun (10.1016/j.oceaneng.2020.108552_bib54) 2018; 224 He (10.1016/j.oceaneng.2020.108552_bib25) 2018; 30 Rudnicki (10.1016/j.oceaneng.2020.108552_bib51) 2014 Barcarolo (10.1016/j.oceaneng.2020.108552_bib3) 2014; 273 Hermange (10.1016/j.oceaneng.2020.108552_bib26) 2019; 355 Sun (10.1016/j.oceaneng.2020.108552_bib57) 2019; 104 Hu (10.1016/j.oceaneng.2020.108552_bib27) 2014; 276 Li (10.1016/j.oceaneng.2020.108552_bib33) 2017; 143 Khayyer (10.1016/j.oceaneng.2020.108552_bib31) 2019; 82 Vignjevic (10.1016/j.oceaneng.2020.108552_bib69) 2006 Siemann (10.1016/j.oceaneng.2020.108552_bib52) 2018; 23 Adami (10.1016/j.oceaneng.2020.108552_bib1) 2012; 231 Antuono (10.1016/j.oceaneng.2020.108552_bib2) 2010; 181 Dorschner (10.1016/j.oceaneng.2020.108552_bib14) 2018; 97 Belytschko (10.1016/j.oceaneng.2020.108552_bib4) 2000; 48 Di Mascio (10.1016/j.oceaneng.2020.108552_bib13) 2017; 29 Sun (10.1016/j.oceaneng.2020.108552_bib60) 2016; 305 Ming (10.1016/j.oceaneng.2020.108552_bib44) 2016; 117 Sun (10.1016/j.oceaneng.2020.108552_bib63) 2019; 90 Tsurudome (10.1016/j.oceaneng.2020.108552_bib66) 2020; 32 Marrone (10.1016/j.oceaneng.2020.108552_bib40) 2018; 30 Mayrhofer (10.1016/j.oceaneng.2020.108552_bib43) 2015; 115 Lin (10.1016/j.oceaneng.2020.108552_bib35) 2015; 32 Nasar (10.1016/j.oceaneng.2020.108552_bib46) 2019; 179 Bouscasse (10.1016/j.oceaneng.2020.108552_bib6) 2013; 14 Williamson (10.1016/j.oceaneng.2020.108552_bib70) 2004; 36 Liu (10.1016/j.oceaneng.2020.108552_bib37) 2010; 17 Chiron (10.1016/j.oceaneng.2020.108552_bib8) 2018; 354 Han (10.1016/j.oceaneng.2020.108552_bib21) 2018; 30 Tafuni (10.1016/j.oceaneng.2020.108552_bib64) 2018; 342 Fourey (10.1016/j.oceaneng.2020.108552_bib17) 2017; 217 Ni (10.1016/j.oceaneng.2020.108552_bib47) 2020; 196 Zhang (10.1016/j.oceaneng.2020.108552_bib73) 2017; 29 Lind (10.1016/j.oceaneng.2020.108552_bib36) 2012; 231 Marrone (10.1016/j.oceaneng.2020.108552_bib42) 2010; 229 Khayyer (10.1016/j.oceaneng.2020.108552_bib30) 2018; 232 Marrone (10.1016/j.oceaneng.2020.108552_bib39) 2011; 200 Monaghan (10.1016/j.oceaneng.2020.108552_bib45) 2005; 68 He (10.1016/j.oceaneng.2020.108552_bib24) 2019; 185 Colagrossi (10.1016/j.oceaneng.2020.108552_bib11) 2003; 191 Liao (10.1016/j.oceaneng.2020.108552_bib34) 2015; 50 Colagrossi (10.1016/j.oceaneng.2020.108552_bib9) 2009; 79 Sun (10.1016/j.oceaneng.2020.108552_bib62) 2015; 98 |
References_xml | – volume: 48 start-page: 1445 year: 2000 end-page: 1462 ident: bib50 article-title: Normalized sph with stress points publication-title: Int. J. Numer. Methods Eng. – start-page: 181 year: 2006 ident: bib69 article-title: Sph in a Total Lagrangian Formalism – volume: 150 start-page: 71 year: 2015 end-page: 78 ident: bib18 article-title: On the similarity of meshless discretizations of peridynamics and smooth-particle hydrodynamics publication-title: Comput. Struct. – start-page: 2030 year: 2019 ident: bib28 article-title: Experimental investigation of fluid-structure interaction phenomena during aircraft ditching publication-title: AIAA Scitech 2019 Forum – volume: 117 start-page: 359 year: 2016 end-page: 382 ident: bib44 article-title: Damage characteristics of ship structures subjected to shockwaves of underwater contact explosions publication-title: Ocean Eng. – volume: 356 start-page: 261 year: 2019 end-page: 293 ident: bib77 article-title: A smoothed particle element method (SPEM) for modeling fluid–structure interaction problems with large fluid deformations publication-title: Comput. Methods Appl. Mech. Eng. – volume: 143 start-page: 90 year: 2017 end-page: 102 ident: bib33 article-title: A non-staggered coupling of finite element and lattice Boltzmann methods via an immersed boundary scheme for fluid-structure interaction publication-title: Comput. Fluids – year: 2014 ident: bib51 article-title: Fundamentals of Continuum Mechanics – volume: 17 start-page: 25 year: 2010 end-page: 76 ident: bib37 article-title: Smoothed particle hydrodynamics (sph): an overview and recent developments publication-title: Arch. Comput. Methods Eng. – volume: 199 start-page: 2085 year: 2010 end-page: 2098 ident: bib12 article-title: Partitioned simulation of the interaction between an elastic structure and free surface flow publication-title: Comput. Methods Appl. Mech. Eng. – volume: 32 start-page: 653 year: 2020 end-page: 663 ident: bib48 article-title: Simulations of helicopter ditching using smoothed particle hydrodynamics publication-title: J. Hydrodyn. – year: 2020 ident: bib20 article-title: Improvement of the SPH method for multiphase flows application to the emergency water landing of aircrafts: application to the emergency water landing of aircrafts publication-title: École centrale de Nantes. – volume: 30 start-page: 38 year: 2018 end-page: 48 ident: bib40 article-title: High-speed water impacts of flat plates in different ditching configuration through a Riemann-ALE SPH model publication-title: J. Hydrodyn. – volume: 97 year: 2018 ident: bib14 article-title: Fluid-structure interaction with the entropic lattice Boltzmann method publication-title: Phys. Rev. – volume: 50 start-page: 192 year: 2015 end-page: 208 ident: bib34 article-title: Free surface flow impacting on an elastic structure: experiment versus numerical simulation publication-title: Appl. Ocean Res. – volume: 34 start-page: 35 year: 2012 end-page: 46 ident: bib16 article-title: Simulating 2D open-channel flows through an SPH model publication-title: Eur. J. Mech. B Fluid – volume: 305 start-page: 849 year: 2016 end-page: 868 ident: bib60 article-title: Detection of Lagrangian coherent structures in the SPH framework publication-title: Comput. Methods Appl. Mech. Eng. – volume: 90 start-page: 379 year: 2019 end-page: 395 ident: bib63 article-title: A fully Lagrangian method for fluid-structure interaction problems with deformable floating structure publication-title: J. Fluid Struct. – volume: 273 start-page: 640 year: 2014 end-page: 657 ident: bib3 article-title: Adaptive particle refinement and derefinement applied to the smoothed particle hydrodynamics method publication-title: J. Comput. Phys. – volume: 50 start-page: 1638 year: 2012 end-page: 1642 ident: bib5 article-title: Benchmarking a coupled immersed-boundary-finite-element solver for large-scale flow-induced deformation publication-title: AIAA J. – volume: 54 start-page: 802 year: 2015 end-page: 822 ident: bib41 article-title: Prediction of energy losses in water impacts using incompressible and weakly compressible models publication-title: J. Fluid Struct. – volume: 181 start-page: 532 year: 2010 end-page: 549 ident: bib2 article-title: Free-surface flows solved by means of SPH schemes with numerical diffusive terms publication-title: Comput. Phys. Commun. – volume: 48 start-page: 1359 year: 2000 end-page: 1400 ident: bib4 article-title: A unified stability analysis of meshless particle methods publication-title: Int. J. Numer. Methods Eng. – volume: 196 start-page: 106845 year: 2020 ident: bib47 article-title: Hybrid SW-NS SPH models using open boundary conditions for simulation of free-surface flows publication-title: Ocean Eng. – volume: 29 start-page: 187 year: 2017 end-page: 216 ident: bib73 article-title: Smoothed particle hydrodynamics and its applications in fluid-structure interactions publication-title: J. Hydrodyn. Ser. B – volume: 29 year: 2017 ident: bib13 article-title: Smoothed particle hydrodynamics method from a large eddy simulation perspective publication-title: Phys. Fluids – volume: 90 start-page: 19 year: 2019 end-page: 42 ident: bib53 article-title: Extension of the publication-title: J. Fluid Struct. – volume: 191 start-page: 448 year: 2003 end-page: 475 ident: bib11 article-title: Numerical simulation of interfacial flows by smoothed particle hydrodynamics publication-title: J. Comp. Physiol. – volume: 31 start-page: 174 year: 2017 end-page: 187 ident: bib23 article-title: A coupled WC-TL SPH method for simulation of hydroelastic problems publication-title: Int. J. Comput. Fluid Dynam. – volume: 183 start-page: 1641 year: 2012 end-page: 1683 ident: bib10 article-title: Particle packing algorithm for SPH schemes publication-title: Comput. Phys. Commun. – volume: 179 start-page: 563 year: 2019 end-page: 578 ident: bib46 article-title: Flexible slender body fluid interaction: vector-based discrete element method with eulerian smoothed particle hydrodynamics publication-title: Comput. Fluids – volume: 224 start-page: 63 year: 2018 end-page: 80 ident: bib54 article-title: Multi-resolution Delta-plus-SPH with tensile instability control: towards high Reynolds number flows publication-title: Comput. Phys. Commun. – volume: 31 start-page: 117108 year: 2019 ident: bib58 article-title: The suction effect during freak wave slamming on a fixed platform deck: smoothed particle hydrodynamics simulation and experimental study publication-title: Phys. Fluids – volume: 348 start-page: 912 year: 2019 end-page: 934 ident: bib55 article-title: A consistent approach to particle shifting in the publication-title: Comput. Methods Appl. Mech. Eng. – volume: 190 start-page: 470 year: 2019 end-page: 484 ident: bib32 article-title: On the coupling of a direct-forcing immersed boundary method and the regularized lattice Boltzmann method for fluid-structure interaction publication-title: Comput. Fluids – year: 2018 ident: bib19 article-title: Hydroelastic analysis of a submerged horizontal plate using a coupled SPH-FEM model publication-title: Proceedings of the ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering – volume: 232 start-page: 139 year: 2018 end-page: 164 ident: bib30 article-title: An enhanced ISPH-SPH coupled method for simulation of incompressible fluid-elastic structure interactions publication-title: Comput. Phys. Commun. – volume: 407 start-page: 109255 year: 2020 ident: bib29 article-title: A least-squares particle model with other techniques for 2d viscoelastic fluid/free surface flow publication-title: J. Comput. Phys. – volume: 98 start-page: 32 year: 2015 end-page: 49 ident: bib62 article-title: Numerical simulation of interactions between free surface and rigid body using a robust SPH method publication-title: Ocean Eng. – volume: 23 start-page: 236 year: 2018 end-page: 251 ident: bib52 article-title: Advances in numerical ditching simulation of flexible aircraft models publication-title: Int. J. Crashworthiness – volume: 82 start-page: 397 year: 2019 end-page: 414 ident: bib31 article-title: Multi-resolution MPS for incompressible fluid-elastic structure interactions in ocean engineering publication-title: Appl. Ocean Res. – volume: 152 start-page: 416 year: 2018 end-page: 427 ident: bib75 article-title: MPS-FEM coupled method for sloshing flows in an elastic tank publication-title: Ocean Eng. – volume: 217 start-page: 66 year: 2017 end-page: 81 ident: bib17 article-title: An efficient FSI coupling strategy between smoothed particle hydrodynamics and finite element methods publication-title: Comput. Phys. Commun. – volume: 258 start-page: 451 year: 2014 end-page: 469 ident: bib65 article-title: Fluid–structure interaction involving large deformations: 3D simulations and applications to biological systems publication-title: J. Comput. Phys. – volume: 185 start-page: 27 year: 2019 end-page: 46 ident: bib24 article-title: Potential application of submerged horizontal plate as a wave energy breakwater: a 2D study using the WCSPH method publication-title: Ocean Eng. – volume: 354 start-page: 552 year: 2018 end-page: 575 ident: bib8 article-title: Analysis and improvements of Adaptive Particle Refinement (APR) through CPU time, accuracy and robustness considerations publication-title: J. Comput. Phys. – volume: 30 start-page: 62 year: 2018 end-page: 69 ident: bib21 article-title: SPH modeling of fluid-structure interaction publication-title: J. Hydrodyn. – volume: 59 start-page: 1750010 year: 2017 ident: bib78 article-title: Corrected first-order derivative ISPH in water wave simulations publication-title: Coast Eng. J. – volume: 156 start-page: 103617 year: 2020 ident: bib22 article-title: Numerical investigation of the solitary wave breaking over a slope by using the finite particle method publication-title: Coast Eng. – volume: 31 start-page: 654 year: 2019 end-page: 668 ident: bib49 article-title: An improved predictive-corrective incompressible smoothed particle hydrodynamics method for fluid flow modelling publication-title: J. Hydrodyn. – volume: 81 start-page: 325 year: 2018 end-page: 360 ident: bib15 article-title: Enhanced particle method with stress point integration for simulation of incompressible fluid-nonlinear elastic structure interaction publication-title: J. Fluid Struct. – start-page: 371 year: 2006 end-page: 385 ident: bib67 article-title: Proposal for numerical benchmarking of fluid-structure interaction between an elastic object and laminar incompressible flow publication-title: Fluid-structure Interaction – volume: 68 start-page: 1703 year: 2005 end-page: 1759 ident: bib45 article-title: Smoothed particle hydrodynamics publication-title: Rep. Prog. Phys. – start-page: 1 year: 2016 end-page: 4 ident: bib74 article-title: Mps-fem coupled method for interaction between sloshing flow and elastic structure in rolling tanks publication-title: Proceedings of the 7th International Conference on Computational Methods – volume: 36 start-page: 413 year: 2004 end-page: 455 ident: bib70 article-title: Vortex-induced vibrations publication-title: Annu. Rev. Fluid Mech. – volume: 94 start-page: 102942 year: 2020 ident: bib76 article-title: Investigations on sloshing mitigation using elastic baffles by coupling smoothed finite element method and decoupled finite particle method publication-title: J. Fluid Struct. – volume: 14 start-page: 123 year: 2013 end-page: 138 ident: bib6 article-title: Numerical and experimental investigation of nonlinear shallow water sloshing publication-title: Int. J. Nonlinear Sci. Numer. Stimul. – volume: 104 start-page: 240 year: 2019 end-page: 258 ident: bib57 article-title: Study of a complex fluid-structure dam-breaking benchmark problem using a multi-phase SPH method with APR publication-title: Eng. Anal. Bound. Elem. – volume: 86 start-page: 329 year: 2019 end-page: 353 ident: bib72 article-title: A stabilized TL-WC SPH approach with GPU acceleration for three-dimensional fluid-structure interaction publication-title: J. Fluid Struct. – volume: 355 start-page: 558 year: 2019 end-page: 590 ident: bib26 article-title: A 3D SPH–FE coupling for FSI problems and its application to tire hydroplaning simulations on rough ground publication-title: Comput. Methods Appl. Mech. Eng. – volume: 200 start-page: 1526 year: 2011 end-page: 1542 ident: bib39 article-title: Delta-SPH model for simulating violent impact flows publication-title: Comput. Methods Appl. Mech. Eng. – volume: 108 start-page: 56 year: 2016 end-page: 64 ident: bib71 article-title: Numerical modeling of dam-break flow impacting on flexible structures using an improved SPH–EBG method publication-title: Coast Eng. – volume: 79 year: 2009 ident: bib9 article-title: Theoretical considerations on the free-surface role in the Smoothed-particle-hydrodynamics model publication-title: Phys. Rev. – volume: 8 start-page: 115 year: 2018 end-page: 125 ident: bib56 article-title: Numerical simulation of the self-propulsive motion of a fishlike swimming foil using theᵟ publication-title: Theor. Appl. Mech. Lett. – volume: 315 start-page: 25 year: 2017 end-page: 49 ident: bib61 article-title: The publication-title: Comput. Methods Appl. Mech. Eng. – volume: 42 start-page: 112 year: 2013 end-page: 129 ident: bib7 article-title: Nonlinear water wave interaction with floating bodies in SPH publication-title: J. Fluid Struct. – volume: 231 start-page: 7057 year: 2012 end-page: 7075 ident: bib1 article-title: A generalized wall boundary condition for smoothed particle hydrodynamics publication-title: J. Comput. Phys. – volume: 62 start-page: 984701 year: 2019 ident: bib38 article-title: Smoothed particle hydrodynamics (SPH) for modeling fluid-structure interactions publication-title: Sci. China Phys. Mech. Astron. – volume: 32 start-page: 664 year: 2020 end-page: 671 ident: bib66 article-title: Incompressible SPH simulation of solitary wave propagation on permeable beaches publication-title: J. Hydrodyn. – year: 2015 ident: bib68 article-title: Experimental and Statistical Investigation of Canonical Problems in Sloshing – volume: 115 start-page: 86 year: 2015 end-page: 97 ident: bib43 article-title: DNS and LES of 3-D wall-bounded turbulence using Smoothed Particle Hydrodynamics publication-title: Comput. Fluids – volume: 32 start-page: 779 year: 2015 end-page: 805 ident: bib35 article-title: Geometrically nonlinear analysis of two-dimensional structures using an improved smoothed particle hydrodynamics method publication-title: Eng. Comput. – volume: 231 start-page: 1499 year: 2012 end-page: 1523 ident: bib36 article-title: Incompressible smoothed particle hydrodynamics for free-surface flows: a generalised diffusion-based algorithm for stability and validations for impulsive flows and propagating waves publication-title: J. Comput. Phys. – volume: 276 start-page: 266 year: 2014 end-page: 286 ident: bib27 article-title: Fluid–structure interaction analysis by coupled FE–SPH model based on a novel searching algorithm publication-title: Comput. Methods Appl. Mech. Eng. – volume: 229 start-page: 3652 year: 2010 end-page: 3663 ident: bib42 article-title: Fast free-surface detection and level-set function definition in sph solvers publication-title: J. Comput. Phys. – volume: 30 start-page: 535 year: 2018 end-page: 538 ident: bib25 article-title: Numerical simulation of wave-current interaction using the SPH method publication-title: J. Hydrodyn. – volume: 342 start-page: 604 year: 2018 end-page: 624 ident: bib64 article-title: A versatile algorithm for the treatment of open boundary conditions in Smoothed particle hydrodynamics GPU models publication-title: Comput. Methods Appl. Mech. Eng. – volume: 72 start-page: 60 year: 2018 end-page: 75 ident: bib59 article-title: An accurate and efficient SPH modeling of the water entry of circular cylinders publication-title: Appl. Ocean Res. – volume: 32 start-page: 664 year: 2020 ident: 10.1016/j.oceaneng.2020.108552_bib66 article-title: Incompressible SPH simulation of solitary wave propagation on permeable beaches publication-title: J. Hydrodyn. doi: 10.1007/s42241-020-0042-0 – volume: 34 start-page: 35 year: 2012 ident: 10.1016/j.oceaneng.2020.108552_bib16 article-title: Simulating 2D open-channel flows through an SPH model publication-title: Eur. J. Mech. B Fluid doi: 10.1016/j.euromechflu.2012.02.002 – volume: 82 start-page: 397 year: 2019 ident: 10.1016/j.oceaneng.2020.108552_bib31 article-title: Multi-resolution MPS for incompressible fluid-elastic structure interactions in ocean engineering publication-title: Appl. Ocean Res. doi: 10.1016/j.apor.2018.10.020 – volume: 98 start-page: 32 year: 2015 ident: 10.1016/j.oceaneng.2020.108552_bib62 article-title: Numerical simulation of interactions between free surface and rigid body using a robust SPH method publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2015.01.019 – volume: 86 start-page: 329 year: 2019 ident: 10.1016/j.oceaneng.2020.108552_bib72 article-title: A stabilized TL-WC SPH approach with GPU acceleration for three-dimensional fluid-structure interaction publication-title: J. Fluid Struct. doi: 10.1016/j.jfluidstructs.2019.02.002 – volume: 31 start-page: 654 year: 2019 ident: 10.1016/j.oceaneng.2020.108552_bib49 article-title: An improved predictive-corrective incompressible smoothed particle hydrodynamics method for fluid flow modelling publication-title: J. Hydrodyn. doi: 10.1007/s42241-019-0058-5 – volume: 23 start-page: 236 year: 2018 ident: 10.1016/j.oceaneng.2020.108552_bib52 article-title: Advances in numerical ditching simulation of flexible aircraft models publication-title: Int. J. Crashworthiness doi: 10.1080/13588265.2017.1359462 – year: 2018 ident: 10.1016/j.oceaneng.2020.108552_bib19 article-title: Hydroelastic analysis of a submerged horizontal plate using a coupled SPH-FEM model – volume: 32 start-page: 653 year: 2020 ident: 10.1016/j.oceaneng.2020.108552_bib48 article-title: Simulations of helicopter ditching using smoothed particle hydrodynamics publication-title: J. Hydrodyn. doi: 10.1007/s42241-020-0044-y – volume: 90 start-page: 19 year: 2019 ident: 10.1016/j.oceaneng.2020.108552_bib53 article-title: Extension of the δ-Plus-SPH model for simulating Vortex-Induced-Vibration problems publication-title: J. Fluid Struct. doi: 10.1016/j.jfluidstructs.2019.06.004 – volume: 156 start-page: 103617 year: 2020 ident: 10.1016/j.oceaneng.2020.108552_bib22 article-title: Numerical investigation of the solitary wave breaking over a slope by using the finite particle method publication-title: Coast Eng. doi: 10.1016/j.coastaleng.2019.103617 – volume: 72 start-page: 60 year: 2018 ident: 10.1016/j.oceaneng.2020.108552_bib59 article-title: An accurate and efficient SPH modeling of the water entry of circular cylinders publication-title: Appl. Ocean Res. doi: 10.1016/j.apor.2018.01.004 – volume: 231 start-page: 7057 year: 2012 ident: 10.1016/j.oceaneng.2020.108552_bib1 article-title: A generalized wall boundary condition for smoothed particle hydrodynamics publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2012.05.005 – volume: 42 start-page: 112 year: 2013 ident: 10.1016/j.oceaneng.2020.108552_bib7 article-title: Nonlinear water wave interaction with floating bodies in SPH publication-title: J. Fluid Struct. doi: 10.1016/j.jfluidstructs.2013.05.010 – volume: 97 year: 2018 ident: 10.1016/j.oceaneng.2020.108552_bib14 article-title: Fluid-structure interaction with the entropic lattice Boltzmann method publication-title: Phys. Rev. – volume: 258 start-page: 451 year: 2014 ident: 10.1016/j.oceaneng.2020.108552_bib65 article-title: Fluid–structure interaction involving large deformations: 3D simulations and applications to biological systems publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2013.10.047 – volume: 190 start-page: 470 year: 2019 ident: 10.1016/j.oceaneng.2020.108552_bib32 article-title: On the coupling of a direct-forcing immersed boundary method and the regularized lattice Boltzmann method for fluid-structure interaction publication-title: Comput. Fluids doi: 10.1016/j.compfluid.2019.06.030 – volume: 342 start-page: 604 year: 2018 ident: 10.1016/j.oceaneng.2020.108552_bib64 article-title: A versatile algorithm for the treatment of open boundary conditions in Smoothed particle hydrodynamics GPU models publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2018.08.004 – volume: 17 start-page: 25 year: 2010 ident: 10.1016/j.oceaneng.2020.108552_bib37 article-title: Smoothed particle hydrodynamics (sph): an overview and recent developments publication-title: Arch. Comput. Methods Eng. doi: 10.1007/s11831-010-9040-7 – volume: 355 start-page: 558 year: 2019 ident: 10.1016/j.oceaneng.2020.108552_bib26 article-title: A 3D SPH–FE coupling for FSI problems and its application to tire hydroplaning simulations on rough ground publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2019.06.033 – volume: 54 start-page: 802 year: 2015 ident: 10.1016/j.oceaneng.2020.108552_bib41 article-title: Prediction of energy losses in water impacts using incompressible and weakly compressible models publication-title: J. Fluid Struct. doi: 10.1016/j.jfluidstructs.2015.01.014 – volume: 32 start-page: 779 year: 2015 ident: 10.1016/j.oceaneng.2020.108552_bib35 article-title: Geometrically nonlinear analysis of two-dimensional structures using an improved smoothed particle hydrodynamics method publication-title: Eng. Comput. doi: 10.1108/EC-12-2013-0306 – volume: 117 start-page: 359 year: 2016 ident: 10.1016/j.oceaneng.2020.108552_bib44 article-title: Damage characteristics of ship structures subjected to shockwaves of underwater contact explosions publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2016.03.040 – year: 2014 ident: 10.1016/j.oceaneng.2020.108552_bib51 – volume: 232 start-page: 139 year: 2018 ident: 10.1016/j.oceaneng.2020.108552_bib30 article-title: An enhanced ISPH-SPH coupled method for simulation of incompressible fluid-elastic structure interactions publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2018.05.012 – volume: 348 start-page: 912 year: 2019 ident: 10.1016/j.oceaneng.2020.108552_bib55 article-title: A consistent approach to particle shifting in the δ-plus-sph model publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2019.01.045 – volume: 407 start-page: 109255 year: 2020 ident: 10.1016/j.oceaneng.2020.108552_bib29 article-title: A least-squares particle model with other techniques for 2d viscoelastic fluid/free surface flow publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2020.109255 – year: 2020 ident: 10.1016/j.oceaneng.2020.108552_bib20 article-title: Improvement of the SPH method for multiphase flows application to the emergency water landing of aircrafts: application to the emergency water landing of aircrafts publication-title: École centrale de Nantes. – volume: 94 start-page: 102942 year: 2020 ident: 10.1016/j.oceaneng.2020.108552_bib76 article-title: Investigations on sloshing mitigation using elastic baffles by coupling smoothed finite element method and decoupled finite particle method publication-title: J. Fluid Struct. doi: 10.1016/j.jfluidstructs.2020.102942 – volume: 356 start-page: 261 year: 2019 ident: 10.1016/j.oceaneng.2020.108552_bib77 article-title: A smoothed particle element method (SPEM) for modeling fluid–structure interaction problems with large fluid deformations publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2019.07.024 – volume: 185 start-page: 27 year: 2019 ident: 10.1016/j.oceaneng.2020.108552_bib24 article-title: Potential application of submerged horizontal plate as a wave energy breakwater: a 2D study using the WCSPH method publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2019.05.034 – volume: 36 start-page: 413 year: 2004 ident: 10.1016/j.oceaneng.2020.108552_bib70 article-title: Vortex-induced vibrations publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev.fluid.36.050802.122128 – volume: 108 start-page: 56 year: 2016 ident: 10.1016/j.oceaneng.2020.108552_bib71 article-title: Numerical modeling of dam-break flow impacting on flexible structures using an improved SPH–EBG method publication-title: Coast Eng. doi: 10.1016/j.coastaleng.2015.11.007 – volume: 31 start-page: 174 year: 2017 ident: 10.1016/j.oceaneng.2020.108552_bib23 article-title: A coupled WC-TL SPH method for simulation of hydroelastic problems publication-title: Int. J. Comput. Fluid Dynam. doi: 10.1080/10618562.2017.1324149 – start-page: 1 year: 2016 ident: 10.1016/j.oceaneng.2020.108552_bib74 article-title: Mps-fem coupled method for interaction between sloshing flow and elastic structure in rolling tanks – volume: 143 start-page: 90 year: 2017 ident: 10.1016/j.oceaneng.2020.108552_bib33 article-title: A non-staggered coupling of finite element and lattice Boltzmann methods via an immersed boundary scheme for fluid-structure interaction publication-title: Comput. Fluids doi: 10.1016/j.compfluid.2016.11.008 – volume: 59 start-page: 1750010 year: 2017 ident: 10.1016/j.oceaneng.2020.108552_bib78 article-title: Corrected first-order derivative ISPH in water wave simulations publication-title: Coast Eng. J. doi: 10.1142/S0578563417500103 – volume: 305 start-page: 849 year: 2016 ident: 10.1016/j.oceaneng.2020.108552_bib60 article-title: Detection of Lagrangian coherent structures in the SPH framework publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2016.03.027 – volume: 150 start-page: 71 year: 2015 ident: 10.1016/j.oceaneng.2020.108552_bib18 article-title: On the similarity of meshless discretizations of peridynamics and smooth-particle hydrodynamics publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2014.12.011 – volume: 90 start-page: 379 year: 2019 ident: 10.1016/j.oceaneng.2020.108552_bib63 article-title: A fully Lagrangian method for fluid-structure interaction problems with deformable floating structure publication-title: J. Fluid Struct. doi: 10.1016/j.jfluidstructs.2019.07.005 – volume: 48 start-page: 1445 year: 2000 ident: 10.1016/j.oceaneng.2020.108552_bib50 article-title: Normalized sph with stress points publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/1097-0207(20000810)48:10<1445::AID-NME831>3.0.CO;2-9 – volume: 50 start-page: 1638 year: 2012 ident: 10.1016/j.oceaneng.2020.108552_bib5 article-title: Benchmarking a coupled immersed-boundary-finite-element solver for large-scale flow-induced deformation publication-title: AIAA J. doi: 10.2514/1.J051621 – volume: 231 start-page: 1499 year: 2012 ident: 10.1016/j.oceaneng.2020.108552_bib36 article-title: Incompressible smoothed particle hydrodynamics for free-surface flows: a generalised diffusion-based algorithm for stability and validations for impulsive flows and propagating waves publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2011.10.027 – start-page: 2030 year: 2019 ident: 10.1016/j.oceaneng.2020.108552_bib28 article-title: Experimental investigation of fluid-structure interaction phenomena during aircraft ditching – volume: 196 start-page: 106845 year: 2020 ident: 10.1016/j.oceaneng.2020.108552_bib47 article-title: Hybrid SW-NS SPH models using open boundary conditions for simulation of free-surface flows publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2019.106845 – volume: 48 start-page: 1359 year: 2000 ident: 10.1016/j.oceaneng.2020.108552_bib4 article-title: A unified stability analysis of meshless particle methods publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/1097-0207(20000730)48:9<1359::AID-NME829>3.0.CO;2-U – volume: 50 start-page: 192 year: 2015 ident: 10.1016/j.oceaneng.2020.108552_bib34 article-title: Free surface flow impacting on an elastic structure: experiment versus numerical simulation publication-title: Appl. Ocean Res. doi: 10.1016/j.apor.2015.02.002 – volume: 30 start-page: 38 year: 2018 ident: 10.1016/j.oceaneng.2020.108552_bib40 article-title: High-speed water impacts of flat plates in different ditching configuration through a Riemann-ALE SPH model publication-title: J. Hydrodyn. doi: 10.1007/s42241-018-0004-y – volume: 229 start-page: 3652 year: 2010 ident: 10.1016/j.oceaneng.2020.108552_bib42 article-title: Fast free-surface detection and level-set function definition in sph solvers publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2010.01.019 – volume: 30 start-page: 535 year: 2018 ident: 10.1016/j.oceaneng.2020.108552_bib25 article-title: Numerical simulation of wave-current interaction using the SPH method publication-title: J. Hydrodyn. doi: 10.1007/s42241-018-0042-5 – volume: 14 start-page: 123 year: 2013 ident: 10.1016/j.oceaneng.2020.108552_bib6 article-title: Numerical and experimental investigation of nonlinear shallow water sloshing publication-title: Int. J. Nonlinear Sci. Numer. Stimul. doi: 10.1515/ijnsns-2012-0100 – volume: 200 start-page: 1526 year: 2011 ident: 10.1016/j.oceaneng.2020.108552_bib39 article-title: Delta-SPH model for simulating violent impact flows publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2010.12.016 – volume: 224 start-page: 63 year: 2018 ident: 10.1016/j.oceaneng.2020.108552_bib54 article-title: Multi-resolution Delta-plus-SPH with tensile instability control: towards high Reynolds number flows publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2017.11.016 – volume: 30 start-page: 62 year: 2018 ident: 10.1016/j.oceaneng.2020.108552_bib21 article-title: SPH modeling of fluid-structure interaction publication-title: J. Hydrodyn. doi: 10.1007/s42241-018-0006-9 – volume: 152 start-page: 416 year: 2018 ident: 10.1016/j.oceaneng.2020.108552_bib75 article-title: MPS-FEM coupled method for sloshing flows in an elastic tank publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2017.12.008 – volume: 104 start-page: 240 year: 2019 ident: 10.1016/j.oceaneng.2020.108552_bib57 article-title: Study of a complex fluid-structure dam-breaking benchmark problem using a multi-phase SPH method with APR publication-title: Eng. Anal. Bound. Elem. doi: 10.1016/j.enganabound.2019.03.033 – volume: 199 start-page: 2085 year: 2010 ident: 10.1016/j.oceaneng.2020.108552_bib12 article-title: Partitioned simulation of the interaction between an elastic structure and free surface flow publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2010.02.019 – volume: 62 start-page: 984701 year: 2019 ident: 10.1016/j.oceaneng.2020.108552_bib38 article-title: Smoothed particle hydrodynamics (SPH) for modeling fluid-structure interactions publication-title: Sci. China Phys. Mech. Astron. doi: 10.1007/s11433-018-9357-0 – volume: 8 start-page: 115 year: 2018 ident: 10.1016/j.oceaneng.2020.108552_bib56 article-title: Numerical simulation of the self-propulsive motion of a fishlike swimming foil using theᵟ+ -SPH model publication-title: Theor. Appl. Mech. Lett. doi: 10.1016/j.taml.2018.02.007 – volume: 31 start-page: 117108 year: 2019 ident: 10.1016/j.oceaneng.2020.108552_bib58 article-title: The suction effect during freak wave slamming on a fixed platform deck: smoothed particle hydrodynamics simulation and experimental study publication-title: Phys. Fluids doi: 10.1063/1.5124613 – volume: 183 start-page: 1641 year: 2012 ident: 10.1016/j.oceaneng.2020.108552_bib10 article-title: Particle packing algorithm for SPH schemes publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2012.02.032 – volume: 29 year: 2017 ident: 10.1016/j.oceaneng.2020.108552_bib13 article-title: Smoothed particle hydrodynamics method from a large eddy simulation perspective publication-title: Phys. Fluids doi: 10.1063/1.4978274 – volume: 273 start-page: 640 year: 2014 ident: 10.1016/j.oceaneng.2020.108552_bib3 article-title: Adaptive particle refinement and derefinement applied to the smoothed particle hydrodynamics method publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2014.05.040 – start-page: 371 year: 2006 ident: 10.1016/j.oceaneng.2020.108552_bib67 article-title: Proposal for numerical benchmarking of fluid-structure interaction between an elastic object and laminar incompressible flow – volume: 179 start-page: 563 year: 2019 ident: 10.1016/j.oceaneng.2020.108552_bib46 article-title: Flexible slender body fluid interaction: vector-based discrete element method with eulerian smoothed particle hydrodynamics publication-title: Comput. Fluids doi: 10.1016/j.compfluid.2018.11.024 – volume: 79 year: 2009 ident: 10.1016/j.oceaneng.2020.108552_bib9 article-title: Theoretical considerations on the free-surface role in the Smoothed-particle-hydrodynamics model publication-title: Phys. Rev. – volume: 191 start-page: 448 year: 2003 ident: 10.1016/j.oceaneng.2020.108552_bib11 article-title: Numerical simulation of interfacial flows by smoothed particle hydrodynamics publication-title: J. Comp. Physiol. doi: 10.1016/S0021-9991(03)00324-3 – volume: 68 start-page: 1703 year: 2005 ident: 10.1016/j.oceaneng.2020.108552_bib45 article-title: Smoothed particle hydrodynamics publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/68/8/R01 – volume: 354 start-page: 552 year: 2018 ident: 10.1016/j.oceaneng.2020.108552_bib8 article-title: Analysis and improvements of Adaptive Particle Refinement (APR) through CPU time, accuracy and robustness considerations publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2017.10.041 – volume: 315 start-page: 25 year: 2017 ident: 10.1016/j.oceaneng.2020.108552_bib61 article-title: The δplus-SPH model: simple procedures for a further improvement of the SPH scheme publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2016.10.028 – year: 2015 ident: 10.1016/j.oceaneng.2020.108552_bib68 – volume: 181 start-page: 532 year: 2010 ident: 10.1016/j.oceaneng.2020.108552_bib2 article-title: Free-surface flows solved by means of SPH schemes with numerical diffusive terms publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2009.11.002 – volume: 29 start-page: 187 year: 2017 ident: 10.1016/j.oceaneng.2020.108552_bib73 article-title: Smoothed particle hydrodynamics and its applications in fluid-structure interactions publication-title: J. Hydrodyn. Ser. B doi: 10.1016/S1001-6058(16)60730-8 – volume: 115 start-page: 86 year: 2015 ident: 10.1016/j.oceaneng.2020.108552_bib43 article-title: DNS and LES of 3-D wall-bounded turbulence using Smoothed Particle Hydrodynamics publication-title: Comput. Fluids doi: 10.1016/j.compfluid.2015.03.029 – start-page: 181 year: 2006 ident: 10.1016/j.oceaneng.2020.108552_bib69 – volume: 81 start-page: 325 year: 2018 ident: 10.1016/j.oceaneng.2020.108552_bib15 article-title: Enhanced particle method with stress point integration for simulation of incompressible fluid-nonlinear elastic structure interaction publication-title: J. Fluid Struct. doi: 10.1016/j.jfluidstructs.2018.04.012 – volume: 217 start-page: 66 year: 2017 ident: 10.1016/j.oceaneng.2020.108552_bib17 article-title: An efficient FSI coupling strategy between smoothed particle hydrodynamics and finite element methods publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2017.04.005 – volume: 276 start-page: 266 year: 2014 ident: 10.1016/j.oceaneng.2020.108552_bib27 article-title: Fluid–structure interaction analysis by coupled FE–SPH model based on a novel searching algorithm publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2014.04.001 |
SSID | ssj0006603 |
Score | 2.6045735 |
Snippet | The recently developed FSI-SPH model (Sun et al., 2019c), by combining the multi-resolution δ+-SPH scheme and a Total Lagrangian SPH method, is further... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 108552 |
SubjectTerms | [formula omitted]+-SPH Fluid-structure interaction FSI-SPH Smoothed particle hydrodynamics Tensile instability Viscous flow |
Title | An accurate FSI-SPH modeling of challenging fluid-structure interaction problems in two and three dimensions |
URI | https://dx.doi.org/10.1016/j.oceaneng.2020.108552 |
Volume | 221 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA9jvqggOhU_Rx58rVvTNG0fhziq4gfMwd5K0iSyMboxN3zzb_euTXWCsAcf-tA0F8LdcZeG3_2OkKtASIh6Qnmhn3OPM994Sgk4yKEH8dCY2GJx8uOTSIf8fhSOGuSmroVBWKWL_VVML6O1G-k4bXbm4zHW-LIE4iukMFhVlAW_nEfo5defPzAPIbpBDfPA2WtVwpNrSBGyMMUb_CeyEm4XhuzvBLWWdPr7ZM-dFmmv2tABaZiiRXbWOARbZPcZV3fE04dk2iuozPMVMkDQ_uDOG7yktGx3A7PpzNLcdU_BVztdjbVXUciuFoYid8SiqnSgrtPMOwzS5ceMykLTJRjeUI0NAfCS7f2IDPu3rzep5zoqeHkQxUsvCXlgIuwyrVjic626eOVhpcml0czmwkjL_UhEWijBLZe2axUXWmmroyAxwTFpFrPCnBCaKMMZfLQBZHmwqEwiGcTwSB37htlTEtZqzHJHN45dL6ZZjSubZLX6M1R_Vqn_lHS-5eYV4cZGiaS2UvbLdTLIChtkz_4he062GQJcSgj3BWmCscwlnFCWql26YJts9e4e0qcv3QPntw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9RADLZKOfCQKihUlBaYAxzT3Uwmk-TAoWq72qUPkNpKvYWZjAdttcpW3V1VXPqn-gexkwksElIPqIccMolHkW3ZnuizP4CPiTYU9bSN0rhSkZIxRtZqKuTYg1SKmHtuTj4-0cNz9eUivViBu64XhmGVIfa3Mb2J1mGlF7TZuxqPucdXFhRfKYXRrrqfB2TlIf68oXPb7PNon4z8ScrBwdneMArUAlGVZPk8KlKVYMZ0y1YWsXK2z2d_b7Ay6KSvNBqv4kxnTlutvDK-763SzjrvsqTAhPZ9BI8VhQumTdi5_YMr0bqfdLgS_ryltuTLHcpJpsb6Bx1MZYPvS1P574y4lOUGL2AtlKdit9XAS1jBeh2eLQ0tXIfnX3n3MOn6FUx2a2GqasEjJ8TgdBSdfhuKhl-H3hZTL6pA18K3frIYu6idWbu4RsHDKq7b1goRqG1mtCjmN1Nhaifm5GkoHDMQ8F-92Ws4fxA9b8BqPa3xDYjCopL00CdUVpALmSIzSU6XcXmM0m9C2qmxrMJ8c6bZmJQdkO2y7NRfsvrLVv2b0Pstd9VO-LhXouisVP7lqyWloXtk3_6H7Ad4Mjw7PiqPRieHW_BUMrqmwY9vwyoZDt9ReTS37xt3FPD9of3_Fz1zJRI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+accurate+FSI-SPH+modeling+of+challenging+fluid-structure+interaction+problems+in+two+and+three+dimensions&rft.jtitle=Ocean+engineering&rft.au=Sun%2C+Peng-Nan&rft.au=Le+Touz%C3%A9%2C+David&rft.au=Oger%2C+Guillaume&rft.au=Zhang%2C+A-Man&rft.date=2021-02-01&rft.issn=0029-8018&rft.volume=221&rft.spage=108552&rft_id=info:doi/10.1016%2Fj.oceaneng.2020.108552&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_oceaneng_2020_108552 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-8018&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-8018&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-8018&client=summon |