An accurate FSI-SPH modeling of challenging fluid-structure interaction problems in two and three dimensions

The recently developed FSI-SPH model (Sun et al., 2019c), by combining the multi-resolution δ+-SPH scheme and a Total Lagrangian SPH method, is further extended for more complex three-dimensional (3D) Fluid Structure Interaction (FSI) problems. The FSI-SPH model is strengthened with advanced numeric...

Full description

Saved in:
Bibliographic Details
Published inOcean engineering Vol. 221; p. 108552
Main Authors Sun, Peng-Nan, Le Touzé, David, Oger, Guillaume, Zhang, A-Man
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.02.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The recently developed FSI-SPH model (Sun et al., 2019c), by combining the multi-resolution δ+-SPH scheme and a Total Lagrangian SPH method, is further extended for more complex three-dimensional (3D) Fluid Structure Interaction (FSI) problems. The FSI-SPH model is strengthened with advanced numerical techniques, in which a combination of the Particle Shifting Technique (PST) and the Tensile Instability Control (TIC) is adopted to prevent flow voids induced by the tensile instability. The Adaptive Particle Refinement (APR) is used to refine particles in the boundary layer region and coarsen particles in the far-field to increase local accuracy but reduce overall computational cost. Moreover, the δ+-SPH and Total Lagrangian SPH solvers are coupled through a Modified Sequential Staggered (MSS) algorithm which, on one hand, ensures the numerical accuracy and stability and, on the other hand, improves the efficiency when magnitudes of time steps between the two solvers differ from each other significantly. In the numerical results, challenging 2D and 3D FSI cases are simulated to test the accuracy of the proposed FSI-SPH model. A new FSI benchmark with free-surface is proposed to highlight the advantage of this FSI-SPH model in simulating free-surface viscous flows. In addition, 3D effects in the FSI dam-breaking and sloshing cases are investigated. •Multi-resolution δ+-SPH model is accurately and efficiently coupled with the Total Lagrangian SPH model.•Complex three-dimensional (3D) Fluid Structure Interaction (FSI) problems are simulated and validated.•A new benchmark named FSI4 is proposed.•The 3D effects in the FSI dam-breaking and sloshing cases are highlighted.
AbstractList The recently developed FSI-SPH model (Sun et al., 2019c), by combining the multi-resolution δ+-SPH scheme and a Total Lagrangian SPH method, is further extended for more complex three-dimensional (3D) Fluid Structure Interaction (FSI) problems. The FSI-SPH model is strengthened with advanced numerical techniques, in which a combination of the Particle Shifting Technique (PST) and the Tensile Instability Control (TIC) is adopted to prevent flow voids induced by the tensile instability. The Adaptive Particle Refinement (APR) is used to refine particles in the boundary layer region and coarsen particles in the far-field to increase local accuracy but reduce overall computational cost. Moreover, the δ+-SPH and Total Lagrangian SPH solvers are coupled through a Modified Sequential Staggered (MSS) algorithm which, on one hand, ensures the numerical accuracy and stability and, on the other hand, improves the efficiency when magnitudes of time steps between the two solvers differ from each other significantly. In the numerical results, challenging 2D and 3D FSI cases are simulated to test the accuracy of the proposed FSI-SPH model. A new FSI benchmark with free-surface is proposed to highlight the advantage of this FSI-SPH model in simulating free-surface viscous flows. In addition, 3D effects in the FSI dam-breaking and sloshing cases are investigated. •Multi-resolution δ+-SPH model is accurately and efficiently coupled with the Total Lagrangian SPH model.•Complex three-dimensional (3D) Fluid Structure Interaction (FSI) problems are simulated and validated.•A new benchmark named FSI4 is proposed.•The 3D effects in the FSI dam-breaking and sloshing cases are highlighted.
ArticleNumber 108552
Author Sun, Peng-Nan
Zhang, A-Man
Oger, Guillaume
Le Touzé, David
Author_xml – sequence: 1
  givenname: Peng-Nan
  surname: Sun
  fullname: Sun, Peng-Nan
  email: sunpn@mail.sysu.edu.cn
  organization: School of Marine Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, China
– sequence: 2
  givenname: David
  surname: Le Touzé
  fullname: Le Touzé, David
  email: david.letouze@ec-nantes.fr
  organization: Ecole Centrale Nantes, LHEEA Lab. (ECN and CNRS), Nantes, 44300, France
– sequence: 3
  givenname: Guillaume
  surname: Oger
  fullname: Oger, Guillaume
  email: guillaume.oger@ec-nantes.fr
  organization: Ecole Centrale Nantes, LHEEA Lab. (ECN and CNRS), Nantes, 44300, France
– sequence: 4
  givenname: A-Man
  surname: Zhang
  fullname: Zhang, A-Man
  email: zhangaman@hrbeu.edu.cn
  organization: College of Shipbuilding Engineering, Harbin Engineering University, Harbin, 150001, China
BookMark eNqFkM9KAzEQh4NUsK2-guQFtib7J7sLHizF2kJBoXoO2WTSpuwmJUkV395dqhcvPQ0zzPdj5pugkXUWELqnZEYJZQ-HmZMgLNjdLCXpMKyKIr1CY1qVWVKkRTVCY0LSOqkIrW7QJIQDIYQxko1RO7dYSHnyIgJebtfJ9m2FO6egNXaHncZyL9q2zx5a3Z6MSkL0JxlPHrCxEbyQ0TiLj941LXShH-L45bCwCse9B8DKdGBDvxNu0bUWbYC73zpFH8vn98Uq2by-rBfzTSKzsopJXeQZlCTPSZPWNFcNyWpCtQApQKVaMhA6pyUrFWtYrnOhiW5yphqlVZnVkE3R4zlXeheCB82liWI4M3phWk4JH8zxA_8zxwdz_Gyux9k__OhNJ_z3ZfDpDEL_3KcBz4M0YCUo40FGrpy5FPEDDvqRMg
CitedBy_id crossref_primary_10_1063_5_0221300
crossref_primary_10_3390_pr11113079
crossref_primary_10_1007_s11804_022_00260_3
crossref_primary_10_1016_j_apm_2025_116104
crossref_primary_10_1016_j_oceaneng_2024_117523
crossref_primary_10_1007_s00707_023_03763_4
crossref_primary_10_1142_S252980702340002X
crossref_primary_10_1007_s40571_024_00892_y
crossref_primary_10_1016_j_oceaneng_2021_110205
crossref_primary_10_1016_j_euromechflu_2022_04_006
crossref_primary_10_1016_j_euromechflu_2022_04_005
crossref_primary_10_1002_fld_5083
crossref_primary_10_1063_5_0188986
crossref_primary_10_1016_j_apm_2024_115661
crossref_primary_10_1016_j_jcp_2023_112056
crossref_primary_10_1007_s10409_022_22053_x
crossref_primary_10_1016_j_oceaneng_2021_110100
crossref_primary_10_1016_j_cma_2024_117179
crossref_primary_10_1016_j_oceaneng_2023_115077
crossref_primary_10_1063_5_0175947
crossref_primary_10_1063_5_0226161
crossref_primary_10_1016_j_oceaneng_2025_120528
crossref_primary_10_1007_s40571_023_00631_9
crossref_primary_10_1016_j_camwa_2023_06_008
crossref_primary_10_1016_j_compstruc_2022_106847
crossref_primary_10_1016_j_cma_2022_115788
crossref_primary_10_1016_j_tsep_2025_103508
crossref_primary_10_1007_s11804_022_00284_9
crossref_primary_10_1016_j_cma_2024_117209
crossref_primary_10_1016_j_apor_2021_102938
crossref_primary_10_26599_RSM_2024_9435353
crossref_primary_10_1016_j_apor_2021_102775
crossref_primary_10_1016_j_enganabound_2025_106173
crossref_primary_10_1063_5_0133782
crossref_primary_10_1016_j_euromechflu_2022_07_007
crossref_primary_10_1063_5_0179348
crossref_primary_10_1007_s40997_023_00686_2
crossref_primary_10_1016_j_enganabound_2024_105848
crossref_primary_10_1177_10775463221135679
crossref_primary_10_1016_j_apor_2021_102774
crossref_primary_10_1142_S0219876222500049
crossref_primary_10_1016_j_enganabound_2023_01_035
crossref_primary_10_1016_j_jnnfm_2022_104905
crossref_primary_10_1016_j_compgeo_2024_106284
crossref_primary_10_1016_j_jer_2023_100081
crossref_primary_10_1016_j_jcp_2022_111762
crossref_primary_10_1016_j_oceaneng_2021_109487
crossref_primary_10_1016_j_euromechflu_2022_02_014
crossref_primary_10_1016_j_enganabound_2023_07_010
crossref_primary_10_1016_j_taml_2023_100463
crossref_primary_10_1016_j_jcp_2023_112233
crossref_primary_10_1016_j_oceaneng_2024_117017
crossref_primary_10_1016_j_apor_2021_102822
crossref_primary_10_3390_en15020502
crossref_primary_10_1155_2023_4060591
crossref_primary_10_1007_s11804_022_00265_y
crossref_primary_10_1088_1742_6596_2865_1_012041
crossref_primary_10_1016_j_enganabound_2021_10_023
crossref_primary_10_1007_s40819_022_01322_4
crossref_primary_10_1016_j_oceaneng_2022_111623
crossref_primary_10_1016_j_camwa_2024_11_008
crossref_primary_10_1016_j_oceaneng_2022_110537
crossref_primary_10_1016_j_cma_2023_115989
crossref_primary_10_1145_3649888
crossref_primary_10_1007_s11804_023_00344_8
crossref_primary_10_1016_j_jfluidstructs_2023_103864
crossref_primary_10_1016_j_apm_2022_07_031
crossref_primary_10_3390_app15010357
crossref_primary_10_3390_jmse11081483
crossref_primary_10_1007_s42241_022_0042_3
crossref_primary_10_1016_j_cma_2023_115915
crossref_primary_10_1063_5_0169801
crossref_primary_10_1002_nme_7043
crossref_primary_10_1016_j_aej_2025_02_068
crossref_primary_10_1360_SSPMA_2022_0205
crossref_primary_10_1016_j_oceaneng_2022_113110
crossref_primary_10_1016_j_cma_2024_117255
crossref_primary_10_1016_j_jfluidstructs_2023_104049
crossref_primary_10_1016_j_euromechflu_2022_03_011
crossref_primary_10_1016_j_cma_2022_115356
crossref_primary_10_1016_j_cma_2024_117015
crossref_primary_10_1016_j_enganabound_2021_05_007
crossref_primary_10_1016_j_oceaneng_2023_114582
crossref_primary_10_1016_j_apor_2025_104498
crossref_primary_10_1016_j_enganabound_2023_09_023
crossref_primary_10_1016_j_enganabound_2024_105754
crossref_primary_10_1016_j_jfluidstructs_2022_103732
crossref_primary_10_1016_j_oceaneng_2023_116484
crossref_primary_10_1016_j_oceaneng_2025_120601
crossref_primary_10_1007_s40571_021_00451_9
crossref_primary_10_1115_1_4051266
crossref_primary_10_1016_j_cpc_2021_108008
crossref_primary_10_1016_j_oceaneng_2021_109679
crossref_primary_10_1108_WJE_03_2021_0125
crossref_primary_10_1016_j_enganabound_2023_02_028
crossref_primary_10_1142_S0219876224500105
crossref_primary_10_1007_s40571_022_00463_z
crossref_primary_10_1016_j_compstruc_2025_107673
crossref_primary_10_1088_1742_6596_2865_1_012026
crossref_primary_10_1360_SSPMA_2022_0333
crossref_primary_10_1016_j_jcp_2022_111533
crossref_primary_10_3390_biology12071026
crossref_primary_10_3390_jmse11050978
crossref_primary_10_1016_j_apm_2021_08_014
crossref_primary_10_1016_j_coastaleng_2024_104658
crossref_primary_10_1016_j_apor_2021_102734
crossref_primary_10_1016_j_enganabound_2024_105764
crossref_primary_10_1007_s40430_024_04926_7
crossref_primary_10_1016_j_oceaneng_2023_114270
crossref_primary_10_1016_j_oceaneng_2022_113581
crossref_primary_10_1016_j_oceaneng_2024_119853
crossref_primary_10_1007_s40571_023_00591_0
crossref_primary_10_3390_pr13010042
crossref_primary_10_1016_j_cma_2021_114522
crossref_primary_10_1016_j_apm_2024_06_010
crossref_primary_10_1016_j_cma_2022_115659
crossref_primary_10_1016_j_apm_2022_10_037
crossref_primary_10_1007_s11804_024_00541_z
crossref_primary_10_1016_j_apor_2021_102906
crossref_primary_10_32604_cmes_2023_044094
crossref_primary_10_1017_S1446181123000160
crossref_primary_10_1063_5_0226743
crossref_primary_10_1016_j_jcp_2023_112270
crossref_primary_10_1016_j_jhydrol_2023_129581
crossref_primary_10_1016_j_jfluidstructs_2023_103855
crossref_primary_10_1016_j_oceaneng_2024_119061
crossref_primary_10_1016_j_euromechflu_2022_01_007
crossref_primary_10_1063_5_0216702
crossref_primary_10_1016_j_cmpb_2024_108034
crossref_primary_10_1063_5_0204040
crossref_primary_10_1016_j_apor_2023_103476
crossref_primary_10_1080_17445302_2024_2317040
crossref_primary_10_1016_j_compstruc_2025_107653
crossref_primary_10_1029_2021JF006587
Cites_doi 10.1007/s42241-020-0042-0
10.1016/j.euromechflu.2012.02.002
10.1016/j.apor.2018.10.020
10.1016/j.oceaneng.2015.01.019
10.1016/j.jfluidstructs.2019.02.002
10.1007/s42241-019-0058-5
10.1080/13588265.2017.1359462
10.1007/s42241-020-0044-y
10.1016/j.jfluidstructs.2019.06.004
10.1016/j.coastaleng.2019.103617
10.1016/j.apor.2018.01.004
10.1016/j.jcp.2012.05.005
10.1016/j.jfluidstructs.2013.05.010
10.1016/j.jcp.2013.10.047
10.1016/j.compfluid.2019.06.030
10.1016/j.cma.2018.08.004
10.1007/s11831-010-9040-7
10.1016/j.cma.2019.06.033
10.1016/j.jfluidstructs.2015.01.014
10.1108/EC-12-2013-0306
10.1016/j.oceaneng.2016.03.040
10.1016/j.cpc.2018.05.012
10.1016/j.cma.2019.01.045
10.1016/j.jcp.2020.109255
10.1016/j.jfluidstructs.2020.102942
10.1016/j.cma.2019.07.024
10.1016/j.oceaneng.2019.05.034
10.1146/annurev.fluid.36.050802.122128
10.1016/j.coastaleng.2015.11.007
10.1080/10618562.2017.1324149
10.1016/j.compfluid.2016.11.008
10.1142/S0578563417500103
10.1016/j.cma.2016.03.027
10.1016/j.compstruc.2014.12.011
10.1016/j.jfluidstructs.2019.07.005
10.1002/1097-0207(20000810)48:10<1445::AID-NME831>3.0.CO;2-9
10.2514/1.J051621
10.1016/j.jcp.2011.10.027
10.1016/j.oceaneng.2019.106845
10.1002/1097-0207(20000730)48:9<1359::AID-NME829>3.0.CO;2-U
10.1016/j.apor.2015.02.002
10.1007/s42241-018-0004-y
10.1016/j.jcp.2010.01.019
10.1007/s42241-018-0042-5
10.1515/ijnsns-2012-0100
10.1016/j.cma.2010.12.016
10.1016/j.cpc.2017.11.016
10.1007/s42241-018-0006-9
10.1016/j.oceaneng.2017.12.008
10.1016/j.enganabound.2019.03.033
10.1016/j.cma.2010.02.019
10.1007/s11433-018-9357-0
10.1016/j.taml.2018.02.007
10.1063/1.5124613
10.1016/j.cpc.2012.02.032
10.1063/1.4978274
10.1016/j.jcp.2014.05.040
10.1016/j.compfluid.2018.11.024
10.1016/S0021-9991(03)00324-3
10.1088/0034-4885/68/8/R01
10.1016/j.jcp.2017.10.041
10.1016/j.cma.2016.10.028
10.1016/j.cpc.2009.11.002
10.1016/S1001-6058(16)60730-8
10.1016/j.compfluid.2015.03.029
10.1016/j.jfluidstructs.2018.04.012
10.1016/j.cpc.2017.04.005
10.1016/j.cma.2014.04.001
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright_xml – notice: 2020 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.oceaneng.2020.108552
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Oceanography
EISSN 1873-5258
ExternalDocumentID 10_1016_j_oceaneng_2020_108552
S0029801820314608
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JM
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KCYFY
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSJ
SST
SSZ
T5K
TAE
TN5
XPP
ZMT
~02
~G-
29N
6TJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACKIV
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
RIG
SAC
SET
SEW
SSH
WUQ
ID FETCH-LOGICAL-c378t-9543e70440b2914db03901faecaed2fc6eaf41767d6b64f4af0fb46dbdfd739e3
IEDL.DBID .~1
ISSN 0029-8018
IngestDate Thu Apr 24 22:52:20 EDT 2025
Tue Jul 01 02:14:43 EDT 2025
Fri Feb 23 02:48:05 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords δ+-SPH
Smoothed particle hydrodynamics
FSI-SPH
Tensile instability
Fluid-structure interaction
Viscous flow
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c378t-9543e70440b2914db03901faecaed2fc6eaf41767d6b64f4af0fb46dbdfd739e3
ParticipantIDs crossref_citationtrail_10_1016_j_oceaneng_2020_108552
crossref_primary_10_1016_j_oceaneng_2020_108552
elsevier_sciencedirect_doi_10_1016_j_oceaneng_2020_108552
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-02-01
2021-02-00
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-01
  day: 01
PublicationDecade 2020
PublicationTitle Ocean engineering
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Khayyer, Gotoh, Falahaty, Shimizu (bib30) 2018; 232
Antuono, Colagrossi, Marrone, Molteni (bib2) 2010; 181
Tsurudome, Liang, Shimizu, Khayyer, Gotoh (bib66) 2020; 32
Siemann, Schwinn, Scherer, Kohlgrüber (bib52) 2018; 23
He, Gao, Xu (bib25) 2018; 30
Sun, Colagrossi, Zhang (bib56) 2018; 8
Dorschner, Chikatamarla, Karlin (bib14) 2018; 97
Turek, Hron (bib67) 2006
Adami, Hu, Adams (bib1) 2012; 231
Colagrossi, Landrini (bib11) 2003; 191
Colagrossi, Antuono, Le Touzé (bib9) 2009; 79
Di Mascio, Antuono, Colagrossi, Marrone (bib13) 2017; 29
He, Zhang, Huang, Liu (bib22) 2020; 156
Hermange, Oger, Le Chenadec, Le Touzé (bib26) 2019; 355
Sun, Colagrossi, Marrone, Zhang (bib60) 2016; 305
Oger, Vergnaud, Bouscasse, Ohana, Zarim, De Leffe, Bannier, Chiron, Jus, Garnier (bib48) 2020; 32
Tian, Dai, Luo, Doyle, Rousseau (bib65) 2014; 258
Yang, Liu, Peng, Huang (bib71) 2016; 108
Fourey, Hermange, Le Touzé, Oger (bib17) 2017; 217
Zhang, Sun, Ming, Colagrossi (bib73) 2017; 29
Nasar, Rogers, Revell, Stansby (bib46) 2019; 179
Bouscasse, Antuono, Colagrossi, Lugni (bib6) 2013; 14
Chiron, Oger, De Leffe, Le Touzé (bib8) 2018; 354
Randles, Libersky (bib50) 2000; 48
Zhang, Long, Chang, Liu (bib77) 2019; 356
Marrone, Colagrossi, Di Mascio, Le Touzé (bib41) 2015; 54
Ni, Feng, Huang, Zhao, Li (bib47) 2020; 196
Federico, Marrone, Colagrossi, Aristodemo, Antuono (bib16) 2012; 34
Li, Favier (bib33) 2017; 143
Zhang, Wan (bib75) 2018; 152
Bhardwaj, Mittal (bib5) 2012; 50
Barcarolo, Le Touzé, Oger, de Vuyst (bib3) 2014; 273
Liu, Liu (bib37) 2010; 17
Sun, Zhang, Marrone, Ming (bib59) 2018; 72
Khayyer, Tsuruta, Shimizu, Gotoh (bib31) 2019; 82
Bouscasse, Colagrossi, Marrone, Antuono (bib7) 2013; 42
Belytschko, Guo, Kam Liu, Ping Xiao (bib4) 2000; 48
Zhang, Tang, Wan (bib74) 2016
Williamson, Govardhan (bib70) 2004; 36
He, Gao, Xu, Ren, Wang (bib24) 2019; 185
Marrone, Colagrossi, Chiron, De Leffe, Le Touzé (bib40) 2018; 30
Sun, Colagrossi, Marrone, Antuono, Zhang (bib54) 2018; 224
Vera (bib68) 2015
Hu, Long, Xiao, Han, Gu (bib27) 2014; 276
Tafuni, Dominguez, Vacondio, Crespo (bib64) 2018; 342
Gao, He, Xu, Wang (bib19) 2018
Falahaty, Khayyer, Gotoh (bib15) 2018; 81
Monaghan (bib45) 2005; 68
Han, Hu (bib21) 2018; 30
Li, Cao, Le Touzé (bib32) 2019; 190
Mayrhofer, Laurence, Rogers, Violeau (bib43) 2015; 115
Peng, Bauinger, Szewc, Wu, Cao (bib49) 2019; 31
Sun, Ming, Zhang (bib62) 2015; 98
Vignjevic, Reveles, Campbell (bib69) 2006
Zhang, Khalid, Long, Chang, Liu (bib76) 2020; 94
Sun, Colagrossi, Le Touzé, Zhang (bib53) 2019; 90
Degroote, Souto-Iglesias, Van Paepegem, Annerel, Bruggeman, Vierendeels (bib12) 2010; 199
Lind, Xu, Stansby, Rogers (bib36) 2012; 231
Sun, Colagrossi, Marrone, Antuono, Zhang (bib55) 2019; 348
Liao, Hu, Sueyoshi (bib34) 2015; 50
Hammani (bib20) 2020
Jiang, Ren, Yuan, Zhou, Wang (bib29) 2020; 407
Ganzenmüller, Hiermaier, May (bib18) 2015; 150
Lin, Naceur, Coutellier, Laksimi (bib35) 2015; 32
Ming, Zhang, Xue, Wang (bib44) 2016; 117
He, Tofighi, Yildiz, Lei, Suleman (bib23) 2017; 31
Sun, Colagrossi, Marrone, Zhang (bib61) 2017; 315
Sun, Xi, Sun (bib63) 2019; 90
Colagrossi, Bouscasse, Antuono, Marrone (bib10) 2012; 183
Sun, Le Touzé, Zhang (bib57) 2019; 104
Marrone, Antuono, Colagrossi, Colicchio, Le Touzé, Graziani (bib39) 2011; 200
Zhan, Peng, Zhang, Wu (bib72) 2019; 86
Iafrati, Grizzi, Olivieri (bib28) 2019
Rudnicki (bib51) 2014
Liu, Zhang (bib38) 2019; 62
Marrone, Colagrossi, Le Touzé, Graziani (bib42) 2010; 229
Sun, Luo, Le Touzé, Zhang (bib58) 2019; 31
Zheng, Shao, Khayyer, Duan, Ma, Liao (bib78) 2017; 59
Sun (10.1016/j.oceaneng.2020.108552_bib53) 2019; 90
Vera (10.1016/j.oceaneng.2020.108552_bib68) 2015
He (10.1016/j.oceaneng.2020.108552_bib22) 2020; 156
Marrone (10.1016/j.oceaneng.2020.108552_bib41) 2015; 54
Li (10.1016/j.oceaneng.2020.108552_bib32) 2019; 190
Oger (10.1016/j.oceaneng.2020.108552_bib48) 2020; 32
Zhang (10.1016/j.oceaneng.2020.108552_bib74) 2016
Sun (10.1016/j.oceaneng.2020.108552_bib61) 2017; 315
Sun (10.1016/j.oceaneng.2020.108552_bib56) 2018; 8
He (10.1016/j.oceaneng.2020.108552_bib23) 2017; 31
Colagrossi (10.1016/j.oceaneng.2020.108552_bib10) 2012; 183
Bouscasse (10.1016/j.oceaneng.2020.108552_bib7) 2013; 42
Peng (10.1016/j.oceaneng.2020.108552_bib49) 2019; 31
Yang (10.1016/j.oceaneng.2020.108552_bib71) 2016; 108
Turek (10.1016/j.oceaneng.2020.108552_bib67) 2006
Zhang (10.1016/j.oceaneng.2020.108552_bib76) 2020; 94
Randles (10.1016/j.oceaneng.2020.108552_bib50) 2000; 48
Sun (10.1016/j.oceaneng.2020.108552_bib55) 2019; 348
Sun (10.1016/j.oceaneng.2020.108552_bib59) 2018; 72
Hammani (10.1016/j.oceaneng.2020.108552_bib20) 2020
Iafrati (10.1016/j.oceaneng.2020.108552_bib28) 2019
Tian (10.1016/j.oceaneng.2020.108552_bib65) 2014; 258
Zhan (10.1016/j.oceaneng.2020.108552_bib72) 2019; 86
Liu (10.1016/j.oceaneng.2020.108552_bib38) 2019; 62
Bhardwaj (10.1016/j.oceaneng.2020.108552_bib5) 2012; 50
Gao (10.1016/j.oceaneng.2020.108552_bib19) 2018
Jiang (10.1016/j.oceaneng.2020.108552_bib29) 2020; 407
Sun (10.1016/j.oceaneng.2020.108552_bib58) 2019; 31
Zhang (10.1016/j.oceaneng.2020.108552_bib77) 2019; 356
Zhang (10.1016/j.oceaneng.2020.108552_bib75) 2018; 152
Federico (10.1016/j.oceaneng.2020.108552_bib16) 2012; 34
Degroote (10.1016/j.oceaneng.2020.108552_bib12) 2010; 199
Zheng (10.1016/j.oceaneng.2020.108552_bib78) 2017; 59
Falahaty (10.1016/j.oceaneng.2020.108552_bib15) 2018; 81
Ganzenmüller (10.1016/j.oceaneng.2020.108552_bib18) 2015; 150
Sun (10.1016/j.oceaneng.2020.108552_bib54) 2018; 224
He (10.1016/j.oceaneng.2020.108552_bib25) 2018; 30
Rudnicki (10.1016/j.oceaneng.2020.108552_bib51) 2014
Barcarolo (10.1016/j.oceaneng.2020.108552_bib3) 2014; 273
Hermange (10.1016/j.oceaneng.2020.108552_bib26) 2019; 355
Sun (10.1016/j.oceaneng.2020.108552_bib57) 2019; 104
Hu (10.1016/j.oceaneng.2020.108552_bib27) 2014; 276
Li (10.1016/j.oceaneng.2020.108552_bib33) 2017; 143
Khayyer (10.1016/j.oceaneng.2020.108552_bib31) 2019; 82
Vignjevic (10.1016/j.oceaneng.2020.108552_bib69) 2006
Siemann (10.1016/j.oceaneng.2020.108552_bib52) 2018; 23
Adami (10.1016/j.oceaneng.2020.108552_bib1) 2012; 231
Antuono (10.1016/j.oceaneng.2020.108552_bib2) 2010; 181
Dorschner (10.1016/j.oceaneng.2020.108552_bib14) 2018; 97
Belytschko (10.1016/j.oceaneng.2020.108552_bib4) 2000; 48
Di Mascio (10.1016/j.oceaneng.2020.108552_bib13) 2017; 29
Sun (10.1016/j.oceaneng.2020.108552_bib60) 2016; 305
Ming (10.1016/j.oceaneng.2020.108552_bib44) 2016; 117
Sun (10.1016/j.oceaneng.2020.108552_bib63) 2019; 90
Tsurudome (10.1016/j.oceaneng.2020.108552_bib66) 2020; 32
Marrone (10.1016/j.oceaneng.2020.108552_bib40) 2018; 30
Mayrhofer (10.1016/j.oceaneng.2020.108552_bib43) 2015; 115
Lin (10.1016/j.oceaneng.2020.108552_bib35) 2015; 32
Nasar (10.1016/j.oceaneng.2020.108552_bib46) 2019; 179
Bouscasse (10.1016/j.oceaneng.2020.108552_bib6) 2013; 14
Williamson (10.1016/j.oceaneng.2020.108552_bib70) 2004; 36
Liu (10.1016/j.oceaneng.2020.108552_bib37) 2010; 17
Chiron (10.1016/j.oceaneng.2020.108552_bib8) 2018; 354
Han (10.1016/j.oceaneng.2020.108552_bib21) 2018; 30
Tafuni (10.1016/j.oceaneng.2020.108552_bib64) 2018; 342
Fourey (10.1016/j.oceaneng.2020.108552_bib17) 2017; 217
Ni (10.1016/j.oceaneng.2020.108552_bib47) 2020; 196
Zhang (10.1016/j.oceaneng.2020.108552_bib73) 2017; 29
Lind (10.1016/j.oceaneng.2020.108552_bib36) 2012; 231
Marrone (10.1016/j.oceaneng.2020.108552_bib42) 2010; 229
Khayyer (10.1016/j.oceaneng.2020.108552_bib30) 2018; 232
Marrone (10.1016/j.oceaneng.2020.108552_bib39) 2011; 200
Monaghan (10.1016/j.oceaneng.2020.108552_bib45) 2005; 68
He (10.1016/j.oceaneng.2020.108552_bib24) 2019; 185
Colagrossi (10.1016/j.oceaneng.2020.108552_bib11) 2003; 191
Liao (10.1016/j.oceaneng.2020.108552_bib34) 2015; 50
Colagrossi (10.1016/j.oceaneng.2020.108552_bib9) 2009; 79
Sun (10.1016/j.oceaneng.2020.108552_bib62) 2015; 98
References_xml – volume: 48
  start-page: 1445
  year: 2000
  end-page: 1462
  ident: bib50
  article-title: Normalized sph with stress points
  publication-title: Int. J. Numer. Methods Eng.
– start-page: 181
  year: 2006
  ident: bib69
  article-title: Sph in a Total Lagrangian Formalism
– volume: 150
  start-page: 71
  year: 2015
  end-page: 78
  ident: bib18
  article-title: On the similarity of meshless discretizations of peridynamics and smooth-particle hydrodynamics
  publication-title: Comput. Struct.
– start-page: 2030
  year: 2019
  ident: bib28
  article-title: Experimental investigation of fluid-structure interaction phenomena during aircraft ditching
  publication-title: AIAA Scitech 2019 Forum
– volume: 117
  start-page: 359
  year: 2016
  end-page: 382
  ident: bib44
  article-title: Damage characteristics of ship structures subjected to shockwaves of underwater contact explosions
  publication-title: Ocean Eng.
– volume: 356
  start-page: 261
  year: 2019
  end-page: 293
  ident: bib77
  article-title: A smoothed particle element method (SPEM) for modeling fluid–structure interaction problems with large fluid deformations
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 143
  start-page: 90
  year: 2017
  end-page: 102
  ident: bib33
  article-title: A non-staggered coupling of finite element and lattice Boltzmann methods via an immersed boundary scheme for fluid-structure interaction
  publication-title: Comput. Fluids
– year: 2014
  ident: bib51
  article-title: Fundamentals of Continuum Mechanics
– volume: 17
  start-page: 25
  year: 2010
  end-page: 76
  ident: bib37
  article-title: Smoothed particle hydrodynamics (sph): an overview and recent developments
  publication-title: Arch. Comput. Methods Eng.
– volume: 199
  start-page: 2085
  year: 2010
  end-page: 2098
  ident: bib12
  article-title: Partitioned simulation of the interaction between an elastic structure and free surface flow
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 32
  start-page: 653
  year: 2020
  end-page: 663
  ident: bib48
  article-title: Simulations of helicopter ditching using smoothed particle hydrodynamics
  publication-title: J. Hydrodyn.
– year: 2020
  ident: bib20
  article-title: Improvement of the SPH method for multiphase flows application to the emergency water landing of aircrafts: application to the emergency water landing of aircrafts
  publication-title: École centrale de Nantes.
– volume: 30
  start-page: 38
  year: 2018
  end-page: 48
  ident: bib40
  article-title: High-speed water impacts of flat plates in different ditching configuration through a Riemann-ALE SPH model
  publication-title: J. Hydrodyn.
– volume: 97
  year: 2018
  ident: bib14
  article-title: Fluid-structure interaction with the entropic lattice Boltzmann method
  publication-title: Phys. Rev.
– volume: 50
  start-page: 192
  year: 2015
  end-page: 208
  ident: bib34
  article-title: Free surface flow impacting on an elastic structure: experiment versus numerical simulation
  publication-title: Appl. Ocean Res.
– volume: 34
  start-page: 35
  year: 2012
  end-page: 46
  ident: bib16
  article-title: Simulating 2D open-channel flows through an SPH model
  publication-title: Eur. J. Mech. B Fluid
– volume: 305
  start-page: 849
  year: 2016
  end-page: 868
  ident: bib60
  article-title: Detection of Lagrangian coherent structures in the SPH framework
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 90
  start-page: 379
  year: 2019
  end-page: 395
  ident: bib63
  article-title: A fully Lagrangian method for fluid-structure interaction problems with deformable floating structure
  publication-title: J. Fluid Struct.
– volume: 273
  start-page: 640
  year: 2014
  end-page: 657
  ident: bib3
  article-title: Adaptive particle refinement and derefinement applied to the smoothed particle hydrodynamics method
  publication-title: J. Comput. Phys.
– volume: 50
  start-page: 1638
  year: 2012
  end-page: 1642
  ident: bib5
  article-title: Benchmarking a coupled immersed-boundary-finite-element solver for large-scale flow-induced deformation
  publication-title: AIAA J.
– volume: 54
  start-page: 802
  year: 2015
  end-page: 822
  ident: bib41
  article-title: Prediction of energy losses in water impacts using incompressible and weakly compressible models
  publication-title: J. Fluid Struct.
– volume: 181
  start-page: 532
  year: 2010
  end-page: 549
  ident: bib2
  article-title: Free-surface flows solved by means of SPH schemes with numerical diffusive terms
  publication-title: Comput. Phys. Commun.
– volume: 48
  start-page: 1359
  year: 2000
  end-page: 1400
  ident: bib4
  article-title: A unified stability analysis of meshless particle methods
  publication-title: Int. J. Numer. Methods Eng.
– volume: 196
  start-page: 106845
  year: 2020
  ident: bib47
  article-title: Hybrid SW-NS SPH models using open boundary conditions for simulation of free-surface flows
  publication-title: Ocean Eng.
– volume: 29
  start-page: 187
  year: 2017
  end-page: 216
  ident: bib73
  article-title: Smoothed particle hydrodynamics and its applications in fluid-structure interactions
  publication-title: J. Hydrodyn. Ser. B
– volume: 29
  year: 2017
  ident: bib13
  article-title: Smoothed particle hydrodynamics method from a large eddy simulation perspective
  publication-title: Phys. Fluids
– volume: 90
  start-page: 19
  year: 2019
  end-page: 42
  ident: bib53
  article-title: Extension of the
  publication-title: J. Fluid Struct.
– volume: 191
  start-page: 448
  year: 2003
  end-page: 475
  ident: bib11
  article-title: Numerical simulation of interfacial flows by smoothed particle hydrodynamics
  publication-title: J. Comp. Physiol.
– volume: 31
  start-page: 174
  year: 2017
  end-page: 187
  ident: bib23
  article-title: A coupled WC-TL SPH method for simulation of hydroelastic problems
  publication-title: Int. J. Comput. Fluid Dynam.
– volume: 183
  start-page: 1641
  year: 2012
  end-page: 1683
  ident: bib10
  article-title: Particle packing algorithm for SPH schemes
  publication-title: Comput. Phys. Commun.
– volume: 179
  start-page: 563
  year: 2019
  end-page: 578
  ident: bib46
  article-title: Flexible slender body fluid interaction: vector-based discrete element method with eulerian smoothed particle hydrodynamics
  publication-title: Comput. Fluids
– volume: 224
  start-page: 63
  year: 2018
  end-page: 80
  ident: bib54
  article-title: Multi-resolution Delta-plus-SPH with tensile instability control: towards high Reynolds number flows
  publication-title: Comput. Phys. Commun.
– volume: 31
  start-page: 117108
  year: 2019
  ident: bib58
  article-title: The suction effect during freak wave slamming on a fixed platform deck: smoothed particle hydrodynamics simulation and experimental study
  publication-title: Phys. Fluids
– volume: 348
  start-page: 912
  year: 2019
  end-page: 934
  ident: bib55
  article-title: A consistent approach to particle shifting in the
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 190
  start-page: 470
  year: 2019
  end-page: 484
  ident: bib32
  article-title: On the coupling of a direct-forcing immersed boundary method and the regularized lattice Boltzmann method for fluid-structure interaction
  publication-title: Comput. Fluids
– year: 2018
  ident: bib19
  article-title: Hydroelastic analysis of a submerged horizontal plate using a coupled SPH-FEM model
  publication-title: Proceedings of the ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering
– volume: 232
  start-page: 139
  year: 2018
  end-page: 164
  ident: bib30
  article-title: An enhanced ISPH-SPH coupled method for simulation of incompressible fluid-elastic structure interactions
  publication-title: Comput. Phys. Commun.
– volume: 407
  start-page: 109255
  year: 2020
  ident: bib29
  article-title: A least-squares particle model with other techniques for 2d viscoelastic fluid/free surface flow
  publication-title: J. Comput. Phys.
– volume: 98
  start-page: 32
  year: 2015
  end-page: 49
  ident: bib62
  article-title: Numerical simulation of interactions between free surface and rigid body using a robust SPH method
  publication-title: Ocean Eng.
– volume: 23
  start-page: 236
  year: 2018
  end-page: 251
  ident: bib52
  article-title: Advances in numerical ditching simulation of flexible aircraft models
  publication-title: Int. J. Crashworthiness
– volume: 82
  start-page: 397
  year: 2019
  end-page: 414
  ident: bib31
  article-title: Multi-resolution MPS for incompressible fluid-elastic structure interactions in ocean engineering
  publication-title: Appl. Ocean Res.
– volume: 152
  start-page: 416
  year: 2018
  end-page: 427
  ident: bib75
  article-title: MPS-FEM coupled method for sloshing flows in an elastic tank
  publication-title: Ocean Eng.
– volume: 217
  start-page: 66
  year: 2017
  end-page: 81
  ident: bib17
  article-title: An efficient FSI coupling strategy between smoothed particle hydrodynamics and finite element methods
  publication-title: Comput. Phys. Commun.
– volume: 258
  start-page: 451
  year: 2014
  end-page: 469
  ident: bib65
  article-title: Fluid–structure interaction involving large deformations: 3D simulations and applications to biological systems
  publication-title: J. Comput. Phys.
– volume: 185
  start-page: 27
  year: 2019
  end-page: 46
  ident: bib24
  article-title: Potential application of submerged horizontal plate as a wave energy breakwater: a 2D study using the WCSPH method
  publication-title: Ocean Eng.
– volume: 354
  start-page: 552
  year: 2018
  end-page: 575
  ident: bib8
  article-title: Analysis and improvements of Adaptive Particle Refinement (APR) through CPU time, accuracy and robustness considerations
  publication-title: J. Comput. Phys.
– volume: 30
  start-page: 62
  year: 2018
  end-page: 69
  ident: bib21
  article-title: SPH modeling of fluid-structure interaction
  publication-title: J. Hydrodyn.
– volume: 59
  start-page: 1750010
  year: 2017
  ident: bib78
  article-title: Corrected first-order derivative ISPH in water wave simulations
  publication-title: Coast Eng. J.
– volume: 156
  start-page: 103617
  year: 2020
  ident: bib22
  article-title: Numerical investigation of the solitary wave breaking over a slope by using the finite particle method
  publication-title: Coast Eng.
– volume: 31
  start-page: 654
  year: 2019
  end-page: 668
  ident: bib49
  article-title: An improved predictive-corrective incompressible smoothed particle hydrodynamics method for fluid flow modelling
  publication-title: J. Hydrodyn.
– volume: 81
  start-page: 325
  year: 2018
  end-page: 360
  ident: bib15
  article-title: Enhanced particle method with stress point integration for simulation of incompressible fluid-nonlinear elastic structure interaction
  publication-title: J. Fluid Struct.
– start-page: 371
  year: 2006
  end-page: 385
  ident: bib67
  article-title: Proposal for numerical benchmarking of fluid-structure interaction between an elastic object and laminar incompressible flow
  publication-title: Fluid-structure Interaction
– volume: 68
  start-page: 1703
  year: 2005
  end-page: 1759
  ident: bib45
  article-title: Smoothed particle hydrodynamics
  publication-title: Rep. Prog. Phys.
– start-page: 1
  year: 2016
  end-page: 4
  ident: bib74
  article-title: Mps-fem coupled method for interaction between sloshing flow and elastic structure in rolling tanks
  publication-title: Proceedings of the 7th International Conference on Computational Methods
– volume: 36
  start-page: 413
  year: 2004
  end-page: 455
  ident: bib70
  article-title: Vortex-induced vibrations
  publication-title: Annu. Rev. Fluid Mech.
– volume: 94
  start-page: 102942
  year: 2020
  ident: bib76
  article-title: Investigations on sloshing mitigation using elastic baffles by coupling smoothed finite element method and decoupled finite particle method
  publication-title: J. Fluid Struct.
– volume: 14
  start-page: 123
  year: 2013
  end-page: 138
  ident: bib6
  article-title: Numerical and experimental investigation of nonlinear shallow water sloshing
  publication-title: Int. J. Nonlinear Sci. Numer. Stimul.
– volume: 104
  start-page: 240
  year: 2019
  end-page: 258
  ident: bib57
  article-title: Study of a complex fluid-structure dam-breaking benchmark problem using a multi-phase SPH method with APR
  publication-title: Eng. Anal. Bound. Elem.
– volume: 86
  start-page: 329
  year: 2019
  end-page: 353
  ident: bib72
  article-title: A stabilized TL-WC SPH approach with GPU acceleration for three-dimensional fluid-structure interaction
  publication-title: J. Fluid Struct.
– volume: 355
  start-page: 558
  year: 2019
  end-page: 590
  ident: bib26
  article-title: A 3D SPH–FE coupling for FSI problems and its application to tire hydroplaning simulations on rough ground
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 200
  start-page: 1526
  year: 2011
  end-page: 1542
  ident: bib39
  article-title: Delta-SPH model for simulating violent impact flows
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 108
  start-page: 56
  year: 2016
  end-page: 64
  ident: bib71
  article-title: Numerical modeling of dam-break flow impacting on flexible structures using an improved SPH–EBG method
  publication-title: Coast Eng.
– volume: 79
  year: 2009
  ident: bib9
  article-title: Theoretical considerations on the free-surface role in the Smoothed-particle-hydrodynamics model
  publication-title: Phys. Rev.
– volume: 8
  start-page: 115
  year: 2018
  end-page: 125
  ident: bib56
  article-title: Numerical simulation of the self-propulsive motion of a fishlike swimming foil using theᵟ
  publication-title: Theor. Appl. Mech. Lett.
– volume: 315
  start-page: 25
  year: 2017
  end-page: 49
  ident: bib61
  article-title: The
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 42
  start-page: 112
  year: 2013
  end-page: 129
  ident: bib7
  article-title: Nonlinear water wave interaction with floating bodies in SPH
  publication-title: J. Fluid Struct.
– volume: 231
  start-page: 7057
  year: 2012
  end-page: 7075
  ident: bib1
  article-title: A generalized wall boundary condition for smoothed particle hydrodynamics
  publication-title: J. Comput. Phys.
– volume: 62
  start-page: 984701
  year: 2019
  ident: bib38
  article-title: Smoothed particle hydrodynamics (SPH) for modeling fluid-structure interactions
  publication-title: Sci. China Phys. Mech. Astron.
– volume: 32
  start-page: 664
  year: 2020
  end-page: 671
  ident: bib66
  article-title: Incompressible SPH simulation of solitary wave propagation on permeable beaches
  publication-title: J. Hydrodyn.
– year: 2015
  ident: bib68
  article-title: Experimental and Statistical Investigation of Canonical Problems in Sloshing
– volume: 115
  start-page: 86
  year: 2015
  end-page: 97
  ident: bib43
  article-title: DNS and LES of 3-D wall-bounded turbulence using Smoothed Particle Hydrodynamics
  publication-title: Comput. Fluids
– volume: 32
  start-page: 779
  year: 2015
  end-page: 805
  ident: bib35
  article-title: Geometrically nonlinear analysis of two-dimensional structures using an improved smoothed particle hydrodynamics method
  publication-title: Eng. Comput.
– volume: 231
  start-page: 1499
  year: 2012
  end-page: 1523
  ident: bib36
  article-title: Incompressible smoothed particle hydrodynamics for free-surface flows: a generalised diffusion-based algorithm for stability and validations for impulsive flows and propagating waves
  publication-title: J. Comput. Phys.
– volume: 276
  start-page: 266
  year: 2014
  end-page: 286
  ident: bib27
  article-title: Fluid–structure interaction analysis by coupled FE–SPH model based on a novel searching algorithm
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 229
  start-page: 3652
  year: 2010
  end-page: 3663
  ident: bib42
  article-title: Fast free-surface detection and level-set function definition in sph solvers
  publication-title: J. Comput. Phys.
– volume: 30
  start-page: 535
  year: 2018
  end-page: 538
  ident: bib25
  article-title: Numerical simulation of wave-current interaction using the SPH method
  publication-title: J. Hydrodyn.
– volume: 342
  start-page: 604
  year: 2018
  end-page: 624
  ident: bib64
  article-title: A versatile algorithm for the treatment of open boundary conditions in Smoothed particle hydrodynamics GPU models
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 72
  start-page: 60
  year: 2018
  end-page: 75
  ident: bib59
  article-title: An accurate and efficient SPH modeling of the water entry of circular cylinders
  publication-title: Appl. Ocean Res.
– volume: 32
  start-page: 664
  year: 2020
  ident: 10.1016/j.oceaneng.2020.108552_bib66
  article-title: Incompressible SPH simulation of solitary wave propagation on permeable beaches
  publication-title: J. Hydrodyn.
  doi: 10.1007/s42241-020-0042-0
– volume: 34
  start-page: 35
  year: 2012
  ident: 10.1016/j.oceaneng.2020.108552_bib16
  article-title: Simulating 2D open-channel flows through an SPH model
  publication-title: Eur. J. Mech. B Fluid
  doi: 10.1016/j.euromechflu.2012.02.002
– volume: 82
  start-page: 397
  year: 2019
  ident: 10.1016/j.oceaneng.2020.108552_bib31
  article-title: Multi-resolution MPS for incompressible fluid-elastic structure interactions in ocean engineering
  publication-title: Appl. Ocean Res.
  doi: 10.1016/j.apor.2018.10.020
– volume: 98
  start-page: 32
  year: 2015
  ident: 10.1016/j.oceaneng.2020.108552_bib62
  article-title: Numerical simulation of interactions between free surface and rigid body using a robust SPH method
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2015.01.019
– volume: 86
  start-page: 329
  year: 2019
  ident: 10.1016/j.oceaneng.2020.108552_bib72
  article-title: A stabilized TL-WC SPH approach with GPU acceleration for three-dimensional fluid-structure interaction
  publication-title: J. Fluid Struct.
  doi: 10.1016/j.jfluidstructs.2019.02.002
– volume: 31
  start-page: 654
  year: 2019
  ident: 10.1016/j.oceaneng.2020.108552_bib49
  article-title: An improved predictive-corrective incompressible smoothed particle hydrodynamics method for fluid flow modelling
  publication-title: J. Hydrodyn.
  doi: 10.1007/s42241-019-0058-5
– volume: 23
  start-page: 236
  year: 2018
  ident: 10.1016/j.oceaneng.2020.108552_bib52
  article-title: Advances in numerical ditching simulation of flexible aircraft models
  publication-title: Int. J. Crashworthiness
  doi: 10.1080/13588265.2017.1359462
– year: 2018
  ident: 10.1016/j.oceaneng.2020.108552_bib19
  article-title: Hydroelastic analysis of a submerged horizontal plate using a coupled SPH-FEM model
– volume: 32
  start-page: 653
  year: 2020
  ident: 10.1016/j.oceaneng.2020.108552_bib48
  article-title: Simulations of helicopter ditching using smoothed particle hydrodynamics
  publication-title: J. Hydrodyn.
  doi: 10.1007/s42241-020-0044-y
– volume: 90
  start-page: 19
  year: 2019
  ident: 10.1016/j.oceaneng.2020.108552_bib53
  article-title: Extension of the δ-Plus-SPH model for simulating Vortex-Induced-Vibration problems
  publication-title: J. Fluid Struct.
  doi: 10.1016/j.jfluidstructs.2019.06.004
– volume: 156
  start-page: 103617
  year: 2020
  ident: 10.1016/j.oceaneng.2020.108552_bib22
  article-title: Numerical investigation of the solitary wave breaking over a slope by using the finite particle method
  publication-title: Coast Eng.
  doi: 10.1016/j.coastaleng.2019.103617
– volume: 72
  start-page: 60
  year: 2018
  ident: 10.1016/j.oceaneng.2020.108552_bib59
  article-title: An accurate and efficient SPH modeling of the water entry of circular cylinders
  publication-title: Appl. Ocean Res.
  doi: 10.1016/j.apor.2018.01.004
– volume: 231
  start-page: 7057
  year: 2012
  ident: 10.1016/j.oceaneng.2020.108552_bib1
  article-title: A generalized wall boundary condition for smoothed particle hydrodynamics
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2012.05.005
– volume: 42
  start-page: 112
  year: 2013
  ident: 10.1016/j.oceaneng.2020.108552_bib7
  article-title: Nonlinear water wave interaction with floating bodies in SPH
  publication-title: J. Fluid Struct.
  doi: 10.1016/j.jfluidstructs.2013.05.010
– volume: 97
  year: 2018
  ident: 10.1016/j.oceaneng.2020.108552_bib14
  article-title: Fluid-structure interaction with the entropic lattice Boltzmann method
  publication-title: Phys. Rev.
– volume: 258
  start-page: 451
  year: 2014
  ident: 10.1016/j.oceaneng.2020.108552_bib65
  article-title: Fluid–structure interaction involving large deformations: 3D simulations and applications to biological systems
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2013.10.047
– volume: 190
  start-page: 470
  year: 2019
  ident: 10.1016/j.oceaneng.2020.108552_bib32
  article-title: On the coupling of a direct-forcing immersed boundary method and the regularized lattice Boltzmann method for fluid-structure interaction
  publication-title: Comput. Fluids
  doi: 10.1016/j.compfluid.2019.06.030
– volume: 342
  start-page: 604
  year: 2018
  ident: 10.1016/j.oceaneng.2020.108552_bib64
  article-title: A versatile algorithm for the treatment of open boundary conditions in Smoothed particle hydrodynamics GPU models
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2018.08.004
– volume: 17
  start-page: 25
  year: 2010
  ident: 10.1016/j.oceaneng.2020.108552_bib37
  article-title: Smoothed particle hydrodynamics (sph): an overview and recent developments
  publication-title: Arch. Comput. Methods Eng.
  doi: 10.1007/s11831-010-9040-7
– volume: 355
  start-page: 558
  year: 2019
  ident: 10.1016/j.oceaneng.2020.108552_bib26
  article-title: A 3D SPH–FE coupling for FSI problems and its application to tire hydroplaning simulations on rough ground
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2019.06.033
– volume: 54
  start-page: 802
  year: 2015
  ident: 10.1016/j.oceaneng.2020.108552_bib41
  article-title: Prediction of energy losses in water impacts using incompressible and weakly compressible models
  publication-title: J. Fluid Struct.
  doi: 10.1016/j.jfluidstructs.2015.01.014
– volume: 32
  start-page: 779
  year: 2015
  ident: 10.1016/j.oceaneng.2020.108552_bib35
  article-title: Geometrically nonlinear analysis of two-dimensional structures using an improved smoothed particle hydrodynamics method
  publication-title: Eng. Comput.
  doi: 10.1108/EC-12-2013-0306
– volume: 117
  start-page: 359
  year: 2016
  ident: 10.1016/j.oceaneng.2020.108552_bib44
  article-title: Damage characteristics of ship structures subjected to shockwaves of underwater contact explosions
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2016.03.040
– year: 2014
  ident: 10.1016/j.oceaneng.2020.108552_bib51
– volume: 232
  start-page: 139
  year: 2018
  ident: 10.1016/j.oceaneng.2020.108552_bib30
  article-title: An enhanced ISPH-SPH coupled method for simulation of incompressible fluid-elastic structure interactions
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2018.05.012
– volume: 348
  start-page: 912
  year: 2019
  ident: 10.1016/j.oceaneng.2020.108552_bib55
  article-title: A consistent approach to particle shifting in the δ-plus-sph model
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2019.01.045
– volume: 407
  start-page: 109255
  year: 2020
  ident: 10.1016/j.oceaneng.2020.108552_bib29
  article-title: A least-squares particle model with other techniques for 2d viscoelastic fluid/free surface flow
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2020.109255
– year: 2020
  ident: 10.1016/j.oceaneng.2020.108552_bib20
  article-title: Improvement of the SPH method for multiphase flows application to the emergency water landing of aircrafts: application to the emergency water landing of aircrafts
  publication-title: École centrale de Nantes.
– volume: 94
  start-page: 102942
  year: 2020
  ident: 10.1016/j.oceaneng.2020.108552_bib76
  article-title: Investigations on sloshing mitigation using elastic baffles by coupling smoothed finite element method and decoupled finite particle method
  publication-title: J. Fluid Struct.
  doi: 10.1016/j.jfluidstructs.2020.102942
– volume: 356
  start-page: 261
  year: 2019
  ident: 10.1016/j.oceaneng.2020.108552_bib77
  article-title: A smoothed particle element method (SPEM) for modeling fluid–structure interaction problems with large fluid deformations
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2019.07.024
– volume: 185
  start-page: 27
  year: 2019
  ident: 10.1016/j.oceaneng.2020.108552_bib24
  article-title: Potential application of submerged horizontal plate as a wave energy breakwater: a 2D study using the WCSPH method
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2019.05.034
– volume: 36
  start-page: 413
  year: 2004
  ident: 10.1016/j.oceaneng.2020.108552_bib70
  article-title: Vortex-induced vibrations
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev.fluid.36.050802.122128
– volume: 108
  start-page: 56
  year: 2016
  ident: 10.1016/j.oceaneng.2020.108552_bib71
  article-title: Numerical modeling of dam-break flow impacting on flexible structures using an improved SPH–EBG method
  publication-title: Coast Eng.
  doi: 10.1016/j.coastaleng.2015.11.007
– volume: 31
  start-page: 174
  year: 2017
  ident: 10.1016/j.oceaneng.2020.108552_bib23
  article-title: A coupled WC-TL SPH method for simulation of hydroelastic problems
  publication-title: Int. J. Comput. Fluid Dynam.
  doi: 10.1080/10618562.2017.1324149
– start-page: 1
  year: 2016
  ident: 10.1016/j.oceaneng.2020.108552_bib74
  article-title: Mps-fem coupled method for interaction between sloshing flow and elastic structure in rolling tanks
– volume: 143
  start-page: 90
  year: 2017
  ident: 10.1016/j.oceaneng.2020.108552_bib33
  article-title: A non-staggered coupling of finite element and lattice Boltzmann methods via an immersed boundary scheme for fluid-structure interaction
  publication-title: Comput. Fluids
  doi: 10.1016/j.compfluid.2016.11.008
– volume: 59
  start-page: 1750010
  year: 2017
  ident: 10.1016/j.oceaneng.2020.108552_bib78
  article-title: Corrected first-order derivative ISPH in water wave simulations
  publication-title: Coast Eng. J.
  doi: 10.1142/S0578563417500103
– volume: 305
  start-page: 849
  year: 2016
  ident: 10.1016/j.oceaneng.2020.108552_bib60
  article-title: Detection of Lagrangian coherent structures in the SPH framework
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2016.03.027
– volume: 150
  start-page: 71
  year: 2015
  ident: 10.1016/j.oceaneng.2020.108552_bib18
  article-title: On the similarity of meshless discretizations of peridynamics and smooth-particle hydrodynamics
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2014.12.011
– volume: 90
  start-page: 379
  year: 2019
  ident: 10.1016/j.oceaneng.2020.108552_bib63
  article-title: A fully Lagrangian method for fluid-structure interaction problems with deformable floating structure
  publication-title: J. Fluid Struct.
  doi: 10.1016/j.jfluidstructs.2019.07.005
– volume: 48
  start-page: 1445
  year: 2000
  ident: 10.1016/j.oceaneng.2020.108552_bib50
  article-title: Normalized sph with stress points
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/1097-0207(20000810)48:10<1445::AID-NME831>3.0.CO;2-9
– volume: 50
  start-page: 1638
  year: 2012
  ident: 10.1016/j.oceaneng.2020.108552_bib5
  article-title: Benchmarking a coupled immersed-boundary-finite-element solver for large-scale flow-induced deformation
  publication-title: AIAA J.
  doi: 10.2514/1.J051621
– volume: 231
  start-page: 1499
  year: 2012
  ident: 10.1016/j.oceaneng.2020.108552_bib36
  article-title: Incompressible smoothed particle hydrodynamics for free-surface flows: a generalised diffusion-based algorithm for stability and validations for impulsive flows and propagating waves
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2011.10.027
– start-page: 2030
  year: 2019
  ident: 10.1016/j.oceaneng.2020.108552_bib28
  article-title: Experimental investigation of fluid-structure interaction phenomena during aircraft ditching
– volume: 196
  start-page: 106845
  year: 2020
  ident: 10.1016/j.oceaneng.2020.108552_bib47
  article-title: Hybrid SW-NS SPH models using open boundary conditions for simulation of free-surface flows
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2019.106845
– volume: 48
  start-page: 1359
  year: 2000
  ident: 10.1016/j.oceaneng.2020.108552_bib4
  article-title: A unified stability analysis of meshless particle methods
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/1097-0207(20000730)48:9<1359::AID-NME829>3.0.CO;2-U
– volume: 50
  start-page: 192
  year: 2015
  ident: 10.1016/j.oceaneng.2020.108552_bib34
  article-title: Free surface flow impacting on an elastic structure: experiment versus numerical simulation
  publication-title: Appl. Ocean Res.
  doi: 10.1016/j.apor.2015.02.002
– volume: 30
  start-page: 38
  year: 2018
  ident: 10.1016/j.oceaneng.2020.108552_bib40
  article-title: High-speed water impacts of flat plates in different ditching configuration through a Riemann-ALE SPH model
  publication-title: J. Hydrodyn.
  doi: 10.1007/s42241-018-0004-y
– volume: 229
  start-page: 3652
  year: 2010
  ident: 10.1016/j.oceaneng.2020.108552_bib42
  article-title: Fast free-surface detection and level-set function definition in sph solvers
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2010.01.019
– volume: 30
  start-page: 535
  year: 2018
  ident: 10.1016/j.oceaneng.2020.108552_bib25
  article-title: Numerical simulation of wave-current interaction using the SPH method
  publication-title: J. Hydrodyn.
  doi: 10.1007/s42241-018-0042-5
– volume: 14
  start-page: 123
  year: 2013
  ident: 10.1016/j.oceaneng.2020.108552_bib6
  article-title: Numerical and experimental investigation of nonlinear shallow water sloshing
  publication-title: Int. J. Nonlinear Sci. Numer. Stimul.
  doi: 10.1515/ijnsns-2012-0100
– volume: 200
  start-page: 1526
  year: 2011
  ident: 10.1016/j.oceaneng.2020.108552_bib39
  article-title: Delta-SPH model for simulating violent impact flows
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2010.12.016
– volume: 224
  start-page: 63
  year: 2018
  ident: 10.1016/j.oceaneng.2020.108552_bib54
  article-title: Multi-resolution Delta-plus-SPH with tensile instability control: towards high Reynolds number flows
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2017.11.016
– volume: 30
  start-page: 62
  year: 2018
  ident: 10.1016/j.oceaneng.2020.108552_bib21
  article-title: SPH modeling of fluid-structure interaction
  publication-title: J. Hydrodyn.
  doi: 10.1007/s42241-018-0006-9
– volume: 152
  start-page: 416
  year: 2018
  ident: 10.1016/j.oceaneng.2020.108552_bib75
  article-title: MPS-FEM coupled method for sloshing flows in an elastic tank
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2017.12.008
– volume: 104
  start-page: 240
  year: 2019
  ident: 10.1016/j.oceaneng.2020.108552_bib57
  article-title: Study of a complex fluid-structure dam-breaking benchmark problem using a multi-phase SPH method with APR
  publication-title: Eng. Anal. Bound. Elem.
  doi: 10.1016/j.enganabound.2019.03.033
– volume: 199
  start-page: 2085
  year: 2010
  ident: 10.1016/j.oceaneng.2020.108552_bib12
  article-title: Partitioned simulation of the interaction between an elastic structure and free surface flow
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2010.02.019
– volume: 62
  start-page: 984701
  year: 2019
  ident: 10.1016/j.oceaneng.2020.108552_bib38
  article-title: Smoothed particle hydrodynamics (SPH) for modeling fluid-structure interactions
  publication-title: Sci. China Phys. Mech. Astron.
  doi: 10.1007/s11433-018-9357-0
– volume: 8
  start-page: 115
  year: 2018
  ident: 10.1016/j.oceaneng.2020.108552_bib56
  article-title: Numerical simulation of the self-propulsive motion of a fishlike swimming foil using theᵟ+ -SPH model
  publication-title: Theor. Appl. Mech. Lett.
  doi: 10.1016/j.taml.2018.02.007
– volume: 31
  start-page: 117108
  year: 2019
  ident: 10.1016/j.oceaneng.2020.108552_bib58
  article-title: The suction effect during freak wave slamming on a fixed platform deck: smoothed particle hydrodynamics simulation and experimental study
  publication-title: Phys. Fluids
  doi: 10.1063/1.5124613
– volume: 183
  start-page: 1641
  year: 2012
  ident: 10.1016/j.oceaneng.2020.108552_bib10
  article-title: Particle packing algorithm for SPH schemes
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2012.02.032
– volume: 29
  year: 2017
  ident: 10.1016/j.oceaneng.2020.108552_bib13
  article-title: Smoothed particle hydrodynamics method from a large eddy simulation perspective
  publication-title: Phys. Fluids
  doi: 10.1063/1.4978274
– volume: 273
  start-page: 640
  year: 2014
  ident: 10.1016/j.oceaneng.2020.108552_bib3
  article-title: Adaptive particle refinement and derefinement applied to the smoothed particle hydrodynamics method
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2014.05.040
– start-page: 371
  year: 2006
  ident: 10.1016/j.oceaneng.2020.108552_bib67
  article-title: Proposal for numerical benchmarking of fluid-structure interaction between an elastic object and laminar incompressible flow
– volume: 179
  start-page: 563
  year: 2019
  ident: 10.1016/j.oceaneng.2020.108552_bib46
  article-title: Flexible slender body fluid interaction: vector-based discrete element method with eulerian smoothed particle hydrodynamics
  publication-title: Comput. Fluids
  doi: 10.1016/j.compfluid.2018.11.024
– volume: 79
  year: 2009
  ident: 10.1016/j.oceaneng.2020.108552_bib9
  article-title: Theoretical considerations on the free-surface role in the Smoothed-particle-hydrodynamics model
  publication-title: Phys. Rev.
– volume: 191
  start-page: 448
  year: 2003
  ident: 10.1016/j.oceaneng.2020.108552_bib11
  article-title: Numerical simulation of interfacial flows by smoothed particle hydrodynamics
  publication-title: J. Comp. Physiol.
  doi: 10.1016/S0021-9991(03)00324-3
– volume: 68
  start-page: 1703
  year: 2005
  ident: 10.1016/j.oceaneng.2020.108552_bib45
  article-title: Smoothed particle hydrodynamics
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/68/8/R01
– volume: 354
  start-page: 552
  year: 2018
  ident: 10.1016/j.oceaneng.2020.108552_bib8
  article-title: Analysis and improvements of Adaptive Particle Refinement (APR) through CPU time, accuracy and robustness considerations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2017.10.041
– volume: 315
  start-page: 25
  year: 2017
  ident: 10.1016/j.oceaneng.2020.108552_bib61
  article-title: The δplus-SPH model: simple procedures for a further improvement of the SPH scheme
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2016.10.028
– year: 2015
  ident: 10.1016/j.oceaneng.2020.108552_bib68
– volume: 181
  start-page: 532
  year: 2010
  ident: 10.1016/j.oceaneng.2020.108552_bib2
  article-title: Free-surface flows solved by means of SPH schemes with numerical diffusive terms
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2009.11.002
– volume: 29
  start-page: 187
  year: 2017
  ident: 10.1016/j.oceaneng.2020.108552_bib73
  article-title: Smoothed particle hydrodynamics and its applications in fluid-structure interactions
  publication-title: J. Hydrodyn. Ser. B
  doi: 10.1016/S1001-6058(16)60730-8
– volume: 115
  start-page: 86
  year: 2015
  ident: 10.1016/j.oceaneng.2020.108552_bib43
  article-title: DNS and LES of 3-D wall-bounded turbulence using Smoothed Particle Hydrodynamics
  publication-title: Comput. Fluids
  doi: 10.1016/j.compfluid.2015.03.029
– start-page: 181
  year: 2006
  ident: 10.1016/j.oceaneng.2020.108552_bib69
– volume: 81
  start-page: 325
  year: 2018
  ident: 10.1016/j.oceaneng.2020.108552_bib15
  article-title: Enhanced particle method with stress point integration for simulation of incompressible fluid-nonlinear elastic structure interaction
  publication-title: J. Fluid Struct.
  doi: 10.1016/j.jfluidstructs.2018.04.012
– volume: 217
  start-page: 66
  year: 2017
  ident: 10.1016/j.oceaneng.2020.108552_bib17
  article-title: An efficient FSI coupling strategy between smoothed particle hydrodynamics and finite element methods
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2017.04.005
– volume: 276
  start-page: 266
  year: 2014
  ident: 10.1016/j.oceaneng.2020.108552_bib27
  article-title: Fluid–structure interaction analysis by coupled FE–SPH model based on a novel searching algorithm
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2014.04.001
SSID ssj0006603
Score 2.6045735
Snippet The recently developed FSI-SPH model (Sun et al., 2019c), by combining the multi-resolution δ+-SPH scheme and a Total Lagrangian SPH method, is further...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 108552
SubjectTerms [formula omitted]+-SPH
Fluid-structure interaction
FSI-SPH
Smoothed particle hydrodynamics
Tensile instability
Viscous flow
Title An accurate FSI-SPH modeling of challenging fluid-structure interaction problems in two and three dimensions
URI https://dx.doi.org/10.1016/j.oceaneng.2020.108552
Volume 221
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA9jvqggOhU_Rx58rVvTNG0fhziq4gfMwd5K0iSyMboxN3zzb_euTXWCsAcf-tA0F8LdcZeG3_2OkKtASIh6Qnmhn3OPM994Sgk4yKEH8dCY2GJx8uOTSIf8fhSOGuSmroVBWKWL_VVML6O1G-k4bXbm4zHW-LIE4iukMFhVlAW_nEfo5defPzAPIbpBDfPA2WtVwpNrSBGyMMUb_CeyEm4XhuzvBLWWdPr7ZM-dFmmv2tABaZiiRXbWOARbZPcZV3fE04dk2iuozPMVMkDQ_uDOG7yktGx3A7PpzNLcdU_BVztdjbVXUciuFoYid8SiqnSgrtPMOwzS5ceMykLTJRjeUI0NAfCS7f2IDPu3rzep5zoqeHkQxUsvCXlgIuwyrVjic626eOVhpcml0czmwkjL_UhEWijBLZe2axUXWmmroyAxwTFpFrPCnBCaKMMZfLQBZHmwqEwiGcTwSB37htlTEtZqzHJHN45dL6ZZjSubZLX6M1R_Vqn_lHS-5eYV4cZGiaS2UvbLdTLIChtkz_4he062GQJcSgj3BWmCscwlnFCWql26YJts9e4e0qcv3QPntw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9RADLZKOfCQKihUlBaYAxzT3Uwmk-TAoWq72qUPkNpKvYWZjAdttcpW3V1VXPqn-gexkwksElIPqIccMolHkW3ZnuizP4CPiTYU9bSN0rhSkZIxRtZqKuTYg1SKmHtuTj4-0cNz9eUivViBu64XhmGVIfa3Mb2J1mGlF7TZuxqPucdXFhRfKYXRrrqfB2TlIf68oXPb7PNon4z8ScrBwdneMArUAlGVZPk8KlKVYMZ0y1YWsXK2z2d_b7Ay6KSvNBqv4kxnTlutvDK-763SzjrvsqTAhPZ9BI8VhQumTdi5_YMr0bqfdLgS_ryltuTLHcpJpsb6Bx1MZYPvS1P574y4lOUGL2AtlKdit9XAS1jBeh2eLQ0tXIfnX3n3MOn6FUx2a2GqasEjJ8TgdBSdfhuKhl-H3hZTL6pA18K3frIYu6idWbu4RsHDKq7b1goRqG1mtCjmN1Nhaifm5GkoHDMQ8F-92Ws4fxA9b8BqPa3xDYjCopL00CdUVpALmSIzSU6XcXmM0m9C2qmxrMJ8c6bZmJQdkO2y7NRfsvrLVv2b0Pstd9VO-LhXouisVP7lqyWloXtk3_6H7Ad4Mjw7PiqPRieHW_BUMrqmwY9vwyoZDt9ReTS37xt3FPD9of3_Fz1zJRI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+accurate+FSI-SPH+modeling+of+challenging+fluid-structure+interaction+problems+in+two+and+three+dimensions&rft.jtitle=Ocean+engineering&rft.au=Sun%2C+Peng-Nan&rft.au=Le+Touz%C3%A9%2C+David&rft.au=Oger%2C+Guillaume&rft.au=Zhang%2C+A-Man&rft.date=2021-02-01&rft.issn=0029-8018&rft.volume=221&rft.spage=108552&rft_id=info:doi/10.1016%2Fj.oceaneng.2020.108552&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_oceaneng_2020_108552
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-8018&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-8018&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-8018&client=summon