Optimal cold sink temperature for thermoelectric dehumidifiers

We propose an optimal cold sink temperature for thermoelectric dehumidifiers based on theoretical and experimental investigations. We show that the optimal condition is such that the latent heat absorption rate per unit power supplied to the dehumidifier is maximized. In consideration of the cooling...

Full description

Saved in:
Bibliographic Details
Published inJournal of mechanical science and technology Vol. 32; no. 2; pp. 885 - 895
Main Authors Kim, Joonoh, Park, Keunhwan, Lee, Duck-Gyu, Chang, Young Soo, Kim, Ho-Young
Format Journal Article
LanguageEnglish
Published Seoul Korean Society of Mechanical Engineers 01.02.2018
Springer Nature B.V
대한기계학회
Subjects
Online AccessGet full text
ISSN1738-494X
1976-3824
DOI10.1007/s12206-018-0139-8

Cover

Loading…
More Information
Summary:We propose an optimal cold sink temperature for thermoelectric dehumidifiers based on theoretical and experimental investigations. We show that the optimal condition is such that the latent heat absorption rate per unit power supplied to the dehumidifier is maximized. In consideration of the cooling ability of Peltier pellet and the heat exchange characteristics of the cold sink, we estimate the condensation rate as a function of the cold sink temperature. The theoretical predictions are compared with the results of experiments by using a prototype dehumidifier. We emphasize that the cold sink temperature is a critical parameter that determines the performance of dehumidification. Our study may provide an important insight to the thermoelectric dehumidification system and to designing a cold sink for thermoelectric dehumidifiers with improved energy efficiency.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1738-494X
1976-3824
DOI:10.1007/s12206-018-0139-8