Multi-source domain generalization and adaptation toward cross-subject myoelectric pattern recognition

Objective. Myoelectric pattern recognition (MPR) has shown satisfactory performance under ideal laboratory conditions. Nevertheless, the individual variances lead to dramatic performance degradation in cross-user MPR applications. It is crucial to enable the myoelectric interface to adapt to multipl...

Full description

Saved in:
Bibliographic Details
Published inJournal of neural engineering Vol. 20; no. 1; pp. 16050 - 16062
Main Authors Zhang, Xuan, Wu, Le, Zhang, Xu, Chen, Xiang, Li, Chang, Chen, Xun
Format Journal Article
LanguageEnglish
Published England IOP Publishing 01.02.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Objective. Myoelectric pattern recognition (MPR) has shown satisfactory performance under ideal laboratory conditions. Nevertheless, the individual variances lead to dramatic performance degradation in cross-user MPR applications. It is crucial to enable the myoelectric interface to adapt to multiple users’ surface electromyography (sEMG) distributions in practical. Approach. Domain adaptation (DA) is a promising approach to tackle cross-user challenges due to its ability to diminish the divergence between individual users’ EMG distributions and escalate model generalization performance. However, existing DA methods in sEMG control are based on single-source domain adaptation (SDA). SDA solely mixes multiple training users’ data as a combined source domain and attempts to align with a novel user. This simple data mixing manner ignores the sEMG distribution variations between disparate training users, leading to an insufficient variance elimination and lower performance. To this end, this paper proposes a multi-source synchronize domain adaptation framework with both DA and domain generalization (DG) capability. This multi-source framework aligns each source user and the new user in individual feature spaces, which better transfers the knowledge of existing users to the new user. Moreover, we retain the source-combined data to preserve the effectiveness of SDA. The property was further confirmed by evaluating the performance of the proposed method on data from nine subjects performing six tasks. Main results. Experiment results prove that the proposed multi-source framework achieved both positive DG and DA performance in a cross-user classification manner. Significance. This work demonstrates the usability and feasibility of the proposed multi-source framework in cross-user myoelectric control.
AbstractList Objective. Myoelectric pattern recognition (MPR) has shown satisfactory performance under ideal laboratory conditions. Nevertheless, the individual variances lead to dramatic performance degradation in cross-user MPR applications. It is crucial to enable the myoelectric interface to adapt to multiple users’ surface electromyography (sEMG) distributions in practical. Approach. Domain adaptation (DA) is a promising approach to tackle cross-user challenges due to its ability to diminish the divergence between individual users’ EMG distributions and escalate model generalization performance. However, existing DA methods in sEMG control are based on single-source domain adaptation (SDA). SDA solely mixes multiple training users’ data as a combined source domain and attempts to align with a novel user. This simple data mixing manner ignores the sEMG distribution variations between disparate training users, leading to an insufficient variance elimination and lower performance. To this end, this paper proposes a multi-source synchronize domain adaptation framework with both DA and domain generalization (DG) capability. This multi-source framework aligns each source user and the new user in individual feature spaces, which better transfers the knowledge of existing users to the new user. Moreover, we retain the source-combined data to preserve the effectiveness of SDA. The property was further confirmed by evaluating the performance of the proposed method on data from nine subjects performing six tasks. Main results. Experiment results prove that the proposed multi-source framework achieved both positive DG and DA performance in a cross-user classification manner. Significance. This work demonstrates the usability and feasibility of the proposed multi-source framework in cross-user myoelectric control.
Myoelectric pattern recognition (MPR) has shown satisfactory performance under ideal laboratory conditions. Nevertheless, the individual variances lead to dramatic performance degradation in cross-user MPR applications. It is crucial to enable the myoelectric interface to adapt to multiple users' surface electromyography (sEMG) distributions in practical. Domain adaptation (DA) is a promising approach to tackle cross-user challenges due to its ability to diminish the divergence between individual users' EMG distributions and escalate model generalization performance. However, existing DA methods in sEMG control are based on single-source domain adaptation (SDA). SDA solely mixes multiple training users' data as a combined source domain and attempts to align with a novel user. This simple data mixing manner ignores the sEMG distribution variations between disparate training users, leading to an insufficient variance elimination and lower performance. To this end, this paper proposes a multi-source synchronize domain adaptation framework with both DA and domain generalization (DG) capability. This multi-source framework aligns each source user and the new user in individual feature spaces, which better transfers the knowledge of existing users to the new user. Moreover, we retain the source-combined data to preserve the effectiveness of SDA. The property was further confirmed by evaluating the performance of the proposed method on data from nine subjects performing six tasks. Experiment results prove that the proposed multi-source framework achieved both positive DG and DA performance in a cross-user classification manner. This work demonstrates the usability and feasibility of the proposed multi-source framework in cross-user myoelectric control.
Objective.Myoelectric pattern recognition (MPR) has shown satisfactory performance under ideal laboratory conditions. Nevertheless, the individual variances lead to dramatic performance degradation in cross-user MPR applications. It is crucial to enable the myoelectric interface to adapt to multiple users' surface electromyography (sEMG) distributions in practical.Approach.Domain adaptation (DA) is a promising approach to tackle cross-user challenges due to its ability to diminish the divergence between individual users' EMG distributions and escalate model generalization performance. However, existing DA methods in sEMG control are based on single-source domain adaptation (SDA). SDA solely mixes multiple training users' data as a combined source domain and attempts to align with a novel user. This simple data mixing manner ignores the sEMG distribution variations between disparate training users, leading to an insufficient variance elimination and lower performance. To this end, this paper proposes a multi-source synchronize domain adaptation framework with both DA and domain generalization (DG) capability. This multi-source framework aligns each source user and the new user in individual feature spaces, which better transfers the knowledge of existing users to the new user. Moreover, we retain the source-combined data to preserve the effectiveness of SDA. The property was further confirmed by evaluating the performance of the proposed method on data from nine subjects performing six tasks.Main results.Experiment results prove that the proposed multi-source framework achieved both positive DG and DA performance in a cross-user classification manner.Significance.This work demonstrates the usability and feasibility of the proposed multi-source framework in cross-user myoelectric control.Objective.Myoelectric pattern recognition (MPR) has shown satisfactory performance under ideal laboratory conditions. Nevertheless, the individual variances lead to dramatic performance degradation in cross-user MPR applications. It is crucial to enable the myoelectric interface to adapt to multiple users' surface electromyography (sEMG) distributions in practical.Approach.Domain adaptation (DA) is a promising approach to tackle cross-user challenges due to its ability to diminish the divergence between individual users' EMG distributions and escalate model generalization performance. However, existing DA methods in sEMG control are based on single-source domain adaptation (SDA). SDA solely mixes multiple training users' data as a combined source domain and attempts to align with a novel user. This simple data mixing manner ignores the sEMG distribution variations between disparate training users, leading to an insufficient variance elimination and lower performance. To this end, this paper proposes a multi-source synchronize domain adaptation framework with both DA and domain generalization (DG) capability. This multi-source framework aligns each source user and the new user in individual feature spaces, which better transfers the knowledge of existing users to the new user. Moreover, we retain the source-combined data to preserve the effectiveness of SDA. The property was further confirmed by evaluating the performance of the proposed method on data from nine subjects performing six tasks.Main results.Experiment results prove that the proposed multi-source framework achieved both positive DG and DA performance in a cross-user classification manner.Significance.This work demonstrates the usability and feasibility of the proposed multi-source framework in cross-user myoelectric control.
Author Wu, Le
Zhang, Xuan
Chen, Xun
Li, Chang
Zhang, Xu
Chen, Xiang
Author_xml – sequence: 1
  givenname: Xuan
  orcidid: 0000-0003-0626-9599
  surname: Zhang
  fullname: Zhang, Xuan
  organization: School of Information Science and Technology, University of Science and Technology of China , Hefei 230027, People’s Republic of China
– sequence: 2
  givenname: Le
  surname: Wu
  fullname: Wu, Le
  organization: School of Information Science and Technology, University of Science and Technology of China , Hefei 230027, People’s Republic of China
– sequence: 3
  givenname: Xu
  orcidid: 0000-0002-1533-4340
  surname: Zhang
  fullname: Zhang, Xu
  organization: School of Information Science and Technology, University of Science and Technology of China , Hefei 230027, People’s Republic of China
– sequence: 4
  givenname: Xiang
  orcidid: 0000-0001-8259-4815
  surname: Chen
  fullname: Chen, Xiang
  organization: School of Information Science and Technology, University of Science and Technology of China , Hefei 230027, People’s Republic of China
– sequence: 5
  givenname: Chang
  surname: Li
  fullname: Li, Chang
  organization: Hefei University of Technology Department of Biomedical Engineering, Hefei, 230009, People’s Republic of China
– sequence: 6
  givenname: Xun
  surname: Chen
  fullname: Chen, Xun
  organization: Institute of Dataspace, Hefei Comprehensive National Science Center , Hefei 230088, People’s Republic of China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36720167$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1P3DAQxa1qUVlo75xQjhwI2ElsJ0eESqm0iAucrYk9QV4ldrAdIfrXk21gD0j0NB_6vZHmvSOyct4hISeMXjBa15dMViwvOC8uQbcS6Dey3q9W-17QQ3IU45bSksmGfieHpZAFZUKuSXc39cnm0U9BY2b8ANZlT-gwQG__QrLeZeBMBgbGtIzJv0AwmQ4-xjxO7RZ1yoZXj_3cBKuzEVLC4LKA2j85uxP9IAcd9BF_vtdj8njz6-H6Nt_c__5zfbXJdSnrlDcl79A0UHc4f1C03DQFbYRsOXQVY1CbqmMd50LXtGJVjZU0gjJGeQtNUcnymJwtd8fgnyeMSQ02aux7cOinqAopmShFJfiMnr6jUzugUWOwA4RX9eHNDIgF-PdpwE5pu1iQAtheMap2Iaidy2rnuFpCmIX0k_Dj9n8k54vE-lFt5zDc7NLX-BsM5pkE
CODEN JNEOBH
CitedBy_id crossref_primary_10_1007_s11571_023_10026_4
crossref_primary_10_1109_TNSRE_2023_3346462
crossref_primary_10_1109_LRA_2025_3546095
crossref_primary_10_1088_1741_2552_ad1786
crossref_primary_10_1109_TMRB_2024_3504737
crossref_primary_10_1016_j_engappai_2023_107251
crossref_primary_10_1016_j_bspc_2024_106803
crossref_primary_10_3390_s24185949
crossref_primary_10_1109_TIM_2024_3502881
crossref_primary_10_1109_TNSRE_2023_3342050
crossref_primary_10_34133_cbsystems_0219
crossref_primary_10_1109_JBHI_2024_3354909
crossref_primary_10_1109_JSEN_2024_3475818
crossref_primary_10_1016_j_eswa_2023_121055
crossref_primary_10_1109_TNSRE_2023_3337861
Cites_doi 10.1109/JBHI.2014.2330356
10.1001/jama.2009.116
10.1109/TKDE.2022.3178128
10.1109/TBME.2013.2250502
10.1109/GlobalSIP45357.2019.8969237
10.1109/TBME.2019.2952890
10.1109/TNSRE.2020.3030931
10.1109/MCI.2015.2501545
10.1109/TNSRE.2014.2304470
10.1109/LSENS.2021.3100607
10.1109/5.726791
10.1093/bioinformatics/btl242
10.1109/MSP.2012.2203480
10.1109/TNSRE.2015.2445634
10.1016/j.compbiomed.2020.104188
10.1088/1741-2560/6/3/036004
10.1109/LRA.2022.3191238
10.1109/TNSRE.2022.3173946
10.1016/j.inffus.2014.12.003
10.1109/10.204774
10.1109/TBME.2005.856295
10.1109/TRO.2012.2226386
10.1109/TCBB.2004.45
10.1016/j.neucom.2021.12.081
10.1109/TBME.2008.2005485
10.3390/s17030458
10.1109/TNSRE.2015.2492619
10.1186/1743-0003-6-41
ContentType Journal Article
Copyright 2023 IOP Publishing Ltd
2023 IOP Publishing Ltd.
Copyright_xml – notice: 2023 IOP Publishing Ltd
– notice: 2023 IOP Publishing Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1088/1741-2552/acb7a0
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1741-2552
ExternalDocumentID 36720167
10_1088_1741_2552_acb7a0
jneacb7a0
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
1JI
4.4
53G
5B3
5GY
5VS
5ZH
7.M
7.Q
AAGCD
AAJIO
AAJKP
AATNI
ABHWH
ABJNI
ABQJV
ABVAM
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
F5P
HAK
IHE
IJHAN
IOP
IZVLO
KOT
LAP
N5L
N9A
P2P
PJBAE
RIN
RO9
ROL
RPA
SY9
W28
XPP
AAYXX
ADEQX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c378t-935fed9a8fe5522b5d920967b5af411a8d4f1f556c804148e47d601105ba92473
IEDL.DBID IOP
ISSN 1741-2560
1741-2552
IngestDate Thu Jul 10 20:00:16 EDT 2025
Thu Jan 02 22:53:27 EST 2025
Thu Apr 24 22:59:42 EDT 2025
Tue Jul 01 01:48:10 EDT 2025
Wed Aug 21 03:34:31 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords deep learning
robust EMG control
cross-subject
electromyography
multi-source domain adaptation
Language English
License This article is available under the terms of the IOP-Standard License.
2023 IOP Publishing Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c378t-935fed9a8fe5522b5d920967b5af411a8d4f1f556c804148e47d601105ba92473
Notes JNE-105886.R2
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-0626-9599
0000-0002-1533-4340
0000-0001-8259-4815
OpenAccessLink https://iopscience.iop.org/article/10.1088/1741-2552/acb7a0/pdf
PMID 36720167
PQID 2771636465
PQPubID 23479
PageCount 13
ParticipantIDs iop_journals_10_1088_1741_2552_acb7a0
pubmed_primary_36720167
proquest_miscellaneous_2771636465
crossref_citationtrail_10_1088_1741_2552_acb7a0
crossref_primary_10_1088_1741_2552_acb7a0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-02-01
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of neural engineering
PublicationTitleAbbrev JNE
PublicationTitleAlternate J. Neural Eng
PublicationYear 2023
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Vidovic (jneacb7a0bib5) 2016; 24
Sun (jneacb7a0bib25) 2015; 24
Borgwardt (jneacb7a0bib23) 2006; 22
Xue (jneacb7a0bib20) 2021; 130
Ye (jneacb7a0bib38) 2004; 1
Tommasi (jneacb7a0bib14) 2013; 29
Castellini (jneacb7a0bib16) 2009; 6
Al-Timemy (jneacb7a0bib11) 2016; 24
Du (jneacb7a0bib19) 2017; 17
Peng (jneacb7a0bib28) 2019
Jayaram (jneacb7a0bib17) 2016; 11
Wu (jneacb7a0bib8) 2020; 28
Gabruseva (jneacb7a0bib37) 2020
Lecun (jneacb7a0bib33) 1998; 86
Ioffe (jneacb7a0bib34) 2015; vol 37
Ajiboye (jneacb7a0bib15) 2009; 6
Hudgins (jneacb7a0bib31) 1993; 40
Jiang (jneacb7a0bib4) 2012; 29
Orabona (jneacb7a0bib18) 2009; vol 1–7
Huang (jneacb7a0bib3) 2005; 52
Wang (jneacb7a0bib30) 2021; 1
Wu (jneacb7a0bib6) 2019
Kuiken (jneacb7a0bib1) 2009; 301
Khushaba (jneacb7a0bib12) 2014; 22
He (jneacb7a0bib10) 2015; 19
Tigrini (jneacb7a0bib22) 2021; 5
Tenore (jneacb7a0bib2) 2009; 56
Kingma (jneacb7a0bib36) 2015
Matsubara (jneacb7a0bib13) 2013; 60
Campbell (jneacb7a0bib7) 2019
Xu (jneacb7a0bib27) 2018
Zhao (jneacb7a0bib29) 2021
Tyacke (jneacb7a0bib21) 2022; 7
Hoshino (jneacb7a0bib40) 2022; 489
Ghifary (jneacb7a0bib32) 2014; vol 8862
Donahue (jneacb7a0bib39) 2014; vol 32
Zhang (jneacb7a0bib35) 2022; 30
Zhu (jneacb7a0bib24) 2019
Zhang (jneacb7a0bib9) 2020; 67
Qian (jneacb7a0bib26) 2021; vol 35
References_xml – volume: 19
  start-page: 874
  year: 2015
  ident: jneacb7a0bib10
  article-title: Invariant surface EMG feature against varying contraction level for myoelectric control based on muscle coordination
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2014.2330356
– year: 2015
  ident: jneacb7a0bib36
  article-title: Adam: a method for stochastic optimization
– volume: 301
  start-page: 619
  year: 2009
  ident: jneacb7a0bib1
  article-title: Targeted muscle reinnervation for real-time myoelectric control of multifunction artificial arms
  publication-title: J. Am. Med. Assoc.
  doi: 10.1001/jama.2009.116
– volume: 1
  year: 2021
  ident: jneacb7a0bib30
  article-title: Generalizing to unseen domains: a survey on domain generalization
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2022.3178128
– volume: 60
  start-page: 2205
  year: 2013
  ident: jneacb7a0bib13
  article-title: Bilinear modeling of EMG signals to extract user-independent features for multiuser myoelectric interface
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2013.2250502
– year: 2019
  ident: jneacb7a0bib7
  article-title: Linear discriminant analysis with Bayesian risk parameters for myoelectric control
  doi: 10.1109/GlobalSIP45357.2019.8969237
– volume: 67
  start-page: 1947
  year: 2020
  ident: jneacb7a0bib9
  article-title: Adaptive calibration of electrode array shifts enables robust myoelectric control
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2019.2952890
– start-page: 2641
  year: 2019
  ident: jneacb7a0bib6
  article-title: Visualized evidences for detecting novelty in myoelectric pattern recognition using 3D convolutional neural networks
– volume: 28
  start-page: 2637
  year: 2020
  ident: jneacb7a0bib8
  article-title: Improved high-density myoelectric pattern recognition control against electrode shift using data augmentation and dilated convolutional neural network
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2020.3030931
– volume: 11
  start-page: 20
  year: 2016
  ident: jneacb7a0bib17
  article-title: Transfer learning in brain-computer interfaces
  publication-title: IEEE Comput. Intell. Mag.
  doi: 10.1109/MCI.2015.2501545
– volume: 22
  start-page: 745
  year: 2014
  ident: jneacb7a0bib12
  article-title: Correlation analysis of electromyogram signals for multiuser myoelectric interfaces
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2014.2304470
– volume: 5
  start-page: 1
  year: 2021
  ident: jneacb7a0bib22
  article-title: Shoulder motion intention detection through myoelectric pattern recognition
  publication-title: IEEE Sens. Lett.
  doi: 10.1109/LSENS.2021.3100607
– volume: 86
  start-page: 2278
  year: 1998
  ident: jneacb7a0bib33
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. IEEE
  doi: 10.1109/5.726791
– volume: 22
  start-page: E49
  year: 2006
  ident: jneacb7a0bib23
  article-title: Integrating structured biological data by kernel maximum mean discrepancy
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btl242
– volume: 29
  start-page: 147
  year: 2012
  ident: jneacb7a0bib4
  article-title: Myoelectric control of artificial limbs-is there a need to change focus?
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2012.2203480
– start-page: 1436
  year: 2020
  ident: jneacb7a0bib37
  article-title: Deep learning for automatic pneumonia detection
– volume: 24
  start-page: 650
  year: 2016
  ident: jneacb7a0bib11
  article-title: Improving the performance against force variation of EMG controlled multifunctional upper-limb prostheses for transradial amputees
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2015.2445634
– start-page: 3964
  year: 2018
  ident: jneacb7a0bib27
  article-title: Deep cocktail network: multi-source unsupervised domain adaptation with category shift
– volume: 130
  year: 2021
  ident: jneacb7a0bib20
  article-title: Multiuser gesture recognition using sEMG signals via canonical correlation analysis and optimal transport
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2020.104188
– volume: 6
  year: 2009
  ident: jneacb7a0bib15
  article-title: Muscle synergies as a predictive framework for the EMG patterns of new hand postures
  publication-title: J. Neural. Eng.
  doi: 10.1088/1741-2560/6/3/036004
– volume: 7
  start-page: 9216
  year: 2022
  ident: jneacb7a0bib21
  article-title: Hand gesture recognition via transient sEMG using transfer learning of dilated efficient CapsNet: towards generalization for neurorobotics
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2022.3191238
– volume: 30
  start-page: 1374
  year: 2022
  ident: jneacb7a0bib35
  article-title: Domain adaptation with self-guided adaptive sampling strategy: feature alignment for cross-user myoelectric pattern recognition
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2022.3173946
– volume: 24
  start-page: 84
  year: 2015
  ident: jneacb7a0bib25
  article-title: A survey of multi-source domain adaptation
  publication-title: Inf. Fusion.
  doi: 10.1016/j.inffus.2014.12.003
– volume: 40
  start-page: 82
  year: 1993
  ident: jneacb7a0bib31
  article-title: A new strategy for multifunction myoelectric control
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.204774
– volume: 52
  start-page: 1801
  year: 2005
  ident: jneacb7a0bib3
  article-title: A Gaussian mixture model based classification scheme for myoelectric control of powered upper limb prostheses
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2005.856295
– volume: 29
  start-page: 207
  year: 2013
  ident: jneacb7a0bib14
  article-title: Improving control of dexterous hand prostheses using adaptive learning
  publication-title: IEEE Trans. Robot.
  doi: 10.1109/TRO.2012.2226386
– volume: vol 32
  year: 2014
  ident: jneacb7a0bib39
  article-title: DeCAF: a deep convolutional activation feature for generic visual recognition
– volume: 1
  start-page: 181
  year: 2004
  ident: jneacb7a0bib38
  article-title: Using uncorrelated discriminant analysis for tissue classification with gene expression data
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform.
  doi: 10.1109/TCBB.2004.45
– start-page: 6273
  year: 2021
  ident: jneacb7a0bib29
  article-title: Learning to generalize unseen domains via memory-based multi-source meta-learning for person re-identification
– volume: vol 8862
  start-page: 898
  year: 2014
  ident: jneacb7a0bib32
  article-title: Domain adaptive neural networks for object recognition
– volume: vol 35
  start-page: 11921
  year: 2021
  ident: jneacb7a0bib26
  article-title: Latent independent excitation for generalizable sensor-based cross-person activity recognition
– volume: 489
  start-page: 599
  year: 2022
  ident: jneacb7a0bib40
  article-title: Comparing subject-to-subject transfer learning methods in surface electromyogram-based motion recognition with shallow and deep classifiers
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.12.081
– volume: 56
  start-page: 1427
  year: 2009
  ident: jneacb7a0bib2
  article-title: Decoding of individuated finger movements using surface electromyography
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2008.2005485
– volume: 17
  start-page: 458
  year: 2017
  ident: jneacb7a0bib19
  article-title: Surface EMG-based inter-session gesture recognition enhanced by deep domain adaptation
  publication-title: Sensors
  doi: 10.3390/s17030458
– start-page: 1406
  year: 2019
  ident: jneacb7a0bib28
  article-title: Moment matching for multi-source domain adaptation
– volume: vol 37
  start-page: pp 448
  year: 2015
  ident: jneacb7a0bib34
  article-title: Batch normalization: accelerating deep network training by reducing internal covariate shift
– volume: 24
  start-page: 961
  year: 2016
  ident: jneacb7a0bib5
  article-title: Improving the robustness of myoelectric pattern recognition for upper limb prostheses by covariate shift adaptation
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2015.2492619
– volume: 6
  start-page: 1
  year: 2009
  ident: jneacb7a0bib16
  article-title: Multi-subject/daily-life activity EMG-based control of mechanical hands
  publication-title: J. Neuroeng. Rehabil.
  doi: 10.1186/1743-0003-6-41
– start-page: 5989
  year: 2019
  ident: jneacb7a0bib24
  article-title: Aligning domain-specific distribution and classifier for cross-domain classification from multiple sources
– volume: vol 1–7
  start-page: 439
  year: 2009
  ident: jneacb7a0bib18
  article-title: Model adaptation with least-squares SVM for adaptive hand prosthetics
SSID ssj0031790
Score 2.4443767
Snippet Objective. Myoelectric pattern recognition (MPR) has shown satisfactory performance under ideal laboratory conditions. Nevertheless, the individual variances...
Myoelectric pattern recognition (MPR) has shown satisfactory performance under ideal laboratory conditions. Nevertheless, the individual variances lead to...
Objective.Myoelectric pattern recognition (MPR) has shown satisfactory performance under ideal laboratory conditions. Nevertheless, the individual variances...
SourceID proquest
pubmed
crossref
iop
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 16050
SubjectTerms Adaptation, Physiological
cross-subject
deep learning
electromyography
Electromyography - methods
Humans
multi-source domain adaptation
Pattern Recognition, Automated - methods
Reproducibility of Results
robust EMG control
Title Multi-source domain generalization and adaptation toward cross-subject myoelectric pattern recognition
URI https://iopscience.iop.org/article/10.1088/1741-2552/acb7a0
https://www.ncbi.nlm.nih.gov/pubmed/36720167
https://www.proquest.com/docview/2771636465
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxELbScOmlLaSU0IJcCZB6cNKsH-tVTxECRRwoB5A4VFrZaxuhEm_U7B7g13dsbyIVtVHFzYdZez1-zIxn5huEjkCm0cJpQ4RhgkBbEgWKOCm0ppZJw3MXA2QvxeyGXdzy2x76ts6FqRfd1T-CZgIKTizsAuLkGHToCQFNOBurSucK7PUtKkFwhuy971era5gG6KmUDRmoxdfOR_m3Hv6QSa9g3H-rm1HsnL9FP1Y_nKJNfo7aRo-qp2dYji-c0Tv0plNH8TSRbqOe9TtoMPVgis8f8QmOAaLx5X2AXEzWJem5H5t6ru49vkuw1V02J1beYGXUIjn4cRODcnGcNlm2Ojz64PljnYrv3Fd4EeE9PV7HMdX-Pbo5P7s-nZGuTAOpaC4bUlDurCmUdBamkGluigwMo1xz5dhkoqRhbuI4F1XAOmLSstyIoHZwrcD6y-ku6vva2z2EqXUBwFDBreeYq6jUYCEpa5jKrOXWDdF4tVBl1WGYh1IaD2X0pUtZBlaWgZVlYuUQfVl_sUj4HRtoj2GFyu4QLzfQfV7tjhIOY_CwKG_rdllmOZifVDDBh-hD2jbrUanIs5Dzsf-fo3xEr0Np-xQh_gn1m1-tPQAFqNGHcaP_BsGF_uA
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JbxMxFLZokRAXoJQlLK2RChIHJ814Gc-xAqKyqO2hlXoz9thGFcQzIpND-fU8L4lEBRVSbz7Y4_Hz8vbvIbQHPI023lgiLBME2pJoEMRJYwx1TFpe-xQgeyQOz9inc35e6pymXJiuL0__GJoZKDiTsATEyQnI0FMCknA10a2p9f6kt34D3eYUeGfM4Ds-WT3FNMJP5YzIOELsFz_l377yB1_agLn_LXIm1jO7j76ufjpHnHwfLwczbn9dwXO8waoeoHtFLMUHufsWuuXCQ7R9EEAln1_iNzgFiiYL_DbyKWmXZLM_tt1cXwT8LcNXl6xOrIPF2uo-O_rxkIJzcVo6WSxNNP7g-WWXi_BctLhPMJ8Br-OZuvAInc0-nL47JKVcA2lpLQfSUO6dbbT0DpZRGW6bChSk2nDt2XSqpWV-6jkXbcQ8YtKx2ooofnCjQQus6WO0GbrgniJMnY9AhhpeP898S6UBTUk7y3TlHHd-hCarzVJtwTKPJTV-qORTl1JFcqpITpXJOUJv1yP6jONxTd_XsEuqXObFNf1erU6IgksZPS06uG65UFUNaigVTPARepKPznpWKuoq5n48-89ZdtGdk_cz9eXj0efn6G6sdp-Dxl-gzeHn0r0EmWgwO-nc_wYOZwRT
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-source+domain+generalization+and+adaptation+toward+cross-subject+myoelectric+pattern+recognition&rft.jtitle=Journal+of+neural+engineering&rft.au=Zhang%2C+Xuan&rft.au=Wu%2C+Le&rft.au=Zhang%2C+Xu&rft.au=Chen%2C+Xiang&rft.date=2023-02-01&rft.issn=1741-2552&rft.eissn=1741-2552&rft.volume=20&rft.issue=1&rft_id=info:doi/10.1088%2F1741-2552%2Facb7a0&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1741-2560&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1741-2560&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1741-2560&client=summon