Molecular dynamic modelling of fatigue crack growth in aluminium using LEFM boundary conditions
► Atomic simulation of fatigue crack growth using three different Al EAM potentials. ► Difference between potentials most significant for first few cycles. ► Attached animation shows extension and contraction of the crack tip during cycling. ► Movement of crack tip is less than lattice spacing due t...
Saved in:
Published in | International journal of fatigue Vol. 44; pp. 141 - 150 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
01.11.2012
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | ► Atomic simulation of fatigue crack growth using three different Al EAM potentials. ► Difference between potentials most significant for first few cycles. ► Attached animation shows extension and contraction of the crack tip during cycling. ► Movement of crack tip is less than lattice spacing due to the irregular arrangement.
A molecular dynamic (MD) model of a crack in pure aluminium has been developed with isotropic Linear Elastic Fracture Mechanics (LEFMs) boundary displacements that simulates the fatigue crack growth process. The model consists of a cylindrical region filled with atoms around a crack tip and subject to boundary displacements that change due to cyclic loading. A sinusoidal load that produced a Kmax=1.0MPam was applied to produce fatigue crack growth using three different atomic potentials for aluminium at T=20K, and a range of different Kmin. Each run consisted of the application of fifteen or more loading cycles. In some cases, the crack tip was seen to advance in each cycle typical of fatigue, however, growth was smooth and continuous during the entire cycle with contraction occurring during the unloading phase of the cycle. The model contained 3×106 atoms and had a diameter and width of 20nm. This width was just large enough for fragments of sessile dislocations to form and couple with the glissile dislocations emitted from the crack tip, resulting in work hardening about the crack tip. The model was oriented for cracking on the {110} plane in the 〈100〉 direction. Crack advance was observed to be due to a combination of dislocation emission and atomic separation. |
---|---|
AbstractList | ► Atomic simulation of fatigue crack growth using three different Al EAM potentials. ► Difference between potentials most significant for first few cycles. ► Attached animation shows extension and contraction of the crack tip during cycling. ► Movement of crack tip is less than lattice spacing due to the irregular arrangement.
A molecular dynamic (MD) model of a crack in pure aluminium has been developed with isotropic Linear Elastic Fracture Mechanics (LEFMs) boundary displacements that simulates the fatigue crack growth process. The model consists of a cylindrical region filled with atoms around a crack tip and subject to boundary displacements that change due to cyclic loading. A sinusoidal load that produced a Kmax=1.0MPam was applied to produce fatigue crack growth using three different atomic potentials for aluminium at T=20K, and a range of different Kmin. Each run consisted of the application of fifteen or more loading cycles. In some cases, the crack tip was seen to advance in each cycle typical of fatigue, however, growth was smooth and continuous during the entire cycle with contraction occurring during the unloading phase of the cycle. The model contained 3×106 atoms and had a diameter and width of 20nm. This width was just large enough for fragments of sessile dislocations to form and couple with the glissile dislocations emitted from the crack tip, resulting in work hardening about the crack tip. The model was oriented for cracking on the {110} plane in the 〈100〉 direction. Crack advance was observed to be due to a combination of dislocation emission and atomic separation. A molecular dynamic (MD) model of a crack in pure aluminium has been developed with isotropic Linear Elastic Fracture Mechanics (LEFMs) boundary displacements that simulates the fatigue crack growth process. The model consists of a cylindrical region filled with atoms around a crack tip and subject to boundary displacements that change due to cyclic loading. A sinusoidal load that produced a K max = 1.0 MPa m was applied to produce fatigue crack growth using three different atomic potentials for aluminium at T = 20 K, and a range of different Kmin. Each run consisted of the application of fifteen or more loading cycles. In some cases, the crack tip was seen to advance in each cycle typical of fatigue, however, growth was smooth and continuous during the entire cycle with contraction occurring during the unloading phase of the cycle. The model contained 3 A 106 atoms and had a diameter and width of 20 nm. This width was just large enough for fragments of sessile dislocations to form and couple with the glissile dislocations emitted from the crack tip, resulting in work hardening about the crack tip. The model was oriented for cracking on the {1 1 0} plane in the <1 0 0> direction. Crack advance was observed to be due to a combination of dislocation emission and atomic separation. |
Author | White, Paul |
Author_xml | – sequence: 1 givenname: Paul surname: White fullname: White, Paul email: Paul.White@dsto.defence.gov.au organization: Air Vehicles Division, Defence Science and Technology Organisation, 506 Lorimer Street, Fishermans Bend 3207, Australia |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26249449$$DView record in Pascal Francis |
BookMark | eNqFkTtP5DAUhS0EEsPjN-AGiSbBduzEKbZACBakQdssteXxY7hDYrN2AuLfr0czbLEN1ZWuvnPu45ygwxCDQ-iCkpoS2l5vath4PcF6djUjlNVE1ISIA7Sgsuurhgt2iBaEclZRyppjdJLzhhDSk04skHqKgzPzoBO2n0GPYPAYrRsGCGscPd47Y5O0ecXrFD-mFwwB62EeIcA84jlv0eXd_RNexTlYnT6xicHCBDHkM3Tk9ZDd-b6eouf7u9-3D9Xy18_H25tlZZpOTlXP2tWqayXRQlhqXV8afKWlFy1nXPLW963wnWVess4b6hvKpWWSUWc8aVxziq52vm8p_pldntQI2ZQ7dHBxzooSyRjtBaMFvdyjOhs9-KSDgazeEoxld8VaxnvO-8L92HEmxZyT88rApLdXTUnDUCzVNgC1Uf8CUNsAFBGqBFD03X_6rxHfK292Slc-9g4uqWzABeMsJGcmZSN86_EX1t2oBg |
CODEN | IJFADB |
CitedBy_id | crossref_primary_10_1155_2017_5181206 crossref_primary_10_1002_nme_4968 crossref_primary_10_1016_j_engfracmech_2022_108567 crossref_primary_10_1016_j_engfracmech_2016_04_024 crossref_primary_10_1016_j_nanoso_2024_101397 crossref_primary_10_3390_met9060684 crossref_primary_10_1016_j_ijfatigue_2017_01_038 crossref_primary_10_1111_ffe_12189 crossref_primary_10_1007_s11633_016_1035_x crossref_primary_10_1016_j_rinp_2017_04_039 crossref_primary_10_3390_nano13233031 crossref_primary_10_1080_08927022_2022_2060966 crossref_primary_10_1038_s41467_022_28481_8 crossref_primary_10_1016_j_engfracmech_2016_10_008 crossref_primary_10_1140_epjb_s10051_022_00285_1 crossref_primary_10_1016_j_ijfatigue_2020_105570 crossref_primary_10_1016_j_prostr_2024_03_050 crossref_primary_10_1007_s11665_015_1479_0 crossref_primary_10_1007_s12034_018_1661_8 crossref_primary_10_1007_s11661_017_4261_0 crossref_primary_10_1557_jmr_2016_155 crossref_primary_10_1111_ffe_14196 crossref_primary_10_1016_j_matpr_2020_10_803 crossref_primary_10_1557_jmr_2015_325 crossref_primary_10_4028_www_scientific_net_JNanoR_55_32 |
Cites_doi | 10.1103/PhysRevB.50.5055 10.1016/0920-2307(93)90001-U 10.1088/0965-0393/14/8/008 10.1088/0953-8984/14/38/303 10.1142/S0217979202011226 10.1016/0263-7855(96)00018-5 10.1016/S0013-7944(02)00273-4 10.1103/PhysRevB.33.7983 10.1088/0965-0393/12/4/007 10.1006/jcph.1995.1039 10.1103/PhysRevB.59.3393 10.1080/09500830600627257 10.1088/0953-8984/14/29/301 10.1103/PhysRevB.54.5145 10.1088/0965-0393/12/5/017 10.1103/PhysRev.140.A1133 10.1080/14786430802206482 10.1016/0038-1098(91)90243-O 10.1016/j.ijfatigue.2010.01.006 10.1016/j.scriptamat.2011.01.034 10.1016/j.ijfatigue.2007.08.021 10.1063/1.1713309 10.1016/j.cpc.2007.05.018 10.1016/j.actamat.2005.03.028 10.1016/0039-6028(77)90442-3 10.1520/STP47230S 10.1103/PhysRevB.83.134118 10.1103/PhysRevA.31.1695 10.1016/S1359-6454(01)00287-7 10.1103/PhysRevB.37.3924 10.1016/j.cma.2003.12.066 10.1103/PhysRevB.29.6443 10.1016/j.ijfatigue.2005.06.015 |
ContentType | Journal Article |
Copyright | 2012 2015 INIST-CNRS |
Copyright_xml | – notice: 2012 – notice: 2015 INIST-CNRS |
DBID | AAYXX CITATION IQODW 7QF 7SR 8BQ 8FD JG9 |
DOI | 10.1016/j.ijfatigue.2012.05.005 |
DatabaseName | CrossRef Pascal-Francis Aluminium Industry Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Aluminium Industry Abstracts Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Applied Sciences |
EISSN | 1879-3452 |
EndPage | 150 |
ExternalDocumentID | 26249449 10_1016_j_ijfatigue_2012_05_005 S0142112312001764 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 6OB 7-5 71M 8P~ 9JN AABCJ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABDEX ABEFU ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SST SSZ T5K T9H TN5 VH1 WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS IQODW 7QF 7SR 8BQ 8FD JG9 |
ID | FETCH-LOGICAL-c378t-926bb7680a55d1de99264ba8f56424846f965f7d2f827fc1f3148d2821ecf03e3 |
IEDL.DBID | .~1 |
ISSN | 0142-1123 |
IngestDate | Fri Jul 11 09:29:39 EDT 2025 Mon Jul 21 09:14:27 EDT 2025 Tue Jul 01 03:22:49 EDT 2025 Thu Apr 24 23:02:22 EDT 2025 Fri Feb 23 02:28:39 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Micromechanics Fatigue crack growth Numerical modelling Molecular dynamics Mechanical properties Fatigue Boundary condition Modeling Fatigue crack Crack propagation |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c378t-926bb7680a55d1de99264ba8f56424846f965f7d2f827fc1f3148d2821ecf03e3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 1082219521 |
PQPubID | 23500 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1082219521 pascalfrancis_primary_26249449 crossref_citationtrail_10_1016_j_ijfatigue_2012_05_005 crossref_primary_10_1016_j_ijfatigue_2012_05_005 elsevier_sciencedirect_doi_10_1016_j_ijfatigue_2012_05_005 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-11-01 |
PublicationDateYYYYMMDD | 2012-11-01 |
PublicationDate_xml | – month: 11 year: 2012 text: 2012-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington |
PublicationTitle | International journal of fatigue |
PublicationYear | 2012 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Potirniche, Horstemeyer, Jelinek, Wagner (b0020) 2005; 27 Mendelev, Kramer, Becker, Asta (b0075) 2008; 88 Laird C. The influence of metallurgical structure on the mechanisms of fatigue crack propagation. In: Fatigue crack propagation. No. 415 in ASTM special technical publication. American society for testing and materials; 1966, p. 131–68. Voter A, Chen SP. In: Seigel RW, Weertman JR, Sundan R, editors. Characterization of defects in materials. No. 82 in materials research society symposia proceedings; 1987. James, Pacey, Wei, Patterson (b0225) 2003; 70 Horstemeyer, Farkas, Kim, Tang, Potirniche (b0010) 2010; 32 Potirniche, Horstemeyer (b0015) 2006; 86 Denteneer, Soler (b0135) 1991; 78 Kamm, Alers (b0130) 1964; 35 Sin’ko, Smirnov (b0125) 2002; 14 Pippan, Zelger, Gach, Bichler, Weinhandl (b0005) 2010 Ghosh, Asta (b0110) 2005; 53 Muzyk, Pakiela, Kurzydlowski (b0140) 2011; 64 Daw, Baskes (b0050) 1984; 29 Daw, Foiles, Baskes (b0055) 1993; 9 Sheng, HW. EAM potentials – Al; 2011. Plimpton (b0190) 1995; 117 Adler D, Murdoch D. rgl: 3D visualization device system (OpenGL); 2010. R package version 0.90.783/r783 Tsuzuki, Branicio, Rino (b0215) 2007; 177 Humphrey, Dalke, Schulten (b0195) 1996; 14 Liu, Ercolessi, Adams (b0065) 2004 Sheng, Kramer, Cadien, Fujita, Chen (b0070) 2011; 83 Zhou, Wadley, Johnson, Larson, Tabat, Cerezo (b0035) 2001 White, Barter, Molent (b0170) 2008; 30 Tada H, Paris PC, Irwin GR. The stress analysis of cracks handbook. Tech rep; Del Research Corporation; 1973. Szelestey, Patriarca, Perondi, Kaski (b0090) 2002; 16 Karimi, Roarty, Kaplan (b0025) 2006; 14 Jacobs, Zhukovskii, Mastrikov, Shunin (b0120) 2002; 6 Buehler, Hartmaier, Gao, Duchaineau, Abraham (b0030) 2004; 193 Mishin, Farkas, Mehl, Papaconstantopoulos (b0060) 1999; 59 Bandyopadhyay, Gupta (b0105) 1978 Hoover (b0185) 1985; 31 . Gaudoin, Foulkes, Rajagopal (b0115) 2002; 14 Kelchner, Plimpton, Hamilton (b0210) 2000; 62 Foiles, Baskes, Daw (b0040) 1986 Stumpf, Feibelman (b0150) 1996; 54 (b0165) 1968; vol. II Ercolessi, Adams (b0080) 1994 Tyson, Miller (b0145) 1977; 62 Johnson (b0095) 1988; 37 Kohn, Sham (b0045) 1965; 140 Boyer, Li, Ogata, Yip (b0160) 2004; 12 Straub, Aidun, Wills, Sanchez-Castro, Wallace (b0155) 1994; 50 R Development Core Team. R: a language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria; 2009. ISBN 3-900051-07-0. Tan (b0180) 2007; vol. 8 Humphrey (10.1016/j.ijfatigue.2012.05.005_b0195) 1996; 14 Johnson (10.1016/j.ijfatigue.2012.05.005_b0095) 1988; 37 Tsuzuki (10.1016/j.ijfatigue.2012.05.005_b0215) 2007; 177 Mendelev (10.1016/j.ijfatigue.2012.05.005_b0075) 2008; 88 Kamm (10.1016/j.ijfatigue.2012.05.005_b0130) 1964; 35 Pippan (10.1016/j.ijfatigue.2012.05.005_b0005) 2010 Liu (10.1016/j.ijfatigue.2012.05.005_b0065) 2004 Straub (10.1016/j.ijfatigue.2012.05.005_b0155) 1994; 50 Gaudoin (10.1016/j.ijfatigue.2012.05.005_b0115) 2002; 14 Daw (10.1016/j.ijfatigue.2012.05.005_b0055) 1993; 9 Daw (10.1016/j.ijfatigue.2012.05.005_b0050) 1984; 29 Tyson (10.1016/j.ijfatigue.2012.05.005_b0145) 1977; 62 10.1016/j.ijfatigue.2012.05.005_b0220 10.1016/j.ijfatigue.2012.05.005_b0100 Stumpf (10.1016/j.ijfatigue.2012.05.005_b0150) 1996; 54 Potirniche (10.1016/j.ijfatigue.2012.05.005_b0015) 2006; 86 Hoover (10.1016/j.ijfatigue.2012.05.005_b0185) 1985; 31 Buehler (10.1016/j.ijfatigue.2012.05.005_b0030) 2004; 193 10.1016/j.ijfatigue.2012.05.005_b0085 Ercolessi (10.1016/j.ijfatigue.2012.05.005_b0080) 1994 10.1016/j.ijfatigue.2012.05.005_b0205 Sin’ko (10.1016/j.ijfatigue.2012.05.005_b0125) 2002; 14 10.1016/j.ijfatigue.2012.05.005_b0200 Potirniche (10.1016/j.ijfatigue.2012.05.005_b0020) 2005; 27 (10.1016/j.ijfatigue.2012.05.005_b0165) 1968; vol. II Bandyopadhyay (10.1016/j.ijfatigue.2012.05.005_b0105) 1978 Foiles (10.1016/j.ijfatigue.2012.05.005_b0040) 1986 Sheng (10.1016/j.ijfatigue.2012.05.005_b0070) 2011; 83 Tan (10.1016/j.ijfatigue.2012.05.005_b0180) 2007; vol. 8 Ghosh (10.1016/j.ijfatigue.2012.05.005_b0110) 2005; 53 Jacobs (10.1016/j.ijfatigue.2012.05.005_b0120) 2002; 6 Szelestey (10.1016/j.ijfatigue.2012.05.005_b0090) 2002; 16 James (10.1016/j.ijfatigue.2012.05.005_b0225) 2003; 70 Kelchner (10.1016/j.ijfatigue.2012.05.005_b0210) 2000; 62 10.1016/j.ijfatigue.2012.05.005_b0175 White (10.1016/j.ijfatigue.2012.05.005_b0170) 2008; 30 Karimi (10.1016/j.ijfatigue.2012.05.005_b0025) 2006; 14 Boyer (10.1016/j.ijfatigue.2012.05.005_b0160) 2004; 12 Plimpton (10.1016/j.ijfatigue.2012.05.005_b0190) 1995; 117 Mishin (10.1016/j.ijfatigue.2012.05.005_b0060) 1999; 59 Muzyk (10.1016/j.ijfatigue.2012.05.005_b0140) 2011; 64 Zhou (10.1016/j.ijfatigue.2012.05.005_b0035) 2001 Horstemeyer (10.1016/j.ijfatigue.2012.05.005_b0010) 2010; 32 Denteneer (10.1016/j.ijfatigue.2012.05.005_b0135) 1991; 78 Kohn (10.1016/j.ijfatigue.2012.05.005_b0045) 1965; 140 |
References_xml | – volume: 6 year: 2002 ident: b0120 article-title: Bulk and surface properties of metallic aluminium: DFT simulations publication-title: Comput Model New Technol – volume: 70 start-page: 2473 year: 2003 end-page: 2487 ident: b0225 article-title: Characterisation of plasticity-induced closure—crack flank contact force versus plastic enclave publication-title: Eng Fract Mech – volume: 117 start-page: 1 year: 1995 end-page: 19 ident: b0190 article-title: Fast parallel algorithms for short-range molecular dynamics publication-title: J Comput Phys – volume: 14 start-page: 8787 year: 2002 end-page: 8793 ident: b0115 article-title: Ab initio calculations of the cohesive energy and the bulk modulus of aluminium publication-title: J Physics Condens Matter – reference: Tada H, Paris PC, Irwin GR. The stress analysis of cracks handbook. Tech rep; Del Research Corporation; 1973. – volume: 29 start-page: 6443 year: 1984 end-page: 6453 ident: b0050 article-title: Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals publication-title: Phys Rev B (Am Phys Soc) – volume: 59 start-page: 3393 year: 1999 end-page: 3407 ident: b0060 article-title: Interatomic potentials for monoatomic metals from experimental data and publication-title: Phys Rev B – Condens Matter Mater Phys – start-page: 26 year: 1994 ident: b0080 article-title: Interatomic potentials from first-principles calculations: the force-matching method publication-title: Europhys Lett – volume: 53 start-page: 3225 year: 2005 end-page: 3252 ident: b0110 article-title: First-principles calculation of structural energetics of Al-TM (TM publication-title: Acta Mater – reference: Adler D, Murdoch D. rgl: 3D visualization device system (OpenGL); 2010. R package version 0.90.783/r783 < – volume: 31 start-page: 1695 year: 1985 end-page: 1697 ident: b0185 article-title: Canonical dynamics: equilibrium phase-space distributions publication-title: Phys Rev A – volume: 88 year: 2008 ident: b0075 article-title: Analysis of semi-emperial interatomic potentials appropriate for simulation of crystalline and liquid Al and Cu publication-title: Philos Mag – reference: R Development Core Team. R: a language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria; 2009. ISBN 3-900051-07-0. < – volume: 78 start-page: 857 year: 1991 end-page: 861 ident: b0135 article-title: Energetics of point and planar defects in aluminium from first-principles calculation publication-title: Solid State Commun – start-page: 18 year: 1978 ident: b0105 article-title: Low temperature lattice parameters of ai and Al–Zn alloys and Grfineisen parameter of ai publication-title: Cryogenics – volume: 177 start-page: 518 year: 2007 end-page: 523 ident: b0215 article-title: Structural characterization of deformed crystals by analysis of common atomic neighborhood publication-title: Comput Phys Commun – year: 2010 ident: b0005 article-title: On the mechanism of fatigue crack propagation in ductile metallic materials publication-title: Fatigue Fract Eng Mater Struct – volume: 12 start-page: 1017 year: 2004 end-page: 1029 ident: b0160 article-title: Analysis of shear deformations in Al and Cu: empirical potentials versus density functional theory publication-title: Model Simul Mater Sci Eng – volume: 9 start-page: 251 year: 1993 end-page: 310 ident: b0055 article-title: The embedded-atom method: a review of theory and applications publication-title: Mater Sci Rep – volume: 14 start-page: 33 year: 1996 end-page: 38 ident: b0195 article-title: VMD – visual molecular dynamics publication-title: J Mol Graph – volume: 35 start-page: 327 year: 1964 end-page: 330 ident: b0130 article-title: Low temperature elastic moduli of aluminum publication-title: J Appl Phys – volume: 14 start-page: 6989 year: 2002 end-page: 7005 ident: b0125 article-title: calculations of elastic constants and thermodynamic properties of bcc, fcc, and hcp Al crystals under pressure publication-title: J Phys: Condens Matter – volume: 62 start-page: 831 year: 2000 end-page: 838 ident: b0210 article-title: Dislocation nucleation and defect structure during surface indentation publication-title: Phys Rev B – start-page: 4005 year: 2001 end-page: 4015 ident: b0035 article-title: Atomic scale structure of sputtered metal multilayers publication-title: Acta Mater – volume: 16 start-page: 2823 year: 2002 end-page: 2835 ident: b0090 article-title: Modified EAM potentials for modelling stacking-fault behavior in Cu, Al, Au, and Ni publication-title: Int J Modern Phys B – start-page: 665 year: 2004 end-page: 670 ident: b0065 article-title: Aluminium interatomic potential from density functional theory calculations with improved stacking fault energy publication-title: Model Simul Mater Sci Eng – volume: 14 start-page: 1409 year: 2006 end-page: 1420 ident: b0025 article-title: Molecular dynamics simulations of crack propagation in Ni with defects publication-title: Model Simul Mater Sci Eng – volume: 86 start-page: 185 year: 2006 end-page: 193 ident: b0015 article-title: On the growth of nanoscale fatigue cracks publication-title: Philos Mag Lett – volume: 37 year: 1988 ident: b0095 article-title: Analytical nearest-neighbor model for fcc metals publication-title: Phys Rev B – reference: >. – reference: Laird C. The influence of metallurgical structure on the mechanisms of fatigue crack propagation. In: Fatigue crack propagation. No. 415 in ASTM special technical publication. American society for testing and materials; 1966, p. 131–68. – reference: Voter A, Chen SP. In: Seigel RW, Weertman JR, Sundan R, editors. Characterization of defects in materials. No. 82 in materials research society symposia proceedings; 1987. – reference: Sheng, HW. EAM potentials – Al; 2011. < – volume: 64 start-page: 916 year: 2011 end-page: 918 ident: b0140 article-title: Ab initio calculations of the generalized stacking fault energy in aluminium alloys publication-title: Scripta Mater – volume: 50 start-page: 5055 year: 1994 end-page: 5061 ident: b0155 article-title: Ab initio calculation of melting and thermodynamic properties of crystal and liquid aluminum publication-title: Phys Rev B – volume: 32 start-page: 1473 year: 2010 end-page: 1502 ident: b0010 article-title: Nanostructurally small cracks (NSC): a review on atomistic modeling of fatigue publication-title: Int J Fatigue – volume: vol. II year: 1968 ident: b0165 publication-title: Fracture – an advanced treatise – volume: 140 start-page: A1133 year: 1965 end-page: A1138 ident: b0045 article-title: Self-consistent equations including exchange and correlation effects publication-title: Phys Rev – volume: 193 start-page: 5257 year: 2004 end-page: 5282 ident: b0030 article-title: Atomic plasticity: description and analysis of a one billion atom simulation of ductile materials failure publication-title: Comput Methods Appl Mech Eng – volume: 54 year: 1996 ident: b0150 article-title: Towards an understanding of liquid–metal embrittlement: energetics of Ga on Al surfaces publication-title: Phys RevB – volume: 30 start-page: 1267 year: 2008 end-page: 1278 ident: b0170 article-title: Observations of crack path changes caused by periodic underloads in AA7050-T7451 publication-title: Int J Fatigue – start-page: 7983 year: 1986 end-page: 7991 ident: b0040 article-title: Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys publication-title: Phys Rev B – volume: 62 start-page: 267 year: 1977 end-page: 276 ident: b0145 article-title: Surface free energies of solid metals: estimation from liquid surface tension measurements publication-title: Surface Sci – volume: vol. 8 year: 2007 ident: b0180 article-title: Comprehensive structural integrity publication-title: Combined atomistic and continuum simulation of fracture and corrosion – volume: 83 year: 2011 ident: b0070 article-title: Highly optimized embedded-atom-method potentials for fourteen fcc metals publication-title: Phys Rev B – volume: 27 start-page: 1179 year: 2005 end-page: 1185 ident: b0020 article-title: Fatigue damage in nickel and copper single crystals at nanoscale publication-title: Int J Fatigue – volume: 50 start-page: 5055 issue: 8 year: 1994 ident: 10.1016/j.ijfatigue.2012.05.005_b0155 article-title: Ab initio calculation of melting and thermodynamic properties of crystal and liquid aluminum publication-title: Phys Rev B doi: 10.1103/PhysRevB.50.5055 – volume: 9 start-page: 251 issue: 7–8 year: 1993 ident: 10.1016/j.ijfatigue.2012.05.005_b0055 article-title: The embedded-atom method: a review of theory and applications publication-title: Mater Sci Rep doi: 10.1016/0920-2307(93)90001-U – year: 2010 ident: 10.1016/j.ijfatigue.2012.05.005_b0005 article-title: On the mechanism of fatigue crack propagation in ductile metallic materials publication-title: Fatigue Fract Eng Mater Struct – volume: 14 start-page: 1409 year: 2006 ident: 10.1016/j.ijfatigue.2012.05.005_b0025 article-title: Molecular dynamics simulations of crack propagation in Ni with defects publication-title: Model Simul Mater Sci Eng doi: 10.1088/0965-0393/14/8/008 – volume: 6 issue: 1 year: 2002 ident: 10.1016/j.ijfatigue.2012.05.005_b0120 article-title: Bulk and surface properties of metallic aluminium: DFT simulations publication-title: Comput Model New Technol – volume: 14 start-page: 8787 issue: 38 year: 2002 ident: 10.1016/j.ijfatigue.2012.05.005_b0115 article-title: Ab initio calculations of the cohesive energy and the bulk modulus of aluminium publication-title: J Physics Condens Matter doi: 10.1088/0953-8984/14/38/303 – volume: 16 start-page: 2823 issue: 19 year: 2002 ident: 10.1016/j.ijfatigue.2012.05.005_b0090 article-title: Modified EAM potentials for modelling stacking-fault behavior in Cu, Al, Au, and Ni publication-title: Int J Modern Phys B doi: 10.1142/S0217979202011226 – volume: 14 start-page: 33 year: 1996 ident: 10.1016/j.ijfatigue.2012.05.005_b0195 article-title: VMD – visual molecular dynamics publication-title: J Mol Graph doi: 10.1016/0263-7855(96)00018-5 – ident: 10.1016/j.ijfatigue.2012.05.005_b0200 – volume: 70 start-page: 2473 issue: 17 year: 2003 ident: 10.1016/j.ijfatigue.2012.05.005_b0225 article-title: Characterisation of plasticity-induced closure—crack flank contact force versus plastic enclave publication-title: Eng Fract Mech doi: 10.1016/S0013-7944(02)00273-4 – start-page: 7983 year: 1986 ident: 10.1016/j.ijfatigue.2012.05.005_b0040 article-title: Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys publication-title: Phys Rev B doi: 10.1103/PhysRevB.33.7983 – ident: 10.1016/j.ijfatigue.2012.05.005_b0085 – start-page: 665 year: 2004 ident: 10.1016/j.ijfatigue.2012.05.005_b0065 article-title: Aluminium interatomic potential from density functional theory calculations with improved stacking fault energy publication-title: Model Simul Mater Sci Eng doi: 10.1088/0965-0393/12/4/007 – volume: 117 start-page: 1 year: 1995 ident: 10.1016/j.ijfatigue.2012.05.005_b0190 article-title: Fast parallel algorithms for short-range molecular dynamics publication-title: J Comput Phys doi: 10.1006/jcph.1995.1039 – volume: 59 start-page: 3393 issue: 5 year: 1999 ident: 10.1016/j.ijfatigue.2012.05.005_b0060 article-title: Interatomic potentials for monoatomic metals from experimental data and ab initio calculations publication-title: Phys Rev B – Condens Matter Mater Phys doi: 10.1103/PhysRevB.59.3393 – volume: 62 start-page: 831 year: 2000 ident: 10.1016/j.ijfatigue.2012.05.005_b0210 article-title: Dislocation nucleation and defect structure during surface indentation publication-title: Phys Rev B – volume: vol. 8 year: 2007 ident: 10.1016/j.ijfatigue.2012.05.005_b0180 article-title: Comprehensive structural integrity – volume: 86 start-page: 185 issue: 3 year: 2006 ident: 10.1016/j.ijfatigue.2012.05.005_b0015 article-title: On the growth of nanoscale fatigue cracks publication-title: Philos Mag Lett doi: 10.1080/09500830600627257 – volume: 14 start-page: 6989 year: 2002 ident: 10.1016/j.ijfatigue.2012.05.005_b0125 article-title: Ab initio calculations of elastic constants and thermodynamic properties of bcc, fcc, and hcp Al crystals under pressure publication-title: J Phys: Condens Matter doi: 10.1088/0953-8984/14/29/301 – volume: 54 issue: 7 year: 1996 ident: 10.1016/j.ijfatigue.2012.05.005_b0150 article-title: Towards an understanding of liquid–metal embrittlement: energetics of Ga on Al surfaces publication-title: Phys RevB doi: 10.1103/PhysRevB.54.5145 – volume: 12 start-page: 1017 issue: 5 year: 2004 ident: 10.1016/j.ijfatigue.2012.05.005_b0160 article-title: Analysis of shear deformations in Al and Cu: empirical potentials versus density functional theory publication-title: Model Simul Mater Sci Eng doi: 10.1088/0965-0393/12/5/017 – volume: vol. II year: 1968 ident: 10.1016/j.ijfatigue.2012.05.005_b0165 – ident: 10.1016/j.ijfatigue.2012.05.005_b0175 – volume: 140 start-page: A1133 issue: 4A year: 1965 ident: 10.1016/j.ijfatigue.2012.05.005_b0045 article-title: Self-consistent equations including exchange and correlation effects publication-title: Phys Rev doi: 10.1103/PhysRev.140.A1133 – volume: 88 issue: 12 year: 2008 ident: 10.1016/j.ijfatigue.2012.05.005_b0075 article-title: Analysis of semi-emperial interatomic potentials appropriate for simulation of crystalline and liquid Al and Cu publication-title: Philos Mag doi: 10.1080/14786430802206482 – volume: 78 start-page: 857 issue: 10 year: 1991 ident: 10.1016/j.ijfatigue.2012.05.005_b0135 article-title: Energetics of point and planar defects in aluminium from first-principles calculation publication-title: Solid State Commun doi: 10.1016/0038-1098(91)90243-O – start-page: 26 year: 1994 ident: 10.1016/j.ijfatigue.2012.05.005_b0080 article-title: Interatomic potentials from first-principles calculations: the force-matching method publication-title: Europhys Lett – ident: 10.1016/j.ijfatigue.2012.05.005_b0100 – volume: 32 start-page: 1473 year: 2010 ident: 10.1016/j.ijfatigue.2012.05.005_b0010 article-title: Nanostructurally small cracks (NSC): a review on atomistic modeling of fatigue publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2010.01.006 – start-page: 18 year: 1978 ident: 10.1016/j.ijfatigue.2012.05.005_b0105 article-title: Low temperature lattice parameters of ai and Al–Zn alloys and Grfineisen parameter of ai publication-title: Cryogenics – volume: 64 start-page: 916 issue: 9 year: 2011 ident: 10.1016/j.ijfatigue.2012.05.005_b0140 article-title: Ab initio calculations of the generalized stacking fault energy in aluminium alloys publication-title: Scripta Mater doi: 10.1016/j.scriptamat.2011.01.034 – volume: 30 start-page: 1267 year: 2008 ident: 10.1016/j.ijfatigue.2012.05.005_b0170 article-title: Observations of crack path changes caused by periodic underloads in AA7050-T7451 publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2007.08.021 – volume: 35 start-page: 327 year: 1964 ident: 10.1016/j.ijfatigue.2012.05.005_b0130 article-title: Low temperature elastic moduli of aluminum publication-title: J Appl Phys doi: 10.1063/1.1713309 – volume: 177 start-page: 518 year: 2007 ident: 10.1016/j.ijfatigue.2012.05.005_b0215 article-title: Structural characterization of deformed crystals by analysis of common atomic neighborhood publication-title: Comput Phys Commun doi: 10.1016/j.cpc.2007.05.018 – volume: 53 start-page: 3225 issue: 11 year: 2005 ident: 10.1016/j.ijfatigue.2012.05.005_b0110 article-title: First-principles calculation of structural energetics of Al-TM (TM=Ti, Zr, Hf) intermetallics publication-title: Acta Mater doi: 10.1016/j.actamat.2005.03.028 – volume: 62 start-page: 267 issue: 1 year: 1977 ident: 10.1016/j.ijfatigue.2012.05.005_b0145 article-title: Surface free energies of solid metals: estimation from liquid surface tension measurements publication-title: Surface Sci doi: 10.1016/0039-6028(77)90442-3 – ident: 10.1016/j.ijfatigue.2012.05.005_b0220 doi: 10.1520/STP47230S – volume: 83 issue: 13 year: 2011 ident: 10.1016/j.ijfatigue.2012.05.005_b0070 article-title: Highly optimized embedded-atom-method potentials for fourteen fcc metals publication-title: Phys Rev B doi: 10.1103/PhysRevB.83.134118 – volume: 31 start-page: 1695 issue: 3 year: 1985 ident: 10.1016/j.ijfatigue.2012.05.005_b0185 article-title: Canonical dynamics: equilibrium phase-space distributions publication-title: Phys Rev A doi: 10.1103/PhysRevA.31.1695 – start-page: 4005 year: 2001 ident: 10.1016/j.ijfatigue.2012.05.005_b0035 article-title: Atomic scale structure of sputtered metal multilayers publication-title: Acta Mater doi: 10.1016/S1359-6454(01)00287-7 – ident: 10.1016/j.ijfatigue.2012.05.005_b0205 – volume: 37 issue: 8 year: 1988 ident: 10.1016/j.ijfatigue.2012.05.005_b0095 article-title: Analytical nearest-neighbor model for fcc metals publication-title: Phys Rev B doi: 10.1103/PhysRevB.37.3924 – volume: 193 start-page: 5257 year: 2004 ident: 10.1016/j.ijfatigue.2012.05.005_b0030 article-title: Atomic plasticity: description and analysis of a one billion atom simulation of ductile materials failure publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2003.12.066 – volume: 29 start-page: 6443 issue: 12 year: 1984 ident: 10.1016/j.ijfatigue.2012.05.005_b0050 article-title: Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals publication-title: Phys Rev B (Am Phys Soc) doi: 10.1103/PhysRevB.29.6443 – volume: 27 start-page: 1179 year: 2005 ident: 10.1016/j.ijfatigue.2012.05.005_b0020 article-title: Fatigue damage in nickel and copper single crystals at nanoscale publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2005.06.015 |
SSID | ssj0009075 |
Score | 2.1556878 |
Snippet | ► Atomic simulation of fatigue crack growth using three different Al EAM potentials. ► Difference between potentials most significant for first few cycles. ►... A molecular dynamic (MD) model of a crack in pure aluminium has been developed with isotropic Linear Elastic Fracture Mechanics (LEFMs) boundary displacements... |
SourceID | proquest pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 141 |
SubjectTerms | Aluminium Aluminum Applied sciences Boundaries Crack propagation Exact sciences and technology Fatigue Fatigue (materials) Fatigue crack growth Fatigue failure Fracture mechanics Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology Metals. Metallurgy Micromechanics Molecular dynamics Numerical modelling |
Title | Molecular dynamic modelling of fatigue crack growth in aluminium using LEFM boundary conditions |
URI | https://dx.doi.org/10.1016/j.ijfatigue.2012.05.005 https://www.proquest.com/docview/1082219521 |
Volume | 44 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELVQuYAQYhVlqYzENTRJHafhVlVUZSknkLhZjp0pYUmrLgcufDszWQoVSBw4JooVZ-yM5yXP7zF2Zm1MMnHaAeEaR_gAjo5ifPE8aYnMiCU3fYcc3Mn-g7h-DB5XWLfaC0O0yjL3Fzk9z9blmWYZzeY4TZtES0L0gvUJ0YJCSZqgQoQ0y88_vmgeUSG2Sxc7dPUSxyt9Bnx--kSC66CfS3iSj93vK9TGWE8xblAYXvzI3fmC1Ntim2UlyTtFZ7fZSpLtsPVv-oK7TA0q81tuC-d5njvf0BZ0PgJedoubiTYvfIiIfPbE04xrzFhpls7fONHih_z2sjfgcW7ANHnniKBtQfTaYw-9y_tu3ykdFRzTCtszJ_JlHCPAcHUQWM8mEZ4QsW5DgDBEYCkCkQwgtD60_RCMBy1ESxZRmZcYcFtJa5_VslGWHDCuEYgYEKS3BgLIxMciWDTSkxFo6bbrTFZRVKaUGyfXi1dV8cqe1SL8isKv3EBh-OvMXTQcF4obfze5qIZJLU0ehevC340bSwO7uKkvEZoKEdXZaTXSCt89-qGis2Q0n5K4qo8ZHyugw__04Iit0VGxw_GY1WaTeXKCpc4sbuRzucFWO1c3_btPpaP-8A |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB7R5NCiqmopiLSQLhJXK7az3sS9IUQUmscpSNxW610PmIcTheTAv--MHykRlThwXXvk1ezu7Hzr2e8DOHUuYZo446H0rSdDRM_ECS28QDkuZqSUm88hJ1M1vJJ_rqPrHTiv78JwWWUV-8uYXkTrqqVTebOzyLIOlyUReqH8hMuCekp-gCazU0UNaJ5djobTf9y7Jd8uv--xwVaZV3aH5AI-JaGtMCxYPFnK7v-b1OeFeSLXYal58Sp8F3vS4Ct8qZJJcVb29xvspPke7L6gGPwOelLr3wpXis-LQvyGb6GLOYqqW8Iujb0XNwTKV7ciy4WhoJXl2fpRcGX8jRhfDCYiKTSYls-CQLQra7324WpwMTsfepWogme7vf7Ki0OVJIQxfBNFLnBpTA0yMX2MCIlIykYwVhH2XIj9sIc2wC4BJkfALEgt-t20ewCNfJ6nhyAMYRGLkinXUCLr-DjCi1YFKkaj_H4LVO1FbSvGcRa-eNB1admd3rhfs_u1H2lyfwv8jeGiJN142-R3PUx6a_5o2hreNm5vDezmo6EidCpl3IKTeqQ1LT_-p2LydL5-Yn7VkII-JUE_3tODX_BxOJuM9fhyOvoJn_hJeeHxCBqr5To9psxnlbSrmf0XWjEBsA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecular+dynamic+modelling+of+fatigue+crack+growth+in+aluminium+using+LEFM+boundary+conditions&rft.jtitle=International+journal+of+fatigue&rft.au=WHITE%2C+Paul&rft.date=2012-11-01&rft.pub=Elsevier&rft.issn=0142-1123&rft.volume=44&rft.spage=141&rft.epage=150&rft_id=info:doi/10.1016%2Fj.ijfatigue.2012.05.005&rft.externalDBID=n%2Fa&rft.externalDocID=26249449 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-1123&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-1123&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-1123&client=summon |