Molecular dynamic modelling of fatigue crack growth in aluminium using LEFM boundary conditions

► Atomic simulation of fatigue crack growth using three different Al EAM potentials. ► Difference between potentials most significant for first few cycles. ► Attached animation shows extension and contraction of the crack tip during cycling. ► Movement of crack tip is less than lattice spacing due t...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of fatigue Vol. 44; pp. 141 - 150
Main Author White, Paul
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.11.2012
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract ► Atomic simulation of fatigue crack growth using three different Al EAM potentials. ► Difference between potentials most significant for first few cycles. ► Attached animation shows extension and contraction of the crack tip during cycling. ► Movement of crack tip is less than lattice spacing due to the irregular arrangement. A molecular dynamic (MD) model of a crack in pure aluminium has been developed with isotropic Linear Elastic Fracture Mechanics (LEFMs) boundary displacements that simulates the fatigue crack growth process. The model consists of a cylindrical region filled with atoms around a crack tip and subject to boundary displacements that change due to cyclic loading. A sinusoidal load that produced a Kmax=1.0MPam was applied to produce fatigue crack growth using three different atomic potentials for aluminium at T=20K, and a range of different Kmin. Each run consisted of the application of fifteen or more loading cycles. In some cases, the crack tip was seen to advance in each cycle typical of fatigue, however, growth was smooth and continuous during the entire cycle with contraction occurring during the unloading phase of the cycle. The model contained 3×106 atoms and had a diameter and width of 20nm. This width was just large enough for fragments of sessile dislocations to form and couple with the glissile dislocations emitted from the crack tip, resulting in work hardening about the crack tip. The model was oriented for cracking on the {110} plane in the 〈100〉 direction. Crack advance was observed to be due to a combination of dislocation emission and atomic separation.
AbstractList ► Atomic simulation of fatigue crack growth using three different Al EAM potentials. ► Difference between potentials most significant for first few cycles. ► Attached animation shows extension and contraction of the crack tip during cycling. ► Movement of crack tip is less than lattice spacing due to the irregular arrangement. A molecular dynamic (MD) model of a crack in pure aluminium has been developed with isotropic Linear Elastic Fracture Mechanics (LEFMs) boundary displacements that simulates the fatigue crack growth process. The model consists of a cylindrical region filled with atoms around a crack tip and subject to boundary displacements that change due to cyclic loading. A sinusoidal load that produced a Kmax=1.0MPam was applied to produce fatigue crack growth using three different atomic potentials for aluminium at T=20K, and a range of different Kmin. Each run consisted of the application of fifteen or more loading cycles. In some cases, the crack tip was seen to advance in each cycle typical of fatigue, however, growth was smooth and continuous during the entire cycle with contraction occurring during the unloading phase of the cycle. The model contained 3×106 atoms and had a diameter and width of 20nm. This width was just large enough for fragments of sessile dislocations to form and couple with the glissile dislocations emitted from the crack tip, resulting in work hardening about the crack tip. The model was oriented for cracking on the {110} plane in the 〈100〉 direction. Crack advance was observed to be due to a combination of dislocation emission and atomic separation.
A molecular dynamic (MD) model of a crack in pure aluminium has been developed with isotropic Linear Elastic Fracture Mechanics (LEFMs) boundary displacements that simulates the fatigue crack growth process. The model consists of a cylindrical region filled with atoms around a crack tip and subject to boundary displacements that change due to cyclic loading. A sinusoidal load that produced a K max = 1.0 MPa m was applied to produce fatigue crack growth using three different atomic potentials for aluminium at T = 20 K, and a range of different Kmin. Each run consisted of the application of fifteen or more loading cycles. In some cases, the crack tip was seen to advance in each cycle typical of fatigue, however, growth was smooth and continuous during the entire cycle with contraction occurring during the unloading phase of the cycle. The model contained 3 A 106 atoms and had a diameter and width of 20 nm. This width was just large enough for fragments of sessile dislocations to form and couple with the glissile dislocations emitted from the crack tip, resulting in work hardening about the crack tip. The model was oriented for cracking on the {1 1 0} plane in the <1 0 0> direction. Crack advance was observed to be due to a combination of dislocation emission and atomic separation.
Author White, Paul
Author_xml – sequence: 1
  givenname: Paul
  surname: White
  fullname: White, Paul
  email: Paul.White@dsto.defence.gov.au
  organization: Air Vehicles Division, Defence Science and Technology Organisation, 506 Lorimer Street, Fishermans Bend 3207, Australia
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26249449$$DView record in Pascal Francis
BookMark eNqFkTtP5DAUhS0EEsPjN-AGiSbBduzEKbZACBakQdssteXxY7hDYrN2AuLfr0czbLEN1ZWuvnPu45ygwxCDQ-iCkpoS2l5vath4PcF6djUjlNVE1ISIA7Sgsuurhgt2iBaEclZRyppjdJLzhhDSk04skHqKgzPzoBO2n0GPYPAYrRsGCGscPd47Y5O0ecXrFD-mFwwB62EeIcA84jlv0eXd_RNexTlYnT6xicHCBDHkM3Tk9ZDd-b6eouf7u9-3D9Xy18_H25tlZZpOTlXP2tWqayXRQlhqXV8afKWlFy1nXPLW963wnWVess4b6hvKpWWSUWc8aVxziq52vm8p_pldntQI2ZQ7dHBxzooSyRjtBaMFvdyjOhs9-KSDgazeEoxld8VaxnvO-8L92HEmxZyT88rApLdXTUnDUCzVNgC1Uf8CUNsAFBGqBFD03X_6rxHfK292Slc-9g4uqWzABeMsJGcmZSN86_EX1t2oBg
CODEN IJFADB
CitedBy_id crossref_primary_10_1155_2017_5181206
crossref_primary_10_1002_nme_4968
crossref_primary_10_1016_j_engfracmech_2022_108567
crossref_primary_10_1016_j_engfracmech_2016_04_024
crossref_primary_10_1016_j_nanoso_2024_101397
crossref_primary_10_3390_met9060684
crossref_primary_10_1016_j_ijfatigue_2017_01_038
crossref_primary_10_1111_ffe_12189
crossref_primary_10_1007_s11633_016_1035_x
crossref_primary_10_1016_j_rinp_2017_04_039
crossref_primary_10_3390_nano13233031
crossref_primary_10_1080_08927022_2022_2060966
crossref_primary_10_1038_s41467_022_28481_8
crossref_primary_10_1016_j_engfracmech_2016_10_008
crossref_primary_10_1140_epjb_s10051_022_00285_1
crossref_primary_10_1016_j_ijfatigue_2020_105570
crossref_primary_10_1016_j_prostr_2024_03_050
crossref_primary_10_1007_s11665_015_1479_0
crossref_primary_10_1007_s12034_018_1661_8
crossref_primary_10_1007_s11661_017_4261_0
crossref_primary_10_1557_jmr_2016_155
crossref_primary_10_1111_ffe_14196
crossref_primary_10_1016_j_matpr_2020_10_803
crossref_primary_10_1557_jmr_2015_325
crossref_primary_10_4028_www_scientific_net_JNanoR_55_32
Cites_doi 10.1103/PhysRevB.50.5055
10.1016/0920-2307(93)90001-U
10.1088/0965-0393/14/8/008
10.1088/0953-8984/14/38/303
10.1142/S0217979202011226
10.1016/0263-7855(96)00018-5
10.1016/S0013-7944(02)00273-4
10.1103/PhysRevB.33.7983
10.1088/0965-0393/12/4/007
10.1006/jcph.1995.1039
10.1103/PhysRevB.59.3393
10.1080/09500830600627257
10.1088/0953-8984/14/29/301
10.1103/PhysRevB.54.5145
10.1088/0965-0393/12/5/017
10.1103/PhysRev.140.A1133
10.1080/14786430802206482
10.1016/0038-1098(91)90243-O
10.1016/j.ijfatigue.2010.01.006
10.1016/j.scriptamat.2011.01.034
10.1016/j.ijfatigue.2007.08.021
10.1063/1.1713309
10.1016/j.cpc.2007.05.018
10.1016/j.actamat.2005.03.028
10.1016/0039-6028(77)90442-3
10.1520/STP47230S
10.1103/PhysRevB.83.134118
10.1103/PhysRevA.31.1695
10.1016/S1359-6454(01)00287-7
10.1103/PhysRevB.37.3924
10.1016/j.cma.2003.12.066
10.1103/PhysRevB.29.6443
10.1016/j.ijfatigue.2005.06.015
ContentType Journal Article
Copyright 2012
2015 INIST-CNRS
Copyright_xml – notice: 2012
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7QF
7SR
8BQ
8FD
JG9
DOI 10.1016/j.ijfatigue.2012.05.005
DatabaseName CrossRef
Pascal-Francis
Aluminium Industry Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Aluminium Industry Abstracts
Technology Research Database
METADEX
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1879-3452
EndPage 150
ExternalDocumentID 26249449
10_1016_j_ijfatigue_2012_05_005
S0142112312001764
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6OB
7-5
71M
8P~
9JN
AABCJ
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABDEX
ABEFU
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSZ
T5K
T9H
TN5
VH1
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
IQODW
7QF
7SR
8BQ
8FD
JG9
ID FETCH-LOGICAL-c378t-926bb7680a55d1de99264ba8f56424846f965f7d2f827fc1f3148d2821ecf03e3
IEDL.DBID .~1
ISSN 0142-1123
IngestDate Fri Jul 11 09:29:39 EDT 2025
Mon Jul 21 09:14:27 EDT 2025
Tue Jul 01 03:22:49 EDT 2025
Thu Apr 24 23:02:22 EDT 2025
Fri Feb 23 02:28:39 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Micromechanics
Fatigue crack growth
Numerical modelling
Molecular dynamics
Mechanical properties
Fatigue
Boundary condition
Modeling
Fatigue crack
Crack propagation
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c378t-926bb7680a55d1de99264ba8f56424846f965f7d2f827fc1f3148d2821ecf03e3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 1082219521
PQPubID 23500
PageCount 10
ParticipantIDs proquest_miscellaneous_1082219521
pascalfrancis_primary_26249449
crossref_citationtrail_10_1016_j_ijfatigue_2012_05_005
crossref_primary_10_1016_j_ijfatigue_2012_05_005
elsevier_sciencedirect_doi_10_1016_j_ijfatigue_2012_05_005
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-11-01
PublicationDateYYYYMMDD 2012-11-01
PublicationDate_xml – month: 11
  year: 2012
  text: 2012-11-01
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle International journal of fatigue
PublicationYear 2012
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Potirniche, Horstemeyer, Jelinek, Wagner (b0020) 2005; 27
Mendelev, Kramer, Becker, Asta (b0075) 2008; 88
Laird C. The influence of metallurgical structure on the mechanisms of fatigue crack propagation. In: Fatigue crack propagation. No. 415 in ASTM special technical publication. American society for testing and materials; 1966, p. 131–68.
Voter A, Chen SP. In: Seigel RW, Weertman JR, Sundan R, editors. Characterization of defects in materials. No. 82 in materials research society symposia proceedings; 1987.
James, Pacey, Wei, Patterson (b0225) 2003; 70
Horstemeyer, Farkas, Kim, Tang, Potirniche (b0010) 2010; 32
Potirniche, Horstemeyer (b0015) 2006; 86
Denteneer, Soler (b0135) 1991; 78
Kamm, Alers (b0130) 1964; 35
Sin’ko, Smirnov (b0125) 2002; 14
Pippan, Zelger, Gach, Bichler, Weinhandl (b0005) 2010
Ghosh, Asta (b0110) 2005; 53
Muzyk, Pakiela, Kurzydlowski (b0140) 2011; 64
Daw, Baskes (b0050) 1984; 29
Daw, Foiles, Baskes (b0055) 1993; 9
Sheng, HW. EAM potentials – Al; 2011.
Plimpton (b0190) 1995; 117
Adler D, Murdoch D. rgl: 3D visualization device system (OpenGL); 2010. R package version 0.90.783/r783
Tsuzuki, Branicio, Rino (b0215) 2007; 177
Humphrey, Dalke, Schulten (b0195) 1996; 14
Liu, Ercolessi, Adams (b0065) 2004
Sheng, Kramer, Cadien, Fujita, Chen (b0070) 2011; 83
Zhou, Wadley, Johnson, Larson, Tabat, Cerezo (b0035) 2001
White, Barter, Molent (b0170) 2008; 30
Tada H, Paris PC, Irwin GR. The stress analysis of cracks handbook. Tech rep; Del Research Corporation; 1973.
Szelestey, Patriarca, Perondi, Kaski (b0090) 2002; 16
Karimi, Roarty, Kaplan (b0025) 2006; 14
Jacobs, Zhukovskii, Mastrikov, Shunin (b0120) 2002; 6
Buehler, Hartmaier, Gao, Duchaineau, Abraham (b0030) 2004; 193
Mishin, Farkas, Mehl, Papaconstantopoulos (b0060) 1999; 59
Bandyopadhyay, Gupta (b0105) 1978
Hoover (b0185) 1985; 31
.
Gaudoin, Foulkes, Rajagopal (b0115) 2002; 14
Kelchner, Plimpton, Hamilton (b0210) 2000; 62
Foiles, Baskes, Daw (b0040) 1986
Stumpf, Feibelman (b0150) 1996; 54
(b0165) 1968; vol. II
Ercolessi, Adams (b0080) 1994
Tyson, Miller (b0145) 1977; 62
Johnson (b0095) 1988; 37
Kohn, Sham (b0045) 1965; 140
Boyer, Li, Ogata, Yip (b0160) 2004; 12
Straub, Aidun, Wills, Sanchez-Castro, Wallace (b0155) 1994; 50
R Development Core Team. R: a language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria; 2009. ISBN 3-900051-07-0.
Tan (b0180) 2007; vol. 8
Humphrey (10.1016/j.ijfatigue.2012.05.005_b0195) 1996; 14
Johnson (10.1016/j.ijfatigue.2012.05.005_b0095) 1988; 37
Tsuzuki (10.1016/j.ijfatigue.2012.05.005_b0215) 2007; 177
Mendelev (10.1016/j.ijfatigue.2012.05.005_b0075) 2008; 88
Kamm (10.1016/j.ijfatigue.2012.05.005_b0130) 1964; 35
Pippan (10.1016/j.ijfatigue.2012.05.005_b0005) 2010
Liu (10.1016/j.ijfatigue.2012.05.005_b0065) 2004
Straub (10.1016/j.ijfatigue.2012.05.005_b0155) 1994; 50
Gaudoin (10.1016/j.ijfatigue.2012.05.005_b0115) 2002; 14
Daw (10.1016/j.ijfatigue.2012.05.005_b0055) 1993; 9
Daw (10.1016/j.ijfatigue.2012.05.005_b0050) 1984; 29
Tyson (10.1016/j.ijfatigue.2012.05.005_b0145) 1977; 62
10.1016/j.ijfatigue.2012.05.005_b0220
10.1016/j.ijfatigue.2012.05.005_b0100
Stumpf (10.1016/j.ijfatigue.2012.05.005_b0150) 1996; 54
Potirniche (10.1016/j.ijfatigue.2012.05.005_b0015) 2006; 86
Hoover (10.1016/j.ijfatigue.2012.05.005_b0185) 1985; 31
Buehler (10.1016/j.ijfatigue.2012.05.005_b0030) 2004; 193
10.1016/j.ijfatigue.2012.05.005_b0085
Ercolessi (10.1016/j.ijfatigue.2012.05.005_b0080) 1994
10.1016/j.ijfatigue.2012.05.005_b0205
Sin’ko (10.1016/j.ijfatigue.2012.05.005_b0125) 2002; 14
10.1016/j.ijfatigue.2012.05.005_b0200
Potirniche (10.1016/j.ijfatigue.2012.05.005_b0020) 2005; 27
(10.1016/j.ijfatigue.2012.05.005_b0165) 1968; vol. II
Bandyopadhyay (10.1016/j.ijfatigue.2012.05.005_b0105) 1978
Foiles (10.1016/j.ijfatigue.2012.05.005_b0040) 1986
Sheng (10.1016/j.ijfatigue.2012.05.005_b0070) 2011; 83
Tan (10.1016/j.ijfatigue.2012.05.005_b0180) 2007; vol. 8
Ghosh (10.1016/j.ijfatigue.2012.05.005_b0110) 2005; 53
Jacobs (10.1016/j.ijfatigue.2012.05.005_b0120) 2002; 6
Szelestey (10.1016/j.ijfatigue.2012.05.005_b0090) 2002; 16
James (10.1016/j.ijfatigue.2012.05.005_b0225) 2003; 70
Kelchner (10.1016/j.ijfatigue.2012.05.005_b0210) 2000; 62
10.1016/j.ijfatigue.2012.05.005_b0175
White (10.1016/j.ijfatigue.2012.05.005_b0170) 2008; 30
Karimi (10.1016/j.ijfatigue.2012.05.005_b0025) 2006; 14
Boyer (10.1016/j.ijfatigue.2012.05.005_b0160) 2004; 12
Plimpton (10.1016/j.ijfatigue.2012.05.005_b0190) 1995; 117
Mishin (10.1016/j.ijfatigue.2012.05.005_b0060) 1999; 59
Muzyk (10.1016/j.ijfatigue.2012.05.005_b0140) 2011; 64
Zhou (10.1016/j.ijfatigue.2012.05.005_b0035) 2001
Horstemeyer (10.1016/j.ijfatigue.2012.05.005_b0010) 2010; 32
Denteneer (10.1016/j.ijfatigue.2012.05.005_b0135) 1991; 78
Kohn (10.1016/j.ijfatigue.2012.05.005_b0045) 1965; 140
References_xml – volume: 6
  year: 2002
  ident: b0120
  article-title: Bulk and surface properties of metallic aluminium: DFT simulations
  publication-title: Comput Model New Technol
– volume: 70
  start-page: 2473
  year: 2003
  end-page: 2487
  ident: b0225
  article-title: Characterisation of plasticity-induced closure—crack flank contact force versus plastic enclave
  publication-title: Eng Fract Mech
– volume: 117
  start-page: 1
  year: 1995
  end-page: 19
  ident: b0190
  article-title: Fast parallel algorithms for short-range molecular dynamics
  publication-title: J Comput Phys
– volume: 14
  start-page: 8787
  year: 2002
  end-page: 8793
  ident: b0115
  article-title: Ab initio calculations of the cohesive energy and the bulk modulus of aluminium
  publication-title: J Physics Condens Matter
– reference: Tada H, Paris PC, Irwin GR. The stress analysis of cracks handbook. Tech rep; Del Research Corporation; 1973.
– volume: 29
  start-page: 6443
  year: 1984
  end-page: 6453
  ident: b0050
  article-title: Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals
  publication-title: Phys Rev B (Am Phys Soc)
– volume: 59
  start-page: 3393
  year: 1999
  end-page: 3407
  ident: b0060
  article-title: Interatomic potentials for monoatomic metals from experimental data and
  publication-title: Phys Rev B – Condens Matter Mater Phys
– start-page: 26
  year: 1994
  ident: b0080
  article-title: Interatomic potentials from first-principles calculations: the force-matching method
  publication-title: Europhys Lett
– volume: 53
  start-page: 3225
  year: 2005
  end-page: 3252
  ident: b0110
  article-title: First-principles calculation of structural energetics of Al-TM (TM
  publication-title: Acta Mater
– reference: Adler D, Murdoch D. rgl: 3D visualization device system (OpenGL); 2010. R package version 0.90.783/r783 <
– volume: 31
  start-page: 1695
  year: 1985
  end-page: 1697
  ident: b0185
  article-title: Canonical dynamics: equilibrium phase-space distributions
  publication-title: Phys Rev A
– volume: 88
  year: 2008
  ident: b0075
  article-title: Analysis of semi-emperial interatomic potentials appropriate for simulation of crystalline and liquid Al and Cu
  publication-title: Philos Mag
– reference: R Development Core Team. R: a language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria; 2009. ISBN 3-900051-07-0. <
– volume: 78
  start-page: 857
  year: 1991
  end-page: 861
  ident: b0135
  article-title: Energetics of point and planar defects in aluminium from first-principles calculation
  publication-title: Solid State Commun
– start-page: 18
  year: 1978
  ident: b0105
  article-title: Low temperature lattice parameters of ai and Al–Zn alloys and Grfineisen parameter of ai
  publication-title: Cryogenics
– volume: 177
  start-page: 518
  year: 2007
  end-page: 523
  ident: b0215
  article-title: Structural characterization of deformed crystals by analysis of common atomic neighborhood
  publication-title: Comput Phys Commun
– year: 2010
  ident: b0005
  article-title: On the mechanism of fatigue crack propagation in ductile metallic materials
  publication-title: Fatigue Fract Eng Mater Struct
– volume: 12
  start-page: 1017
  year: 2004
  end-page: 1029
  ident: b0160
  article-title: Analysis of shear deformations in Al and Cu: empirical potentials versus density functional theory
  publication-title: Model Simul Mater Sci Eng
– volume: 9
  start-page: 251
  year: 1993
  end-page: 310
  ident: b0055
  article-title: The embedded-atom method: a review of theory and applications
  publication-title: Mater Sci Rep
– volume: 14
  start-page: 33
  year: 1996
  end-page: 38
  ident: b0195
  article-title: VMD – visual molecular dynamics
  publication-title: J Mol Graph
– volume: 35
  start-page: 327
  year: 1964
  end-page: 330
  ident: b0130
  article-title: Low temperature elastic moduli of aluminum
  publication-title: J Appl Phys
– volume: 14
  start-page: 6989
  year: 2002
  end-page: 7005
  ident: b0125
  article-title: calculations of elastic constants and thermodynamic properties of bcc, fcc, and hcp Al crystals under pressure
  publication-title: J Phys: Condens Matter
– volume: 62
  start-page: 831
  year: 2000
  end-page: 838
  ident: b0210
  article-title: Dislocation nucleation and defect structure during surface indentation
  publication-title: Phys Rev B
– start-page: 4005
  year: 2001
  end-page: 4015
  ident: b0035
  article-title: Atomic scale structure of sputtered metal multilayers
  publication-title: Acta Mater
– volume: 16
  start-page: 2823
  year: 2002
  end-page: 2835
  ident: b0090
  article-title: Modified EAM potentials for modelling stacking-fault behavior in Cu, Al, Au, and Ni
  publication-title: Int J Modern Phys B
– start-page: 665
  year: 2004
  end-page: 670
  ident: b0065
  article-title: Aluminium interatomic potential from density functional theory calculations with improved stacking fault energy
  publication-title: Model Simul Mater Sci Eng
– volume: 14
  start-page: 1409
  year: 2006
  end-page: 1420
  ident: b0025
  article-title: Molecular dynamics simulations of crack propagation in Ni with defects
  publication-title: Model Simul Mater Sci Eng
– volume: 86
  start-page: 185
  year: 2006
  end-page: 193
  ident: b0015
  article-title: On the growth of nanoscale fatigue cracks
  publication-title: Philos Mag Lett
– volume: 37
  year: 1988
  ident: b0095
  article-title: Analytical nearest-neighbor model for fcc metals
  publication-title: Phys Rev B
– reference: >.
– reference: Laird C. The influence of metallurgical structure on the mechanisms of fatigue crack propagation. In: Fatigue crack propagation. No. 415 in ASTM special technical publication. American society for testing and materials; 1966, p. 131–68.
– reference: Voter A, Chen SP. In: Seigel RW, Weertman JR, Sundan R, editors. Characterization of defects in materials. No. 82 in materials research society symposia proceedings; 1987.
– reference: Sheng, HW. EAM potentials – Al; 2011. <
– volume: 64
  start-page: 916
  year: 2011
  end-page: 918
  ident: b0140
  article-title: Ab initio calculations of the generalized stacking fault energy in aluminium alloys
  publication-title: Scripta Mater
– volume: 50
  start-page: 5055
  year: 1994
  end-page: 5061
  ident: b0155
  article-title: Ab initio calculation of melting and thermodynamic properties of crystal and liquid aluminum
  publication-title: Phys Rev B
– volume: 32
  start-page: 1473
  year: 2010
  end-page: 1502
  ident: b0010
  article-title: Nanostructurally small cracks (NSC): a review on atomistic modeling of fatigue
  publication-title: Int J Fatigue
– volume: vol. II
  year: 1968
  ident: b0165
  publication-title: Fracture – an advanced treatise
– volume: 140
  start-page: A1133
  year: 1965
  end-page: A1138
  ident: b0045
  article-title: Self-consistent equations including exchange and correlation effects
  publication-title: Phys Rev
– volume: 193
  start-page: 5257
  year: 2004
  end-page: 5282
  ident: b0030
  article-title: Atomic plasticity: description and analysis of a one billion atom simulation of ductile materials failure
  publication-title: Comput Methods Appl Mech Eng
– volume: 54
  year: 1996
  ident: b0150
  article-title: Towards an understanding of liquid–metal embrittlement: energetics of Ga on Al surfaces
  publication-title: Phys RevB
– volume: 30
  start-page: 1267
  year: 2008
  end-page: 1278
  ident: b0170
  article-title: Observations of crack path changes caused by periodic underloads in AA7050-T7451
  publication-title: Int J Fatigue
– start-page: 7983
  year: 1986
  end-page: 7991
  ident: b0040
  article-title: Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys
  publication-title: Phys Rev B
– volume: 62
  start-page: 267
  year: 1977
  end-page: 276
  ident: b0145
  article-title: Surface free energies of solid metals: estimation from liquid surface tension measurements
  publication-title: Surface Sci
– volume: vol. 8
  year: 2007
  ident: b0180
  article-title: Comprehensive structural integrity
  publication-title: Combined atomistic and continuum simulation of fracture and corrosion
– volume: 83
  year: 2011
  ident: b0070
  article-title: Highly optimized embedded-atom-method potentials for fourteen fcc metals
  publication-title: Phys Rev B
– volume: 27
  start-page: 1179
  year: 2005
  end-page: 1185
  ident: b0020
  article-title: Fatigue damage in nickel and copper single crystals at nanoscale
  publication-title: Int J Fatigue
– volume: 50
  start-page: 5055
  issue: 8
  year: 1994
  ident: 10.1016/j.ijfatigue.2012.05.005_b0155
  article-title: Ab initio calculation of melting and thermodynamic properties of crystal and liquid aluminum
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.50.5055
– volume: 9
  start-page: 251
  issue: 7–8
  year: 1993
  ident: 10.1016/j.ijfatigue.2012.05.005_b0055
  article-title: The embedded-atom method: a review of theory and applications
  publication-title: Mater Sci Rep
  doi: 10.1016/0920-2307(93)90001-U
– year: 2010
  ident: 10.1016/j.ijfatigue.2012.05.005_b0005
  article-title: On the mechanism of fatigue crack propagation in ductile metallic materials
  publication-title: Fatigue Fract Eng Mater Struct
– volume: 14
  start-page: 1409
  year: 2006
  ident: 10.1016/j.ijfatigue.2012.05.005_b0025
  article-title: Molecular dynamics simulations of crack propagation in Ni with defects
  publication-title: Model Simul Mater Sci Eng
  doi: 10.1088/0965-0393/14/8/008
– volume: 6
  issue: 1
  year: 2002
  ident: 10.1016/j.ijfatigue.2012.05.005_b0120
  article-title: Bulk and surface properties of metallic aluminium: DFT simulations
  publication-title: Comput Model New Technol
– volume: 14
  start-page: 8787
  issue: 38
  year: 2002
  ident: 10.1016/j.ijfatigue.2012.05.005_b0115
  article-title: Ab initio calculations of the cohesive energy and the bulk modulus of aluminium
  publication-title: J Physics Condens Matter
  doi: 10.1088/0953-8984/14/38/303
– volume: 16
  start-page: 2823
  issue: 19
  year: 2002
  ident: 10.1016/j.ijfatigue.2012.05.005_b0090
  article-title: Modified EAM potentials for modelling stacking-fault behavior in Cu, Al, Au, and Ni
  publication-title: Int J Modern Phys B
  doi: 10.1142/S0217979202011226
– volume: 14
  start-page: 33
  year: 1996
  ident: 10.1016/j.ijfatigue.2012.05.005_b0195
  article-title: VMD – visual molecular dynamics
  publication-title: J Mol Graph
  doi: 10.1016/0263-7855(96)00018-5
– ident: 10.1016/j.ijfatigue.2012.05.005_b0200
– volume: 70
  start-page: 2473
  issue: 17
  year: 2003
  ident: 10.1016/j.ijfatigue.2012.05.005_b0225
  article-title: Characterisation of plasticity-induced closure—crack flank contact force versus plastic enclave
  publication-title: Eng Fract Mech
  doi: 10.1016/S0013-7944(02)00273-4
– start-page: 7983
  year: 1986
  ident: 10.1016/j.ijfatigue.2012.05.005_b0040
  article-title: Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.33.7983
– ident: 10.1016/j.ijfatigue.2012.05.005_b0085
– start-page: 665
  year: 2004
  ident: 10.1016/j.ijfatigue.2012.05.005_b0065
  article-title: Aluminium interatomic potential from density functional theory calculations with improved stacking fault energy
  publication-title: Model Simul Mater Sci Eng
  doi: 10.1088/0965-0393/12/4/007
– volume: 117
  start-page: 1
  year: 1995
  ident: 10.1016/j.ijfatigue.2012.05.005_b0190
  article-title: Fast parallel algorithms for short-range molecular dynamics
  publication-title: J Comput Phys
  doi: 10.1006/jcph.1995.1039
– volume: 59
  start-page: 3393
  issue: 5
  year: 1999
  ident: 10.1016/j.ijfatigue.2012.05.005_b0060
  article-title: Interatomic potentials for monoatomic metals from experimental data and ab initio calculations
  publication-title: Phys Rev B – Condens Matter Mater Phys
  doi: 10.1103/PhysRevB.59.3393
– volume: 62
  start-page: 831
  year: 2000
  ident: 10.1016/j.ijfatigue.2012.05.005_b0210
  article-title: Dislocation nucleation and defect structure during surface indentation
  publication-title: Phys Rev B
– volume: vol. 8
  year: 2007
  ident: 10.1016/j.ijfatigue.2012.05.005_b0180
  article-title: Comprehensive structural integrity
– volume: 86
  start-page: 185
  issue: 3
  year: 2006
  ident: 10.1016/j.ijfatigue.2012.05.005_b0015
  article-title: On the growth of nanoscale fatigue cracks
  publication-title: Philos Mag Lett
  doi: 10.1080/09500830600627257
– volume: 14
  start-page: 6989
  year: 2002
  ident: 10.1016/j.ijfatigue.2012.05.005_b0125
  article-title: Ab initio calculations of elastic constants and thermodynamic properties of bcc, fcc, and hcp Al crystals under pressure
  publication-title: J Phys: Condens Matter
  doi: 10.1088/0953-8984/14/29/301
– volume: 54
  issue: 7
  year: 1996
  ident: 10.1016/j.ijfatigue.2012.05.005_b0150
  article-title: Towards an understanding of liquid–metal embrittlement: energetics of Ga on Al surfaces
  publication-title: Phys RevB
  doi: 10.1103/PhysRevB.54.5145
– volume: 12
  start-page: 1017
  issue: 5
  year: 2004
  ident: 10.1016/j.ijfatigue.2012.05.005_b0160
  article-title: Analysis of shear deformations in Al and Cu: empirical potentials versus density functional theory
  publication-title: Model Simul Mater Sci Eng
  doi: 10.1088/0965-0393/12/5/017
– volume: vol. II
  year: 1968
  ident: 10.1016/j.ijfatigue.2012.05.005_b0165
– ident: 10.1016/j.ijfatigue.2012.05.005_b0175
– volume: 140
  start-page: A1133
  issue: 4A
  year: 1965
  ident: 10.1016/j.ijfatigue.2012.05.005_b0045
  article-title: Self-consistent equations including exchange and correlation effects
  publication-title: Phys Rev
  doi: 10.1103/PhysRev.140.A1133
– volume: 88
  issue: 12
  year: 2008
  ident: 10.1016/j.ijfatigue.2012.05.005_b0075
  article-title: Analysis of semi-emperial interatomic potentials appropriate for simulation of crystalline and liquid Al and Cu
  publication-title: Philos Mag
  doi: 10.1080/14786430802206482
– volume: 78
  start-page: 857
  issue: 10
  year: 1991
  ident: 10.1016/j.ijfatigue.2012.05.005_b0135
  article-title: Energetics of point and planar defects in aluminium from first-principles calculation
  publication-title: Solid State Commun
  doi: 10.1016/0038-1098(91)90243-O
– start-page: 26
  year: 1994
  ident: 10.1016/j.ijfatigue.2012.05.005_b0080
  article-title: Interatomic potentials from first-principles calculations: the force-matching method
  publication-title: Europhys Lett
– ident: 10.1016/j.ijfatigue.2012.05.005_b0100
– volume: 32
  start-page: 1473
  year: 2010
  ident: 10.1016/j.ijfatigue.2012.05.005_b0010
  article-title: Nanostructurally small cracks (NSC): a review on atomistic modeling of fatigue
  publication-title: Int J Fatigue
  doi: 10.1016/j.ijfatigue.2010.01.006
– start-page: 18
  year: 1978
  ident: 10.1016/j.ijfatigue.2012.05.005_b0105
  article-title: Low temperature lattice parameters of ai and Al–Zn alloys and Grfineisen parameter of ai
  publication-title: Cryogenics
– volume: 64
  start-page: 916
  issue: 9
  year: 2011
  ident: 10.1016/j.ijfatigue.2012.05.005_b0140
  article-title: Ab initio calculations of the generalized stacking fault energy in aluminium alloys
  publication-title: Scripta Mater
  doi: 10.1016/j.scriptamat.2011.01.034
– volume: 30
  start-page: 1267
  year: 2008
  ident: 10.1016/j.ijfatigue.2012.05.005_b0170
  article-title: Observations of crack path changes caused by periodic underloads in AA7050-T7451
  publication-title: Int J Fatigue
  doi: 10.1016/j.ijfatigue.2007.08.021
– volume: 35
  start-page: 327
  year: 1964
  ident: 10.1016/j.ijfatigue.2012.05.005_b0130
  article-title: Low temperature elastic moduli of aluminum
  publication-title: J Appl Phys
  doi: 10.1063/1.1713309
– volume: 177
  start-page: 518
  year: 2007
  ident: 10.1016/j.ijfatigue.2012.05.005_b0215
  article-title: Structural characterization of deformed crystals by analysis of common atomic neighborhood
  publication-title: Comput Phys Commun
  doi: 10.1016/j.cpc.2007.05.018
– volume: 53
  start-page: 3225
  issue: 11
  year: 2005
  ident: 10.1016/j.ijfatigue.2012.05.005_b0110
  article-title: First-principles calculation of structural energetics of Al-TM (TM=Ti, Zr, Hf) intermetallics
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2005.03.028
– volume: 62
  start-page: 267
  issue: 1
  year: 1977
  ident: 10.1016/j.ijfatigue.2012.05.005_b0145
  article-title: Surface free energies of solid metals: estimation from liquid surface tension measurements
  publication-title: Surface Sci
  doi: 10.1016/0039-6028(77)90442-3
– ident: 10.1016/j.ijfatigue.2012.05.005_b0220
  doi: 10.1520/STP47230S
– volume: 83
  issue: 13
  year: 2011
  ident: 10.1016/j.ijfatigue.2012.05.005_b0070
  article-title: Highly optimized embedded-atom-method potentials for fourteen fcc metals
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.83.134118
– volume: 31
  start-page: 1695
  issue: 3
  year: 1985
  ident: 10.1016/j.ijfatigue.2012.05.005_b0185
  article-title: Canonical dynamics: equilibrium phase-space distributions
  publication-title: Phys Rev A
  doi: 10.1103/PhysRevA.31.1695
– start-page: 4005
  year: 2001
  ident: 10.1016/j.ijfatigue.2012.05.005_b0035
  article-title: Atomic scale structure of sputtered metal multilayers
  publication-title: Acta Mater
  doi: 10.1016/S1359-6454(01)00287-7
– ident: 10.1016/j.ijfatigue.2012.05.005_b0205
– volume: 37
  issue: 8
  year: 1988
  ident: 10.1016/j.ijfatigue.2012.05.005_b0095
  article-title: Analytical nearest-neighbor model for fcc metals
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.37.3924
– volume: 193
  start-page: 5257
  year: 2004
  ident: 10.1016/j.ijfatigue.2012.05.005_b0030
  article-title: Atomic plasticity: description and analysis of a one billion atom simulation of ductile materials failure
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2003.12.066
– volume: 29
  start-page: 6443
  issue: 12
  year: 1984
  ident: 10.1016/j.ijfatigue.2012.05.005_b0050
  article-title: Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals
  publication-title: Phys Rev B (Am Phys Soc)
  doi: 10.1103/PhysRevB.29.6443
– volume: 27
  start-page: 1179
  year: 2005
  ident: 10.1016/j.ijfatigue.2012.05.005_b0020
  article-title: Fatigue damage in nickel and copper single crystals at nanoscale
  publication-title: Int J Fatigue
  doi: 10.1016/j.ijfatigue.2005.06.015
SSID ssj0009075
Score 2.1556878
Snippet ► Atomic simulation of fatigue crack growth using three different Al EAM potentials. ► Difference between potentials most significant for first few cycles. ►...
A molecular dynamic (MD) model of a crack in pure aluminium has been developed with isotropic Linear Elastic Fracture Mechanics (LEFMs) boundary displacements...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 141
SubjectTerms Aluminium
Aluminum
Applied sciences
Boundaries
Crack propagation
Exact sciences and technology
Fatigue
Fatigue (materials)
Fatigue crack growth
Fatigue failure
Fracture mechanics
Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology
Metals. Metallurgy
Micromechanics
Molecular dynamics
Numerical modelling
Title Molecular dynamic modelling of fatigue crack growth in aluminium using LEFM boundary conditions
URI https://dx.doi.org/10.1016/j.ijfatigue.2012.05.005
https://www.proquest.com/docview/1082219521
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELVQuYAQYhVlqYzENTRJHafhVlVUZSknkLhZjp0pYUmrLgcufDszWQoVSBw4JooVZ-yM5yXP7zF2Zm1MMnHaAeEaR_gAjo5ifPE8aYnMiCU3fYcc3Mn-g7h-DB5XWLfaC0O0yjL3Fzk9z9blmWYZzeY4TZtES0L0gvUJ0YJCSZqgQoQ0y88_vmgeUSG2Sxc7dPUSxyt9Bnx--kSC66CfS3iSj93vK9TGWE8xblAYXvzI3fmC1Ntim2UlyTtFZ7fZSpLtsPVv-oK7TA0q81tuC-d5njvf0BZ0PgJedoubiTYvfIiIfPbE04xrzFhpls7fONHih_z2sjfgcW7ANHnniKBtQfTaYw-9y_tu3ykdFRzTCtszJ_JlHCPAcHUQWM8mEZ4QsW5DgDBEYCkCkQwgtD60_RCMBy1ESxZRmZcYcFtJa5_VslGWHDCuEYgYEKS3BgLIxMciWDTSkxFo6bbrTFZRVKaUGyfXi1dV8cqe1SL8isKv3EBh-OvMXTQcF4obfze5qIZJLU0ehevC340bSwO7uKkvEZoKEdXZaTXSCt89-qGis2Q0n5K4qo8ZHyugw__04Iit0VGxw_GY1WaTeXKCpc4sbuRzucFWO1c3_btPpaP-8A
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB7R5NCiqmopiLSQLhJXK7az3sS9IUQUmscpSNxW610PmIcTheTAv--MHykRlThwXXvk1ezu7Hzr2e8DOHUuYZo446H0rSdDRM_ECS28QDkuZqSUm88hJ1M1vJJ_rqPrHTiv78JwWWUV-8uYXkTrqqVTebOzyLIOlyUReqH8hMuCekp-gCazU0UNaJ5djobTf9y7Jd8uv--xwVaZV3aH5AI-JaGtMCxYPFnK7v-b1OeFeSLXYal58Sp8F3vS4Ct8qZJJcVb29xvspPke7L6gGPwOelLr3wpXis-LQvyGb6GLOYqqW8Iujb0XNwTKV7ciy4WhoJXl2fpRcGX8jRhfDCYiKTSYls-CQLQra7324WpwMTsfepWogme7vf7Ki0OVJIQxfBNFLnBpTA0yMX2MCIlIykYwVhH2XIj9sIc2wC4BJkfALEgt-t20ewCNfJ6nhyAMYRGLkinXUCLr-DjCi1YFKkaj_H4LVO1FbSvGcRa-eNB1admd3rhfs_u1H2lyfwv8jeGiJN142-R3PUx6a_5o2hreNm5vDezmo6EidCpl3IKTeqQ1LT_-p2LydL5-Yn7VkII-JUE_3tODX_BxOJuM9fhyOvoJn_hJeeHxCBqr5To9psxnlbSrmf0XWjEBsA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecular+dynamic+modelling+of+fatigue+crack+growth+in+aluminium+using+LEFM+boundary+conditions&rft.jtitle=International+journal+of+fatigue&rft.au=WHITE%2C+Paul&rft.date=2012-11-01&rft.pub=Elsevier&rft.issn=0142-1123&rft.volume=44&rft.spage=141&rft.epage=150&rft_id=info:doi/10.1016%2Fj.ijfatigue.2012.05.005&rft.externalDBID=n%2Fa&rft.externalDocID=26249449
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-1123&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-1123&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-1123&client=summon