Deep-learning-based regression model and hyperspectral imaging for rapid detection of nitrogen concentration in oilseed rape (Brassica napus L.) leaf
Deep-learning-based regression model composed of stacked auto-encoders (SAE) and fully-connected neural network (FNN) was used for the detection and quantification of nitrogen (N) concentration in oilseed rape leaf. SAE was applied to extract deep spectral features from visible and near-infrared (38...
Saved in:
Published in | Chemometrics and intelligent laboratory systems Vol. 172; pp. 188 - 193 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.01.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Deep-learning-based regression model composed of stacked auto-encoders (SAE) and fully-connected neural network (FNN) was used for the detection and quantification of nitrogen (N) concentration in oilseed rape leaf. SAE was applied to extract deep spectral features from visible and near-infrared (380–1030 nm) hyperspectral image of oilseed rape leaf, and then these features were used as input data for FNN to predict N concentration. The SAE-FNN model achieved reasonable performance with R2P = 0.903, RMSEP =0 .307% and RPDP = 3.238 for N concentration. Results confirmed the possibility of rapid and nondestructive detecting N concentration in oilseed rape leaf by the combination of hyperspectral imaging technique and deep learning method.
•Hyperspectral imaging could non-destructively detect N in oilseed rape leaf.•Deep spectral features were extracted by SAE.•SAE-FNN model was applied to fit the spectral features to N content. |
---|---|
AbstractList | Deep-learning-based regression model composed of stacked auto-encoders (SAE) and fully-connected neural network (FNN) was used for the detection and quantification of nitrogen (N) concentration in oilseed rape leaf. SAE was applied to extract deep spectral features from visible and near-infrared (380–1030 nm) hyperspectral image of oilseed rape leaf, and then these features were used as input data for FNN to predict N concentration. The SAE-FNN model achieved reasonable performance with R2P = 0.903, RMSEP =0 .307% and RPDP = 3.238 for N concentration. Results confirmed the possibility of rapid and nondestructive detecting N concentration in oilseed rape leaf by the combination of hyperspectral imaging technique and deep learning method.
•Hyperspectral imaging could non-destructively detect N in oilseed rape leaf.•Deep spectral features were extracted by SAE.•SAE-FNN model was applied to fit the spectral features to N content. |
Author | Liu, Qiyu Yu, Xinjie Lu, Huanda |
Author_xml | – sequence: 1 givenname: Xinjie surname: Yu fullname: Yu, Xinjie email: xjyu1979@nit.zju.edu.cn – sequence: 2 givenname: Huanda surname: Lu fullname: Lu, Huanda – sequence: 3 givenname: Qiyu surname: Liu fullname: Liu, Qiyu |
BookMark | eNqFkLtOwzAUhi1UJNrCKyCPMCTYcZqLxACUq1SJBWbLsY9TV6kd2QGpD8L74hRYWDpZ1n--c_lmaGKdBYTOKUkpocXVJpVr2LpONGlGaJnSLCWUHKEprUqWsIzVEzSNhXVS5qw-QbMQNmT853SKvu4B-qQD4a2xbdKIAAp7aD2EYJzFW6egw8IqvN714EMPcvCiw2Yr2ghg7Tz2ojcKKxhiNjJOY2sG71qwWDorwUZkn5gYmi7AOEP0gC_uvIhzpMBW9B8Br9JLHHfRp-hYi1h39vvO0fvjw9vyOVm9Pr0sb1eJZGU1JDUVVBa6yImoK6BUS8izQitWLYqqiUneFA0pCSN6UTW6VqTMpMhoqYnWi4KwObr-6Su9C8GD5tIM-1XjxqbjlPBRMd_wP8V8VMxpxqPiiBf_8N5HMX53GLz5ASEe92nA8yANRFPK-CiRK2cOtfgGmwuf1w |
CitedBy_id | crossref_primary_10_1016_j_compag_2025_109938 crossref_primary_10_1007_s11356_021_16772_4 crossref_primary_10_1016_j_jfca_2024_106655 crossref_primary_10_3390_s19194065 crossref_primary_10_1016_j_chemolab_2021_104336 crossref_primary_10_1515_opag_2022_0349 crossref_primary_10_1080_01431161_2019_1685721 crossref_primary_10_1109_ACCESS_2019_2917267 crossref_primary_10_1080_00380768_2021_1897479 crossref_primary_10_1111_1750_3841_17050 crossref_primary_10_1016_j_compag_2024_109494 crossref_primary_10_1016_j_jafr_2023_100658 crossref_primary_10_1007_s11104_024_06866_6 crossref_primary_10_1016_j_chemolab_2020_103996 crossref_primary_10_1016_j_foodchem_2021_130668 crossref_primary_10_1016_j_microc_2024_112323 crossref_primary_10_1109_JPROC_2019_2948454 crossref_primary_10_1016_j_foodcont_2024_110763 crossref_primary_10_3390_horticulturae7110489 crossref_primary_10_1016_j_atech_2021_100005 crossref_primary_10_1016_j_chemolab_2022_104520 crossref_primary_10_1016_j_compag_2020_105321 crossref_primary_10_1016_j_jfca_2024_105996 crossref_primary_10_1007_s10462_021_10018_y crossref_primary_10_1016_j_trac_2022_116804 crossref_primary_10_1016_j_infrared_2021_103863 crossref_primary_10_1007_s12161_023_02444_1 crossref_primary_10_1016_j_chemolab_2019_07_001 crossref_primary_10_1016_j_jfca_2023_105290 crossref_primary_10_3390_ai4030036 crossref_primary_10_3390_agriculture12101739 crossref_primary_10_3390_rs13163241 crossref_primary_10_3390_rs14246366 crossref_primary_10_34133_2022_9761095 crossref_primary_10_3390_plants11050676 crossref_primary_10_1016_j_compag_2023_108577 crossref_primary_10_1016_j_scienta_2024_113739 crossref_primary_10_3389_fpls_2024_1499875 crossref_primary_10_1016_j_foodres_2025_116285 crossref_primary_10_1016_j_compag_2023_107920 crossref_primary_10_1016_j_infrared_2024_105532 crossref_primary_10_3390_agronomy14102290 crossref_primary_10_1007_s11694_023_01892_x crossref_primary_10_1016_j_chemolab_2021_104354 crossref_primary_10_1016_j_tifs_2021_04_008 crossref_primary_10_1016_j_saa_2022_121641 crossref_primary_10_1109_ACCESS_2019_2951750 crossref_primary_10_3390_app12010458 crossref_primary_10_2174_1570164619666221010100406 crossref_primary_10_1016_j_chemolab_2023_104915 crossref_primary_10_1016_j_infrared_2021_104003 crossref_primary_10_1039_C8RA10335F crossref_primary_10_1080_01431161_2022_2068359 crossref_primary_10_1038_s41598_019_53206_1 crossref_primary_10_1111_jfpp_16414 crossref_primary_10_1590_1678_992x_2022_0121 crossref_primary_10_3390_jimaging5050052 crossref_primary_10_1007_s11694_024_02856_5 crossref_primary_10_1016_j_compag_2023_108540 crossref_primary_10_1016_j_foodcont_2021_108588 crossref_primary_10_1016_j_aca_2019_06_012 crossref_primary_10_1364_OE_390070 crossref_primary_10_1016_j_postharvbio_2021_111741 crossref_primary_10_1016_j_aiia_2023_06_001 crossref_primary_10_1016_j_chemolab_2021_104283 crossref_primary_10_1016_j_saa_2019_118005 crossref_primary_10_3389_frai_2021_735533 crossref_primary_10_1016_j_chemolab_2021_104287 crossref_primary_10_1016_j_eja_2021_126241 crossref_primary_10_1021_acs_analchem_3c04172 crossref_primary_10_1016_j_saa_2021_120460 crossref_primary_10_1016_j_compag_2022_107084 crossref_primary_10_35633_inmateh_68_08 crossref_primary_10_1016_j_saa_2022_121494 crossref_primary_10_1016_j_trac_2021_116331 crossref_primary_10_1093_gigascience_giaa090 crossref_primary_10_1016_j_foodchem_2020_126503 crossref_primary_10_1080_10408398_2022_2139217 crossref_primary_10_3390_agriculture15060582 crossref_primary_10_1080_10408398_2020_1862045 crossref_primary_10_1016_j_aca_2021_338520 crossref_primary_10_1016_j_compag_2024_108656 |
Cites_doi | 10.1049/cce:19920031 10.1016/j.patcog.2016.08.005 10.1016/j.geoderma.2006.07.004 10.1038/nature14539 10.1016/j.conbuildmat.2017.09.110 10.1109/LGRS.2015.2482520 10.1016/j.biosystemseng.2017.03.006 10.1007/s11119-012-9285-2 10.3389/fpls.2017.01348 10.1016/j.neucom.2015.11.044 |
ContentType | Journal Article |
Copyright | 2017 Elsevier B.V. |
Copyright_xml | – notice: 2017 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.chemolab.2017.12.010 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1873-3239 |
EndPage | 193 |
ExternalDocumentID | 10_1016_j_chemolab_2017_12_010 S0169743917306780 |
GroupedDBID | --- --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABAOU ABFRF ABJNI ABMAC ABYKQ ACAZW ACDAQ ACGFO ACGFS ACRLP ADBBV ADECG ADEZE ADGUI AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM M36 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SCH SDF SDG SDP SES SPC SPCBC SSK SSW SSZ T5K UNMZH YK3 ~02 ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AJQLL AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB HMU HVGLF HZ~ R2- SCB SEW SSH WUQ XPP |
ID | FETCH-LOGICAL-c378t-91a1c6f640a98e11fce426fd38568bc6f4b6b07030f58bf9d072ca217f0ff5603 |
IEDL.DBID | .~1 |
ISSN | 0169-7439 |
IngestDate | Thu Apr 24 23:09:58 EDT 2025 Tue Jul 01 03:17:12 EDT 2025 Fri Feb 23 02:33:09 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep learning Oilseed rape Nitrogen concentration Nondestructive detection Stacked auto-encoders Fully-connected neural network |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c378t-91a1c6f640a98e11fce426fd38568bc6f4b6b07030f58bf9d072ca217f0ff5603 |
PageCount | 6 |
ParticipantIDs | crossref_citationtrail_10_1016_j_chemolab_2017_12_010 crossref_primary_10_1016_j_chemolab_2017_12_010 elsevier_sciencedirect_doi_10_1016_j_chemolab_2017_12_010 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-01-15 |
PublicationDateYYYYMMDD | 2018-01-15 |
PublicationDate_xml | – month: 01 year: 2018 text: 2018-01-15 day: 15 |
PublicationDecade | 2010 |
PublicationTitle | Chemometrics and intelligent laboratory systems |
PublicationYear | 2018 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Corti, Gallina, Cavalli, Cabassi (bib12) 2017; 158 Zhang, Bengio, Liu (bib8) 2017; 61 Pandey, Ge, Stoerger, Schnable (bib2) 2017 Yu, Tang, Wu, Lu (bib6) 2017 Tao, Pan, Li, Zou (bib7) 2015; 12 Gent, Sheppard (bib5) 1992; 3 Gopalakrishnan, Khaitan, Choudhary, Agrawal (bib9) 2017; 157 Zabalza, Ren, Zheng, Zhao, Qing, Yang, Du, Marshall (bib4) 2016; 185 Wang, Huang, Wang, Liu, Zhang (bib1) 2013; 14 Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg, Vanderplas, Passos, Cournapeau, Brucher, Perrot, Duchesnay (bib11) 2011; 12 LeCun, Bengio, Hinton (bib3) 2015; 521 Viscarra Rossel, McGlynn, McBratney (bib13) 2006; 137 Chollet (bib10) 2015 Pedregosa (10.1016/j.chemolab.2017.12.010_bib11) 2011; 12 Gopalakrishnan (10.1016/j.chemolab.2017.12.010_bib9) 2017; 157 Gent (10.1016/j.chemolab.2017.12.010_bib5) 1992; 3 Yu (10.1016/j.chemolab.2017.12.010_bib6) 2017 Wang (10.1016/j.chemolab.2017.12.010_bib1) 2013; 14 Zhang (10.1016/j.chemolab.2017.12.010_bib8) 2017; 61 Zabalza (10.1016/j.chemolab.2017.12.010_bib4) 2016; 185 Corti (10.1016/j.chemolab.2017.12.010_bib12) 2017; 158 Pandey (10.1016/j.chemolab.2017.12.010_bib2) 2017 LeCun (10.1016/j.chemolab.2017.12.010_bib3) 2015; 521 Viscarra Rossel (10.1016/j.chemolab.2017.12.010_bib13) 2006; 137 Tao (10.1016/j.chemolab.2017.12.010_bib7) 2015; 12 Chollet (10.1016/j.chemolab.2017.12.010_bib10) |
References_xml | – volume: 14 start-page: 172 year: 2013 end-page: 183 ident: bib1 article-title: Estimating nitrogen concentration in rape from hyperspectral data at canopy level using support vector machines publication-title: Precis. Agric. – volume: 158 start-page: 38 year: 2017 end-page: 50 ident: bib12 article-title: Hyperspectral imaging of spinach canopy under combined water and nitrogen stress to estimate biomass, water, and nitrogen content publication-title: Biosyst. Eng. – year: 2017 ident: bib6 article-title: Nondestructive freshness discriminating of shrimp using visible/near-infrared hyperspectral imaging technique and deep learning algorithm publication-title: Food Anal. Meth – volume: 12 start-page: 2438 year: 2015 end-page: 2442 ident: bib7 article-title: Unsupervised spectral–spatial feature learning with stacked sparse autoencoder for hyperspectral imagery classification publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 61 start-page: 348 year: 2017 end-page: 360 ident: bib8 article-title: Online and offline handwritten Chinese character recognition: a comprehensive study and new benchmark publication-title: Pattern Recogn. – volume: 157 start-page: 322 year: 2017 end-page: 330 ident: bib9 article-title: Deep convolutional neural networks with transfer learning for computer vision-based data-driven pavement distress detection publication-title: Construct. Build. Mater. – volume: 3 start-page: 109 year: 1992 end-page: 112 ident: bib5 article-title: Special Feature. Predicting time series by a fully connected neural network trained by back propagation publication-title: Comput. Contr. Eng. J. – year: 2015 ident: bib10 article-title: Keras: theano-based deep learning library. Code – volume: 137 start-page: 70 year: 2006 end-page: 82 ident: bib13 article-title: Determining the composition of mineral-organic mixes using UV-vis-NIR diffuse reflectance spectroscopy publication-title: Geoderma – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: bib3 article-title: Deep learning publication-title: Nature – year: 2017 ident: bib2 article-title: High throughput in vivo analysis of plant leaf chemical properties using hyperspectral imaging publication-title: Front. Plant Sci. – volume: 12 start-page: 2825 year: 2011 end-page: 2830 ident: bib11 article-title: Scikit-learn: machine learning in python publication-title: J. Mach. Learn. Res. – volume: 185 start-page: 1 year: 2016 end-page: 10 ident: bib4 article-title: Novel segmented stacked autoencoder for effective dimensionality reduction and feature extraction in hyperspectral imaging publication-title: Neurocomputing – volume: 3 start-page: 109 year: 1992 ident: 10.1016/j.chemolab.2017.12.010_bib5 article-title: Special Feature. Predicting time series by a fully connected neural network trained by back propagation publication-title: Comput. Contr. Eng. J. doi: 10.1049/cce:19920031 – volume: 61 start-page: 348 year: 2017 ident: 10.1016/j.chemolab.2017.12.010_bib8 article-title: Online and offline handwritten Chinese character recognition: a comprehensive study and new benchmark publication-title: Pattern Recogn. doi: 10.1016/j.patcog.2016.08.005 – volume: 137 start-page: 70 year: 2006 ident: 10.1016/j.chemolab.2017.12.010_bib13 article-title: Determining the composition of mineral-organic mixes using UV-vis-NIR diffuse reflectance spectroscopy publication-title: Geoderma doi: 10.1016/j.geoderma.2006.07.004 – volume: 521 start-page: 436 year: 2015 ident: 10.1016/j.chemolab.2017.12.010_bib3 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 12 start-page: 2825 year: 2011 ident: 10.1016/j.chemolab.2017.12.010_bib11 article-title: Scikit-learn: machine learning in python publication-title: J. Mach. Learn. Res. – volume: 157 start-page: 322 year: 2017 ident: 10.1016/j.chemolab.2017.12.010_bib9 article-title: Deep convolutional neural networks with transfer learning for computer vision-based data-driven pavement distress detection publication-title: Construct. Build. Mater. doi: 10.1016/j.conbuildmat.2017.09.110 – volume: 12 start-page: 2438 year: 2015 ident: 10.1016/j.chemolab.2017.12.010_bib7 article-title: Unsupervised spectral–spatial feature learning with stacked sparse autoencoder for hyperspectral imagery classification publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2015.2482520 – volume: 158 start-page: 38 year: 2017 ident: 10.1016/j.chemolab.2017.12.010_bib12 article-title: Hyperspectral imaging of spinach canopy under combined water and nitrogen stress to estimate biomass, water, and nitrogen content publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2017.03.006 – volume: 14 start-page: 172 year: 2013 ident: 10.1016/j.chemolab.2017.12.010_bib1 article-title: Estimating nitrogen concentration in rape from hyperspectral data at canopy level using support vector machines publication-title: Precis. Agric. doi: 10.1007/s11119-012-9285-2 – year: 2017 ident: 10.1016/j.chemolab.2017.12.010_bib2 article-title: High throughput in vivo analysis of plant leaf chemical properties using hyperspectral imaging publication-title: Front. Plant Sci. doi: 10.3389/fpls.2017.01348 – volume: 185 start-page: 1 year: 2016 ident: 10.1016/j.chemolab.2017.12.010_bib4 article-title: Novel segmented stacked autoencoder for effective dimensionality reduction and feature extraction in hyperspectral imaging publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.11.044 – year: 2017 ident: 10.1016/j.chemolab.2017.12.010_bib6 article-title: Nondestructive freshness discriminating of shrimp using visible/near-infrared hyperspectral imaging technique and deep learning algorithm publication-title: Food Anal. Meth – ident: 10.1016/j.chemolab.2017.12.010_bib10 |
SSID | ssj0016941 |
Score | 2.5236197 |
Snippet | Deep-learning-based regression model composed of stacked auto-encoders (SAE) and fully-connected neural network (FNN) was used for the detection and... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 188 |
SubjectTerms | Deep learning Fully-connected neural network Nitrogen concentration Nondestructive detection Oilseed rape Stacked auto-encoders |
Title | Deep-learning-based regression model and hyperspectral imaging for rapid detection of nitrogen concentration in oilseed rape (Brassica napus L.) leaf |
URI | https://dx.doi.org/10.1016/j.chemolab.2017.12.010 |
Volume | 172 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07b9swECaCdGiXIG1TNH0YN3RoB9qiTUrU6LoN3FeWNEA2gc9EQSwLir32X_T_9k6PwAUKeOgokUcRvNPdfcQ9GHtnk-i1Shw3M4EAJQ8Zt1OvuXQiD0Fan7T3HT_O0-Wl_Hqlrg7YYsiFobDKXvd3Or3V1v2bSX-ak7osJxdUR4TcaZGR26sJt0uZkZSPfz2EeQhK1Ozqe-ecZu9kCd-O8VxWiCAthXhl7bUgZdL-y0DtGJ2zY3bUe4sw7zb0lB2E6hl7vBiatD1nvz-FUPO-9cM1J5vkoQnXXXRrBW2jGzCVhxsEnF1eZYMrlqu2OxGgywqNqUsPPmzaqKwK1hHwP2_WKFrgKKux6kvrQomDJW6VvmHqAO8_Nuh7I5uhMvX2Hr6PPwDuJZ6wy7PPPxdL3nda4G6W6Q1qPCNcGlOZmFwHIaILaLmjn2mVaosj0qa2VQ5RaRtzn2RTZxDNxCRG9JlmL9hhta7CSwbe6Ygr2TA1uIZSFhGYd1IpJx3hz1OmhuMtXF-GnLph3BVDvNltMbClILYUYlog4SmbPNDVXSGOvRT5wL3iL5Eq0FrsoX31H7Sv2RN8ohBBLtQbdrhptuEtei4bO2pFc8Qezb98W57_AYZ08UY |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELbQcoBLBbSolNccemgPZpPdOHGOsICW7rKXgsTN8hOCutko7P4U_i_jxFlRqRKHXmONY3mcme9z5kHIdxU5w1mkqRzGSFBym1E1MJwmOs6tTZSJmvuO21k6vk9-PbCHDTLqcmF8WGWw_a1Nb6x1eNIPu9mviqL_29cR8XA6zjzs5cjbN311KtYjm-c3k_Fs_TPB52q2Jb5z6gXeJQo_n-HWzJFEKh_llTU3gz6Z9l8-6p3fud4hnwJghPN2Tbtkw5Z7ZGvU9Wn7TF4vra1o6P7wSL1bMlDbxzbAtYSm1w3I0sATcs42tbLGGYt506AIELVCLavCgLHLJjCrhIUD_NTrBZ4u0D6xsQzVdaHAwQKX6t8hKws_LmqE36hpKGW1eoHp2U_Atbgv5P766m40pqHZAtXDjC_R6MlYpy5NIplzG8dOW3Tezgw5S7nCkUSlqrEPjnHlchNlAy2R0LjIOYRNw33SKxel_UrAaO5wJmUHEudgTCEJMzphTCfaU9ADwrrtFTpUIvcNMf6ILuTsWXRqEV4tIh4IFDwg_bVc1dbi-FAi77Qn_jpVAh3GB7Lf_kP2lGyN726nYnozmxySbRzxEYM0Zkekt6xX9hiBzFKdhIP6BsRc8_c |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep-learning-based+regression+model+and+hyperspectral+imaging+for+rapid+detection+of+nitrogen+concentration+in+oilseed+rape+%28+Brassica+napus+L.+%29+leaf&rft.jtitle=Chemometrics+and+intelligent+laboratory+systems&rft.au=Yu%2C+Xinjie&rft.au=Lu%2C+Huanda&rft.au=Liu%2C+Qiyu&rft.date=2018-01-15&rft.issn=0169-7439&rft.volume=172&rft.spage=188&rft.epage=193&rft_id=info:doi/10.1016%2Fj.chemolab.2017.12.010&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_chemolab_2017_12_010 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-7439&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-7439&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-7439&client=summon |