Deep-learning-based regression model and hyperspectral imaging for rapid detection of nitrogen concentration in oilseed rape (Brassica napus L.) leaf

Deep-learning-based regression model composed of stacked auto-encoders (SAE) and fully-connected neural network (FNN) was used for the detection and quantification of nitrogen (N) concentration in oilseed rape leaf. SAE was applied to extract deep spectral features from visible and near-infrared (38...

Full description

Saved in:
Bibliographic Details
Published inChemometrics and intelligent laboratory systems Vol. 172; pp. 188 - 193
Main Authors Yu, Xinjie, Lu, Huanda, Liu, Qiyu
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.01.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Deep-learning-based regression model composed of stacked auto-encoders (SAE) and fully-connected neural network (FNN) was used for the detection and quantification of nitrogen (N) concentration in oilseed rape leaf. SAE was applied to extract deep spectral features from visible and near-infrared (380–1030 nm) hyperspectral image of oilseed rape leaf, and then these features were used as input data for FNN to predict N concentration. The SAE-FNN model achieved reasonable performance with R2P = 0.903, RMSEP =0 .307% and RPDP = 3.238 for N concentration. Results confirmed the possibility of rapid and nondestructive detecting N concentration in oilseed rape leaf by the combination of hyperspectral imaging technique and deep learning method. •Hyperspectral imaging could non-destructively detect N in oilseed rape leaf.•Deep spectral features were extracted by SAE.•SAE-FNN model was applied to fit the spectral features to N content.
AbstractList Deep-learning-based regression model composed of stacked auto-encoders (SAE) and fully-connected neural network (FNN) was used for the detection and quantification of nitrogen (N) concentration in oilseed rape leaf. SAE was applied to extract deep spectral features from visible and near-infrared (380–1030 nm) hyperspectral image of oilseed rape leaf, and then these features were used as input data for FNN to predict N concentration. The SAE-FNN model achieved reasonable performance with R2P = 0.903, RMSEP =0 .307% and RPDP = 3.238 for N concentration. Results confirmed the possibility of rapid and nondestructive detecting N concentration in oilseed rape leaf by the combination of hyperspectral imaging technique and deep learning method. •Hyperspectral imaging could non-destructively detect N in oilseed rape leaf.•Deep spectral features were extracted by SAE.•SAE-FNN model was applied to fit the spectral features to N content.
Author Liu, Qiyu
Yu, Xinjie
Lu, Huanda
Author_xml – sequence: 1
  givenname: Xinjie
  surname: Yu
  fullname: Yu, Xinjie
  email: xjyu1979@nit.zju.edu.cn
– sequence: 2
  givenname: Huanda
  surname: Lu
  fullname: Lu, Huanda
– sequence: 3
  givenname: Qiyu
  surname: Liu
  fullname: Liu, Qiyu
BookMark eNqFkLtOwzAUhi1UJNrCKyCPMCTYcZqLxACUq1SJBWbLsY9TV6kd2QGpD8L74hRYWDpZ1n--c_lmaGKdBYTOKUkpocXVJpVr2LpONGlGaJnSLCWUHKEprUqWsIzVEzSNhXVS5qw-QbMQNmT853SKvu4B-qQD4a2xbdKIAAp7aD2EYJzFW6egw8IqvN714EMPcvCiw2Yr2ghg7Tz2ojcKKxhiNjJOY2sG71qwWDorwUZkn5gYmi7AOEP0gC_uvIhzpMBW9B8Br9JLHHfRp-hYi1h39vvO0fvjw9vyOVm9Pr0sb1eJZGU1JDUVVBa6yImoK6BUS8izQitWLYqqiUneFA0pCSN6UTW6VqTMpMhoqYnWi4KwObr-6Su9C8GD5tIM-1XjxqbjlPBRMd_wP8V8VMxpxqPiiBf_8N5HMX53GLz5ASEe92nA8yANRFPK-CiRK2cOtfgGmwuf1w
CitedBy_id crossref_primary_10_1016_j_compag_2025_109938
crossref_primary_10_1007_s11356_021_16772_4
crossref_primary_10_1016_j_jfca_2024_106655
crossref_primary_10_3390_s19194065
crossref_primary_10_1016_j_chemolab_2021_104336
crossref_primary_10_1515_opag_2022_0349
crossref_primary_10_1080_01431161_2019_1685721
crossref_primary_10_1109_ACCESS_2019_2917267
crossref_primary_10_1080_00380768_2021_1897479
crossref_primary_10_1111_1750_3841_17050
crossref_primary_10_1016_j_compag_2024_109494
crossref_primary_10_1016_j_jafr_2023_100658
crossref_primary_10_1007_s11104_024_06866_6
crossref_primary_10_1016_j_chemolab_2020_103996
crossref_primary_10_1016_j_foodchem_2021_130668
crossref_primary_10_1016_j_microc_2024_112323
crossref_primary_10_1109_JPROC_2019_2948454
crossref_primary_10_1016_j_foodcont_2024_110763
crossref_primary_10_3390_horticulturae7110489
crossref_primary_10_1016_j_atech_2021_100005
crossref_primary_10_1016_j_chemolab_2022_104520
crossref_primary_10_1016_j_compag_2020_105321
crossref_primary_10_1016_j_jfca_2024_105996
crossref_primary_10_1007_s10462_021_10018_y
crossref_primary_10_1016_j_trac_2022_116804
crossref_primary_10_1016_j_infrared_2021_103863
crossref_primary_10_1007_s12161_023_02444_1
crossref_primary_10_1016_j_chemolab_2019_07_001
crossref_primary_10_1016_j_jfca_2023_105290
crossref_primary_10_3390_ai4030036
crossref_primary_10_3390_agriculture12101739
crossref_primary_10_3390_rs13163241
crossref_primary_10_3390_rs14246366
crossref_primary_10_34133_2022_9761095
crossref_primary_10_3390_plants11050676
crossref_primary_10_1016_j_compag_2023_108577
crossref_primary_10_1016_j_scienta_2024_113739
crossref_primary_10_3389_fpls_2024_1499875
crossref_primary_10_1016_j_foodres_2025_116285
crossref_primary_10_1016_j_compag_2023_107920
crossref_primary_10_1016_j_infrared_2024_105532
crossref_primary_10_3390_agronomy14102290
crossref_primary_10_1007_s11694_023_01892_x
crossref_primary_10_1016_j_chemolab_2021_104354
crossref_primary_10_1016_j_tifs_2021_04_008
crossref_primary_10_1016_j_saa_2022_121641
crossref_primary_10_1109_ACCESS_2019_2951750
crossref_primary_10_3390_app12010458
crossref_primary_10_2174_1570164619666221010100406
crossref_primary_10_1016_j_chemolab_2023_104915
crossref_primary_10_1016_j_infrared_2021_104003
crossref_primary_10_1039_C8RA10335F
crossref_primary_10_1080_01431161_2022_2068359
crossref_primary_10_1038_s41598_019_53206_1
crossref_primary_10_1111_jfpp_16414
crossref_primary_10_1590_1678_992x_2022_0121
crossref_primary_10_3390_jimaging5050052
crossref_primary_10_1007_s11694_024_02856_5
crossref_primary_10_1016_j_compag_2023_108540
crossref_primary_10_1016_j_foodcont_2021_108588
crossref_primary_10_1016_j_aca_2019_06_012
crossref_primary_10_1364_OE_390070
crossref_primary_10_1016_j_postharvbio_2021_111741
crossref_primary_10_1016_j_aiia_2023_06_001
crossref_primary_10_1016_j_chemolab_2021_104283
crossref_primary_10_1016_j_saa_2019_118005
crossref_primary_10_3389_frai_2021_735533
crossref_primary_10_1016_j_chemolab_2021_104287
crossref_primary_10_1016_j_eja_2021_126241
crossref_primary_10_1021_acs_analchem_3c04172
crossref_primary_10_1016_j_saa_2021_120460
crossref_primary_10_1016_j_compag_2022_107084
crossref_primary_10_35633_inmateh_68_08
crossref_primary_10_1016_j_saa_2022_121494
crossref_primary_10_1016_j_trac_2021_116331
crossref_primary_10_1093_gigascience_giaa090
crossref_primary_10_1016_j_foodchem_2020_126503
crossref_primary_10_1080_10408398_2022_2139217
crossref_primary_10_3390_agriculture15060582
crossref_primary_10_1080_10408398_2020_1862045
crossref_primary_10_1016_j_aca_2021_338520
crossref_primary_10_1016_j_compag_2024_108656
Cites_doi 10.1049/cce:19920031
10.1016/j.patcog.2016.08.005
10.1016/j.geoderma.2006.07.004
10.1038/nature14539
10.1016/j.conbuildmat.2017.09.110
10.1109/LGRS.2015.2482520
10.1016/j.biosystemseng.2017.03.006
10.1007/s11119-012-9285-2
10.3389/fpls.2017.01348
10.1016/j.neucom.2015.11.044
ContentType Journal Article
Copyright 2017 Elsevier B.V.
Copyright_xml – notice: 2017 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.chemolab.2017.12.010
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1873-3239
EndPage 193
ExternalDocumentID 10_1016_j_chemolab_2017_12_010
S0169743917306780
GroupedDBID ---
--K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABAOU
ABFRF
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADECG
ADEZE
ADGUI
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M36
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SCH
SDF
SDG
SDP
SES
SPC
SPCBC
SSK
SSW
SSZ
T5K
UNMZH
YK3
~02
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AJQLL
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
HMU
HVGLF
HZ~
R2-
SCB
SEW
SSH
WUQ
XPP
ID FETCH-LOGICAL-c378t-91a1c6f640a98e11fce426fd38568bc6f4b6b07030f58bf9d072ca217f0ff5603
IEDL.DBID .~1
ISSN 0169-7439
IngestDate Thu Apr 24 23:09:58 EDT 2025
Tue Jul 01 03:17:12 EDT 2025
Fri Feb 23 02:33:09 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Oilseed rape
Nitrogen concentration
Nondestructive detection
Stacked auto-encoders
Fully-connected neural network
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c378t-91a1c6f640a98e11fce426fd38568bc6f4b6b07030f58bf9d072ca217f0ff5603
PageCount 6
ParticipantIDs crossref_citationtrail_10_1016_j_chemolab_2017_12_010
crossref_primary_10_1016_j_chemolab_2017_12_010
elsevier_sciencedirect_doi_10_1016_j_chemolab_2017_12_010
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-01-15
PublicationDateYYYYMMDD 2018-01-15
PublicationDate_xml – month: 01
  year: 2018
  text: 2018-01-15
  day: 15
PublicationDecade 2010
PublicationTitle Chemometrics and intelligent laboratory systems
PublicationYear 2018
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Corti, Gallina, Cavalli, Cabassi (bib12) 2017; 158
Zhang, Bengio, Liu (bib8) 2017; 61
Pandey, Ge, Stoerger, Schnable (bib2) 2017
Yu, Tang, Wu, Lu (bib6) 2017
Tao, Pan, Li, Zou (bib7) 2015; 12
Gent, Sheppard (bib5) 1992; 3
Gopalakrishnan, Khaitan, Choudhary, Agrawal (bib9) 2017; 157
Zabalza, Ren, Zheng, Zhao, Qing, Yang, Du, Marshall (bib4) 2016; 185
Wang, Huang, Wang, Liu, Zhang (bib1) 2013; 14
Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg, Vanderplas, Passos, Cournapeau, Brucher, Perrot, Duchesnay (bib11) 2011; 12
LeCun, Bengio, Hinton (bib3) 2015; 521
Viscarra Rossel, McGlynn, McBratney (bib13) 2006; 137
Chollet (bib10) 2015
Pedregosa (10.1016/j.chemolab.2017.12.010_bib11) 2011; 12
Gopalakrishnan (10.1016/j.chemolab.2017.12.010_bib9) 2017; 157
Gent (10.1016/j.chemolab.2017.12.010_bib5) 1992; 3
Yu (10.1016/j.chemolab.2017.12.010_bib6) 2017
Wang (10.1016/j.chemolab.2017.12.010_bib1) 2013; 14
Zhang (10.1016/j.chemolab.2017.12.010_bib8) 2017; 61
Zabalza (10.1016/j.chemolab.2017.12.010_bib4) 2016; 185
Corti (10.1016/j.chemolab.2017.12.010_bib12) 2017; 158
Pandey (10.1016/j.chemolab.2017.12.010_bib2) 2017
LeCun (10.1016/j.chemolab.2017.12.010_bib3) 2015; 521
Viscarra Rossel (10.1016/j.chemolab.2017.12.010_bib13) 2006; 137
Tao (10.1016/j.chemolab.2017.12.010_bib7) 2015; 12
Chollet (10.1016/j.chemolab.2017.12.010_bib10)
References_xml – volume: 14
  start-page: 172
  year: 2013
  end-page: 183
  ident: bib1
  article-title: Estimating nitrogen concentration in rape from hyperspectral data at canopy level using support vector machines
  publication-title: Precis. Agric.
– volume: 158
  start-page: 38
  year: 2017
  end-page: 50
  ident: bib12
  article-title: Hyperspectral imaging of spinach canopy under combined water and nitrogen stress to estimate biomass, water, and nitrogen content
  publication-title: Biosyst. Eng.
– year: 2017
  ident: bib6
  article-title: Nondestructive freshness discriminating of shrimp using visible/near-infrared hyperspectral imaging technique and deep learning algorithm
  publication-title: Food Anal. Meth
– volume: 12
  start-page: 2438
  year: 2015
  end-page: 2442
  ident: bib7
  article-title: Unsupervised spectral–spatial feature learning with stacked sparse autoencoder for hyperspectral imagery classification
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 61
  start-page: 348
  year: 2017
  end-page: 360
  ident: bib8
  article-title: Online and offline handwritten Chinese character recognition: a comprehensive study and new benchmark
  publication-title: Pattern Recogn.
– volume: 157
  start-page: 322
  year: 2017
  end-page: 330
  ident: bib9
  article-title: Deep convolutional neural networks with transfer learning for computer vision-based data-driven pavement distress detection
  publication-title: Construct. Build. Mater.
– volume: 3
  start-page: 109
  year: 1992
  end-page: 112
  ident: bib5
  article-title: Special Feature. Predicting time series by a fully connected neural network trained by back propagation
  publication-title: Comput. Contr. Eng. J.
– year: 2015
  ident: bib10
  article-title: Keras: theano-based deep learning library. Code
– volume: 137
  start-page: 70
  year: 2006
  end-page: 82
  ident: bib13
  article-title: Determining the composition of mineral-organic mixes using UV-vis-NIR diffuse reflectance spectroscopy
  publication-title: Geoderma
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: bib3
  article-title: Deep learning
  publication-title: Nature
– year: 2017
  ident: bib2
  article-title: High throughput in vivo analysis of plant leaf chemical properties using hyperspectral imaging
  publication-title: Front. Plant Sci.
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: bib11
  article-title: Scikit-learn: machine learning in python
  publication-title: J. Mach. Learn. Res.
– volume: 185
  start-page: 1
  year: 2016
  end-page: 10
  ident: bib4
  article-title: Novel segmented stacked autoencoder for effective dimensionality reduction and feature extraction in hyperspectral imaging
  publication-title: Neurocomputing
– volume: 3
  start-page: 109
  year: 1992
  ident: 10.1016/j.chemolab.2017.12.010_bib5
  article-title: Special Feature. Predicting time series by a fully connected neural network trained by back propagation
  publication-title: Comput. Contr. Eng. J.
  doi: 10.1049/cce:19920031
– volume: 61
  start-page: 348
  year: 2017
  ident: 10.1016/j.chemolab.2017.12.010_bib8
  article-title: Online and offline handwritten Chinese character recognition: a comprehensive study and new benchmark
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2016.08.005
– volume: 137
  start-page: 70
  year: 2006
  ident: 10.1016/j.chemolab.2017.12.010_bib13
  article-title: Determining the composition of mineral-organic mixes using UV-vis-NIR diffuse reflectance spectroscopy
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2006.07.004
– volume: 521
  start-page: 436
  year: 2015
  ident: 10.1016/j.chemolab.2017.12.010_bib3
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 12
  start-page: 2825
  year: 2011
  ident: 10.1016/j.chemolab.2017.12.010_bib11
  article-title: Scikit-learn: machine learning in python
  publication-title: J. Mach. Learn. Res.
– volume: 157
  start-page: 322
  year: 2017
  ident: 10.1016/j.chemolab.2017.12.010_bib9
  article-title: Deep convolutional neural networks with transfer learning for computer vision-based data-driven pavement distress detection
  publication-title: Construct. Build. Mater.
  doi: 10.1016/j.conbuildmat.2017.09.110
– volume: 12
  start-page: 2438
  year: 2015
  ident: 10.1016/j.chemolab.2017.12.010_bib7
  article-title: Unsupervised spectral–spatial feature learning with stacked sparse autoencoder for hyperspectral imagery classification
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2015.2482520
– volume: 158
  start-page: 38
  year: 2017
  ident: 10.1016/j.chemolab.2017.12.010_bib12
  article-title: Hyperspectral imaging of spinach canopy under combined water and nitrogen stress to estimate biomass, water, and nitrogen content
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2017.03.006
– volume: 14
  start-page: 172
  year: 2013
  ident: 10.1016/j.chemolab.2017.12.010_bib1
  article-title: Estimating nitrogen concentration in rape from hyperspectral data at canopy level using support vector machines
  publication-title: Precis. Agric.
  doi: 10.1007/s11119-012-9285-2
– year: 2017
  ident: 10.1016/j.chemolab.2017.12.010_bib2
  article-title: High throughput in vivo analysis of plant leaf chemical properties using hyperspectral imaging
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2017.01348
– volume: 185
  start-page: 1
  year: 2016
  ident: 10.1016/j.chemolab.2017.12.010_bib4
  article-title: Novel segmented stacked autoencoder for effective dimensionality reduction and feature extraction in hyperspectral imaging
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.11.044
– year: 2017
  ident: 10.1016/j.chemolab.2017.12.010_bib6
  article-title: Nondestructive freshness discriminating of shrimp using visible/near-infrared hyperspectral imaging technique and deep learning algorithm
  publication-title: Food Anal. Meth
– ident: 10.1016/j.chemolab.2017.12.010_bib10
SSID ssj0016941
Score 2.5236197
Snippet Deep-learning-based regression model composed of stacked auto-encoders (SAE) and fully-connected neural network (FNN) was used for the detection and...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 188
SubjectTerms Deep learning
Fully-connected neural network
Nitrogen concentration
Nondestructive detection
Oilseed rape
Stacked auto-encoders
Title Deep-learning-based regression model and hyperspectral imaging for rapid detection of nitrogen concentration in oilseed rape (Brassica napus L.) leaf
URI https://dx.doi.org/10.1016/j.chemolab.2017.12.010
Volume 172
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07b9swECaCdGiXIG1TNH0YN3RoB9qiTUrU6LoN3FeWNEA2gc9EQSwLir32X_T_9k6PwAUKeOgokUcRvNPdfcQ9GHtnk-i1Shw3M4EAJQ8Zt1OvuXQiD0Fan7T3HT_O0-Wl_Hqlrg7YYsiFobDKXvd3Or3V1v2bSX-ak7osJxdUR4TcaZGR26sJt0uZkZSPfz2EeQhK1Ozqe-ecZu9kCd-O8VxWiCAthXhl7bUgZdL-y0DtGJ2zY3bUe4sw7zb0lB2E6hl7vBiatD1nvz-FUPO-9cM1J5vkoQnXXXRrBW2jGzCVhxsEnF1eZYMrlqu2OxGgywqNqUsPPmzaqKwK1hHwP2_WKFrgKKux6kvrQomDJW6VvmHqAO8_Nuh7I5uhMvX2Hr6PPwDuJZ6wy7PPPxdL3nda4G6W6Q1qPCNcGlOZmFwHIaILaLmjn2mVaosj0qa2VQ5RaRtzn2RTZxDNxCRG9JlmL9hhta7CSwbe6Ygr2TA1uIZSFhGYd1IpJx3hz1OmhuMtXF-GnLph3BVDvNltMbClILYUYlog4SmbPNDVXSGOvRT5wL3iL5Eq0FrsoX31H7Sv2RN8ohBBLtQbdrhptuEtei4bO2pFc8Qezb98W57_AYZ08UY
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELbQcoBLBbSolNccemgPZpPdOHGOsICW7rKXgsTN8hOCutko7P4U_i_jxFlRqRKHXmONY3mcme9z5kHIdxU5w1mkqRzGSFBym1E1MJwmOs6tTZSJmvuO21k6vk9-PbCHDTLqcmF8WGWw_a1Nb6x1eNIPu9mviqL_29cR8XA6zjzs5cjbN311KtYjm-c3k_Fs_TPB52q2Jb5z6gXeJQo_n-HWzJFEKh_llTU3gz6Z9l8-6p3fud4hnwJghPN2Tbtkw5Z7ZGvU9Wn7TF4vra1o6P7wSL1bMlDbxzbAtYSm1w3I0sATcs42tbLGGYt506AIELVCLavCgLHLJjCrhIUD_NTrBZ4u0D6xsQzVdaHAwQKX6t8hKws_LmqE36hpKGW1eoHp2U_Atbgv5P766m40pqHZAtXDjC_R6MlYpy5NIplzG8dOW3Tezgw5S7nCkUSlqrEPjnHlchNlAy2R0LjIOYRNw33SKxel_UrAaO5wJmUHEudgTCEJMzphTCfaU9ADwrrtFTpUIvcNMf6ILuTsWXRqEV4tIh4IFDwg_bVc1dbi-FAi77Qn_jpVAh3GB7Lf_kP2lGyN726nYnozmxySbRzxEYM0Zkekt6xX9hiBzFKdhIP6BsRc8_c
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep-learning-based+regression+model+and+hyperspectral+imaging+for+rapid+detection+of+nitrogen+concentration+in+oilseed+rape+%28+Brassica+napus+L.+%29+leaf&rft.jtitle=Chemometrics+and+intelligent+laboratory+systems&rft.au=Yu%2C+Xinjie&rft.au=Lu%2C+Huanda&rft.au=Liu%2C+Qiyu&rft.date=2018-01-15&rft.issn=0169-7439&rft.volume=172&rft.spage=188&rft.epage=193&rft_id=info:doi/10.1016%2Fj.chemolab.2017.12.010&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_chemolab_2017_12_010
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-7439&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-7439&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-7439&client=summon