On the stability of two functional equations for $ (S, N) $-implications

The iterative functional equation $ \alpha\rightarrow(\alpha\rightarrow \beta) = \alpha\rightarrow \beta $ and the law of importation $ (\alpha\wedge \beta)\rightarrow \gamma = \alpha\rightarrow (\beta\rightarrow \gamma) $ are two tautologies in classical logic. In fuzzy logics, they are two importa...

Full description

Saved in:
Bibliographic Details
Published inAIMS mathematics Vol. 6; no. 2; pp. 1822 - 1832
Main Authors Li, Sizhao, Han, Xinyu, Lang, Dapeng, Dai, Songsong
Format Journal Article
LanguageEnglish
Published AIMS Press 01.01.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The iterative functional equation $ \alpha\rightarrow(\alpha\rightarrow \beta) = \alpha\rightarrow \beta $ and the law of importation $ (\alpha\wedge \beta)\rightarrow \gamma = \alpha\rightarrow (\beta\rightarrow \gamma) $ are two tautologies in classical logic. In fuzzy logics, they are two important properties, and are respectively formulated as $ I(\alpha, \beta) = I(\alpha, I(\alpha, \beta)) $ and $ I(T(\alpha, \beta), \gamma) = I(\alpha, I(\beta, \gamma)) $ where $ I $ is a fuzzy implication and $ T $ is a $ t $-norm. Over the past several years, solutions to these two functional equations involving different classes of fuzzy implications have been studied. However, there are no results about stability study of fuzzy functional equations involving fuzzy implication. This paper discusses fuzzy implications that do not strictly satisfying these equations, but approximately satisfy these equations. Then we establish the Hyers-Ulam stability of the iterative functional equation involving the $ (S, N) $-implication, where the $ (S, N) $-implication is a common class of fuzzy implications generated by a continuous $ t $-conorm $ S $ and a continuous fuzzy negation $ N $. Furthermore, given a fixed $ t $-norm (the minimum $ t $-norm or the product $ t $-norm) the Hyers-Ulam stability of the law of importation involving the $ (S, N) $-implication is studied.
AbstractList The iterative functional equation $ \alpha\rightarrow(\alpha\rightarrow \beta) = \alpha\rightarrow \beta $ and the law of importation $ (\alpha\wedge \beta)\rightarrow \gamma = \alpha\rightarrow (\beta\rightarrow \gamma) $ are two tautologies in classical logic. In fuzzy logics, they are two important properties, and are respectively formulated as $ I(\alpha, \beta) = I(\alpha, I(\alpha, \beta)) $ and $ I(T(\alpha, \beta), \gamma) = I(\alpha, I(\beta, \gamma)) $ where $ I $ is a fuzzy implication and $ T $ is a $ t $-norm. Over the past several years, solutions to these two functional equations involving different classes of fuzzy implications have been studied. However, there are no results about stability study of fuzzy functional equations involving fuzzy implication. This paper discusses fuzzy implications that do not strictly satisfying these equations, but approximately satisfy these equations. Then we establish the Hyers-Ulam stability of the iterative functional equation involving the $ (S, N) $-implication, where the $ (S, N) $-implication is a common class of fuzzy implications generated by a continuous $ t $-conorm $ S $ and a continuous fuzzy negation $ N $. Furthermore, given a fixed $ t $-norm (the minimum $ t $-norm or the product $ t $-norm) the Hyers-Ulam stability of the law of importation involving the $ (S, N) $-implication is studied.
Author Lang, Dapeng
Dai, Songsong
Han, Xinyu
Li, Sizhao
Author_xml – sequence: 1
  givenname: Sizhao
  surname: Li
  fullname: Li, Sizhao
– sequence: 2
  givenname: Xinyu
  surname: Han
  fullname: Han, Xinyu
– sequence: 3
  givenname: Dapeng
  surname: Lang
  fullname: Lang, Dapeng
– sequence: 4
  givenname: Songsong
  surname: Dai
  fullname: Dai, Songsong
BookMark eNptkE1LAzEQhoNUsNbe_AE59KDQrfncZI9S1ArFHtRzyGYTm7Ld1GyK9N-7_UBEPM0w884zM-8l6DWhsQBcYzShBWV3a52WE4IIxhidgT5hgmZ5IWXvV34Bhm27QqhTEUYE64PZooFpaWGbdOlrn3YwOJi-AnTbxiQfGl1D-7nV-7SFLkQ4gjevY_hyC0eZX29qb469K3DudN3a4SkOwPvjw9t0ls0XT8_T-3lmqJApK1BJi7zKOa1YxbHg1hGTO86FwWWphUa8EoJ3t-XYUlZagUvCc4KEMQJZRwfg-citgl6pTfRrHXcqaK8OhRA_lI7Jm9oq4ySW3SKKC84Q1rrgpiIaU1ZRySTrWOMjy8TQttG6Hx5Gam-q2puqTqZ2cvJHbnw6fJ-i9vX_Q9-iNHpW
CitedBy_id crossref_primary_10_37394_23209_2023_20_15
crossref_primary_10_1016_j_engappai_2024_108468
ContentType Journal Article
CorporateAuthor College of Computer Science and Technology, Harbin Engineering University, Harbin 150000, China
School of Electronics and Information Engineering, Taizhou University, Taizhou 318000, China
CorporateAuthor_xml – name: College of Computer Science and Technology, Harbin Engineering University, Harbin 150000, China
– name: School of Electronics and Information Engineering, Taizhou University, Taizhou 318000, China
DBID AAYXX
CITATION
DOA
DOI 10.3934/math.2021110
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2473-6988
EndPage 1832
ExternalDocumentID oai_doaj_org_article_cf81853d3195401aa95cd2a134d38484
10_3934_math_2021110
GroupedDBID AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
CITATION
EBS
FRJ
GROUPED_DOAJ
IAO
ITC
M~E
OK1
RAN
ID FETCH-LOGICAL-c378t-90b396d653d4d5175ef2c6f557c1bba7a05d77527461e34be71b256207cc70ef3
IEDL.DBID DOA
ISSN 2473-6988
IngestDate Wed Aug 27 01:30:29 EDT 2025
Tue Jul 01 03:56:47 EDT 2025
Thu Apr 24 23:03:15 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c378t-90b396d653d4d5175ef2c6f557c1bba7a05d77527461e34be71b256207cc70ef3
OpenAccessLink https://doaj.org/article/cf81853d3195401aa95cd2a134d38484
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_cf81853d3195401aa95cd2a134d38484
crossref_primary_10_3934_math_2021110
crossref_citationtrail_10_3934_math_2021110
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationTitle AIMS mathematics
PublicationYear 2021
Publisher AIMS Press
Publisher_xml – name: AIMS Press
SSID ssj0002124274
Score 2.1386728
Snippet The iterative functional equation $ \alpha\rightarrow(\alpha\rightarrow \beta) = \alpha\rightarrow \beta $ and the law of importation $ (\alpha\wedge...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 1822
SubjectTerms (s,n)-implication
functional equations
fuzzy implications
iterative boolean-like law
law of importation
stability
Title On the stability of two functional equations for $ (S, N) $-implications
URI https://doaj.org/article/cf81853d3195401aa95cd2a134d38484
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6yJz2IT1xf5KCgaNm2SZrmqIvLIrgedGFvJa-CIN3VrYj_3pmmLr2IF48tQ0m-afPNJNNvCDlziWfS5jzyQJ94zJhHRsdxlMJHznNWilw31RaTbDzl9zMx67T6wpqwIA8cgBvYsqEUx1CaLE60VsK6VCeMO5bzvFECBc7rJFO4BsOCzCHfCpXuTDE-gPgPzx4g38GfZTsc1JHqbzhltEU222CQ3oRBbJM1X-2QjYeVkupylwwfKwqXFIK4poz1i85LWn_OKRJS2Mej_i3odS8pRKD04ul6chm9dCrF98h0dPc8HEdt44PIMpnXkYoNU5nLYNrcCSB4X6Y2K4WQNjFGSx0LJ6WACWYANTdeJgZClzSW1srYl2yf9Kp55Q8IhQQQJftQ00dxLpWBfEh55bRmXGtp-uTqB4rCtqrg2JzitYDsAIErELiiBa5PzlfWi6CG8YvdLaK6skEN6-YGeLZoPVv85dnD_3jIEVnHMYVNk2PSq98__AmEEbU5bd6YbzGGwj8
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+stability+of+two+functional+equations+for+%28S%2CN%29-implications&rft.jtitle=AIMS+mathematics&rft.au=Sizhao+Li&rft.au=Xinyu+Han&rft.au=Dapeng+Lang&rft.au=Songsong+Dai&rft.date=2021-01-01&rft.pub=AIMS+Press&rft.eissn=2473-6988&rft.volume=6&rft.issue=2&rft.spage=1822&rft.epage=1832&rft_id=info:doi/10.3934%2Fmath.2021110&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_cf81853d3195401aa95cd2a134d38484
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon