On the stability of two functional equations for $ (S, N) $-implications
The iterative functional equation $ \alpha\rightarrow(\alpha\rightarrow \beta) = \alpha\rightarrow \beta $ and the law of importation $ (\alpha\wedge \beta)\rightarrow \gamma = \alpha\rightarrow (\beta\rightarrow \gamma) $ are two tautologies in classical logic. In fuzzy logics, they are two importa...
Saved in:
Published in | AIMS mathematics Vol. 6; no. 2; pp. 1822 - 1832 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
AIMS Press
01.01.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The iterative functional equation $ \alpha\rightarrow(\alpha\rightarrow \beta) = \alpha\rightarrow \beta $ and the law of importation $ (\alpha\wedge \beta)\rightarrow \gamma = \alpha\rightarrow (\beta\rightarrow \gamma) $ are two tautologies in classical logic. In fuzzy logics, they are two important properties, and are respectively formulated as $ I(\alpha, \beta) = I(\alpha, I(\alpha, \beta)) $ and $ I(T(\alpha, \beta), \gamma) = I(\alpha, I(\beta, \gamma)) $ where $ I $ is a fuzzy implication and $ T $ is a $ t $-norm. Over the past several years, solutions to these two functional equations involving different classes of fuzzy implications have been studied. However, there are no results about stability study of fuzzy functional equations involving fuzzy implication. This paper discusses fuzzy implications that do not strictly satisfying these equations, but approximately satisfy these equations. Then we establish the Hyers-Ulam stability of the iterative functional equation involving the $ (S, N) $-implication, where the $ (S, N) $-implication is a common class of fuzzy implications generated by a continuous $ t $-conorm $ S $ and a continuous fuzzy negation $ N $. Furthermore, given a fixed $ t $-norm (the minimum $ t $-norm or the product $ t $-norm) the Hyers-Ulam stability of the law of importation involving the $ (S, N) $-implication is studied. |
---|---|
AbstractList | The iterative functional equation $ \alpha\rightarrow(\alpha\rightarrow \beta) = \alpha\rightarrow \beta $ and the law of importation $ (\alpha\wedge \beta)\rightarrow \gamma = \alpha\rightarrow (\beta\rightarrow \gamma) $ are two tautologies in classical logic. In fuzzy logics, they are two important properties, and are respectively formulated as $ I(\alpha, \beta) = I(\alpha, I(\alpha, \beta)) $ and $ I(T(\alpha, \beta), \gamma) = I(\alpha, I(\beta, \gamma)) $ where $ I $ is a fuzzy implication and $ T $ is a $ t $-norm. Over the past several years, solutions to these two functional equations involving different classes of fuzzy implications have been studied. However, there are no results about stability study of fuzzy functional equations involving fuzzy implication. This paper discusses fuzzy implications that do not strictly satisfying these equations, but approximately satisfy these equations. Then we establish the Hyers-Ulam stability of the iterative functional equation involving the $ (S, N) $-implication, where the $ (S, N) $-implication is a common class of fuzzy implications generated by a continuous $ t $-conorm $ S $ and a continuous fuzzy negation $ N $. Furthermore, given a fixed $ t $-norm (the minimum $ t $-norm or the product $ t $-norm) the Hyers-Ulam stability of the law of importation involving the $ (S, N) $-implication is studied. |
Author | Lang, Dapeng Dai, Songsong Han, Xinyu Li, Sizhao |
Author_xml | – sequence: 1 givenname: Sizhao surname: Li fullname: Li, Sizhao – sequence: 2 givenname: Xinyu surname: Han fullname: Han, Xinyu – sequence: 3 givenname: Dapeng surname: Lang fullname: Lang, Dapeng – sequence: 4 givenname: Songsong surname: Dai fullname: Dai, Songsong |
BookMark | eNptkE1LAzEQhoNUsNbe_AE59KDQrfncZI9S1ArFHtRzyGYTm7Ld1GyK9N-7_UBEPM0w884zM-8l6DWhsQBcYzShBWV3a52WE4IIxhidgT5hgmZ5IWXvV34Bhm27QqhTEUYE64PZooFpaWGbdOlrn3YwOJi-AnTbxiQfGl1D-7nV-7SFLkQ4gjevY_hyC0eZX29qb469K3DudN3a4SkOwPvjw9t0ls0XT8_T-3lmqJApK1BJi7zKOa1YxbHg1hGTO86FwWWphUa8EoJ3t-XYUlZagUvCc4KEMQJZRwfg-citgl6pTfRrHXcqaK8OhRA_lI7Jm9oq4ySW3SKKC84Q1rrgpiIaU1ZRySTrWOMjy8TQttG6Hx5Gam-q2puqTqZ2cvJHbnw6fJ-i9vX_Q9-iNHpW |
CitedBy_id | crossref_primary_10_37394_23209_2023_20_15 crossref_primary_10_1016_j_engappai_2024_108468 |
ContentType | Journal Article |
CorporateAuthor | College of Computer Science and Technology, Harbin Engineering University, Harbin 150000, China School of Electronics and Information Engineering, Taizhou University, Taizhou 318000, China |
CorporateAuthor_xml | – name: College of Computer Science and Technology, Harbin Engineering University, Harbin 150000, China – name: School of Electronics and Information Engineering, Taizhou University, Taizhou 318000, China |
DBID | AAYXX CITATION DOA |
DOI | 10.3934/math.2021110 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2473-6988 |
EndPage | 1832 |
ExternalDocumentID | oai_doaj_org_article_cf81853d3195401aa95cd2a134d38484 10_3934_math_2021110 |
GroupedDBID | AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV CITATION EBS FRJ GROUPED_DOAJ IAO ITC M~E OK1 RAN |
ID | FETCH-LOGICAL-c378t-90b396d653d4d5175ef2c6f557c1bba7a05d77527461e34be71b256207cc70ef3 |
IEDL.DBID | DOA |
ISSN | 2473-6988 |
IngestDate | Wed Aug 27 01:30:29 EDT 2025 Tue Jul 01 03:56:47 EDT 2025 Thu Apr 24 23:03:15 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c378t-90b396d653d4d5175ef2c6f557c1bba7a05d77527461e34be71b256207cc70ef3 |
OpenAccessLink | https://doaj.org/article/cf81853d3195401aa95cd2a134d38484 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_cf81853d3195401aa95cd2a134d38484 crossref_primary_10_3934_math_2021110 crossref_citationtrail_10_3934_math_2021110 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-01 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | AIMS mathematics |
PublicationYear | 2021 |
Publisher | AIMS Press |
Publisher_xml | – name: AIMS Press |
SSID | ssj0002124274 |
Score | 2.1386728 |
Snippet | The iterative functional equation $ \alpha\rightarrow(\alpha\rightarrow \beta) = \alpha\rightarrow \beta $ and the law of importation $ (\alpha\wedge... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
StartPage | 1822 |
SubjectTerms | (s,n)-implication functional equations fuzzy implications iterative boolean-like law law of importation stability |
Title | On the stability of two functional equations for $ (S, N) $-implications |
URI | https://doaj.org/article/cf81853d3195401aa95cd2a134d38484 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6yJz2IT1xf5KCgaNm2SZrmqIvLIrgedGFvJa-CIN3VrYj_3pmmLr2IF48tQ0m-afPNJNNvCDlziWfS5jzyQJ94zJhHRsdxlMJHznNWilw31RaTbDzl9zMx67T6wpqwIA8cgBvYsqEUx1CaLE60VsK6VCeMO5bzvFECBc7rJFO4BsOCzCHfCpXuTDE-gPgPzx4g38GfZTsc1JHqbzhltEU222CQ3oRBbJM1X-2QjYeVkupylwwfKwqXFIK4poz1i85LWn_OKRJS2Mej_i3odS8pRKD04ul6chm9dCrF98h0dPc8HEdt44PIMpnXkYoNU5nLYNrcCSB4X6Y2K4WQNjFGSx0LJ6WACWYANTdeJgZClzSW1srYl2yf9Kp55Q8IhQQQJftQ00dxLpWBfEh55bRmXGtp-uTqB4rCtqrg2JzitYDsAIErELiiBa5PzlfWi6CG8YvdLaK6skEN6-YGeLZoPVv85dnD_3jIEVnHMYVNk2PSq98__AmEEbU5bd6YbzGGwj8 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+stability+of+two+functional+equations+for+%28S%2CN%29-implications&rft.jtitle=AIMS+mathematics&rft.au=Sizhao+Li&rft.au=Xinyu+Han&rft.au=Dapeng+Lang&rft.au=Songsong+Dai&rft.date=2021-01-01&rft.pub=AIMS+Press&rft.eissn=2473-6988&rft.volume=6&rft.issue=2&rft.spage=1822&rft.epage=1832&rft_id=info:doi/10.3934%2Fmath.2021110&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_cf81853d3195401aa95cd2a134d38484 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon |