Short- and long-term effects of oral vancomycin on the human intestinal microbiota

Oral vancomycin remains the mainstay of therapy for severe infections produced by Clostridium difficile, the most prevalent cause of healthcare-associated infectious diarrhoea in developed countries. However, its short- and long-term effects on the human intestinal microbiota remain largely unknown....

Full description

Saved in:
Bibliographic Details
Published inJournal of antimicrobial chemotherapy Vol. 72; no. 1; pp. 128 - 136
Main Authors Isaac, Sandrine, Scher, Jose U., Djukovic, Ana, Jiménez, Nuria, Littman, Dan R., Abramson, Steven B., Pamer, Eric G., Ubeda, Carles
Format Journal Article
LanguageEnglish
Published England Oxford University Press 01.01.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Oral vancomycin remains the mainstay of therapy for severe infections produced by Clostridium difficile, the most prevalent cause of healthcare-associated infectious diarrhoea in developed countries. However, its short- and long-term effects on the human intestinal microbiota remain largely unknown. We utilized high-throughput sequencing to analyse the effects of vancomycin on the faecal human microbiota up to 22 weeks post-antibiotic cessation. The clinical relevance of the observed microbiota perturbations was studied in mice. During vancomycin therapy, most intestinal microbiota genera and operational taxonomic units (OTUs) were depleted in all analysed subjects, including all baseline OTUs from the phylum Bacteroidetes. This was accompanied by a vast expansion of genera associated with infections, including Klebsiella and Escherichia/Shigella. Following antibiotic cessation, marked differences in microbiota resilience were observed among subjects. While some individuals recovered a microbiota close to baseline composition, in others, up to 89% of abundant OTUs could no longer be detected. The clinical relevance of the observed microbiota changes was further demonstrated in mice, which developed analogous microbiota alterations. During vancomycin treatment, mice were highly susceptible to intestinal colonization by an antibiotic-resistant pathogen and, upon antibiotic cessation, a less-resilient microbiota allowed higher levels of pathogen colonization. Oral vancomycin induces drastic and consistent changes in the human intestinal microbiota. Upon vancomycin cessation, the microbiota recovery rate varied considerably among subjects, which could influence, as validated in mice, the level of susceptibility to pathogen intestinal colonization. Our results demonstrate the negative long-term effects of vancomycin, which should be considered as a fundamental aspect of the cost-benefit equation for antibiotic prescription.
AbstractList BACKGROUNDOral vancomycin remains the mainstay of therapy for severe infections produced by Clostridium difficile, the most prevalent cause of healthcare-associated infectious diarrhoea in developed countries. However, its short- and long-term effects on the human intestinal microbiota remain largely unknown.METHODSWe utilized high-throughput sequencing to analyse the effects of vancomycin on the faecal human microbiota up to 22 weeks post-antibiotic cessation. The clinical relevance of the observed microbiota perturbations was studied in mice.RESULTSDuring vancomycin therapy, most intestinal microbiota genera and operational taxonomic units (OTUs) were depleted in all analysed subjects, including all baseline OTUs from the phylum Bacteroidetes. This was accompanied by a vast expansion of genera associated with infections, including Klebsiella and Escherichia/Shigella. Following antibiotic cessation, marked differences in microbiota resilience were observed among subjects. While some individuals recovered a microbiota close to baseline composition, in others, up to 89% of abundant OTUs could no longer be detected. The clinical relevance of the observed microbiota changes was further demonstrated in mice, which developed analogous microbiota alterations. During vancomycin treatment, mice were highly susceptible to intestinal colonization by an antibiotic-resistant pathogen and, upon antibiotic cessation, a less-resilient microbiota allowed higher levels of pathogen colonization.CONCLUSIONSOral vancomycin induces drastic and consistent changes in the human intestinal microbiota. Upon vancomycin cessation, the microbiota recovery rate varied considerably among subjects, which could influence, as validated in mice, the level of susceptibility to pathogen intestinal colonization. Our results demonstrate the negative long-term effects of vancomycin, which should be considered as a fundamental aspect of the cost-benefit equation for antibiotic prescription.
Oral vancomycin remains the mainstay of therapy for severe infections produced by Clostridium difficile, the most prevalent cause of healthcare-associated infectious diarrhoea in developed countries. However, its short- and long-term effects on the human intestinal microbiota remain largely unknown. We utilized high-throughput sequencing to analyse the effects of vancomycin on the faecal human microbiota up to 22 weeks post-antibiotic cessation. The clinical relevance of the observed microbiota perturbations was studied in mice. During vancomycin therapy, most intestinal microbiota genera and operational taxonomic units (OTUs) were depleted in all analysed subjects, including all baseline OTUs from the phylum Bacteroidetes. This was accompanied by a vast expansion of genera associated with infections, including Klebsiella and Escherichia/Shigella. Following antibiotic cessation, marked differences in microbiota resilience were observed among subjects. While some individuals recovered a microbiota close to baseline composition, in others, up to 89% of abundant OTUs could no longer be detected. The clinical relevance of the observed microbiota changes was further demonstrated in mice, which developed analogous microbiota alterations. During vancomycin treatment, mice were highly susceptible to intestinal colonization by an antibiotic-resistant pathogen and, upon antibiotic cessation, a less-resilient microbiota allowed higher levels of pathogen colonization. Oral vancomycin induces drastic and consistent changes in the human intestinal microbiota. Upon vancomycin cessation, the microbiota recovery rate varied considerably among subjects, which could influence, as validated in mice, the level of susceptibility to pathogen intestinal colonization. Our results demonstrate the negative long-term effects of vancomycin, which should be considered as a fundamental aspect of the cost-benefit equation for antibiotic prescription.
Author Jiménez, Nuria
Djukovic, Ana
Abramson, Steven B.
Pamer, Eric G.
Ubeda, Carles
Scher, Jose U.
Littman, Dan R.
Isaac, Sandrine
Author_xml – sequence: 1
  givenname: Sandrine
  surname: Isaac
  fullname: Isaac, Sandrine
– sequence: 2
  givenname: Jose U.
  surname: Scher
  fullname: Scher, Jose U.
– sequence: 3
  givenname: Ana
  surname: Djukovic
  fullname: Djukovic, Ana
– sequence: 4
  givenname: Nuria
  surname: Jiménez
  fullname: Jiménez, Nuria
– sequence: 5
  givenname: Dan R.
  surname: Littman
  fullname: Littman, Dan R.
– sequence: 6
  givenname: Steven B.
  surname: Abramson
  fullname: Abramson, Steven B.
– sequence: 7
  givenname: Eric G.
  surname: Pamer
  fullname: Pamer, Eric G.
– sequence: 8
  givenname: Carles
  surname: Ubeda
  fullname: Ubeda, Carles
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27707993$$D View this record in MEDLINE/PubMed
BookMark eNptkU1LxDAQhoMouqte_AGSowjVSdI26UUQ8QsEwY9zSJPUjbaJNlnFf29kV1HxNId55p135p2iVR-8RWiHwAGBhh0-Kn1ont6YYCtoQsoaCgoNWUUTYFAVvKzYBprG-AgAdVWLdbRBOQfeNGyCbm5nYUwFVt7gPviHItlxwLbrrE4Rhw6HUfX4VXkdhnftPA4ep5nFs_mgPHY-2Zicz8jg9BhaF5LaQmud6qPdXtZNdH92endyUVxdn1-eHF8VmnGRCmGqtmmEoZQ0yoDSQCmjDWVasMpw1ba2KpWAWglhoLWCtW3HTcU7UQOjlm2io4Xu87wdrNHWp-xVPo9uUOO7DMrJ3x3vZvIhvMqK1ATKOgvsLQXG8DLPh8jBRW37Xnkb5lGSbITxUnCa0d2fu76XfD0yA_sLIH8hxtF23wgB-ZmSzCnJRUoZhj-wdkklFz59uv6_kQ9NMJfd
CitedBy_id crossref_primary_10_1080_19490976_2022_2083905
crossref_primary_10_1007_s11908_023_00796_7
crossref_primary_10_1002_art_41622
crossref_primary_10_1016_j_clinbiochem_2022_03_009
crossref_primary_10_3389_fmicb_2017_02243
crossref_primary_10_1186_s13756_021_00903_0
crossref_primary_10_1172_JCI124332
crossref_primary_10_1093_ofid_ofz436
crossref_primary_10_1017_ash_2022_350
crossref_primary_10_3390_ijms232112879
crossref_primary_10_1111_risa_13121
crossref_primary_10_1093_cid_cix947
crossref_primary_10_1038_s41575_024_01023_x
crossref_primary_10_1071_EN19115
crossref_primary_10_1126_sciadv_aax2358
crossref_primary_10_1111_joim_13238
crossref_primary_10_1172_JCI151725
crossref_primary_10_3390_antibiotics11020183
crossref_primary_10_1016_j_hlife_2024_01_006
crossref_primary_10_3389_frtra_2023_1182534
crossref_primary_10_1177_1756284819870911
crossref_primary_10_3390_pr12091856
crossref_primary_10_1111_ctr_15079
crossref_primary_10_1093_cid_ciy474
crossref_primary_10_7759_cureus_70666
crossref_primary_10_3389_fimmu_2021_789334
crossref_primary_10_1007_s10482_020_01474_7
crossref_primary_10_3390_jcm10081627
crossref_primary_10_1080_17474086_2019_1627191
crossref_primary_10_1038_s41467_022_35380_5
crossref_primary_10_1007_s11908_018_0631_z
crossref_primary_10_1146_annurev_micro_041020_022206
crossref_primary_10_1021_acsinfecdis_0c00036
crossref_primary_10_1080_07853890_2019_1701703
crossref_primary_10_1016_j_chom_2018_07_017
crossref_primary_10_1016_j_critrevonc_2020_103165
crossref_primary_10_1016_j_cmicom_2024_105041
crossref_primary_10_1016_j_jaut_2023_103001
crossref_primary_10_1002_vms3_1271
crossref_primary_10_1097_PPO_0000000000000652
crossref_primary_10_1038_cti_2017_2
crossref_primary_10_3389_fcell_2021_680174
crossref_primary_10_1002_ncp_10594
crossref_primary_10_1038_s41598_019_42824_4
crossref_primary_10_1038_s41579_023_00933_y
crossref_primary_10_14309_crj_0000000000000577
crossref_primary_10_1016_j_chom_2018_07_005
crossref_primary_10_1016_j_therap_2017_01_001
crossref_primary_10_14309_crj_0000000000001302
crossref_primary_10_1038_s41598_017_15802_x
crossref_primary_10_3390_nu13030881
crossref_primary_10_1007_s10620_020_06729_x
crossref_primary_10_1038_s41575_022_00690_y
crossref_primary_10_1084_jem_20180399
crossref_primary_10_1080_19490976_2021_1875109
crossref_primary_10_33073_pjm_2021_011
crossref_primary_10_1093_cid_ciy822
crossref_primary_10_3390_biomedicines10051042
crossref_primary_10_1016_j_jinf_2024_106306
crossref_primary_10_3238_arztebl_2019_0670
crossref_primary_10_1093_jac_dkaa364
crossref_primary_10_1016_j_drudis_2021_07_016
crossref_primary_10_1093_cid_ciaa1877
crossref_primary_10_1007_s13679_021_00438_w
crossref_primary_10_1016_j_anaerobe_2021_102351
crossref_primary_10_1128_AAC_01431_20
crossref_primary_10_7717_peerj_7502
crossref_primary_10_1016_j_neo_2022_100806
crossref_primary_10_1016_j_gtc_2019_02_003
crossref_primary_10_5662_wjm_v14_i1_89196
crossref_primary_10_1093_femsmc_xtaa001
crossref_primary_10_1093_infdis_jiad537
crossref_primary_10_1093_cid_ciz009
crossref_primary_10_1016_j_scitotenv_2020_141415
crossref_primary_10_1186_s40168_021_01207_6
crossref_primary_10_1371_journal_pone_0251590
crossref_primary_10_1007_s00253_022_12154_z
crossref_primary_10_1016_j_infpip_2022_100240
crossref_primary_10_3389_fmicb_2025_1555220
crossref_primary_10_1007_s00253_020_10838_y
crossref_primary_10_1186_s13567_018_0617_8
crossref_primary_10_1038_s41598_023_49034_z
crossref_primary_10_1097_IPC_0000000000001045
crossref_primary_10_1016_j_ijid_2019_10_028
crossref_primary_10_1038_s41585_018_0104_z
crossref_primary_10_1093_cid_ciac074
crossref_primary_10_2174_1381612829666221219093450
crossref_primary_10_3233_JAD_221153
crossref_primary_10_1007_s40265_018_0941_3
crossref_primary_10_1093_jac_dkac408
crossref_primary_10_1016_S1473_3099_17_30751_X
crossref_primary_10_1182_bloodadvances_2021006783
crossref_primary_10_1038_s41598_024_54553_4
crossref_primary_10_1021_acschembio_1c00322
crossref_primary_10_1016_j_tim_2022_11_013
crossref_primary_10_1016_j_trsl_2020_03_006
crossref_primary_10_1017_ash_2024_387
crossref_primary_10_1007_s40506_020_00223_8
crossref_primary_10_1111_cts_13051
crossref_primary_10_1021_acs_jafc_9b07701
crossref_primary_10_3390_microorganisms8020269
crossref_primary_10_1038_s41531_022_00321_y
crossref_primary_10_1017_ice_2020_277
crossref_primary_10_1016_j_anaerobe_2019_102092
crossref_primary_10_1111_liv_13880
crossref_primary_10_3390_biomedicines9060617
crossref_primary_10_1055_s_0041_1733906
crossref_primary_10_1128_aac_01251_24
crossref_primary_10_1128_mbio_00707_24
crossref_primary_10_1016_j_micres_2022_127127
crossref_primary_10_1017_ice_2018_32
crossref_primary_10_1177_1060028017727756
crossref_primary_10_1084_jem_20232055
crossref_primary_10_3389_fmicb_2017_01711
crossref_primary_10_3389_fmed_2022_921675
crossref_primary_10_2147_DDDT_S360348
crossref_primary_10_3389_fcimb_2021_629438
crossref_primary_10_3390_genes13122280
crossref_primary_10_1038_s41584_020_0395_3
crossref_primary_10_1128_JCM_02319_16
crossref_primary_10_3390_ijerph20021463
crossref_primary_10_1128_AAC_01415_19
crossref_primary_10_1128_aac_01604_24
crossref_primary_10_1080_19490976_2020_1743492
crossref_primary_10_1080_10408398_2020_1843396
crossref_primary_10_1016_j_chemosphere_2020_126019
crossref_primary_10_1093_femsec_fiaa058
crossref_primary_10_3390_life12101513
crossref_primary_10_1016_j_spen_2020_100836
crossref_primary_10_1080_19490976_2021_1911279
crossref_primary_10_1093_ofid_ofy190
crossref_primary_10_7759_cureus_50318
crossref_primary_10_3390_nu13041349
crossref_primary_10_7717_peerj_4663
crossref_primary_10_1016_j_jmii_2020_02_002
crossref_primary_10_1016_j_micpath_2023_106159
crossref_primary_10_1038_s41564_019_0662_8
crossref_primary_10_1093_ofid_ofae341
crossref_primary_10_1007_s00277_021_04452_9
crossref_primary_10_1016_j_ijantimicag_2024_107198
crossref_primary_10_1016_j_prp_2024_155173
crossref_primary_10_1093_femsre_fuy018
crossref_primary_10_3389_fnagi_2022_833365
crossref_primary_10_1093_jac_dkx138
crossref_primary_10_1136_gutjnl_2018_316794
crossref_primary_10_1186_s13059_023_02924_x
crossref_primary_10_1177_0004867419877954
crossref_primary_10_1016_j_therap_2016_12_007
crossref_primary_10_1111_imr_12563
crossref_primary_10_1093_cid_ciz970
crossref_primary_10_1093_jac_dky471
crossref_primary_10_1007_s11033_025_10425_2
crossref_primary_10_1016_j_chom_2023_08_004
crossref_primary_10_1186_s40168_020_00907_9
crossref_primary_10_1186_s13073_020_00782_x
crossref_primary_10_1016_j_tim_2022_01_013
crossref_primary_10_1080_17474124_2019_1687293
crossref_primary_10_1093_cid_ciz626
crossref_primary_10_1128_spectrum_02348_21
crossref_primary_10_1097_QCO_0000000000000958
crossref_primary_10_1186_s40168_019_0745_z
crossref_primary_10_1093_cid_ciz982
crossref_primary_10_1093_cid_ciaa1504
crossref_primary_10_1017_ice_2022_254
crossref_primary_10_1042_BSR20203850
crossref_primary_10_15252_embj_201797537
crossref_primary_10_1053_j_gastro_2024_04_022
crossref_primary_10_1128_AAC_02347_19
crossref_primary_10_3389_fnut_2022_918098
crossref_primary_10_3389_fmicb_2020_01319
crossref_primary_10_3390_microorganisms11020533
crossref_primary_10_1177_02676591221097219
crossref_primary_10_3748_wjg_v28_i12_1204
crossref_primary_10_3390_antibiotics11010070
crossref_primary_10_1016_j_chom_2023_04_003
crossref_primary_10_1038_s41540_023_00285_6
crossref_primary_10_1111_apt_18098
crossref_primary_10_1016_j_ijheh_2018_12_013
crossref_primary_10_3390_ijms21093212
crossref_primary_10_2147_VMRR_S300881
crossref_primary_10_1016_j_cmi_2024_12_003
crossref_primary_10_1080_10807039_2017_1352443
crossref_primary_10_3390_life11111127
crossref_primary_10_1016_j_ijbiomac_2025_140999
crossref_primary_10_1016_j_bbmt_2020_10_005
crossref_primary_10_1016_j_jiac_2018_05_010
crossref_primary_10_3389_fcimb_2018_00079
crossref_primary_10_1371_journal_pone_0285613
crossref_primary_10_3389_fmicb_2020_564271
crossref_primary_10_1126_sciimmunol_aaz6563
crossref_primary_10_3390_antibiotics10050539
crossref_primary_10_1016_j_neuroscience_2021_01_030
crossref_primary_10_1007_s10753_022_01748_4
crossref_primary_10_1017_ice_2019_360
crossref_primary_10_1093_ofid_ofz252
crossref_primary_10_1111_tid_12867
crossref_primary_10_3390_antibiotics14040333
crossref_primary_10_1080_10807039_2017_1356683
crossref_primary_10_1080_10807039_2017_1356682
crossref_primary_10_1016_j_blre_2019_100614
crossref_primary_10_1016_j_mimet_2021_106189
crossref_primary_10_15360_1813_9779_2018_5_96_119
crossref_primary_10_1016_j_envpol_2020_114399
crossref_primary_10_1002_bies_202000148
crossref_primary_10_1080_14787210_2020_1717950
crossref_primary_10_18632_oncotarget_25778
crossref_primary_10_1017_ice_2022_262
crossref_primary_10_1177_2049936119868548
crossref_primary_10_34883_PI_2020_8_2_013
crossref_primary_10_3389_fmicb_2020_00932
crossref_primary_10_1016_j_ekir_2021_05_014
crossref_primary_10_1016_j_aninu_2021_03_008
crossref_primary_10_1128_mSphere_01296_20
crossref_primary_10_1371_journal_pone_0199810
crossref_primary_10_1038_s41467_022_33313_w
crossref_primary_10_1016_j_envpol_2019_113311
crossref_primary_10_1093_cid_ciy1077
crossref_primary_10_3390_microorganisms8060882
Cites_doi 10.1128/AAC.01927-15
10.1016/j.cell.2004.07.002
10.1128/AAC.00605-12
10.1016/j.it.2012.05.003
10.1172/JCI43918
10.1086/519265
10.1016/j.immuni.2010.06.001
10.1093/cid/cis338
10.7554/eLife.01202
10.1038/nri3535
10.1073/pnas.1010529108
10.1038/nutd.2013.28
10.1016/j.jhep.2013.11.034
10.1038/embor.2012.32
10.1371/journal.pone.0125448
10.1371/journal.pone.0076269
10.1111/j.1572-0241.2007.01539.x
10.1086/506349
10.1093/cid/civ252
10.1111/j.2517-6161.1995.tb02031.x
10.1093/cid/civ137
10.1016/j.cell.2009.09.033
10.1038/nm.3914
10.2989/16085910409503825
10.1099/mic.0.042010-0
10.1093/infdis/jiv256
ContentType Journal Article
Copyright The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy.
The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. 2016
Copyright_xml – notice: The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy.
– notice: The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. 2016
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1093/jac/dkw383
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Pharmacy, Therapeutics, & Pharmacology
EISSN 1460-2091
EndPage 136
ExternalDocumentID PMC5161046
27707993
10_1093_jac_dkw383
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: R01 AI042135
– fundername: NIAMS NIH HHS
  grantid: K23 AR064318
– fundername: NCI NIH HHS
  grantid: P30 CA008748
– fundername: NIAMS NIH HHS
  grantid: RC2 AR058986
– fundername: Spanish Ministerio de Economía y Competitividad
– fundername: National Institute of Health
  grantid: RC2-AR058986; K23AR064318
– fundername: the FP7 Marie Curie Actions
  grantid: PCIG09-GA-2011-293894
– fundername: American Recovery and Reinvestment Act, Judith and Stewart Colton Center of Autoimmunity and Riley Family Foundation
– fundername: Spanish Ministerio de Economía y Competitividad
  grantid: SAF2014-60234-R
– fundername: The National Institute of Health
  grantid: RO1-AI042135; P30-CA008748
GroupedDBID ---
-E4
.2P
.GJ
.I3
.XZ
.ZR
0R~
18M
1TH
29J
2WC
3O-
4.4
482
48X
53G
5GY
5RE
5VS
5WA
5WD
70D
AABZA
AACZT
AAJKP
AAJQQ
AAMVS
AAOGV
AAPGJ
AAPNW
AAPQZ
AAPXW
AARHZ
AAUAY
AAUQX
AAVAP
AAWDT
AAWTL
AAYXX
ABDFA
ABEJV
ABEUO
ABGNP
ABIXL
ABJNI
ABKDP
ABLJU
ABNGD
ABNHQ
ABNKS
ABPQP
ABPTD
ABQLI
ABQNK
ABSMQ
ABVGC
ABWST
ABXVV
ABZBJ
ACCCW
ACFRR
ACGFO
ACGFS
ACIWK
ACPQN
ACPRK
ACUFI
ACUKT
ACUTJ
ACUTO
ACVCV
ACYHN
ACZBC
ADBBV
ADEYI
ADEZT
ADGZP
ADHKW
ADHZD
ADIPN
ADMTO
ADNBA
ADOCK
ADQBN
ADRTK
ADVEK
ADYVW
ADZXQ
AEGPL
AEHUL
AEJOX
AEKPW
AEKSI
AEMDU
AEMQT
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFNX
AFFQV
AFFZL
AFIYH
AFOFC
AFRAH
AFSHK
AFXAL
AFYAG
AGINJ
AGKEF
AGKRT
AGMDO
AGORE
AGQPQ
AGQXC
AGSYK
AGUTN
AHGBF
AHMBA
AHMMS
AHXPO
AI.
AIAGR
AIJHB
AJBYB
AJDVS
AJEEA
AJNCP
ALMA_UNASSIGNED_HOLDINGS
ALUQC
ALXQX
APIBT
APJGH
APWMN
AQDSO
AQKUS
ASPBG
ATGXG
ATTQO
AVNTJ
AVWKF
AXUDD
AZFZN
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BTRTY
BVRKM
BZKNY
C45
CAG
CDBKE
CITATION
COF
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
E3Z
EBS
ECGQY
EE~
EIHJH
EJD
EMOBN
ENERS
F5P
F9B
FECEO
FEDTE
FLUFQ
FOEOM
FOTVD
FQBLK
GAUVT
GJXCC
GX1
H13
H5~
HAR
HH5
HVGLF
HW0
HZ~
IOX
J21
J5H
JXSIZ
KAQDR
KBUDW
KOP
KQ8
KSI
KSN
L7B
M-Z
MBLQV
MHKGH
ML0
N9A
NGC
NOMLY
NOYVH
NTWIH
NU-
NVLIB
O0~
O9-
OAUYM
OAWHX
OBFPC
OBS
OCZFY
ODMLO
OJQWA
OJZSN
OK1
OPAEJ
OVD
OWPYF
O~Y
P2P
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q5Y
QBD
R44
RD5
RNI
ROL
ROX
ROZ
RUSNO
RW1
RXO
RZF
RZO
TCURE
TEORI
TJX
TMA
TR2
VH1
W8F
WOQ
X7H
Y6R
YAYTL
YKOAZ
YXANX
ZGI
ZKX
ZXP
~91
~A~
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c378t-8d5b998d2219ad0ac02232923c835d7abbe54a806a88d0be83bbf7d57f86032e3
ISSN 0305-7453
IngestDate Thu Aug 21 17:53:49 EDT 2025
Fri Jul 11 05:09:00 EDT 2025
Wed Jun 25 03:18:48 EDT 2025
Thu Apr 24 23:08:36 EDT 2025
Tue Jul 01 03:17:14 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c378t-8d5b998d2219ad0ac02232923c835d7abbe54a806a88d0be83bbf7d57f86032e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Equal contribution.
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC5161046
PMID 27707993
PQID 1835374872
PQPubID 23479
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5161046
proquest_miscellaneous_1835374872
pubmed_primary_27707993
crossref_primary_10_1093_jac_dkw383
crossref_citationtrail_10_1093_jac_dkw383
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-01-01
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – month: 01
  year: 2017
  text: 2017-01-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of antimicrobial chemotherapy
PublicationTitleAlternate J Antimicrob Chemother
PublicationYear 2017
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Benjamini (2016121607301297000_72.1.128.19) 1995; 57
2016121607301297000_72.1.128.24
2016121607301297000_72.1.128.25
2016121607301297000_72.1.128.22
2016121607301297000_72.1.128.23
2016121607301297000_72.1.128.20
2016121607301297000_72.1.128.21
2016121607301297000_72.1.128.8
2016121607301297000_72.1.128.9
2016121607301297000_72.1.128.4
2016121607301297000_72.1.128.5
2016121607301297000_72.1.128.6
2016121607301297000_72.1.128.7
2016121607301297000_72.1.128.1
2016121607301297000_72.1.128.2
2016121607301297000_72.1.128.3
Falcone (2016121607301297000_72.1.128.26) 2015; 60
2016121607301297000_72.1.128.13
2016121607301297000_72.1.128.14
2016121607301297000_72.1.128.11
2016121607301297000_72.1.128.12
2016121607301297000_72.1.128.10
2016121607301297000_72.1.128.17
2016121607301297000_72.1.128.18
2016121607301297000_72.1.128.15
2016121607301297000_72.1.128.16
References_xml – volume: 60
  start-page: 252
  year: 2015
  ident: 2016121607301297000_72.1.128.26
  article-title: Risk factors and outcomes for bloodstream infections secondary to Clostridium difficile infection
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.01927-15
– ident: 2016121607301297000_72.1.128.1
  doi: 10.1016/j.cell.2004.07.002
– ident: 2016121607301297000_72.1.128.9
  doi: 10.1128/AAC.00605-12
– ident: 2016121607301297000_72.1.128.5
  doi: 10.1016/j.it.2012.05.003
– ident: 2016121607301297000_72.1.128.6
  doi: 10.1172/JCI43918
– ident: 2016121607301297000_72.1.128.8
  doi: 10.1086/519265
– ident: 2016121607301297000_72.1.128.21
  doi: 10.1016/j.immuni.2010.06.001
– ident: 2016121607301297000_72.1.128.14
  doi: 10.1093/cid/cis338
– ident: 2016121607301297000_72.1.128.17
  doi: 10.7554/eLife.01202
– ident: 2016121607301297000_72.1.128.2
  doi: 10.1038/nri3535
– ident: 2016121607301297000_72.1.128.4
  doi: 10.1073/pnas.1010529108
– ident: 2016121607301297000_72.1.128.7
  doi: 10.1038/nutd.2013.28
– ident: 2016121607301297000_72.1.128.20
  doi: 10.1016/j.jhep.2013.11.034
– ident: 2016121607301297000_72.1.128.11
  doi: 10.1038/embor.2012.32
– ident: 2016121607301297000_72.1.128.12
  doi: 10.1371/journal.pone.0125448
– ident: 2016121607301297000_72.1.128.16
  doi: 10.1371/journal.pone.0076269
– ident: 2016121607301297000_72.1.128.25
  doi: 10.1111/j.1572-0241.2007.01539.x
– ident: 2016121607301297000_72.1.128.24
  doi: 10.1086/506349
– ident: 2016121607301297000_72.1.128.15
  doi: 10.1093/cid/civ252
– volume: 57
  start-page: 289
  year: 1995
  ident: 2016121607301297000_72.1.128.19
  article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing
  publication-title: J R Stat Soc
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– ident: 2016121607301297000_72.1.128.23
  doi: 10.1093/cid/civ137
– ident: 2016121607301297000_72.1.128.3
  doi: 10.1016/j.cell.2009.09.033
– ident: 2016121607301297000_72.1.128.22
  doi: 10.1038/nm.3914
– ident: 2016121607301297000_72.1.128.18
  doi: 10.2989/16085910409503825
– ident: 2016121607301297000_72.1.128.13
  doi: 10.1099/mic.0.042010-0
– ident: 2016121607301297000_72.1.128.10
  doi: 10.1093/infdis/jiv256
SSID ssj0006568
Score 2.6059713
Snippet Oral vancomycin remains the mainstay of therapy for severe infections produced by Clostridium difficile, the most prevalent cause of healthcare-associated...
BACKGROUNDOral vancomycin remains the mainstay of therapy for severe infections produced by Clostridium difficile, the most prevalent cause of...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 128
SubjectTerms Administration, Oral
Animals
Anti-Bacterial Agents - administration & dosage
Feces - microbiology
Gastrointestinal Microbiome - drug effects
High-Throughput Nucleotide Sequencing
Humans
Metagenomics - methods
Mice
Microbiota - drug effects
Models, Animal
Original Research
Time
Vancomycin - administration & dosage
Title Short- and long-term effects of oral vancomycin on the human intestinal microbiota
URI https://www.ncbi.nlm.nih.gov/pubmed/27707993
https://www.proquest.com/docview/1835374872
https://pubmed.ncbi.nlm.nih.gov/PMC5161046
Volume 72
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLVgSIgXBOOrDJARaBJi2dI4id1HhFaNsZWJpVLfIjtOaLbVmbZUqPx6rnPz0dIhDV6iKrVcNefk-ti-95iQ9ypgrpQ8cVQoAsfv64Gj_IFNsVJBEGaa6aoq7XgUHoz9w0kw6ZLYq-qSUu0mv26sK_kfVOEe4GqrZP8B2bZTuAGfAV-4AsJwvRXGp1MQz061_n9RmB-ODbPLGRpV9b3d4y9miyQ39cZAfS6fNYqA99uq0VmOdkyl_ItWhcef142sn8g0ndWFW4uOWlImuMRs9NXSZv1pwwq71_Bx3Arns_l5AVEKkyrbseEwn-HWvcGV7dEc06DblYk-X1qZSDGa-qELgOFxXE245d4arTB29usqcRyG--iLshbh0f3qzP6loT7_yfAYnFUj7dG3eDg-Ooqj_Ul0l9zzYAZRzba_fG0HaZCxonGrHbA96G8Pe1vVJ2uTjj9zZ5fESPSIPKyRoZ-QEo_JndRskvvHdZ7EJtk-QUfyxQ6NugK76x26TU86r_LFE_IdKUQBNNpSiNYUokVGLYVoRyFaGArI04pCtKMQ7Sj0lIyH-9HnA6c-ZsNJGBelI3SgYNKtPRi8pHZlArKOeSD8E1Dnmkul0sCXwg2lENpVqWBKZVwHPBOhy7yUPSMbpjDpC0K5LWyWnlQhyGytXcG1LeQWA64SL_N5j3xoHm6c1B709iiUixhzIVgMQMQIRI-8a9teovPKja3eNhjFEBjtbpc0aTG_jmGsCqy3Evd65Dli1vYDjHA5KPMe4Stotg2s6frqNyafVubrAUyRXD98eYvf3SIPutfiFdkor-bpa5CwpXpTkfE3vYel3A
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Short-+and+long-term+effects+of+oral+vancomycin+on+the+human+intestinal+microbiota&rft.jtitle=Journal+of+antimicrobial+chemotherapy&rft.au=Isaac%2C+Sandrine&rft.au=Scher%2C+Jose+U&rft.au=Djukovic%2C+Ana&rft.au=Jim%C3%A9nez%2C+Nuria&rft.date=2017-01-01&rft.eissn=1460-2091&rft.volume=72&rft.issue=1&rft.spage=128&rft.epage=136&rft_id=info:doi/10.1093%2Fjac%2Fdkw383&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-7453&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-7453&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-7453&client=summon