Short- and long-term effects of oral vancomycin on the human intestinal microbiota
Oral vancomycin remains the mainstay of therapy for severe infections produced by Clostridium difficile, the most prevalent cause of healthcare-associated infectious diarrhoea in developed countries. However, its short- and long-term effects on the human intestinal microbiota remain largely unknown....
Saved in:
Published in | Journal of antimicrobial chemotherapy Vol. 72; no. 1; pp. 128 - 136 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
01.01.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Oral vancomycin remains the mainstay of therapy for severe infections produced by Clostridium difficile, the most prevalent cause of healthcare-associated infectious diarrhoea in developed countries. However, its short- and long-term effects on the human intestinal microbiota remain largely unknown.
We utilized high-throughput sequencing to analyse the effects of vancomycin on the faecal human microbiota up to 22 weeks post-antibiotic cessation. The clinical relevance of the observed microbiota perturbations was studied in mice.
During vancomycin therapy, most intestinal microbiota genera and operational taxonomic units (OTUs) were depleted in all analysed subjects, including all baseline OTUs from the phylum Bacteroidetes. This was accompanied by a vast expansion of genera associated with infections, including Klebsiella and Escherichia/Shigella. Following antibiotic cessation, marked differences in microbiota resilience were observed among subjects. While some individuals recovered a microbiota close to baseline composition, in others, up to 89% of abundant OTUs could no longer be detected. The clinical relevance of the observed microbiota changes was further demonstrated in mice, which developed analogous microbiota alterations. During vancomycin treatment, mice were highly susceptible to intestinal colonization by an antibiotic-resistant pathogen and, upon antibiotic cessation, a less-resilient microbiota allowed higher levels of pathogen colonization.
Oral vancomycin induces drastic and consistent changes in the human intestinal microbiota. Upon vancomycin cessation, the microbiota recovery rate varied considerably among subjects, which could influence, as validated in mice, the level of susceptibility to pathogen intestinal colonization. Our results demonstrate the negative long-term effects of vancomycin, which should be considered as a fundamental aspect of the cost-benefit equation for antibiotic prescription. |
---|---|
AbstractList | BACKGROUNDOral vancomycin remains the mainstay of therapy for severe infections produced by Clostridium difficile, the most prevalent cause of healthcare-associated infectious diarrhoea in developed countries. However, its short- and long-term effects on the human intestinal microbiota remain largely unknown.METHODSWe utilized high-throughput sequencing to analyse the effects of vancomycin on the faecal human microbiota up to 22 weeks post-antibiotic cessation. The clinical relevance of the observed microbiota perturbations was studied in mice.RESULTSDuring vancomycin therapy, most intestinal microbiota genera and operational taxonomic units (OTUs) were depleted in all analysed subjects, including all baseline OTUs from the phylum Bacteroidetes. This was accompanied by a vast expansion of genera associated with infections, including Klebsiella and Escherichia/Shigella. Following antibiotic cessation, marked differences in microbiota resilience were observed among subjects. While some individuals recovered a microbiota close to baseline composition, in others, up to 89% of abundant OTUs could no longer be detected. The clinical relevance of the observed microbiota changes was further demonstrated in mice, which developed analogous microbiota alterations. During vancomycin treatment, mice were highly susceptible to intestinal colonization by an antibiotic-resistant pathogen and, upon antibiotic cessation, a less-resilient microbiota allowed higher levels of pathogen colonization.CONCLUSIONSOral vancomycin induces drastic and consistent changes in the human intestinal microbiota. Upon vancomycin cessation, the microbiota recovery rate varied considerably among subjects, which could influence, as validated in mice, the level of susceptibility to pathogen intestinal colonization. Our results demonstrate the negative long-term effects of vancomycin, which should be considered as a fundamental aspect of the cost-benefit equation for antibiotic prescription. Oral vancomycin remains the mainstay of therapy for severe infections produced by Clostridium difficile, the most prevalent cause of healthcare-associated infectious diarrhoea in developed countries. However, its short- and long-term effects on the human intestinal microbiota remain largely unknown. We utilized high-throughput sequencing to analyse the effects of vancomycin on the faecal human microbiota up to 22 weeks post-antibiotic cessation. The clinical relevance of the observed microbiota perturbations was studied in mice. During vancomycin therapy, most intestinal microbiota genera and operational taxonomic units (OTUs) were depleted in all analysed subjects, including all baseline OTUs from the phylum Bacteroidetes. This was accompanied by a vast expansion of genera associated with infections, including Klebsiella and Escherichia/Shigella. Following antibiotic cessation, marked differences in microbiota resilience were observed among subjects. While some individuals recovered a microbiota close to baseline composition, in others, up to 89% of abundant OTUs could no longer be detected. The clinical relevance of the observed microbiota changes was further demonstrated in mice, which developed analogous microbiota alterations. During vancomycin treatment, mice were highly susceptible to intestinal colonization by an antibiotic-resistant pathogen and, upon antibiotic cessation, a less-resilient microbiota allowed higher levels of pathogen colonization. Oral vancomycin induces drastic and consistent changes in the human intestinal microbiota. Upon vancomycin cessation, the microbiota recovery rate varied considerably among subjects, which could influence, as validated in mice, the level of susceptibility to pathogen intestinal colonization. Our results demonstrate the negative long-term effects of vancomycin, which should be considered as a fundamental aspect of the cost-benefit equation for antibiotic prescription. |
Author | Jiménez, Nuria Djukovic, Ana Abramson, Steven B. Pamer, Eric G. Ubeda, Carles Scher, Jose U. Littman, Dan R. Isaac, Sandrine |
Author_xml | – sequence: 1 givenname: Sandrine surname: Isaac fullname: Isaac, Sandrine – sequence: 2 givenname: Jose U. surname: Scher fullname: Scher, Jose U. – sequence: 3 givenname: Ana surname: Djukovic fullname: Djukovic, Ana – sequence: 4 givenname: Nuria surname: Jiménez fullname: Jiménez, Nuria – sequence: 5 givenname: Dan R. surname: Littman fullname: Littman, Dan R. – sequence: 6 givenname: Steven B. surname: Abramson fullname: Abramson, Steven B. – sequence: 7 givenname: Eric G. surname: Pamer fullname: Pamer, Eric G. – sequence: 8 givenname: Carles surname: Ubeda fullname: Ubeda, Carles |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27707993$$D View this record in MEDLINE/PubMed |
BookMark | eNptkU1LxDAQhoMouqte_AGSowjVSdI26UUQ8QsEwY9zSJPUjbaJNlnFf29kV1HxNId55p135p2iVR-8RWiHwAGBhh0-Kn1ont6YYCtoQsoaCgoNWUUTYFAVvKzYBprG-AgAdVWLdbRBOQfeNGyCbm5nYUwFVt7gPviHItlxwLbrrE4Rhw6HUfX4VXkdhnftPA4ep5nFs_mgPHY-2Zicz8jg9BhaF5LaQmud6qPdXtZNdH92endyUVxdn1-eHF8VmnGRCmGqtmmEoZQ0yoDSQCmjDWVasMpw1ba2KpWAWglhoLWCtW3HTcU7UQOjlm2io4Xu87wdrNHWp-xVPo9uUOO7DMrJ3x3vZvIhvMqK1ATKOgvsLQXG8DLPh8jBRW37Xnkb5lGSbITxUnCa0d2fu76XfD0yA_sLIH8hxtF23wgB-ZmSzCnJRUoZhj-wdkklFz59uv6_kQ9NMJfd |
CitedBy_id | crossref_primary_10_1080_19490976_2022_2083905 crossref_primary_10_1007_s11908_023_00796_7 crossref_primary_10_1002_art_41622 crossref_primary_10_1016_j_clinbiochem_2022_03_009 crossref_primary_10_3389_fmicb_2017_02243 crossref_primary_10_1186_s13756_021_00903_0 crossref_primary_10_1172_JCI124332 crossref_primary_10_1093_ofid_ofz436 crossref_primary_10_1017_ash_2022_350 crossref_primary_10_3390_ijms232112879 crossref_primary_10_1111_risa_13121 crossref_primary_10_1093_cid_cix947 crossref_primary_10_1038_s41575_024_01023_x crossref_primary_10_1071_EN19115 crossref_primary_10_1126_sciadv_aax2358 crossref_primary_10_1111_joim_13238 crossref_primary_10_1172_JCI151725 crossref_primary_10_3390_antibiotics11020183 crossref_primary_10_1016_j_hlife_2024_01_006 crossref_primary_10_3389_frtra_2023_1182534 crossref_primary_10_1177_1756284819870911 crossref_primary_10_3390_pr12091856 crossref_primary_10_1111_ctr_15079 crossref_primary_10_1093_cid_ciy474 crossref_primary_10_7759_cureus_70666 crossref_primary_10_3389_fimmu_2021_789334 crossref_primary_10_1007_s10482_020_01474_7 crossref_primary_10_3390_jcm10081627 crossref_primary_10_1080_17474086_2019_1627191 crossref_primary_10_1038_s41467_022_35380_5 crossref_primary_10_1007_s11908_018_0631_z crossref_primary_10_1146_annurev_micro_041020_022206 crossref_primary_10_1021_acsinfecdis_0c00036 crossref_primary_10_1080_07853890_2019_1701703 crossref_primary_10_1016_j_chom_2018_07_017 crossref_primary_10_1016_j_critrevonc_2020_103165 crossref_primary_10_1016_j_cmicom_2024_105041 crossref_primary_10_1016_j_jaut_2023_103001 crossref_primary_10_1002_vms3_1271 crossref_primary_10_1097_PPO_0000000000000652 crossref_primary_10_1038_cti_2017_2 crossref_primary_10_3389_fcell_2021_680174 crossref_primary_10_1002_ncp_10594 crossref_primary_10_1038_s41598_019_42824_4 crossref_primary_10_1038_s41579_023_00933_y crossref_primary_10_14309_crj_0000000000000577 crossref_primary_10_1016_j_chom_2018_07_005 crossref_primary_10_1016_j_therap_2017_01_001 crossref_primary_10_14309_crj_0000000000001302 crossref_primary_10_1038_s41598_017_15802_x crossref_primary_10_3390_nu13030881 crossref_primary_10_1007_s10620_020_06729_x crossref_primary_10_1038_s41575_022_00690_y crossref_primary_10_1084_jem_20180399 crossref_primary_10_1080_19490976_2021_1875109 crossref_primary_10_33073_pjm_2021_011 crossref_primary_10_1093_cid_ciy822 crossref_primary_10_3390_biomedicines10051042 crossref_primary_10_1016_j_jinf_2024_106306 crossref_primary_10_3238_arztebl_2019_0670 crossref_primary_10_1093_jac_dkaa364 crossref_primary_10_1016_j_drudis_2021_07_016 crossref_primary_10_1093_cid_ciaa1877 crossref_primary_10_1007_s13679_021_00438_w crossref_primary_10_1016_j_anaerobe_2021_102351 crossref_primary_10_1128_AAC_01431_20 crossref_primary_10_7717_peerj_7502 crossref_primary_10_1016_j_neo_2022_100806 crossref_primary_10_1016_j_gtc_2019_02_003 crossref_primary_10_5662_wjm_v14_i1_89196 crossref_primary_10_1093_femsmc_xtaa001 crossref_primary_10_1093_infdis_jiad537 crossref_primary_10_1093_cid_ciz009 crossref_primary_10_1016_j_scitotenv_2020_141415 crossref_primary_10_1186_s40168_021_01207_6 crossref_primary_10_1371_journal_pone_0251590 crossref_primary_10_1007_s00253_022_12154_z crossref_primary_10_1016_j_infpip_2022_100240 crossref_primary_10_3389_fmicb_2025_1555220 crossref_primary_10_1007_s00253_020_10838_y crossref_primary_10_1186_s13567_018_0617_8 crossref_primary_10_1038_s41598_023_49034_z crossref_primary_10_1097_IPC_0000000000001045 crossref_primary_10_1016_j_ijid_2019_10_028 crossref_primary_10_1038_s41585_018_0104_z crossref_primary_10_1093_cid_ciac074 crossref_primary_10_2174_1381612829666221219093450 crossref_primary_10_3233_JAD_221153 crossref_primary_10_1007_s40265_018_0941_3 crossref_primary_10_1093_jac_dkac408 crossref_primary_10_1016_S1473_3099_17_30751_X crossref_primary_10_1182_bloodadvances_2021006783 crossref_primary_10_1038_s41598_024_54553_4 crossref_primary_10_1021_acschembio_1c00322 crossref_primary_10_1016_j_tim_2022_11_013 crossref_primary_10_1016_j_trsl_2020_03_006 crossref_primary_10_1017_ash_2024_387 crossref_primary_10_1007_s40506_020_00223_8 crossref_primary_10_1111_cts_13051 crossref_primary_10_1021_acs_jafc_9b07701 crossref_primary_10_3390_microorganisms8020269 crossref_primary_10_1038_s41531_022_00321_y crossref_primary_10_1017_ice_2020_277 crossref_primary_10_1016_j_anaerobe_2019_102092 crossref_primary_10_1111_liv_13880 crossref_primary_10_3390_biomedicines9060617 crossref_primary_10_1055_s_0041_1733906 crossref_primary_10_1128_aac_01251_24 crossref_primary_10_1128_mbio_00707_24 crossref_primary_10_1016_j_micres_2022_127127 crossref_primary_10_1017_ice_2018_32 crossref_primary_10_1177_1060028017727756 crossref_primary_10_1084_jem_20232055 crossref_primary_10_3389_fmicb_2017_01711 crossref_primary_10_3389_fmed_2022_921675 crossref_primary_10_2147_DDDT_S360348 crossref_primary_10_3389_fcimb_2021_629438 crossref_primary_10_3390_genes13122280 crossref_primary_10_1038_s41584_020_0395_3 crossref_primary_10_1128_JCM_02319_16 crossref_primary_10_3390_ijerph20021463 crossref_primary_10_1128_AAC_01415_19 crossref_primary_10_1128_aac_01604_24 crossref_primary_10_1080_19490976_2020_1743492 crossref_primary_10_1080_10408398_2020_1843396 crossref_primary_10_1016_j_chemosphere_2020_126019 crossref_primary_10_1093_femsec_fiaa058 crossref_primary_10_3390_life12101513 crossref_primary_10_1016_j_spen_2020_100836 crossref_primary_10_1080_19490976_2021_1911279 crossref_primary_10_1093_ofid_ofy190 crossref_primary_10_7759_cureus_50318 crossref_primary_10_3390_nu13041349 crossref_primary_10_7717_peerj_4663 crossref_primary_10_1016_j_jmii_2020_02_002 crossref_primary_10_1016_j_micpath_2023_106159 crossref_primary_10_1038_s41564_019_0662_8 crossref_primary_10_1093_ofid_ofae341 crossref_primary_10_1007_s00277_021_04452_9 crossref_primary_10_1016_j_ijantimicag_2024_107198 crossref_primary_10_1016_j_prp_2024_155173 crossref_primary_10_1093_femsre_fuy018 crossref_primary_10_3389_fnagi_2022_833365 crossref_primary_10_1093_jac_dkx138 crossref_primary_10_1136_gutjnl_2018_316794 crossref_primary_10_1186_s13059_023_02924_x crossref_primary_10_1177_0004867419877954 crossref_primary_10_1016_j_therap_2016_12_007 crossref_primary_10_1111_imr_12563 crossref_primary_10_1093_cid_ciz970 crossref_primary_10_1093_jac_dky471 crossref_primary_10_1007_s11033_025_10425_2 crossref_primary_10_1016_j_chom_2023_08_004 crossref_primary_10_1186_s40168_020_00907_9 crossref_primary_10_1186_s13073_020_00782_x crossref_primary_10_1016_j_tim_2022_01_013 crossref_primary_10_1080_17474124_2019_1687293 crossref_primary_10_1093_cid_ciz626 crossref_primary_10_1128_spectrum_02348_21 crossref_primary_10_1097_QCO_0000000000000958 crossref_primary_10_1186_s40168_019_0745_z crossref_primary_10_1093_cid_ciz982 crossref_primary_10_1093_cid_ciaa1504 crossref_primary_10_1017_ice_2022_254 crossref_primary_10_1042_BSR20203850 crossref_primary_10_15252_embj_201797537 crossref_primary_10_1053_j_gastro_2024_04_022 crossref_primary_10_1128_AAC_02347_19 crossref_primary_10_3389_fnut_2022_918098 crossref_primary_10_3389_fmicb_2020_01319 crossref_primary_10_3390_microorganisms11020533 crossref_primary_10_1177_02676591221097219 crossref_primary_10_3748_wjg_v28_i12_1204 crossref_primary_10_3390_antibiotics11010070 crossref_primary_10_1016_j_chom_2023_04_003 crossref_primary_10_1038_s41540_023_00285_6 crossref_primary_10_1111_apt_18098 crossref_primary_10_1016_j_ijheh_2018_12_013 crossref_primary_10_3390_ijms21093212 crossref_primary_10_2147_VMRR_S300881 crossref_primary_10_1016_j_cmi_2024_12_003 crossref_primary_10_1080_10807039_2017_1352443 crossref_primary_10_3390_life11111127 crossref_primary_10_1016_j_ijbiomac_2025_140999 crossref_primary_10_1016_j_bbmt_2020_10_005 crossref_primary_10_1016_j_jiac_2018_05_010 crossref_primary_10_3389_fcimb_2018_00079 crossref_primary_10_1371_journal_pone_0285613 crossref_primary_10_3389_fmicb_2020_564271 crossref_primary_10_1126_sciimmunol_aaz6563 crossref_primary_10_3390_antibiotics10050539 crossref_primary_10_1016_j_neuroscience_2021_01_030 crossref_primary_10_1007_s10753_022_01748_4 crossref_primary_10_1017_ice_2019_360 crossref_primary_10_1093_ofid_ofz252 crossref_primary_10_1111_tid_12867 crossref_primary_10_3390_antibiotics14040333 crossref_primary_10_1080_10807039_2017_1356683 crossref_primary_10_1080_10807039_2017_1356682 crossref_primary_10_1016_j_blre_2019_100614 crossref_primary_10_1016_j_mimet_2021_106189 crossref_primary_10_15360_1813_9779_2018_5_96_119 crossref_primary_10_1016_j_envpol_2020_114399 crossref_primary_10_1002_bies_202000148 crossref_primary_10_1080_14787210_2020_1717950 crossref_primary_10_18632_oncotarget_25778 crossref_primary_10_1017_ice_2022_262 crossref_primary_10_1177_2049936119868548 crossref_primary_10_34883_PI_2020_8_2_013 crossref_primary_10_3389_fmicb_2020_00932 crossref_primary_10_1016_j_ekir_2021_05_014 crossref_primary_10_1016_j_aninu_2021_03_008 crossref_primary_10_1128_mSphere_01296_20 crossref_primary_10_1371_journal_pone_0199810 crossref_primary_10_1038_s41467_022_33313_w crossref_primary_10_1016_j_envpol_2019_113311 crossref_primary_10_1093_cid_ciy1077 crossref_primary_10_3390_microorganisms8060882 |
Cites_doi | 10.1128/AAC.01927-15 10.1016/j.cell.2004.07.002 10.1128/AAC.00605-12 10.1016/j.it.2012.05.003 10.1172/JCI43918 10.1086/519265 10.1016/j.immuni.2010.06.001 10.1093/cid/cis338 10.7554/eLife.01202 10.1038/nri3535 10.1073/pnas.1010529108 10.1038/nutd.2013.28 10.1016/j.jhep.2013.11.034 10.1038/embor.2012.32 10.1371/journal.pone.0125448 10.1371/journal.pone.0076269 10.1111/j.1572-0241.2007.01539.x 10.1086/506349 10.1093/cid/civ252 10.1111/j.2517-6161.1995.tb02031.x 10.1093/cid/civ137 10.1016/j.cell.2009.09.033 10.1038/nm.3914 10.2989/16085910409503825 10.1099/mic.0.042010-0 10.1093/infdis/jiv256 |
ContentType | Journal Article |
Copyright | The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. 2016 |
Copyright_xml | – notice: The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. – notice: The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. 2016 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1093/jac/dkw383 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1460-2091 |
EndPage | 136 |
ExternalDocumentID | PMC5161046 27707993 10_1093_jac_dkw383 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: R01 AI042135 – fundername: NIAMS NIH HHS grantid: K23 AR064318 – fundername: NCI NIH HHS grantid: P30 CA008748 – fundername: NIAMS NIH HHS grantid: RC2 AR058986 – fundername: Spanish Ministerio de Economía y Competitividad – fundername: National Institute of Health grantid: RC2-AR058986; K23AR064318 – fundername: the FP7 Marie Curie Actions grantid: PCIG09-GA-2011-293894 – fundername: American Recovery and Reinvestment Act, Judith and Stewart Colton Center of Autoimmunity and Riley Family Foundation – fundername: Spanish Ministerio de Economía y Competitividad grantid: SAF2014-60234-R – fundername: The National Institute of Health grantid: RO1-AI042135; P30-CA008748 |
GroupedDBID | --- -E4 .2P .GJ .I3 .XZ .ZR 0R~ 18M 1TH 29J 2WC 3O- 4.4 482 48X 53G 5GY 5RE 5VS 5WA 5WD 70D AABZA AACZT AAJKP AAJQQ AAMVS AAOGV AAPGJ AAPNW AAPQZ AAPXW AARHZ AAUAY AAUQX AAVAP AAWDT AAWTL AAYXX ABDFA ABEJV ABEUO ABGNP ABIXL ABJNI ABKDP ABLJU ABNGD ABNHQ ABNKS ABPQP ABPTD ABQLI ABQNK ABSMQ ABVGC ABWST ABXVV ABZBJ ACCCW ACFRR ACGFO ACGFS ACIWK ACPQN ACPRK ACUFI ACUKT ACUTJ ACUTO ACVCV ACYHN ACZBC ADBBV ADEYI ADEZT ADGZP ADHKW ADHZD ADIPN ADMTO ADNBA ADOCK ADQBN ADRTK ADVEK ADYVW ADZXQ AEGPL AEHUL AEJOX AEKPW AEKSI AEMDU AEMQT AENEX AENZO AEPUE AETBJ AEWNT AFFNX AFFQV AFFZL AFIYH AFOFC AFRAH AFSHK AFXAL AFYAG AGINJ AGKEF AGKRT AGMDO AGORE AGQPQ AGQXC AGSYK AGUTN AHGBF AHMBA AHMMS AHXPO AI. AIAGR AIJHB AJBYB AJDVS AJEEA AJNCP ALMA_UNASSIGNED_HOLDINGS ALUQC ALXQX APIBT APJGH APWMN AQDSO AQKUS ASPBG ATGXG ATTQO AVNTJ AVWKF AXUDD AZFZN BAWUL BAYMD BCRHZ BEYMZ BHONS BTRTY BVRKM BZKNY C45 CAG CDBKE CITATION COF CS3 CZ4 DAKXR DIK DILTD DU5 D~K E3Z EBS ECGQY EE~ EIHJH EJD EMOBN ENERS F5P F9B FECEO FEDTE FLUFQ FOEOM FOTVD FQBLK GAUVT GJXCC GX1 H13 H5~ HAR HH5 HVGLF HW0 HZ~ IOX J21 J5H JXSIZ KAQDR KBUDW KOP KQ8 KSI KSN L7B M-Z MBLQV MHKGH ML0 N9A NGC NOMLY NOYVH NTWIH NU- NVLIB O0~ O9- OAUYM OAWHX OBFPC OBS OCZFY ODMLO OJQWA OJZSN OK1 OPAEJ OVD OWPYF O~Y P2P PAFKI PB- PEELM PQQKQ Q1. Q5Y QBD R44 RD5 RNI ROL ROX ROZ RUSNO RW1 RXO RZF RZO TCURE TEORI TJX TMA TR2 VH1 W8F WOQ X7H Y6R YAYTL YKOAZ YXANX ZGI ZKX ZXP ~91 ~A~ CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c378t-8d5b998d2219ad0ac02232923c835d7abbe54a806a88d0be83bbf7d57f86032e3 |
ISSN | 0305-7453 |
IngestDate | Thu Aug 21 17:53:49 EDT 2025 Fri Jul 11 05:09:00 EDT 2025 Wed Jun 25 03:18:48 EDT 2025 Thu Apr 24 23:08:36 EDT 2025 Tue Jul 01 03:17:14 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c378t-8d5b998d2219ad0ac02232923c835d7abbe54a806a88d0be83bbf7d57f86032e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Equal contribution. |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC5161046 |
PMID | 27707993 |
PQID | 1835374872 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5161046 proquest_miscellaneous_1835374872 pubmed_primary_27707993 crossref_primary_10_1093_jac_dkw383 crossref_citationtrail_10_1093_jac_dkw383 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-01-01 |
PublicationDateYYYYMMDD | 2017-01-01 |
PublicationDate_xml | – month: 01 year: 2017 text: 2017-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Journal of antimicrobial chemotherapy |
PublicationTitleAlternate | J Antimicrob Chemother |
PublicationYear | 2017 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Benjamini (2016121607301297000_72.1.128.19) 1995; 57 2016121607301297000_72.1.128.24 2016121607301297000_72.1.128.25 2016121607301297000_72.1.128.22 2016121607301297000_72.1.128.23 2016121607301297000_72.1.128.20 2016121607301297000_72.1.128.21 2016121607301297000_72.1.128.8 2016121607301297000_72.1.128.9 2016121607301297000_72.1.128.4 2016121607301297000_72.1.128.5 2016121607301297000_72.1.128.6 2016121607301297000_72.1.128.7 2016121607301297000_72.1.128.1 2016121607301297000_72.1.128.2 2016121607301297000_72.1.128.3 Falcone (2016121607301297000_72.1.128.26) 2015; 60 2016121607301297000_72.1.128.13 2016121607301297000_72.1.128.14 2016121607301297000_72.1.128.11 2016121607301297000_72.1.128.12 2016121607301297000_72.1.128.10 2016121607301297000_72.1.128.17 2016121607301297000_72.1.128.18 2016121607301297000_72.1.128.15 2016121607301297000_72.1.128.16 |
References_xml | – volume: 60 start-page: 252 year: 2015 ident: 2016121607301297000_72.1.128.26 article-title: Risk factors and outcomes for bloodstream infections secondary to Clostridium difficile infection publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.01927-15 – ident: 2016121607301297000_72.1.128.1 doi: 10.1016/j.cell.2004.07.002 – ident: 2016121607301297000_72.1.128.9 doi: 10.1128/AAC.00605-12 – ident: 2016121607301297000_72.1.128.5 doi: 10.1016/j.it.2012.05.003 – ident: 2016121607301297000_72.1.128.6 doi: 10.1172/JCI43918 – ident: 2016121607301297000_72.1.128.8 doi: 10.1086/519265 – ident: 2016121607301297000_72.1.128.21 doi: 10.1016/j.immuni.2010.06.001 – ident: 2016121607301297000_72.1.128.14 doi: 10.1093/cid/cis338 – ident: 2016121607301297000_72.1.128.17 doi: 10.7554/eLife.01202 – ident: 2016121607301297000_72.1.128.2 doi: 10.1038/nri3535 – ident: 2016121607301297000_72.1.128.4 doi: 10.1073/pnas.1010529108 – ident: 2016121607301297000_72.1.128.7 doi: 10.1038/nutd.2013.28 – ident: 2016121607301297000_72.1.128.20 doi: 10.1016/j.jhep.2013.11.034 – ident: 2016121607301297000_72.1.128.11 doi: 10.1038/embor.2012.32 – ident: 2016121607301297000_72.1.128.12 doi: 10.1371/journal.pone.0125448 – ident: 2016121607301297000_72.1.128.16 doi: 10.1371/journal.pone.0076269 – ident: 2016121607301297000_72.1.128.25 doi: 10.1111/j.1572-0241.2007.01539.x – ident: 2016121607301297000_72.1.128.24 doi: 10.1086/506349 – ident: 2016121607301297000_72.1.128.15 doi: 10.1093/cid/civ252 – volume: 57 start-page: 289 year: 1995 ident: 2016121607301297000_72.1.128.19 article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing publication-title: J R Stat Soc doi: 10.1111/j.2517-6161.1995.tb02031.x – ident: 2016121607301297000_72.1.128.23 doi: 10.1093/cid/civ137 – ident: 2016121607301297000_72.1.128.3 doi: 10.1016/j.cell.2009.09.033 – ident: 2016121607301297000_72.1.128.22 doi: 10.1038/nm.3914 – ident: 2016121607301297000_72.1.128.18 doi: 10.2989/16085910409503825 – ident: 2016121607301297000_72.1.128.13 doi: 10.1099/mic.0.042010-0 – ident: 2016121607301297000_72.1.128.10 doi: 10.1093/infdis/jiv256 |
SSID | ssj0006568 |
Score | 2.6059713 |
Snippet | Oral vancomycin remains the mainstay of therapy for severe infections produced by Clostridium difficile, the most prevalent cause of healthcare-associated... BACKGROUNDOral vancomycin remains the mainstay of therapy for severe infections produced by Clostridium difficile, the most prevalent cause of... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 128 |
SubjectTerms | Administration, Oral Animals Anti-Bacterial Agents - administration & dosage Feces - microbiology Gastrointestinal Microbiome - drug effects High-Throughput Nucleotide Sequencing Humans Metagenomics - methods Mice Microbiota - drug effects Models, Animal Original Research Time Vancomycin - administration & dosage |
Title | Short- and long-term effects of oral vancomycin on the human intestinal microbiota |
URI | https://www.ncbi.nlm.nih.gov/pubmed/27707993 https://www.proquest.com/docview/1835374872 https://pubmed.ncbi.nlm.nih.gov/PMC5161046 |
Volume | 72 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLVgSIgXBOOrDJARaBJi2dI4id1HhFaNsZWJpVLfIjtOaLbVmbZUqPx6rnPz0dIhDV6iKrVcNefk-ti-95iQ9ypgrpQ8cVQoAsfv64Gj_IFNsVJBEGaa6aoq7XgUHoz9w0kw6ZLYq-qSUu0mv26sK_kfVOEe4GqrZP8B2bZTuAGfAV-4AsJwvRXGp1MQz061_n9RmB-ODbPLGRpV9b3d4y9miyQ39cZAfS6fNYqA99uq0VmOdkyl_ItWhcef142sn8g0ndWFW4uOWlImuMRs9NXSZv1pwwq71_Bx3Arns_l5AVEKkyrbseEwn-HWvcGV7dEc06DblYk-X1qZSDGa-qELgOFxXE245d4arTB29usqcRyG--iLshbh0f3qzP6loT7_yfAYnFUj7dG3eDg-Ooqj_Ul0l9zzYAZRzba_fG0HaZCxonGrHbA96G8Pe1vVJ2uTjj9zZ5fESPSIPKyRoZ-QEo_JndRskvvHdZ7EJtk-QUfyxQ6NugK76x26TU86r_LFE_IdKUQBNNpSiNYUokVGLYVoRyFaGArI04pCtKMQ7Sj0lIyH-9HnA6c-ZsNJGBelI3SgYNKtPRi8pHZlArKOeSD8E1Dnmkul0sCXwg2lENpVqWBKZVwHPBOhy7yUPSMbpjDpC0K5LWyWnlQhyGytXcG1LeQWA64SL_N5j3xoHm6c1B709iiUixhzIVgMQMQIRI-8a9teovPKja3eNhjFEBjtbpc0aTG_jmGsCqy3Evd65Dli1vYDjHA5KPMe4Stotg2s6frqNyafVubrAUyRXD98eYvf3SIPutfiFdkor-bpa5CwpXpTkfE3vYel3A |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Short-+and+long-term+effects+of+oral+vancomycin+on+the+human+intestinal+microbiota&rft.jtitle=Journal+of+antimicrobial+chemotherapy&rft.au=Isaac%2C+Sandrine&rft.au=Scher%2C+Jose+U&rft.au=Djukovic%2C+Ana&rft.au=Jim%C3%A9nez%2C+Nuria&rft.date=2017-01-01&rft.eissn=1460-2091&rft.volume=72&rft.issue=1&rft.spage=128&rft.epage=136&rft_id=info:doi/10.1093%2Fjac%2Fdkw383&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-7453&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-7453&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-7453&client=summon |