Growth of aligned ZnO nanowires via modified atmospheric pressure chemical vapor deposition
In this work, we report the growth of high-quality aligned ZnO nanowires via a facile atmospheric pressure chemical vapor deposition (CVD) method. The CVD reactor chamber used was more complicated than a conventional one due to the quartz boats loaded with sources (ZnO/C) and substrates being insert...
Saved in:
Published in | Physics letters. A Vol. 380; no. 47; pp. 3993 - 3997 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
09.12.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this work, we report the growth of high-quality aligned ZnO nanowires via a facile atmospheric pressure chemical vapor deposition (CVD) method. The CVD reactor chamber used was more complicated than a conventional one due to the quartz boats loaded with sources (ZnO/C) and substrates being inserted into a semi-open quartz tube, and then placed inside the CVD reactor. The semi-open quartz tube played a very important role in growing the ZnO nanowires, and demonstrated that the transportation properties of Zn and O vapor differ from those in the conventional CVD reactor chamber. Aligned ZnO nanowires were successfully obtained, though they were only found at substrates located upstream. The very high crystalline quality of the obtained ZnO nanowires was demonstrated by high-resolution transmission electron microscopy and room temperature photoluminescence investigations. Such ZnO nanowires with high crystalline quality may provide opportunities for the fabrication of ZnO-based nano-devices in future.
•High-quality aligned ZnO nanowires were obtained via modified chemical vapor deposition under atmospheric pressure.•The semi-open quartz tube plays very important roles in growing ZnO nanowires.•The transportation properties of Zn and O vapor differ from those in the conventional CVD reactor chamber. |
---|---|
AbstractList | In this work, we report the growth of high-quality aligned ZnO nanowires via a facile atmospheric pressure chemical vapor deposition (CVD) method. The CVD reactor chamber used was more complicated than a conventional one due to the quartz boats loaded with sources (ZnO/C) and substrates being inserted into a semi-open quartz tube, and then placed inside the CVD reactor. The semi-open quartz tube played a very important role in growing the ZnO nanowires, and demonstrated that the transportation properties of Zn and O vapor differ from those in the conventional CVD reactor chamber. Aligned ZnO nanowires were successfully obtained, though they were only found at substrates located upstream. The very high crystalline quality of the obtained ZnO nanowires was demonstrated by high-resolution transmission electron microscopy and room temperature photoluminescence investigations. Such ZnO nanowires with high crystalline quality may provide opportunities for the fabrication of ZnO-based nano-devices in future.
•High-quality aligned ZnO nanowires were obtained via modified chemical vapor deposition under atmospheric pressure.•The semi-open quartz tube plays very important roles in growing ZnO nanowires.•The transportation properties of Zn and O vapor differ from those in the conventional CVD reactor chamber. |
Author | Li, Chengchen Chang, Yunwei Zhu, Hai Zhao, Yuping Chen, Anqi Chen, Mingming Tang, Zikang Yu, Xiao |
Author_xml | – sequence: 1 givenname: Yuping surname: Zhao fullname: Zhao, Yuping organization: Faculty of Science, Jiangsu University, Zhenjiang, Jiangsu, 212013, China – sequence: 2 givenname: Chengchen surname: Li fullname: Li, Chengchen organization: Faculty of Science, Jiangsu University, Zhenjiang, Jiangsu, 212013, China – sequence: 3 givenname: Mingming surname: Chen fullname: Chen, Mingming email: andychain@live.cn organization: Faculty of Science, Jiangsu University, Zhenjiang, Jiangsu, 212013, China – sequence: 4 givenname: Xiao surname: Yu fullname: Yu, Xiao organization: Faculty of Science, Jiangsu University, Zhenjiang, Jiangsu, 212013, China – sequence: 5 givenname: Yunwei surname: Chang fullname: Chang, Yunwei organization: Faculty of Science, Jiangsu University, Zhenjiang, Jiangsu, 212013, China – sequence: 6 givenname: Anqi surname: Chen fullname: Chen, Anqi organization: State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics & Information Technology, Sun Yat-Sen University, Guangzhou Higher Education Mega Center (University Town), Guangzhou, 510006, China – sequence: 7 givenname: Hai surname: Zhu fullname: Zhu, Hai email: zhuhai5@mail.sysu.edu.cn organization: State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics & Information Technology, Sun Yat-Sen University, Guangzhou Higher Education Mega Center (University Town), Guangzhou, 510006, China – sequence: 8 givenname: Zikang surname: Tang fullname: Tang, Zikang email: zktang@umac.mo organization: State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics & Information Technology, Sun Yat-Sen University, Guangzhou Higher Education Mega Center (University Town), Guangzhou, 510006, China |
BookMark | eNqFUE1Lw0AQXaSCbfUvyP6B1P1INgl4UIpWodCLXvSwbDYTsyXJht21pf_eLdWLl8LAMPPmPea9GZoMdgCEbilZUELF3XYxtgffQVALFucFicXJBZrSIucJS1k5QVPC8ywpBaFXaOb9lpB4Scop-lw5uw8ttg1WnfkaoMYfwwYParB748DjnVG4t7VpTIRU6K0fW3BG4zGi_tsB1i30RqsO79RoHa5htN4EY4drdNmozsPNb5-j9-ent-VLst6sXpeP60TzvAhJUZWQZkrTSkCZkbzktMi0zgTlVGUNy-I-40ykPC0qohlloql5tCUq2kDJ-Bzdn3S1s947aKQ2QR0_CE6ZTlIij0HJrfwLSh6DkiQWJ5Eu_tFHZ3rlDueJDyciRHM7A056bWDQUMfkdJC1NeckfgB-eIrn |
CitedBy_id | crossref_primary_10_3390_cryst13060876 crossref_primary_10_1109_ACCESS_2023_3300261 crossref_primary_10_1007_s12613_024_2965_x crossref_primary_10_3390_en13102631 crossref_primary_10_1016_j_apsusc_2018_01_041 crossref_primary_10_1016_j_physe_2018_06_029 crossref_primary_10_1021_acs_langmuir_0c00701 crossref_primary_10_1166_nnl_2017_2579 crossref_primary_10_1016_j_physb_2020_412274 crossref_primary_10_3390_nano13071258 crossref_primary_10_1002_elan_202100393 crossref_primary_10_3390_nano11081980 crossref_primary_10_1016_j_matdes_2018_08_060 crossref_primary_10_1109_TNB_2023_3236460 crossref_primary_10_1016_j_mtcomm_2019_100675 crossref_primary_10_1088_1361_6528_abb15f crossref_primary_10_1088_1361_6528_ad2018 crossref_primary_10_4028_www_scientific_net_NHC_31_55 crossref_primary_10_1016_j_ultsonch_2018_02_046 crossref_primary_10_1016_j_apsusc_2023_158907 crossref_primary_10_1088_1674_4926_40_7_071902 crossref_primary_10_1016_j_jallcom_2019_02_061 crossref_primary_10_1007_s10854_017_7036_x crossref_primary_10_1142_S0218625X18400012 crossref_primary_10_1016_j_vacuum_2017_03_010 crossref_primary_10_1016_j_micrna_2022_207422 crossref_primary_10_2320_matertrans_M2016461 crossref_primary_10_7567_1347_4065_ab3c21 crossref_primary_10_1007_s00210_019_01666_7 crossref_primary_10_1016_j_apsusc_2021_151295 crossref_primary_10_1016_j_carbon_2017_09_065 crossref_primary_10_1002_tcr_202300087 crossref_primary_10_1007_s10854_020_04987_z crossref_primary_10_1002_nano_202000273 crossref_primary_10_1021_acssuschemeng_8b00324 crossref_primary_10_1016_j_matdes_2018_05_003 crossref_primary_10_1016_j_jallcom_2016_12_265 crossref_primary_10_1134_S1063782620080151 crossref_primary_10_1007_s11581_018_2723_z crossref_primary_10_1007_s13204_019_01160_9 crossref_primary_10_1088_1361_6528_aadad8 crossref_primary_10_1080_15435075_2022_2126943 crossref_primary_10_1007_s12034_020_02298_x crossref_primary_10_1016_j_jmst_2017_03_024 crossref_primary_10_1109_ACCESS_2021_3051187 |
Cites_doi | 10.1039/C2CE06569J 10.1002/adom.201300302 10.1002/adma.201102184 10.1039/C4NR07114J 10.1016/j.apsusc.2006.10.012 10.1063/1.1883320 10.1063/1.1495878 10.1016/j.cplett.2006.09.100 10.1038/nnano.2011.97 10.1063/1.1512829 10.1002/lpor.201300127 10.1016/j.jelechem.2007.09.015 10.1038/nmat1284 10.1016/S0022-0248(01)00830-2 10.1039/C2TC00070A 10.1016/j.materresbull.2012.05.054 10.1016/j.matlet.2015.04.053 10.1016/j.jssc.2005.03.031 10.1021/jp7120092 10.1007/s00339-004-3045-8 10.1021/cm020465j 10.1021/nl070111x 10.1016/j.cplett.2005.01.084 10.1021/nl0498536 10.1002/1521-3765(20020315)8:6<1260::AID-CHEM1260>3.0.CO;2-Q 10.1021/nn9018174 |
ContentType | Journal Article |
Copyright | 2016 Elsevier B.V. |
Copyright_xml | – notice: 2016 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.physleta.2016.06.030 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1873-2429 |
EndPage | 3997 |
ExternalDocumentID | 10_1016_j_physleta_2016_06_030 S0375960116303528 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAXUO ABFNM ABLJU ABMAC ABNEU ABYKQ ACDAQ ACFVG ACGFS ACNCT ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W K-O KOM M38 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SPG SSQ SSZ T5K TN5 WH7 ~02 ~G- 29O 5VS 6TJ 8WZ A6W AAQFI AAQXK AATTM AAXKI AAYJJ AAYWO AAYXX ABDPE ABWVN ABXDB ACKIV ACNNM ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CITATION FEDTE FGOYB HMV HVGLF HZ~ MVM NDZJH R2- SEW SSH WUQ XJT XOL YYP ZCG |
ID | FETCH-LOGICAL-c378t-8b9e45ac1b6e950793185cc56131a5f25b6e53264348b0c2126fd34296b1fe923 |
IEDL.DBID | .~1 |
ISSN | 0375-9601 |
IngestDate | Thu Apr 24 22:57:46 EDT 2025 Tue Jul 01 01:39:58 EDT 2025 Fri Feb 23 02:18:25 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 47 |
Keywords | Crystal growth ZnO nanowire Semi-open quartz tube Chemical vapor deposition |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c378t-8b9e45ac1b6e950793185cc56131a5f25b6e53264348b0c2126fd34296b1fe923 |
PageCount | 5 |
ParticipantIDs | crossref_citationtrail_10_1016_j_physleta_2016_06_030 crossref_primary_10_1016_j_physleta_2016_06_030 elsevier_sciencedirect_doi_10_1016_j_physleta_2016_06_030 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-12-09 |
PublicationDateYYYYMMDD | 2016-12-09 |
PublicationDate_xml | – month: 12 year: 2016 text: 2016-12-09 day: 09 |
PublicationDecade | 2010 |
PublicationTitle | Physics letters. A |
PublicationYear | 2016 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Xu, Dai, Zhu, Zhu, Lin, Li, Shi (br0090) 2014; 8 Wu, Yan, Huang, Messer, Song, Yang (br0050) 2002; 8 Dai, Xu, Sun (br0110) 2011; 23 Heo, Kang, Tien, Norton, Ren, La Roche, Pearton (br0120) 2005; 80 Heo, Varadarajan, Kaufman, Kim, Norton, Ren, Fleming (br0140) 2002; 81 Elias, Tena-Zaera, Lévy-Clément (br0170) 2008; 621 Lu, Xu, Dai, Li, Wang, Lin, Li (br0270) 2015; 7 Tien, Norton, Pearton, Wang, Ren (br0130) 2007; 253 Chu, Wang, Zhou, Lin, Chernyak, Zhao, Kong, Li, Ren, Liu (br0030) 2011; 6 Xu, Zhu, Li, Yang, Tan, Sun, Lincoln, Smith (br0250) 2008; 103 Chen, Zhang, Su, Su, Cao, Zhu, Wu, Gui, Yang, Xiang (br0280) 2012; 47 Guo, Diao, Cai (br0220) 2005; 178 Gargas, Moore, Ni, Chang, Zhang, Chuang, Yang (br0100) 2010; 4 Soci, Zhang, Xiang, Dayeh, Aplin, Park, Bao, Lo, Wang (br0060) 2007; 7 Lyu, Zhang, Lee, Ruh, Lee (br0150) 2003; 15 Sun, Ndifor-Angwafor, Riley, Ashfold (br0210) 2006; 431 Wei, Lu, Shen, Zhang, Yao, Li, Zhang, Zhao, Fan, Tang (br0020) 2007; 90 Nguyen, Ng, Yamada, Smith, Li, Han, Meyyappan (br0290) 2004; 4 Liang, Sheng, Liu, Huo, Lu, Shen (br0040) 2001; 225 Wang, Yang, Yang (br0080) 2010; 97 Kim, Fujita, Fujita (br0160) 2005; 86 Feng, Ma, Yang (br0300) 2012; 14 Zhao, Chen, Ji, Zhu, Gui, Huang, Tang (br0240) 2015; 154 Elias, Tena-Zaera, Lévy-Clément (br0180) 2008; 112 Yao, Chan, Wang (br0190) 2002; 81 Meyyappan, Sunkara (br0230) 2009 Dong, Liu, Lu, Chen, Wang, Zhang (br0070) 2013; 1 Tsukazaki, Ohtomo, Onuma, Ohtani, Makino, Sumiya, Ohtani, Chichibu, Fuke, Segawa (br0010) 2005; 4 Lin, Xu, Li, Zhu, Xu, Dai, Wang (br0260) 2013; 1 Ham, Shen, Cho, Lee, Seo, Lee (br0200) 2005; 404 Wu (10.1016/j.physleta.2016.06.030_br0050) 2002; 8 Chu (10.1016/j.physleta.2016.06.030_br0030) 2011; 6 Meyyappan (10.1016/j.physleta.2016.06.030_br0230) 2009 Tien (10.1016/j.physleta.2016.06.030_br0130) 2007; 253 Ham (10.1016/j.physleta.2016.06.030_br0200) 2005; 404 Chen (10.1016/j.physleta.2016.06.030_br0280) 2012; 47 Xu (10.1016/j.physleta.2016.06.030_br0090) 2014; 8 Sun (10.1016/j.physleta.2016.06.030_br0210) 2006; 431 Wang (10.1016/j.physleta.2016.06.030_br0080) 2010; 97 Liang (10.1016/j.physleta.2016.06.030_br0040) 2001; 225 Soci (10.1016/j.physleta.2016.06.030_br0060) 2007; 7 Zhao (10.1016/j.physleta.2016.06.030_br0240) 2015; 154 Lu (10.1016/j.physleta.2016.06.030_br0270) 2015; 7 Xu (10.1016/j.physleta.2016.06.030_br0250) 2008; 103 Kim (10.1016/j.physleta.2016.06.030_br0160) 2005; 86 Dong (10.1016/j.physleta.2016.06.030_br0070) 2013; 1 Heo (10.1016/j.physleta.2016.06.030_br0140) 2002; 81 Elias (10.1016/j.physleta.2016.06.030_br0170) 2008; 621 Elias (10.1016/j.physleta.2016.06.030_br0180) 2008; 112 Wei (10.1016/j.physleta.2016.06.030_br0020) 2007; 90 Feng (10.1016/j.physleta.2016.06.030_br0300) 2012; 14 Dai (10.1016/j.physleta.2016.06.030_br0110) 2011; 23 Heo (10.1016/j.physleta.2016.06.030_br0120) 2005; 80 Guo (10.1016/j.physleta.2016.06.030_br0220) 2005; 178 Gargas (10.1016/j.physleta.2016.06.030_br0100) 2010; 4 Tsukazaki (10.1016/j.physleta.2016.06.030_br0010) 2005; 4 Nguyen (10.1016/j.physleta.2016.06.030_br0290) 2004; 4 Yao (10.1016/j.physleta.2016.06.030_br0190) 2002; 81 Lyu (10.1016/j.physleta.2016.06.030_br0150) 2003; 15 Lin (10.1016/j.physleta.2016.06.030_br0260) 2013; 1 |
References_xml | – volume: 15 start-page: 3294 year: 2003 end-page: 3299 ident: br0150 publication-title: Chem. Mater. – volume: 1 start-page: 940 year: 2013 end-page: 945 ident: br0260 publication-title: Adv. Opt. Mater. – volume: 14 start-page: 1210 year: 2012 end-page: 1212 ident: br0300 publication-title: Cryst. Eng. Comm. – volume: 90 year: 2007 ident: br0020 publication-title: Appl. Phys. Lett. – volume: 81 start-page: 3046 year: 2002 end-page: 3048 ident: br0140 publication-title: Appl. Phys. Lett. – volume: 112 start-page: 5736 year: 2008 end-page: 5741 ident: br0180 publication-title: J. Phys. Chem. C – volume: 8 start-page: 1260 year: 2002 end-page: 1268 ident: br0050 publication-title: Chemistry – volume: 4 start-page: 42 year: 2005 end-page: 46 ident: br0010 publication-title: Nat. Mater. – volume: 23 start-page: 4115 year: 2011 end-page: 4119 ident: br0110 publication-title: Adv. Mater. – year: 2009 ident: br0230 article-title: Inorganic Nanowires: Applications, Properties, and Characterization – volume: 253 start-page: 4620 year: 2007 end-page: 4625 ident: br0130 publication-title: Appl. Surf. Sci. – volume: 621 start-page: 171 year: 2008 end-page: 177 ident: br0170 publication-title: J. Electroanal. Chem. – volume: 225 start-page: 110 year: 2001 end-page: 113 ident: br0040 publication-title: J. Cryst. Growth – volume: 80 start-page: 497 year: 2005 end-page: 499 ident: br0120 publication-title: Appl. Phys. A, Mater. Sci. Process. – volume: 8 start-page: 469 year: 2014 end-page: 494 ident: br0090 publication-title: Laser Photonics Rev. – volume: 47 start-page: 2673 year: 2012 end-page: 2675 ident: br0280 publication-title: Mater. Res. Bull. – volume: 7 start-page: 1003 year: 2007 end-page: 1009 ident: br0060 publication-title: Nano Lett. – volume: 178 start-page: 1864 year: 2005 end-page: 1873 ident: br0220 publication-title: J. Solid State Chem. – volume: 431 start-page: 352 year: 2006 end-page: 357 ident: br0210 publication-title: Chem. Phys. Lett. – volume: 7 start-page: 3396 year: 2015 end-page: 3403 ident: br0270 publication-title: Nanoscale – volume: 4 start-page: 651 year: 2004 end-page: 657 ident: br0290 publication-title: Nano Lett. – volume: 154 start-page: 40 year: 2015 end-page: 43 ident: br0240 publication-title: Mater. Lett. – volume: 4 start-page: 3270 year: 2010 end-page: 3276 ident: br0100 publication-title: ACS Nano – volume: 1 start-page: 202 year: 2013 end-page: 206 ident: br0070 publication-title: J. Mater. Chem. C – volume: 404 start-page: 69 year: 2005 end-page: 73 ident: br0200 publication-title: Chem. Phys. Lett. – volume: 103 year: 2008 ident: br0250 publication-title: J. Appl. Phys. – volume: 81 start-page: 757 year: 2002 end-page: 759 ident: br0190 publication-title: Appl. Phys. Lett. – volume: 86 start-page: 153119 year: 2005 ident: br0160 publication-title: Appl. Phys. Lett. – volume: 6 start-page: 506 year: 2011 end-page: 510 ident: br0030 publication-title: Nat. Nanotechnol. – volume: 97 year: 2010 ident: br0080 publication-title: Appl. Phys. Lett. – volume: 14 start-page: 1210 year: 2012 ident: 10.1016/j.physleta.2016.06.030_br0300 publication-title: Cryst. Eng. Comm. doi: 10.1039/C2CE06569J – volume: 1 start-page: 940 year: 2013 ident: 10.1016/j.physleta.2016.06.030_br0260 publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201300302 – volume: 23 start-page: 4115 year: 2011 ident: 10.1016/j.physleta.2016.06.030_br0110 publication-title: Adv. Mater. doi: 10.1002/adma.201102184 – year: 2009 ident: 10.1016/j.physleta.2016.06.030_br0230 – volume: 7 start-page: 3396 year: 2015 ident: 10.1016/j.physleta.2016.06.030_br0270 publication-title: Nanoscale doi: 10.1039/C4NR07114J – volume: 253 start-page: 4620 year: 2007 ident: 10.1016/j.physleta.2016.06.030_br0130 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2006.10.012 – volume: 90 year: 2007 ident: 10.1016/j.physleta.2016.06.030_br0020 publication-title: Appl. Phys. Lett. – volume: 86 start-page: 153119 year: 2005 ident: 10.1016/j.physleta.2016.06.030_br0160 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1883320 – volume: 81 start-page: 757 year: 2002 ident: 10.1016/j.physleta.2016.06.030_br0190 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1495878 – volume: 431 start-page: 352 year: 2006 ident: 10.1016/j.physleta.2016.06.030_br0210 publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2006.09.100 – volume: 6 start-page: 506 year: 2011 ident: 10.1016/j.physleta.2016.06.030_br0030 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2011.97 – volume: 81 start-page: 3046 year: 2002 ident: 10.1016/j.physleta.2016.06.030_br0140 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1512829 – volume: 8 start-page: 469 year: 2014 ident: 10.1016/j.physleta.2016.06.030_br0090 publication-title: Laser Photonics Rev. doi: 10.1002/lpor.201300127 – volume: 621 start-page: 171 year: 2008 ident: 10.1016/j.physleta.2016.06.030_br0170 publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2007.09.015 – volume: 4 start-page: 42 year: 2005 ident: 10.1016/j.physleta.2016.06.030_br0010 publication-title: Nat. Mater. doi: 10.1038/nmat1284 – volume: 225 start-page: 110 year: 2001 ident: 10.1016/j.physleta.2016.06.030_br0040 publication-title: J. Cryst. Growth doi: 10.1016/S0022-0248(01)00830-2 – volume: 1 start-page: 202 year: 2013 ident: 10.1016/j.physleta.2016.06.030_br0070 publication-title: J. Mater. Chem. C doi: 10.1039/C2TC00070A – volume: 47 start-page: 2673 year: 2012 ident: 10.1016/j.physleta.2016.06.030_br0280 publication-title: Mater. Res. Bull. doi: 10.1016/j.materresbull.2012.05.054 – volume: 154 start-page: 40 year: 2015 ident: 10.1016/j.physleta.2016.06.030_br0240 publication-title: Mater. Lett. doi: 10.1016/j.matlet.2015.04.053 – volume: 178 start-page: 1864 year: 2005 ident: 10.1016/j.physleta.2016.06.030_br0220 publication-title: J. Solid State Chem. doi: 10.1016/j.jssc.2005.03.031 – volume: 97 year: 2010 ident: 10.1016/j.physleta.2016.06.030_br0080 publication-title: Appl. Phys. Lett. – volume: 112 start-page: 5736 year: 2008 ident: 10.1016/j.physleta.2016.06.030_br0180 publication-title: J. Phys. Chem. C doi: 10.1021/jp7120092 – volume: 80 start-page: 497 year: 2005 ident: 10.1016/j.physleta.2016.06.030_br0120 publication-title: Appl. Phys. A, Mater. Sci. Process. doi: 10.1007/s00339-004-3045-8 – volume: 15 start-page: 3294 year: 2003 ident: 10.1016/j.physleta.2016.06.030_br0150 publication-title: Chem. Mater. doi: 10.1021/cm020465j – volume: 7 start-page: 1003 year: 2007 ident: 10.1016/j.physleta.2016.06.030_br0060 publication-title: Nano Lett. doi: 10.1021/nl070111x – volume: 404 start-page: 69 year: 2005 ident: 10.1016/j.physleta.2016.06.030_br0200 publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2005.01.084 – volume: 4 start-page: 651 year: 2004 ident: 10.1016/j.physleta.2016.06.030_br0290 publication-title: Nano Lett. doi: 10.1021/nl0498536 – volume: 8 start-page: 1260 year: 2002 ident: 10.1016/j.physleta.2016.06.030_br0050 publication-title: Chemistry doi: 10.1002/1521-3765(20020315)8:6<1260::AID-CHEM1260>3.0.CO;2-Q – volume: 4 start-page: 3270 year: 2010 ident: 10.1016/j.physleta.2016.06.030_br0100 publication-title: ACS Nano doi: 10.1021/nn9018174 – volume: 103 year: 2008 ident: 10.1016/j.physleta.2016.06.030_br0250 publication-title: J. Appl. Phys. |
SSID | ssj0001609 |
Score | 2.403367 |
Snippet | In this work, we report the growth of high-quality aligned ZnO nanowires via a facile atmospheric pressure chemical vapor deposition (CVD) method. The CVD... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 3993 |
SubjectTerms | Chemical vapor deposition Crystal growth Semi-open quartz tube ZnO nanowire |
Title | Growth of aligned ZnO nanowires via modified atmospheric pressure chemical vapor deposition |
URI | https://dx.doi.org/10.1016/j.physleta.2016.06.030 |
Volume | 380 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KRfAiPrE-yh68pu02u9vmWIq1KtaDFooewu5moyk2KW3ao7_dmTy0guDBY5adEGaHmW_DN98Qcqm7rmpbVzhMMelwqayjA-05OpuIIrVuu9gofD-SwzG_nYhJhfTLXhikVRa5P8_pWbYuVpqFN5vzKGo-4vRWwN8MEAWKemLDL-cdjPLGxzfNg8mc5gGbHdy90SU8beDfA3AP6g8xmel4Ihv6twK1UXQGe2S3QIu0l3_QPqnY-IBsZ6xNszwkL9dwiU7faBJSgNOvkDHpc_xAYxUnKEG8pOtI0VkSRCEATarSWbJEFYHI0Iz-ulpYagrBALpWgMRpYEsW1xEZD66e-kOnmJbgGLfTTZ2u9iwXyjAtrSdQ9w5KsTF4QWBKhG0B6wLAGnd5V7cMlCwZBi6UI6lZaAHnHZNqnMT2hFBpZADXQi3ghdzyUIF9wLhRzCppTFAjonSRbwopcZxo8e6XnLGpX7rWR9f6SJ5zWzXS_LKb52Iaf1p45Qn4P8LCh4z_h-3pP2zPyA4-ZbwV75xU08XKXgD6SHU9C6862erd3A1Hn1wR3FM |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT4NAEJ1ojdGL8TN-uwevSLewKxwbo1K19aAmRg9kd1kUY6Gx2N_vDAVTExMPXhceIcNm5i158wbgWAee6lhPOFxx6fhSWUcnOnR0NRFFat3xqFG4P5DRg3_1KB7n4KzphSFZZZ37pzm9ytb1iltH0x1lmXtH01uRf3NkFGTqGczDArlTiRYsdHvX0eA7IXM5VXrg_Q4BZhqF307oBwJGiCyIuKysPEkQ_VuNmqk7F6uwUhNG1p2-0xrM2XwdFivhphlvwPMlnqPLV1akDBn1CyZN9pTfslzlBbkQj9kkU2xYJFmKXJOpcliMyUggM6xSwH5-WGZqzwA2UUjGWWIbIdcmPFyc359FTj0wwTHeaVA6gQ6tL5ThWtpQkPUdVmNj6IzAlUg7AtcF8jXf8wPdNli1ZJp4WJGk5qlFqrcFrbzI7TYwaWSCJ0Mt8IG-9VOF-IT7RnGrpDHJDogmRLGp3cRpqMV73MjG3uImtDGFNib9nNfeAfcbN5r6afyJCJsvEP_YGTEm_T-wu__AHsFSdN-_iW96g-s9WKYrlYwl3IdW-fFpD5CMlPqw3mxf7abfBA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Growth+of+aligned+ZnO+nanowires+via+modified+atmospheric+pressure+chemical+vapor+deposition&rft.jtitle=Physics+letters.+A&rft.au=Zhao%2C+Yuping&rft.au=Li%2C+Chengchen&rft.au=Chen%2C+Mingming&rft.au=Yu%2C+Xiao&rft.date=2016-12-09&rft.issn=0375-9601&rft.volume=380&rft.issue=47&rft.spage=3993&rft.epage=3997&rft_id=info:doi/10.1016%2Fj.physleta.2016.06.030&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_physleta_2016_06_030 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0375-9601&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0375-9601&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0375-9601&client=summon |