Growth of aligned ZnO nanowires via modified atmospheric pressure chemical vapor deposition

In this work, we report the growth of high-quality aligned ZnO nanowires via a facile atmospheric pressure chemical vapor deposition (CVD) method. The CVD reactor chamber used was more complicated than a conventional one due to the quartz boats loaded with sources (ZnO/C) and substrates being insert...

Full description

Saved in:
Bibliographic Details
Published inPhysics letters. A Vol. 380; no. 47; pp. 3993 - 3997
Main Authors Zhao, Yuping, Li, Chengchen, Chen, Mingming, Yu, Xiao, Chang, Yunwei, Chen, Anqi, Zhu, Hai, Tang, Zikang
Format Journal Article
LanguageEnglish
Published Elsevier B.V 09.12.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this work, we report the growth of high-quality aligned ZnO nanowires via a facile atmospheric pressure chemical vapor deposition (CVD) method. The CVD reactor chamber used was more complicated than a conventional one due to the quartz boats loaded with sources (ZnO/C) and substrates being inserted into a semi-open quartz tube, and then placed inside the CVD reactor. The semi-open quartz tube played a very important role in growing the ZnO nanowires, and demonstrated that the transportation properties of Zn and O vapor differ from those in the conventional CVD reactor chamber. Aligned ZnO nanowires were successfully obtained, though they were only found at substrates located upstream. The very high crystalline quality of the obtained ZnO nanowires was demonstrated by high-resolution transmission electron microscopy and room temperature photoluminescence investigations. Such ZnO nanowires with high crystalline quality may provide opportunities for the fabrication of ZnO-based nano-devices in future. •High-quality aligned ZnO nanowires were obtained via modified chemical vapor deposition under atmospheric pressure.•The semi-open quartz tube plays very important roles in growing ZnO nanowires.•The transportation properties of Zn and O vapor differ from those in the conventional CVD reactor chamber.
AbstractList In this work, we report the growth of high-quality aligned ZnO nanowires via a facile atmospheric pressure chemical vapor deposition (CVD) method. The CVD reactor chamber used was more complicated than a conventional one due to the quartz boats loaded with sources (ZnO/C) and substrates being inserted into a semi-open quartz tube, and then placed inside the CVD reactor. The semi-open quartz tube played a very important role in growing the ZnO nanowires, and demonstrated that the transportation properties of Zn and O vapor differ from those in the conventional CVD reactor chamber. Aligned ZnO nanowires were successfully obtained, though they were only found at substrates located upstream. The very high crystalline quality of the obtained ZnO nanowires was demonstrated by high-resolution transmission electron microscopy and room temperature photoluminescence investigations. Such ZnO nanowires with high crystalline quality may provide opportunities for the fabrication of ZnO-based nano-devices in future. •High-quality aligned ZnO nanowires were obtained via modified chemical vapor deposition under atmospheric pressure.•The semi-open quartz tube plays very important roles in growing ZnO nanowires.•The transportation properties of Zn and O vapor differ from those in the conventional CVD reactor chamber.
Author Li, Chengchen
Chang, Yunwei
Zhu, Hai
Zhao, Yuping
Chen, Anqi
Chen, Mingming
Tang, Zikang
Yu, Xiao
Author_xml – sequence: 1
  givenname: Yuping
  surname: Zhao
  fullname: Zhao, Yuping
  organization: Faculty of Science, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
– sequence: 2
  givenname: Chengchen
  surname: Li
  fullname: Li, Chengchen
  organization: Faculty of Science, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
– sequence: 3
  givenname: Mingming
  surname: Chen
  fullname: Chen, Mingming
  email: andychain@live.cn
  organization: Faculty of Science, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
– sequence: 4
  givenname: Xiao
  surname: Yu
  fullname: Yu, Xiao
  organization: Faculty of Science, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
– sequence: 5
  givenname: Yunwei
  surname: Chang
  fullname: Chang, Yunwei
  organization: Faculty of Science, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
– sequence: 6
  givenname: Anqi
  surname: Chen
  fullname: Chen, Anqi
  organization: State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics & Information Technology, Sun Yat-Sen University, Guangzhou Higher Education Mega Center (University Town), Guangzhou, 510006, China
– sequence: 7
  givenname: Hai
  surname: Zhu
  fullname: Zhu, Hai
  email: zhuhai5@mail.sysu.edu.cn
  organization: State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics & Information Technology, Sun Yat-Sen University, Guangzhou Higher Education Mega Center (University Town), Guangzhou, 510006, China
– sequence: 8
  givenname: Zikang
  surname: Tang
  fullname: Tang, Zikang
  email: zktang@umac.mo
  organization: State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics & Information Technology, Sun Yat-Sen University, Guangzhou Higher Education Mega Center (University Town), Guangzhou, 510006, China
BookMark eNqFUE1Lw0AQXaSCbfUvyP6B1P1INgl4UIpWodCLXvSwbDYTsyXJht21pf_eLdWLl8LAMPPmPea9GZoMdgCEbilZUELF3XYxtgffQVALFucFicXJBZrSIucJS1k5QVPC8ywpBaFXaOb9lpB4Scop-lw5uw8ttg1WnfkaoMYfwwYParB748DjnVG4t7VpTIRU6K0fW3BG4zGi_tsB1i30RqsO79RoHa5htN4EY4drdNmozsPNb5-j9-ent-VLst6sXpeP60TzvAhJUZWQZkrTSkCZkbzktMi0zgTlVGUNy-I-40ykPC0qohlloql5tCUq2kDJ-Bzdn3S1s947aKQ2QR0_CE6ZTlIij0HJrfwLSh6DkiQWJ5Eu_tFHZ3rlDueJDyciRHM7A056bWDQUMfkdJC1NeckfgB-eIrn
CitedBy_id crossref_primary_10_3390_cryst13060876
crossref_primary_10_1109_ACCESS_2023_3300261
crossref_primary_10_1007_s12613_024_2965_x
crossref_primary_10_3390_en13102631
crossref_primary_10_1016_j_apsusc_2018_01_041
crossref_primary_10_1016_j_physe_2018_06_029
crossref_primary_10_1021_acs_langmuir_0c00701
crossref_primary_10_1166_nnl_2017_2579
crossref_primary_10_1016_j_physb_2020_412274
crossref_primary_10_3390_nano13071258
crossref_primary_10_1002_elan_202100393
crossref_primary_10_3390_nano11081980
crossref_primary_10_1016_j_matdes_2018_08_060
crossref_primary_10_1109_TNB_2023_3236460
crossref_primary_10_1016_j_mtcomm_2019_100675
crossref_primary_10_1088_1361_6528_abb15f
crossref_primary_10_1088_1361_6528_ad2018
crossref_primary_10_4028_www_scientific_net_NHC_31_55
crossref_primary_10_1016_j_ultsonch_2018_02_046
crossref_primary_10_1016_j_apsusc_2023_158907
crossref_primary_10_1088_1674_4926_40_7_071902
crossref_primary_10_1016_j_jallcom_2019_02_061
crossref_primary_10_1007_s10854_017_7036_x
crossref_primary_10_1142_S0218625X18400012
crossref_primary_10_1016_j_vacuum_2017_03_010
crossref_primary_10_1016_j_micrna_2022_207422
crossref_primary_10_2320_matertrans_M2016461
crossref_primary_10_7567_1347_4065_ab3c21
crossref_primary_10_1007_s00210_019_01666_7
crossref_primary_10_1016_j_apsusc_2021_151295
crossref_primary_10_1016_j_carbon_2017_09_065
crossref_primary_10_1002_tcr_202300087
crossref_primary_10_1007_s10854_020_04987_z
crossref_primary_10_1002_nano_202000273
crossref_primary_10_1021_acssuschemeng_8b00324
crossref_primary_10_1016_j_matdes_2018_05_003
crossref_primary_10_1016_j_jallcom_2016_12_265
crossref_primary_10_1134_S1063782620080151
crossref_primary_10_1007_s11581_018_2723_z
crossref_primary_10_1007_s13204_019_01160_9
crossref_primary_10_1088_1361_6528_aadad8
crossref_primary_10_1080_15435075_2022_2126943
crossref_primary_10_1007_s12034_020_02298_x
crossref_primary_10_1016_j_jmst_2017_03_024
crossref_primary_10_1109_ACCESS_2021_3051187
Cites_doi 10.1039/C2CE06569J
10.1002/adom.201300302
10.1002/adma.201102184
10.1039/C4NR07114J
10.1016/j.apsusc.2006.10.012
10.1063/1.1883320
10.1063/1.1495878
10.1016/j.cplett.2006.09.100
10.1038/nnano.2011.97
10.1063/1.1512829
10.1002/lpor.201300127
10.1016/j.jelechem.2007.09.015
10.1038/nmat1284
10.1016/S0022-0248(01)00830-2
10.1039/C2TC00070A
10.1016/j.materresbull.2012.05.054
10.1016/j.matlet.2015.04.053
10.1016/j.jssc.2005.03.031
10.1021/jp7120092
10.1007/s00339-004-3045-8
10.1021/cm020465j
10.1021/nl070111x
10.1016/j.cplett.2005.01.084
10.1021/nl0498536
10.1002/1521-3765(20020315)8:6<1260::AID-CHEM1260>3.0.CO;2-Q
10.1021/nn9018174
ContentType Journal Article
Copyright 2016 Elsevier B.V.
Copyright_xml – notice: 2016 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.physleta.2016.06.030
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1873-2429
EndPage 3997
ExternalDocumentID 10_1016_j_physleta_2016_06_030
S0375960116303528
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAXUO
ABFNM
ABLJU
ABMAC
ABNEU
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNCT
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KOM
M38
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SPG
SSQ
SSZ
T5K
TN5
WH7
~02
~G-
29O
5VS
6TJ
8WZ
A6W
AAQFI
AAQXK
AATTM
AAXKI
AAYJJ
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACKIV
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
FEDTE
FGOYB
HMV
HVGLF
HZ~
MVM
NDZJH
R2-
SEW
SSH
WUQ
XJT
XOL
YYP
ZCG
ID FETCH-LOGICAL-c378t-8b9e45ac1b6e950793185cc56131a5f25b6e53264348b0c2126fd34296b1fe923
IEDL.DBID .~1
ISSN 0375-9601
IngestDate Thu Apr 24 22:57:46 EDT 2025
Tue Jul 01 01:39:58 EDT 2025
Fri Feb 23 02:18:25 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 47
Keywords Crystal growth
ZnO nanowire
Semi-open quartz tube
Chemical vapor deposition
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c378t-8b9e45ac1b6e950793185cc56131a5f25b6e53264348b0c2126fd34296b1fe923
PageCount 5
ParticipantIDs crossref_citationtrail_10_1016_j_physleta_2016_06_030
crossref_primary_10_1016_j_physleta_2016_06_030
elsevier_sciencedirect_doi_10_1016_j_physleta_2016_06_030
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-12-09
PublicationDateYYYYMMDD 2016-12-09
PublicationDate_xml – month: 12
  year: 2016
  text: 2016-12-09
  day: 09
PublicationDecade 2010
PublicationTitle Physics letters. A
PublicationYear 2016
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Xu, Dai, Zhu, Zhu, Lin, Li, Shi (br0090) 2014; 8
Wu, Yan, Huang, Messer, Song, Yang (br0050) 2002; 8
Dai, Xu, Sun (br0110) 2011; 23
Heo, Kang, Tien, Norton, Ren, La Roche, Pearton (br0120) 2005; 80
Heo, Varadarajan, Kaufman, Kim, Norton, Ren, Fleming (br0140) 2002; 81
Elias, Tena-Zaera, Lévy-Clément (br0170) 2008; 621
Lu, Xu, Dai, Li, Wang, Lin, Li (br0270) 2015; 7
Tien, Norton, Pearton, Wang, Ren (br0130) 2007; 253
Chu, Wang, Zhou, Lin, Chernyak, Zhao, Kong, Li, Ren, Liu (br0030) 2011; 6
Xu, Zhu, Li, Yang, Tan, Sun, Lincoln, Smith (br0250) 2008; 103
Chen, Zhang, Su, Su, Cao, Zhu, Wu, Gui, Yang, Xiang (br0280) 2012; 47
Guo, Diao, Cai (br0220) 2005; 178
Gargas, Moore, Ni, Chang, Zhang, Chuang, Yang (br0100) 2010; 4
Soci, Zhang, Xiang, Dayeh, Aplin, Park, Bao, Lo, Wang (br0060) 2007; 7
Lyu, Zhang, Lee, Ruh, Lee (br0150) 2003; 15
Sun, Ndifor-Angwafor, Riley, Ashfold (br0210) 2006; 431
Wei, Lu, Shen, Zhang, Yao, Li, Zhang, Zhao, Fan, Tang (br0020) 2007; 90
Nguyen, Ng, Yamada, Smith, Li, Han, Meyyappan (br0290) 2004; 4
Liang, Sheng, Liu, Huo, Lu, Shen (br0040) 2001; 225
Wang, Yang, Yang (br0080) 2010; 97
Kim, Fujita, Fujita (br0160) 2005; 86
Feng, Ma, Yang (br0300) 2012; 14
Zhao, Chen, Ji, Zhu, Gui, Huang, Tang (br0240) 2015; 154
Elias, Tena-Zaera, Lévy-Clément (br0180) 2008; 112
Yao, Chan, Wang (br0190) 2002; 81
Meyyappan, Sunkara (br0230) 2009
Dong, Liu, Lu, Chen, Wang, Zhang (br0070) 2013; 1
Tsukazaki, Ohtomo, Onuma, Ohtani, Makino, Sumiya, Ohtani, Chichibu, Fuke, Segawa (br0010) 2005; 4
Lin, Xu, Li, Zhu, Xu, Dai, Wang (br0260) 2013; 1
Ham, Shen, Cho, Lee, Seo, Lee (br0200) 2005; 404
Wu (10.1016/j.physleta.2016.06.030_br0050) 2002; 8
Chu (10.1016/j.physleta.2016.06.030_br0030) 2011; 6
Meyyappan (10.1016/j.physleta.2016.06.030_br0230) 2009
Tien (10.1016/j.physleta.2016.06.030_br0130) 2007; 253
Ham (10.1016/j.physleta.2016.06.030_br0200) 2005; 404
Chen (10.1016/j.physleta.2016.06.030_br0280) 2012; 47
Xu (10.1016/j.physleta.2016.06.030_br0090) 2014; 8
Sun (10.1016/j.physleta.2016.06.030_br0210) 2006; 431
Wang (10.1016/j.physleta.2016.06.030_br0080) 2010; 97
Liang (10.1016/j.physleta.2016.06.030_br0040) 2001; 225
Soci (10.1016/j.physleta.2016.06.030_br0060) 2007; 7
Zhao (10.1016/j.physleta.2016.06.030_br0240) 2015; 154
Lu (10.1016/j.physleta.2016.06.030_br0270) 2015; 7
Xu (10.1016/j.physleta.2016.06.030_br0250) 2008; 103
Kim (10.1016/j.physleta.2016.06.030_br0160) 2005; 86
Dong (10.1016/j.physleta.2016.06.030_br0070) 2013; 1
Heo (10.1016/j.physleta.2016.06.030_br0140) 2002; 81
Elias (10.1016/j.physleta.2016.06.030_br0170) 2008; 621
Elias (10.1016/j.physleta.2016.06.030_br0180) 2008; 112
Wei (10.1016/j.physleta.2016.06.030_br0020) 2007; 90
Feng (10.1016/j.physleta.2016.06.030_br0300) 2012; 14
Dai (10.1016/j.physleta.2016.06.030_br0110) 2011; 23
Heo (10.1016/j.physleta.2016.06.030_br0120) 2005; 80
Guo (10.1016/j.physleta.2016.06.030_br0220) 2005; 178
Gargas (10.1016/j.physleta.2016.06.030_br0100) 2010; 4
Tsukazaki (10.1016/j.physleta.2016.06.030_br0010) 2005; 4
Nguyen (10.1016/j.physleta.2016.06.030_br0290) 2004; 4
Yao (10.1016/j.physleta.2016.06.030_br0190) 2002; 81
Lyu (10.1016/j.physleta.2016.06.030_br0150) 2003; 15
Lin (10.1016/j.physleta.2016.06.030_br0260) 2013; 1
References_xml – volume: 15
  start-page: 3294
  year: 2003
  end-page: 3299
  ident: br0150
  publication-title: Chem. Mater.
– volume: 1
  start-page: 940
  year: 2013
  end-page: 945
  ident: br0260
  publication-title: Adv. Opt. Mater.
– volume: 14
  start-page: 1210
  year: 2012
  end-page: 1212
  ident: br0300
  publication-title: Cryst. Eng. Comm.
– volume: 90
  year: 2007
  ident: br0020
  publication-title: Appl. Phys. Lett.
– volume: 81
  start-page: 3046
  year: 2002
  end-page: 3048
  ident: br0140
  publication-title: Appl. Phys. Lett.
– volume: 112
  start-page: 5736
  year: 2008
  end-page: 5741
  ident: br0180
  publication-title: J. Phys. Chem. C
– volume: 8
  start-page: 1260
  year: 2002
  end-page: 1268
  ident: br0050
  publication-title: Chemistry
– volume: 4
  start-page: 42
  year: 2005
  end-page: 46
  ident: br0010
  publication-title: Nat. Mater.
– volume: 23
  start-page: 4115
  year: 2011
  end-page: 4119
  ident: br0110
  publication-title: Adv. Mater.
– year: 2009
  ident: br0230
  article-title: Inorganic Nanowires: Applications, Properties, and Characterization
– volume: 253
  start-page: 4620
  year: 2007
  end-page: 4625
  ident: br0130
  publication-title: Appl. Surf. Sci.
– volume: 621
  start-page: 171
  year: 2008
  end-page: 177
  ident: br0170
  publication-title: J. Electroanal. Chem.
– volume: 225
  start-page: 110
  year: 2001
  end-page: 113
  ident: br0040
  publication-title: J. Cryst. Growth
– volume: 80
  start-page: 497
  year: 2005
  end-page: 499
  ident: br0120
  publication-title: Appl. Phys. A, Mater. Sci. Process.
– volume: 8
  start-page: 469
  year: 2014
  end-page: 494
  ident: br0090
  publication-title: Laser Photonics Rev.
– volume: 47
  start-page: 2673
  year: 2012
  end-page: 2675
  ident: br0280
  publication-title: Mater. Res. Bull.
– volume: 7
  start-page: 1003
  year: 2007
  end-page: 1009
  ident: br0060
  publication-title: Nano Lett.
– volume: 178
  start-page: 1864
  year: 2005
  end-page: 1873
  ident: br0220
  publication-title: J. Solid State Chem.
– volume: 431
  start-page: 352
  year: 2006
  end-page: 357
  ident: br0210
  publication-title: Chem. Phys. Lett.
– volume: 7
  start-page: 3396
  year: 2015
  end-page: 3403
  ident: br0270
  publication-title: Nanoscale
– volume: 4
  start-page: 651
  year: 2004
  end-page: 657
  ident: br0290
  publication-title: Nano Lett.
– volume: 154
  start-page: 40
  year: 2015
  end-page: 43
  ident: br0240
  publication-title: Mater. Lett.
– volume: 4
  start-page: 3270
  year: 2010
  end-page: 3276
  ident: br0100
  publication-title: ACS Nano
– volume: 1
  start-page: 202
  year: 2013
  end-page: 206
  ident: br0070
  publication-title: J. Mater. Chem. C
– volume: 404
  start-page: 69
  year: 2005
  end-page: 73
  ident: br0200
  publication-title: Chem. Phys. Lett.
– volume: 103
  year: 2008
  ident: br0250
  publication-title: J. Appl. Phys.
– volume: 81
  start-page: 757
  year: 2002
  end-page: 759
  ident: br0190
  publication-title: Appl. Phys. Lett.
– volume: 86
  start-page: 153119
  year: 2005
  ident: br0160
  publication-title: Appl. Phys. Lett.
– volume: 6
  start-page: 506
  year: 2011
  end-page: 510
  ident: br0030
  publication-title: Nat. Nanotechnol.
– volume: 97
  year: 2010
  ident: br0080
  publication-title: Appl. Phys. Lett.
– volume: 14
  start-page: 1210
  year: 2012
  ident: 10.1016/j.physleta.2016.06.030_br0300
  publication-title: Cryst. Eng. Comm.
  doi: 10.1039/C2CE06569J
– volume: 1
  start-page: 940
  year: 2013
  ident: 10.1016/j.physleta.2016.06.030_br0260
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201300302
– volume: 23
  start-page: 4115
  year: 2011
  ident: 10.1016/j.physleta.2016.06.030_br0110
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201102184
– year: 2009
  ident: 10.1016/j.physleta.2016.06.030_br0230
– volume: 7
  start-page: 3396
  year: 2015
  ident: 10.1016/j.physleta.2016.06.030_br0270
  publication-title: Nanoscale
  doi: 10.1039/C4NR07114J
– volume: 253
  start-page: 4620
  year: 2007
  ident: 10.1016/j.physleta.2016.06.030_br0130
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2006.10.012
– volume: 90
  year: 2007
  ident: 10.1016/j.physleta.2016.06.030_br0020
  publication-title: Appl. Phys. Lett.
– volume: 86
  start-page: 153119
  year: 2005
  ident: 10.1016/j.physleta.2016.06.030_br0160
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1883320
– volume: 81
  start-page: 757
  year: 2002
  ident: 10.1016/j.physleta.2016.06.030_br0190
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1495878
– volume: 431
  start-page: 352
  year: 2006
  ident: 10.1016/j.physleta.2016.06.030_br0210
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2006.09.100
– volume: 6
  start-page: 506
  year: 2011
  ident: 10.1016/j.physleta.2016.06.030_br0030
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2011.97
– volume: 81
  start-page: 3046
  year: 2002
  ident: 10.1016/j.physleta.2016.06.030_br0140
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1512829
– volume: 8
  start-page: 469
  year: 2014
  ident: 10.1016/j.physleta.2016.06.030_br0090
  publication-title: Laser Photonics Rev.
  doi: 10.1002/lpor.201300127
– volume: 621
  start-page: 171
  year: 2008
  ident: 10.1016/j.physleta.2016.06.030_br0170
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2007.09.015
– volume: 4
  start-page: 42
  year: 2005
  ident: 10.1016/j.physleta.2016.06.030_br0010
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1284
– volume: 225
  start-page: 110
  year: 2001
  ident: 10.1016/j.physleta.2016.06.030_br0040
  publication-title: J. Cryst. Growth
  doi: 10.1016/S0022-0248(01)00830-2
– volume: 1
  start-page: 202
  year: 2013
  ident: 10.1016/j.physleta.2016.06.030_br0070
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C2TC00070A
– volume: 47
  start-page: 2673
  year: 2012
  ident: 10.1016/j.physleta.2016.06.030_br0280
  publication-title: Mater. Res. Bull.
  doi: 10.1016/j.materresbull.2012.05.054
– volume: 154
  start-page: 40
  year: 2015
  ident: 10.1016/j.physleta.2016.06.030_br0240
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2015.04.053
– volume: 178
  start-page: 1864
  year: 2005
  ident: 10.1016/j.physleta.2016.06.030_br0220
  publication-title: J. Solid State Chem.
  doi: 10.1016/j.jssc.2005.03.031
– volume: 97
  year: 2010
  ident: 10.1016/j.physleta.2016.06.030_br0080
  publication-title: Appl. Phys. Lett.
– volume: 112
  start-page: 5736
  year: 2008
  ident: 10.1016/j.physleta.2016.06.030_br0180
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp7120092
– volume: 80
  start-page: 497
  year: 2005
  ident: 10.1016/j.physleta.2016.06.030_br0120
  publication-title: Appl. Phys. A, Mater. Sci. Process.
  doi: 10.1007/s00339-004-3045-8
– volume: 15
  start-page: 3294
  year: 2003
  ident: 10.1016/j.physleta.2016.06.030_br0150
  publication-title: Chem. Mater.
  doi: 10.1021/cm020465j
– volume: 7
  start-page: 1003
  year: 2007
  ident: 10.1016/j.physleta.2016.06.030_br0060
  publication-title: Nano Lett.
  doi: 10.1021/nl070111x
– volume: 404
  start-page: 69
  year: 2005
  ident: 10.1016/j.physleta.2016.06.030_br0200
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2005.01.084
– volume: 4
  start-page: 651
  year: 2004
  ident: 10.1016/j.physleta.2016.06.030_br0290
  publication-title: Nano Lett.
  doi: 10.1021/nl0498536
– volume: 8
  start-page: 1260
  year: 2002
  ident: 10.1016/j.physleta.2016.06.030_br0050
  publication-title: Chemistry
  doi: 10.1002/1521-3765(20020315)8:6<1260::AID-CHEM1260>3.0.CO;2-Q
– volume: 4
  start-page: 3270
  year: 2010
  ident: 10.1016/j.physleta.2016.06.030_br0100
  publication-title: ACS Nano
  doi: 10.1021/nn9018174
– volume: 103
  year: 2008
  ident: 10.1016/j.physleta.2016.06.030_br0250
  publication-title: J. Appl. Phys.
SSID ssj0001609
Score 2.403367
Snippet In this work, we report the growth of high-quality aligned ZnO nanowires via a facile atmospheric pressure chemical vapor deposition (CVD) method. The CVD...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 3993
SubjectTerms Chemical vapor deposition
Crystal growth
Semi-open quartz tube
ZnO nanowire
Title Growth of aligned ZnO nanowires via modified atmospheric pressure chemical vapor deposition
URI https://dx.doi.org/10.1016/j.physleta.2016.06.030
Volume 380
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KRfAiPrE-yh68pu02u9vmWIq1KtaDFooewu5moyk2KW3ao7_dmTy0guDBY5adEGaHmW_DN98Qcqm7rmpbVzhMMelwqayjA-05OpuIIrVuu9gofD-SwzG_nYhJhfTLXhikVRa5P8_pWbYuVpqFN5vzKGo-4vRWwN8MEAWKemLDL-cdjPLGxzfNg8mc5gGbHdy90SU8beDfA3AP6g8xmel4Ihv6twK1UXQGe2S3QIu0l3_QPqnY-IBsZ6xNszwkL9dwiU7faBJSgNOvkDHpc_xAYxUnKEG8pOtI0VkSRCEATarSWbJEFYHI0Iz-ulpYagrBALpWgMRpYEsW1xEZD66e-kOnmJbgGLfTTZ2u9iwXyjAtrSdQ9w5KsTF4QWBKhG0B6wLAGnd5V7cMlCwZBi6UI6lZaAHnHZNqnMT2hFBpZADXQi3ghdzyUIF9wLhRzCppTFAjonSRbwopcZxo8e6XnLGpX7rWR9f6SJ5zWzXS_LKb52Iaf1p45Qn4P8LCh4z_h-3pP2zPyA4-ZbwV75xU08XKXgD6SHU9C6862erd3A1Hn1wR3FM
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT4NAEJ1ojdGL8TN-uwevSLewKxwbo1K19aAmRg9kd1kUY6Gx2N_vDAVTExMPXhceIcNm5i158wbgWAee6lhPOFxx6fhSWUcnOnR0NRFFat3xqFG4P5DRg3_1KB7n4KzphSFZZZ37pzm9ytb1iltH0x1lmXtH01uRf3NkFGTqGczDArlTiRYsdHvX0eA7IXM5VXrg_Q4BZhqF307oBwJGiCyIuKysPEkQ_VuNmqk7F6uwUhNG1p2-0xrM2XwdFivhphlvwPMlnqPLV1akDBn1CyZN9pTfslzlBbkQj9kkU2xYJFmKXJOpcliMyUggM6xSwH5-WGZqzwA2UUjGWWIbIdcmPFyc359FTj0wwTHeaVA6gQ6tL5ThWtpQkPUdVmNj6IzAlUg7AtcF8jXf8wPdNli1ZJp4WJGk5qlFqrcFrbzI7TYwaWSCJ0Mt8IG-9VOF-IT7RnGrpDHJDogmRLGp3cRpqMV73MjG3uImtDGFNib9nNfeAfcbN5r6afyJCJsvEP_YGTEm_T-wu__AHsFSdN-_iW96g-s9WKYrlYwl3IdW-fFpD5CMlPqw3mxf7abfBA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Growth+of+aligned+ZnO+nanowires+via+modified+atmospheric+pressure+chemical+vapor+deposition&rft.jtitle=Physics+letters.+A&rft.au=Zhao%2C+Yuping&rft.au=Li%2C+Chengchen&rft.au=Chen%2C+Mingming&rft.au=Yu%2C+Xiao&rft.date=2016-12-09&rft.issn=0375-9601&rft.volume=380&rft.issue=47&rft.spage=3993&rft.epage=3997&rft_id=info:doi/10.1016%2Fj.physleta.2016.06.030&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_physleta_2016_06_030
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0375-9601&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0375-9601&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0375-9601&client=summon