Some Opial type inequalities in (p, q)-calculus

In this paper, we establish 5 kinds of integral Opial-type inequalities in (p, q)-calculus by means of Hölder’s inequality, Cauchy inequality, an elementary inequality and some analysis technique. First, we investigated the Opial inequalities in (p, q)-calculus involving one function and its (p, q)...

Full description

Saved in:
Bibliographic Details
Published inAIMS mathematics Vol. 5; no. 6; pp. 5893 - 5902
Main Authors Li, Chunhong, Yang, Dandan, Bai, Chuanzhi
Format Journal Article
LanguageEnglish
Published AIMS Press 01.01.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, we establish 5 kinds of integral Opial-type inequalities in (p, q)-calculus by means of Hölder’s inequality, Cauchy inequality, an elementary inequality and some analysis technique. First, we investigated the Opial inequalities in (p, q)-calculus involving one function and its (p, q) derivative. Furthermore, Opial inequalities in (p, q)-calculus involving two functions and two functions with their (p, q) derivatives are given. Our results are (p, q)-generalizations of some known inequalities, such as Opial-type integral inequalities and (p, q)-Wirtinger inequality.
AbstractList In this paper, we establish 5 kinds of integral Opial-type inequalities in (p, q)-calculus by means of Hölder’s inequality, Cauchy inequality, an elementary inequality and some analysis technique. First, we investigated the Opial inequalities in (p, q)-calculus involving one function and its (p, q) derivative. Furthermore, Opial inequalities in (p, q)-calculus involving two functions and two functions with their (p, q) derivatives are given. Our results are (p, q)-generalizations of some known inequalities, such as Opial-type integral inequalities and (p, q)-Wirtinger inequality.
Author Yang, Dandan
Bai, Chuanzhi
Li, Chunhong
Author_xml – sequence: 1
  givenname: Chunhong
  surname: Li
  fullname: Li, Chunhong
– sequence: 2
  givenname: Dandan
  surname: Yang
  fullname: Yang, Dandan
– sequence: 3
  givenname: Chuanzhi
  surname: Bai
  fullname: Bai, Chuanzhi
BookMark eNptkE1PwkAQhjcGExG5-QN61ITCfrW7PRriBwkJB_W8GbazuqR0S7sc-PdSIcYYTzPz5p3n8FyTQR1qJOSW0akohJxtIX5OOeVUKHVBhlwqkeaF1oNf-xUZd92GUsoZl1zJIZm9hi0mq8ZDlcRDg4mvcbeHykeP3fFI7ppJsrtPLVR2X-27G3LpoOpwfJ4j8v70-DZ_SZer58X8YZlaoXRMteKsQHBOSCky0JbTtWDMrrWCYk0zJTOpFNpSOwYoMNeAOQiBytnSMSVGZHHilgE2pmn9FtqDCeDNdxDaDwNt9LZCw2heSiw1LUDLklPIqRVFBuDAslz0rMmJZdvQdS26Hx6jpndnenfm7O5Y53_q1keIPtSxBV_9__QFog9zNg
CitedBy_id crossref_primary_10_34198_ejms_9222_237247
crossref_primary_10_1007_s13324_021_00601_5
crossref_primary_10_1186_s13660_021_02641_8
crossref_primary_10_3390_math9040446
crossref_primary_10_1186_s13660_025_03281_y
crossref_primary_10_1155_2022_2650126
crossref_primary_10_3934_math_2021006
Cites_doi 10.2298/FIL1603639M
10.4064/ap-8-1-29-32
10.1088/0305-4470/24/13/002
10.3906/mat-1606-91
10.1016/0022-247X(86)90176-9
10.1080/10652469408819035
10.1186/s13660-017-1594-6
10.1186/s13660-016-1272-0
10.1007/s00025-018-0773-1
10.2298/FIL1804251R
10.1186/s13660-019-1955-4
10.1515/fascmath-2018-0009
10.2298/FIL1913175A
ContentType Journal Article
CorporateAuthor 1 Editorial Department of Journal of Huaiyin Normal University, Huai an, Jiangsu Province, 223300, China
2 School of Mathematical Science, Huaiyin Normal University, Huai an, Jiangsu Province, 223300, China
CorporateAuthor_xml – name: 1 Editorial Department of Journal of Huaiyin Normal University, Huai an, Jiangsu Province, 223300, China
– name: 2 School of Mathematical Science, Huaiyin Normal University, Huai an, Jiangsu Province, 223300, China
DBID AAYXX
CITATION
DOA
DOI 10.3934/math.2020377
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2473-6988
EndPage 5902
ExternalDocumentID oai_doaj_org_article_106d4ed809a84d20a60c395aafac1637
10_3934_math_2020377
GroupedDBID AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
CITATION
EBS
FRJ
GROUPED_DOAJ
IAO
ITC
M~E
OK1
RAN
ID FETCH-LOGICAL-c378t-87219eaff34435a8c20b311cb87a9b05745477ecd8f1ae3e68ae6a33e7fcdf173
IEDL.DBID DOA
ISSN 2473-6988
IngestDate Wed Aug 27 01:31:54 EDT 2025
Tue Jul 01 03:56:45 EDT 2025
Thu Apr 24 22:51:26 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c378t-87219eaff34435a8c20b311cb87a9b05745477ecd8f1ae3e68ae6a33e7fcdf173
OpenAccessLink https://doaj.org/article/106d4ed809a84d20a60c395aafac1637
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_106d4ed809a84d20a60c395aafac1637
crossref_primary_10_3934_math_2020377
crossref_citationtrail_10_3934_math_2020377
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-01
  day: 01
PublicationDecade 2020
PublicationTitle AIMS mathematics
PublicationYear 2020
Publisher AIMS Press
Publisher_xml – name: AIMS Press
References M. Mursaleen, M. Nasiruzzaman, A. Khan (16)
12
R. Chakrabarti, R. Jagannathan (10)
N. Rao, A. Wafi (17)
15
M. Nasiruzzaman, A. Mukheimer, M. Mursaleen (14)
I. M. Burban, A. U. Klimyk, (P, Q)-Differentiation (11)
T. Z. Mirković, S. B. Tričković, M. S. Stanković (8)
N. Alp, C. C. Bilisik, M. Z. Sarikaya (9)
M. Z. Sarikaya, H. Budak (3)
2
4
S. H. Saker, M. D. Abdou, I. Kubiaczyk (7)
M. Mursaleen, M. Nasiruzzaman, K. J. Ansari (18)
Z. Opial (1)
6
P. N. Sadjang (13)
B. G. Pachpatte (5)
References_xml – ident: 16
  article-title: t al. Some approximation results on Bleimann-ButzerHahn operators defined by (p, q)-integers</i
  publication-title: Filomat
  doi: 10.2298/FIL1603639M
– ident: 1
  article-title: i>Sur une inegalite</i
  publication-title: Ann. Pol. Math.
  doi: 10.4064/ap-8-1-29-32
– ident: 4
  article-title: i>On an inequality of Opial</i
– ident: 2
  article-title: i>Some generalized Opial-type inequalities</i
– ident: 6
  article-title: i>A note on some new Opial type integral inequalities</i
– ident: 10
  article-title: i>A</i> (p, q)-oscillator realization of two-parameter quantum algebras</i
  publication-title: J. Phys. A: Math. Gen.
  doi: 10.1088/0305-4470/24/13/002
– ident: 12
  article-title: 874-882], Appl
– ident: 3
  article-title: i>New inequalities of Opial Type for conformable fractional integrals</i
  publication-title: Turk. J. Math.
  doi: 10.3906/mat-1606-91
– ident: 5
  article-title: i>On Opial-type integral inequalities</i
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/0022-247X(86)90176-9
– ident: 15
  article-title: i>R(p, q)-calculus: differentiation and integration</i
– ident: 11
  article-title: /i> (P, Q) integration, and (P, Q)-hypergeometric functions related to quantum groups</i
  publication-title: Integr. Transf. Spec. F.
  doi: 10.1080/10652469408819035
– ident: 8
  article-title: i>Opial inequality in q-calculus</i
  publication-title: J. Inequal. Appl.
  doi: 10.1186/s13660-017-1594-6
– ident: 18
  article-title: t al. Generalized (p, q)-Bleimann-Butzer-Hahn operators and some approximation results</i
  publication-title: J. Inequal. Appl.
  doi: 10.1186/s13660-016-1272-0
– ident: 13
  article-title: i>On the fundamental theorem of (p, q)-calculus and some (p, q)-Taylor formulas</i
  publication-title: Results Math.
  doi: 10.1007/s00025-018-0773-1
– ident: 17
  article-title: i>Bivariate-Schurer-Stancu operators based on (p, q)-integers</i
  publication-title: Filomat
  doi: 10.2298/FIL1804251R
– ident: 14
  article-title: i>Some Opial-type integral inequalities via (p, q)- calculus</i
  publication-title: J. Inequal. Appl.
  doi: 10.1186/s13660-019-1955-4
– ident: 7
  article-title: i>Opial and Polya type inequalities via convexity</i
  publication-title: Fasciculi Mathematici
  doi: 10.1515/fascmath-2018-0009
– ident: 9
  article-title: i>On q-Opial type inequality for quantum integral</i
  publication-title: Filomat
  doi: 10.2298/FIL1913175A
SSID ssj0002124274
Score 2.1426988
Snippet In this paper, we establish 5 kinds of integral Opial-type inequalities in (p, q)-calculus by means of Hölder’s inequality, Cauchy inequality, an elementary...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 5893
SubjectTerms opial inequality
opial-type integral inequality
q )-calculus
q )-integral
q)-derivative
Title Some Opial type inequalities in (p, q)-calculus
URI https://doaj.org/article/106d4ed809a84d20a60c395aafac1637
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1Fe8gASCKImsePHCIiqQioMUKlb5OcEbaHl_3MXh6oMiIUx0SlyvnPuvnN8nwk585rpWPgq4z76jBuIg9oxmeVKl0HrKHOFzcnDRzEY8YdxNV456gv3hCV54AQcfNXC8-BVro3ivsyNyB3TlTHROOASTR855LyVYgpjMARkDvVW2unONOM94H_476HMmZQ_ctCKVH-TU_pbZLMlg_QmDWKbrIXJDtkYLpVU57uk9zx9C_RpBtOE4nIpBVaYGiGhxIULejG7pu-XGUCNC3nzPTLq37_cDbL2kIMMIFELiEYQM4KJkXFgLka5MresKJxV0mgLbAoVt2RwXsXCBBaEMkEYxoKMzsdCsn3SmUwn4YBQUwTrlBZWe8kj16aSVlUCKwaU2bJdcvX92rVrFcDxIIrXGioBBKlGkOoWpC45X1rPkvLFL3a3iODSBvWqmxvgxbr1Yv2XFw__4yFHZB3HlBZIjkln8fEZToAyLOxpMzu-AJc6vWU
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Some+Opial+type+inequalities+in+%28p%2C+q%29-calculus&rft.jtitle=AIMS+mathematics&rft.au=Chunhong+Li&rft.au=Dandan+Yang&rft.au=Chuanzhi+Bai&rft.date=2020-01-01&rft.pub=AIMS+Press&rft.eissn=2473-6988&rft.volume=5&rft.issue=6&rft.spage=5893&rft.epage=5902&rft_id=info:doi/10.3934%2Fmath.2020377&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_106d4ed809a84d20a60c395aafac1637
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon