Effect of different defects on the polarization mechanism of (Nb,Ga) codoped TiO2 single crystals

Various defects have a profound impact on the dielectric properties and polarization mechanisms of (Nb,Ga) codoped TiO2 crystals. However, the research conducted in this area remains limited. To address this, we grew (Nb,Ga) codoped TiO2 crystals via the Verneuil method and investigated their dielec...

Full description

Saved in:
Bibliographic Details
Published inCeramics international Vol. 49; no. 19; pp. 32116 - 32126
Main Authors Wang, Lei, Li, Jinsheng, Liu, Xudong, Zhang, Mu, Li, Xiaodong, Liu, Shaohong, Sun, Xudong
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.10.2023
Subjects
Online AccessGet full text
ISSN0272-8842
1873-3956
DOI10.1016/j.ceramint.2023.07.180

Cover

Loading…
Abstract Various defects have a profound impact on the dielectric properties and polarization mechanisms of (Nb,Ga) codoped TiO2 crystals. However, the research conducted in this area remains limited. To address this, we grew (Nb,Ga) codoped TiO2 crystals via the Verneuil method and investigated their dielectric properties under various atmospheric annealing conditions. Annealing in oxygen reduces the number of defects. In this case, the point defects associated with oxygen vacancies is unable to fully form the ideal complex defect clusters which can form effective pegging of free electrons. On the other hand, the defects are mainly in the form of simple defect clusters that causes hopping polarization. Annealing under mixed gas (Ar:H2 = 95%:5%) increases the number of defects and contains more free carriers, which migrate to the interface between the sample and the electrode, leading to interfacial polarization. Both hopping polarization and interfacial polarization are slow polarization, resulting in an increase in dielectric loss and a decrease in frequency stability. Annealing in air or nitrogen atmospheres forms ideal defect dipole clusters, where the electron-pinned defect dipoles (EPDD) are predominantly polarized, resulting in superior dielectric properties. It has been clarified that EPDD as the main polarization form can yield better dielectric properties. By focusing on single crystals as the research subject, we effectively eliminate the influence of grain boundaries, enabling a more accurate assessment of the effects of various crystal defects on dielectric properties. This study holds substantial implications for the advancement of TiO2-based dielectric materials, offering valuable insights into their performance optimization.
AbstractList Various defects have a profound impact on the dielectric properties and polarization mechanisms of (Nb,Ga) codoped TiO2 crystals. However, the research conducted in this area remains limited. To address this, we grew (Nb,Ga) codoped TiO2 crystals via the Verneuil method and investigated their dielectric properties under various atmospheric annealing conditions. Annealing in oxygen reduces the number of defects. In this case, the point defects associated with oxygen vacancies is unable to fully form the ideal complex defect clusters which can form effective pegging of free electrons. On the other hand, the defects are mainly in the form of simple defect clusters that causes hopping polarization. Annealing under mixed gas (Ar:H2 = 95%:5%) increases the number of defects and contains more free carriers, which migrate to the interface between the sample and the electrode, leading to interfacial polarization. Both hopping polarization and interfacial polarization are slow polarization, resulting in an increase in dielectric loss and a decrease in frequency stability. Annealing in air or nitrogen atmospheres forms ideal defect dipole clusters, where the electron-pinned defect dipoles (EPDD) are predominantly polarized, resulting in superior dielectric properties. It has been clarified that EPDD as the main polarization form can yield better dielectric properties. By focusing on single crystals as the research subject, we effectively eliminate the influence of grain boundaries, enabling a more accurate assessment of the effects of various crystal defects on dielectric properties. This study holds substantial implications for the advancement of TiO2-based dielectric materials, offering valuable insights into their performance optimization.
Author Zhang, Mu
Sun, Xudong
Wang, Lei
Li, Xiaodong
Li, Jinsheng
Liu, Xudong
Liu, Shaohong
Author_xml – sequence: 1
  givenname: Lei
  surname: Wang
  fullname: Wang, Lei
  organization: Key Laboratory for Anisotropy and Texture of Material (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang, Liaoning, 110819, PR China
– sequence: 2
  givenname: Jinsheng
  surname: Li
  fullname: Li, Jinsheng
  email: jinsheng1986@163.com
  organization: Key Laboratory for Anisotropy and Texture of Material (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang, Liaoning, 110819, PR China
– sequence: 3
  givenname: Xudong
  surname: Liu
  fullname: Liu, Xudong
  email: xdsun@neu.edu.cn
  organization: College of Environmental and Chemical Engineering, Dalian University, Dalian, Liaoning, 116622, PR China
– sequence: 4
  givenname: Mu
  surname: Zhang
  fullname: Zhang, Mu
  organization: Foshan Graduate School of Innovation, Northeastern University, Foshan, 528311, PR China
– sequence: 5
  givenname: Xiaodong
  orcidid: 0000-0002-6601-5788
  surname: Li
  fullname: Li, Xiaodong
  organization: Key Laboratory for Anisotropy and Texture of Material (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang, Liaoning, 110819, PR China
– sequence: 6
  givenname: Shaohong
  surname: Liu
  fullname: Liu, Shaohong
  organization: Key Laboratory for Anisotropy and Texture of Material (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang, Liaoning, 110819, PR China
– sequence: 7
  givenname: Xudong
  surname: Sun
  fullname: Sun, Xudong
  email: liuxudong@dlu.edu.cn
  organization: Foshan Graduate School of Innovation, Northeastern University, Foshan, 528311, PR China
BookMark eNqFkE1LAzEQhoNUsK3-BclRwV2z2W2yCx6UUqtQ7KWeQzaZ2JT9KEkQ6q83a_XipacZXuYZeJ8JGnV9BwhdZyTNSMbud6kCJ1vbhZQSmqeEp1lJztA4K3me5NWMjdCYUE6TsizoBZp4vyMRrAoyRnJhDKiAe4O1jauDLmANQ-Zx3-GwBbzvG-nslww2Bi2oreysbwfk5q2-W8pbrHrd70HjjV1T7G330QBW7uCDbPwlOjdxwNXvnKL358Vm_pKs1svX-dMqUTkvQ1IyVtYVK-paaW5mFAinShc155BpJSswhACRNF4Dl0oZk89yVRQVYxK4ZvkUseNf5XrvHRixd7aV7iAyIgZRYif-RIlBlCBcRFERfPgHKht-ygYnbXMafzziEMt9WnDCKwudAm1dtCh0b0-9-AZQkYz5
CitedBy_id crossref_primary_10_1038_s41598_025_92269_1
crossref_primary_10_1016_j_ceramint_2024_01_106
crossref_primary_10_1002_appl_202400147
crossref_primary_10_1016_j_ijhydene_2024_10_009
crossref_primary_10_1016_j_ceramint_2025_01_039
crossref_primary_10_1016_j_ceramint_2024_02_219
crossref_primary_10_1039_D3RA08336E
crossref_primary_10_1038_s41598_024_73732_x
crossref_primary_10_1016_j_jallcom_2024_174341
Cites_doi 10.1039/C5CP02741A
10.1016/j.ceramint.2018.03.255
10.1016/j.ceramint.2017.05.246
10.1016/j.jeurceramsoc.2017.10.014
10.1111/jace.17085
10.1038/nmat3180
10.1039/C5CP02653A
10.1016/j.ceramint.2017.05.255
10.1021/acsami.5b07467
10.1111/jace.18873
10.1111/j.1551-2916.2012.05152.x
10.1016/j.jallcom.2019.07.278
10.1016/j.scriptamat.2017.11.026
10.1016/j.ceramint.2020.11.012
10.1039/C6CP02236G
10.1039/C7TC01020F
10.1016/j.jallcom.2017.01.333
10.1016/j.ceramint.2022.12.021
10.1111/jace.14688
10.1016/j.materresbull.2012.05.058
10.1016/j.jallcom.2020.157350
10.1016/j.ceramint.2020.01.247
10.1016/j.matdes.2017.03.037
10.1021/acs.chemmater.5b01351
10.1103/PhysRevB.62.228
10.1038/s41598-017-09141-0
10.1016/j.jallcom.2022.166053
10.1016/j.ceramint.2015.10.107
10.1016/j.jallcom.2015.12.002
10.1103/PhysRevLett.89.217601
10.1016/j.ceramint.2017.07.034
10.1016/j.ceramint.2019.10.054
10.1016/j.ceramint.2018.09.279
10.1016/j.jeurceramsoc.2019.09.001
10.1016/j.ceramint.2018.04.028
10.1016/j.jallcom.2018.07.248
10.1063/1.2902374
10.1038/nmat3691
10.1016/S0022-3697(01)00018-X
10.1016/j.ceramint.2018.03.221
10.1039/C7TC05277D
10.1111/jace.14861
10.1111/jace.15196
10.1016/j.ceramint.2017.08.093
10.1039/C6RA26728A
10.1016/j.ces.2021.116440
10.1016/j.scriptamat.2009.01.037
10.1021/acs.cgd.1c00611
10.1016/j.jeurceramsoc.2018.04.026
10.1039/C8CP03304H
ContentType Journal Article
Copyright 2023
Copyright_xml – notice: 2023
DBID AAYXX
CITATION
DOI 10.1016/j.ceramint.2023.07.180
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-3956
EndPage 32126
ExternalDocumentID 10_1016_j_ceramint_2023_07_180
S0272884223021193
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29B
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABJNI
ABMAC
ABXRA
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SMS
SPC
SPCBC
SSM
SSZ
T5K
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
RNS
SSH
WUQ
XPP
ID FETCH-LOGICAL-c378t-8668b964bbcd7f52e072cd4b77e1dca9ef00e0a2c37e7accff353c44966ae7d63
IEDL.DBID .~1
ISSN 0272-8842
IngestDate Tue Jul 01 04:23:42 EDT 2025
Thu Apr 24 23:01:11 EDT 2025
Sat Mar 02 16:00:09 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 19
Keywords Defect dipoles
TiO2 single crystal
Colossal dielectric constant
Annealing process
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c378t-8668b964bbcd7f52e072cd4b77e1dca9ef00e0a2c37e7accff353c44966ae7d63
ORCID 0000-0002-6601-5788
PageCount 11
ParticipantIDs crossref_primary_10_1016_j_ceramint_2023_07_180
crossref_citationtrail_10_1016_j_ceramint_2023_07_180
elsevier_sciencedirect_doi_10_1016_j_ceramint_2023_07_180
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-10-01
2023-10-00
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-01
  day: 01
PublicationDecade 2020
PublicationTitle Ceramics international
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Nachaithong, Kidkhunthod, Thongbai, Maensiri (bib14) 2017; 100
Zhou, Cao, Wang, Rao, Luo, Yang, Hao, Yao, Yu, Liu (bib55) 2018; 44
Tuichai, Danwittayakul, Srepusharawoot, Thongbai, Maensiri (bib40) 2017; 43
Zhao, Liu, Song, Zhang, Chen, Zhou (bib36) 2015; 17
Zhou, Jiang, Sun (bib43) 2023; 49
Liu, Wang, Yin, Yu, Xu (bib34) 2020; 46
Krohns, Lunkenheimer, Meissner, Reller, Gleich, Rathgeber, Gaugler, Buhl, Sinclair, Loidl (bib1) 2011; 10
Song, Wang, Sui, Liu, Zhang, Zhan, Song, Liu, Lv, Tao, Tang (bib53) 2016; 6
Tuichai, Thongyong, Danwittayakul, Chanlek, Srepusharawoot, Thongbai, Maensiri (bib51) 2017; 123
Wu, Nan, Lin, Deng (bib5) 2002; 89
Wang, Liu, Bi, Ma, Li, Sun (bib38) 2021; 21
Bi, Du, Kalam, Sun, Yu, Su, Xu, Al-Sehemi (bib41) 2021; 234
Tuichai, Danwittayakul, Chanlek, Thongbai, Maensiri (bib31) 2017; 703
Zhao, Liu (bib28) 2017; 100
Fan, Yang, Cao (bib44) 2023; 106
Liang, Yang, Liu (bib11) 2012; 95
Luo, Wang, Tian, Song, Zhao, Cai, Feng, Li (bib9) 2018; 38
Krohns, Lunkenheimer, Ebbinghaus, Loidl (bib17) 2008; 103
Thongbai, Putasaeng, Maensiri (bib12) 2012; 47
Guo, Peng, Cui, Song (bib47) 2018; 768
Zhu, Wu, Liang, Zhou, Peng, Chao, Yang (bib49) 2021; 856
Wang, Chen, Wang, Xian, Nian, Fan (bib23) 2018; 38
Yang, Zhong, Long, Wei (bib50) 2020; 46
Hu, Lau, Liu, Withers, Chen, Fu, Gong, Hutchison (bib24) 2015; 27
Wang, Li, Lu, Zhang, Luo (bib48) 2019; 806
Liu, Zhao, Wu, Wu (bib33) 2018; 20
Wang, Liu, Zhang, Bi, Ma, Li, Chen, Sun (bib32) 2022; 921
Tuichai, Danwittayakul, Chanlek, Srepusharawoot, Thongbai, Maensiri (bib58) 2017; 7
Li, Li, Zhuang, Jin, Wang, Wei, Xu, Zhang (bib35) 2014; 116
Yang, Wei, Hao (bib37) 2018; 44
Malla, Singh, Mishra, Varshney (bib8) 2018; 6
Yang, Tse, Wei, Hao (bib45) 2017; 5
Wang, Zhang, Xu, Wang, Sun (bib20) 2017; 7
Li, Lu, Zhang, Li, Cai (bib13) 2018; 6
Thongyong, Tuichai, Chanlek, Thongbai (bib25) 2017; 43
Cao, Zhao, Fan, Li, Zhang (bib29) 2021; 47
Ren, He, Wang, Sun, Zhao (bib10) 2018; 146
Li, Sinclair, West (bib18) 2011; 109
Wang, Zhang, Shen, Sun, Hu, Shi, Wang, Jie, Zhang (bib22) 2017; 43
Song, Liu, Guo, Cui, Yang (bib46) 2020; 103
Yang, Wei, Hao (bib57) 2018; 101
Wang, Jie, Yang, Hao (bib2) 2019; 29
Fan, Leng, Cao, He, Gao, Li (bib52) 2019; 45
Sun, Gu, Zhu, Qiu (bib15) 2016; 42
Chen, Lin, Jing (bib39) 2001; 62
Lira, S e Silva, Banerjee, Franco (bib42) 2020; 143
Hu, Liu, Withers, Frankcombe, Noren, Snashall, Kitchin, Smith, Gong, Chen, Schiemer, Brink, Wong-Leung (bib19) 2013; 12
Zhang, Pu, Chen, Wei, Keipper, Shi, Guo, Li, Peng (bib4) 2020; 40
Han, Dufour, Mhin, Ryu, Tenailleau, Guillemet-Fritsch (bib30) 2015; 17
Dong, Hu, Berlie, Lau, Chen, Withers, Liu (bib21) 2015; 7
Tse, Wei, Hao (bib27) 2016; 18
Chen, Yu, Cross (bib54) 2000; 62
Zhang, Pu, Chen, Wei, Peng (bib3) 2019; 283
Pongha, Thongbai, Yamwong, Maensiri (bib6) 2009; 60
Guo, Liu, Cui, Song (bib26) 2018; 44
Wang, Cao, Zhang, Hao, Yao, Wang, Song, Zhang, Hu, Liu, Zhang (bib56) 2015; 98
Chouket, Cheikhrouhou-Koubaa, Cheikhrouhou, Optasanu, Bidault, Khitouni (bib7) 2016; 662
Cheng, Li, Chen, Cui (bib16) 2017; 43
Guo (10.1016/j.ceramint.2023.07.180_bib26) 2018; 44
Zhao (10.1016/j.ceramint.2023.07.180_bib36) 2015; 17
Song (10.1016/j.ceramint.2023.07.180_bib46) 2020; 103
Wang (10.1016/j.ceramint.2023.07.180_bib56) 2015; 98
Wang (10.1016/j.ceramint.2023.07.180_bib23) 2018; 38
Hu (10.1016/j.ceramint.2023.07.180_bib19) 2013; 12
Li (10.1016/j.ceramint.2023.07.180_bib35) 2014; 116
Tuichai (10.1016/j.ceramint.2023.07.180_bib31) 2017; 703
Yang (10.1016/j.ceramint.2023.07.180_bib50) 2020; 46
Chouket (10.1016/j.ceramint.2023.07.180_bib7) 2016; 662
Hu (10.1016/j.ceramint.2023.07.180_bib24) 2015; 27
Liang (10.1016/j.ceramint.2023.07.180_bib11) 2012; 95
Wang (10.1016/j.ceramint.2023.07.180_bib2) 2019; 29
Wang (10.1016/j.ceramint.2023.07.180_bib20) 2017; 7
Dong (10.1016/j.ceramint.2023.07.180_bib21) 2015; 7
Thongyong (10.1016/j.ceramint.2023.07.180_bib25) 2017; 43
Li (10.1016/j.ceramint.2023.07.180_bib13) 2018; 6
Liu (10.1016/j.ceramint.2023.07.180_bib34) 2020; 46
Zhou (10.1016/j.ceramint.2023.07.180_bib55) 2018; 44
Tuichai (10.1016/j.ceramint.2023.07.180_bib58) 2017; 7
Zhao (10.1016/j.ceramint.2023.07.180_bib28) 2017; 100
Pongha (10.1016/j.ceramint.2023.07.180_bib6) 2009; 60
Fan (10.1016/j.ceramint.2023.07.180_bib44) 2023; 106
Zhu (10.1016/j.ceramint.2023.07.180_bib49) 2021; 856
Yang (10.1016/j.ceramint.2023.07.180_bib37) 2018; 44
Yang (10.1016/j.ceramint.2023.07.180_bib45) 2017; 5
Ren (10.1016/j.ceramint.2023.07.180_bib10) 2018; 146
Wu (10.1016/j.ceramint.2023.07.180_bib5) 2002; 89
Cao (10.1016/j.ceramint.2023.07.180_bib29) 2021; 47
Luo (10.1016/j.ceramint.2023.07.180_bib9) 2018; 38
Tuichai (10.1016/j.ceramint.2023.07.180_bib51) 2017; 123
Chen (10.1016/j.ceramint.2023.07.180_bib39) 2001; 62
Bi (10.1016/j.ceramint.2023.07.180_bib41) 2021; 234
Zhang (10.1016/j.ceramint.2023.07.180_bib4) 2020; 40
Tuichai (10.1016/j.ceramint.2023.07.180_bib40) 2017; 43
Tse (10.1016/j.ceramint.2023.07.180_bib27) 2016; 18
Guo (10.1016/j.ceramint.2023.07.180_bib47) 2018; 768
Cheng (10.1016/j.ceramint.2023.07.180_bib16) 2017; 43
Wang (10.1016/j.ceramint.2023.07.180_bib48) 2019; 806
Wang (10.1016/j.ceramint.2023.07.180_bib22) 2017; 43
Lira (10.1016/j.ceramint.2023.07.180_bib42) 2020; 143
Zhou (10.1016/j.ceramint.2023.07.180_bib43) 2023; 49
Thongbai (10.1016/j.ceramint.2023.07.180_bib12) 2012; 47
Fan (10.1016/j.ceramint.2023.07.180_bib52) 2019; 45
Nachaithong (10.1016/j.ceramint.2023.07.180_bib14) 2017; 100
Li (10.1016/j.ceramint.2023.07.180_bib18) 2011; 109
Krohns (10.1016/j.ceramint.2023.07.180_bib17) 2008; 103
Wang (10.1016/j.ceramint.2023.07.180_bib32) 2022; 921
Chen (10.1016/j.ceramint.2023.07.180_bib54) 2000; 62
Wang (10.1016/j.ceramint.2023.07.180_bib38) 2021; 21
Krohns (10.1016/j.ceramint.2023.07.180_bib1) 2011; 10
Sun (10.1016/j.ceramint.2023.07.180_bib15) 2016; 42
Song (10.1016/j.ceramint.2023.07.180_bib53) 2016; 6
Liu (10.1016/j.ceramint.2023.07.180_bib33) 2018; 20
Yang (10.1016/j.ceramint.2023.07.180_bib57) 2018; 101
Zhang (10.1016/j.ceramint.2023.07.180_bib3) 2019; 283
Malla (10.1016/j.ceramint.2023.07.180_bib8) 2018; 6
Han (10.1016/j.ceramint.2023.07.180_bib30) 2015; 17
References_xml – volume: 27
  start-page: 4934
  year: 2015
  end-page: 4942
  ident: bib24
  article-title: Colossal dielectric permittivity in (Nb+Al) codoped rutile TiO
  publication-title: Chem. Mater.
– volume: 6
  year: 2016
  ident: bib53
  article-title: Origin of colossal dielectric permittivity of rutile Ti
  publication-title: Sci. Rep.
– volume: 6
  start-page: 2283
  year: 2018
  end-page: 2294
  ident: bib13
  article-title: The effect of segregation structure on the colossal permittivity properties of (La
  publication-title: J. Mater. Chem. C
– volume: 7
  start-page: 8517
  year: 2017
  ident: bib20
  article-title: Dielectric properties of Y and Nb co-doped TiO
  publication-title: Sci. Rep.
– volume: 806
  start-page: 89
  year: 2019
  end-page: 98
  ident: bib48
  article-title: Multifarious polarizations in high-performance colossal permittivity titanium dioxide ceramics
  publication-title: J. Alloys Compd.
– volume: 18
  start-page: 24270
  year: 2016
  end-page: 24277
  ident: bib27
  article-title: High-performance colossal permittivity materials of (Nb+Er) co-doped TiO
  publication-title: Phys. Chem. Chem. Phys.
– volume: 662
  start-page: 467
  year: 2016
  end-page: 474
  ident: bib7
  article-title: Structural, microstructural and dielectric studies in multiferroic LaSrNiO
  publication-title: J. Alloys Compd.
– volume: 7
  start-page: 25321
  year: 2015
  end-page: 25325
  ident: bib21
  article-title: Colossal dielectric behavior of Ga+Nb co-doped rutile TiO
  publication-title: ACS Appl. Mater. Interfaces
– volume: 5
  start-page: 5170
  year: 2017
  end-page: 5175
  ident: bib45
  article-title: Colossal permittivity of (Mg+Nb) co-doped TiO
  publication-title: J. Mater. Chem. C
– volume: 123
  start-page: 15
  year: 2017
  end-page: 23
  ident: bib51
  article-title: Very low dielectric loss and giant dielectric response with excellent temperature stability of Ga
  publication-title: Mater. Des.
– volume: 856
  year: 2021
  ident: bib49
  article-title: Ag
  publication-title: J. Alloys Compd.
– volume: 283
  year: 2019
  ident: bib3
  article-title: Novel Na
  publication-title: Chem. Eng. J.
– volume: 47
  start-page: 6711
  year: 2021
  end-page: 6719
  ident: bib29
  article-title: Colossal permittivity of (Gd+Nb) co-doped TiO
  publication-title: Ceram. Int.
– volume: 62
  start-page: 228
  year: 2000
  end-page: 236
  ident: bib54
  article-title: Oxygen-vacancy-related low-frequency dielectric relaxation and electrical conduction in Bi: SrTiO
  publication-title: Phys. Rev. B
– volume: 921
  year: 2022
  ident: bib32
  article-title: Colossal dielectric behavior of (Nb+Ga) co-doped TiO
  publication-title: J. Alloys Compd.
– volume: 17
  start-page: 23132
  year: 2015
  end-page: 23139
  ident: bib36
  article-title: Origin of colossal permittivity in (In
  publication-title: Phys. Chem. Chem. Phys.
– volume: 43
  start-page: 15466
  year: 2017
  end-page: 15471
  ident: bib25
  article-title: Effect of Zn
  publication-title: Ceram. Int.
– volume: 116
  year: 2014
  ident: bib35
  article-title: Microstructure and dielectric properties of (Nb+In) co-doped rutile TiO
  publication-title: J. Appl. Phys.
– volume: 98
  start-page: 472
  year: 2015
  end-page: 482
  ident: bib56
  article-title: Dielectric relaxation in Zr-doped SrTiO
  publication-title: J. Am. Ceram. Soc.
– volume: 38
  start-page: 3847
  year: 2018
  end-page: 3852
  ident: bib23
  article-title: Enhanced relative permittivity in niobium and europium co-doped TiO
  publication-title: J. Eur. Ceram. Soc.
– volume: 43
  start-page: 13349
  year: 2017
  end-page: 13355
  ident: bib22
  article-title: Colossal permittivity and impedance analysis of tantalum and samarium co-doped TiO
  publication-title: Ceram. Int.
– volume: 44
  start-page: 12137
  year: 2018
  end-page: 12143
  ident: bib26
  article-title: Colossal permittivity and dielectric relaxations in Tl+Nb codoped TiO
  publication-title: Ceram. Int.
– volume: 234
  year: 2021
  ident: bib41
  article-title: Tuning oxygen vacancy content in TiO
  publication-title: Chem. Eng. Sci.
– volume: 106
  start-page: 1859
  year: 2023
  end-page: 1869
  ident: bib44
  article-title: Ultralow dielectric loss in Tb+Ta‐modified TiO
  publication-title: J. Am. Ceram. Soc.
– volume: 44
  start-page: 12065
  year: 2018
  end-page: 12072
  ident: bib55
  article-title: Defect chemistry and dielectric behavior of Sr
  publication-title: Ceram. Int.
– volume: 95
  start-page: 2218
  year: 2012
  end-page: 2225
  ident: bib11
  article-title: Giant dielectric constant and good temperature stability in Y
  publication-title: J. Am. Ceram. Soc.
– volume: 6
  year: 2018
  ident: bib8
  article-title: Structural, transport and collosal dielectric properties of A-site substituted La
  publication-title: Mater. Res. Express
– volume: 146
  start-page: 110
  year: 2018
  end-page: 114
  ident: bib10
  article-title: Colossal permittivity in niobium doped BaTiO
  publication-title: Scripta Mater.
– volume: 100
  start-page: 3505
  year: 2017
  end-page: 3513
  ident: bib28
  article-title: Dielectric and electric relaxations induced by the complex defect clusters in (Yb+Nb) co-doped rutile TiO
  publication-title: J. Am. Ceram. Soc.
– volume: 43
  start-page: S265
  year: 2017
  end-page: S269
  ident: bib40
  article-title: Giant dielectric permittivity and electronic structure in (A
  publication-title: Ceram. Int.
– volume: 44
  start-page: 12395
  year: 2018
  end-page: 12400
  ident: bib37
  article-title: Disappearance and recovery of colossal permittivity in (Nb+Mn) co-doped TiO
  publication-title: Ceram. Int.
– volume: 89
  year: 2002
  ident: bib5
  article-title: Giant dielectric permittivity observed in Li and Ti doped NiO
  publication-title: Phys. Rev. Lett.
– volume: 20
  start-page: 21814
  year: 2018
  end-page: 21821
  ident: bib33
  article-title: Reduced dielectric loss in new colossal permittivity (Pr,Nb)-TiO
  publication-title: Phys. Chem. Chem. Phys.
– volume: 42
  start-page: 3170
  year: 2016
  end-page: 3176
  ident: bib15
  article-title: Stabilized temperature-dependent dielectric properties of Dy-doped BaTiO
  publication-title: Ceram. Int.
– volume: 703
  start-page: 139
  year: 2017
  end-page: 147
  ident: bib31
  article-title: High-performance giant-dielectric properties of rutile TiO
  publication-title: J. Alloys Compd.
– volume: 38
  start-page: 1562
  year: 2018
  end-page: 1568
  ident: bib9
  article-title: Giant permittivity and low dielectric loss of Fe doped BaTiO
  publication-title: J. Eur. Ceram. Soc.
– volume: 109
  start-page: 323
  year: 2011
  ident: bib18
  article-title: Extrinsic origins of the apparent relaxorlike behavior in CaCu
  publication-title: J. Appl. Phys.
– volume: 60
  start-page: 870
  year: 2009
  end-page: 873
  ident: bib6
  article-title: Giant dielectric response and polarization relaxation mechanism in (Li,V)-doped NiO ceramics
  publication-title: Scripta Mater.
– volume: 768
  start-page: 368
  year: 2018
  end-page: 376
  ident: bib47
  article-title: Colossal permittivity and dielectric relaxations in (La
  publication-title: J. Alloys Compd.
– volume: 43
  start-page: S249
  year: 2017
  end-page: S252
  ident: bib16
  article-title: Influence of sintering method on the PTCR effect and microstructures of Sm
  publication-title: Ceram. Int.
– volume: 46
  start-page: 12059
  year: 2020
  end-page: 12066
  ident: bib34
  article-title: Effect of ionic radius on colossal permittivity properties of (A,Ta) co-doped TiO
  publication-title: Ceram. Int.
– volume: 101
  start-page: 307
  year: 2018
  end-page: 315
  ident: bib57
  article-title: Colossal permittivity in TiO
  publication-title: J. Am. Ceram. Soc.
– volume: 21
  start-page: 5283
  year: 2021
  end-page: 5291
  ident: bib38
  article-title: Origin of colossal dielectric permittivity in (Nb+Ga) co-doped TiO
  publication-title: Cryst. Growth Des.
– volume: 10
  start-page: 899
  year: 2011
  end-page: 901
  ident: bib1
  article-title: The route to resource-efficient novel materials
  publication-title: Nat. Mater.
– volume: 62
  start-page: 1257
  year: 2001
  end-page: 1262
  ident: bib39
  article-title: Theoretical study of F-type color center in rutile TiO
  publication-title: J. Phys. Chem. Solid.
– volume: 103
  year: 2008
  ident: bib17
  article-title: Colossal dielectric constants in single-crystalline and ceramic CaCu
  publication-title: J. Appl. Phys.
– volume: 143
  year: 2020
  ident: bib42
  article-title: Effects of defect dipoles on the colossal permittivity of ambipolar co-doped rutile TiO
  publication-title: J. Phys. Chem. Solid.
– volume: 49
  start-page: 11705
  year: 2023
  end-page: 11710
  ident: bib43
  article-title: Good temperature stability and colossal permittivity in TiO
  publication-title: Ceram. Int.
– volume: 7
  start-page: 95
  year: 2017
  end-page: 105
  ident: bib58
  article-title: Origin(s) of the apparent colossal permittivity in (In
  publication-title: RSC Adv.
– volume: 40
  start-page: 71
  year: 2020
  end-page: 77
  ident: bib4
  article-title: High energy-storage density under low electric fields and improved optical transparency in novel sodium bismuth titanate-based lead-free ceramics
  publication-title: J. Eur. Ceram. Soc.
– volume: 29
  year: 2019
  ident: bib2
  article-title: Colossal permittivity materials as superior dielectrics for diverse applications
  publication-title: Adv. Funct. Mater.
– volume: 103
  start-page: 4313
  year: 2020
  end-page: 4320
  ident: bib46
  article-title: Giant permittivity up to 100 MHz in La and Nb co‐doped rutile TiO
  publication-title: J. Am. Ceram. Soc.
– volume: 46
  start-page: 3420
  year: 2020
  end-page: 3425
  ident: bib50
  article-title: The effect of sintering atmosphere on colossal permittivity in W+Mg/Al co-doped TiO
  publication-title: Ceram. Int.
– volume: 45
  start-page: 1001
  year: 2019
  end-page: 1010
  ident: bib52
  article-title: Colossal permittivity of Sb and Ga co-doped rutile TiO
  publication-title: Ceram. Int.
– volume: 47
  start-page: 2257
  year: 2012
  end-page: 2263
  ident: bib12
  article-title: Modified giant dielectric properties of samarium doped CaCu
  publication-title: Mater. Res. Bull.
– volume: 100
  start-page: 1452
  year: 2017
  end-page: 1459
  ident: bib14
  article-title: Surface barrier layer effect in (In+Nb) co‐doped TiO
  publication-title: J. Am. Ceram. Soc.
– volume: 12
  start-page: 821
  year: 2013
  end-page: 826
  ident: bib19
  article-title: Electron-pinned defect-dipoles for high-performance colossal permittivity materials
  publication-title: Nat. Mater.
– volume: 17
  year: 2015
  ident: bib30
  article-title: Quasi-intrinsic colossal permittivity in Nb and in co-doped rutile TiO
  publication-title: Phys. Chem. Chem. Phys.
– volume: 17
  start-page: 23132
  year: 2015
  ident: 10.1016/j.ceramint.2023.07.180_bib36
  article-title: Origin of colossal permittivity in (In1/2Nb1/2)TiO2 via broadband dielectric spectroscopy
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C5CP02741A
– volume: 44
  start-page: 12137
  year: 2018
  ident: 10.1016/j.ceramint.2023.07.180_bib26
  article-title: Colossal permittivity and dielectric relaxations in Tl+Nb codoped TiO2 ceramics
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2018.03.255
– volume: 43
  start-page: S249
  year: 2017
  ident: 10.1016/j.ceramint.2023.07.180_bib16
  article-title: Influence of sintering method on the PTCR effect and microstructures of Sm2O3 doped BaTiO3-based ceramics sintered in a reducing atmosphere
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2017.05.246
– volume: 38
  start-page: 1562
  year: 2018
  ident: 10.1016/j.ceramint.2023.07.180_bib9
  article-title: Giant permittivity and low dielectric loss of Fe doped BaTiO3 ceramics: experimental and first-principles calculations
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2017.10.014
– volume: 103
  start-page: 4313
  year: 2020
  ident: 10.1016/j.ceramint.2023.07.180_bib46
  article-title: Giant permittivity up to 100 MHz in La and Nb co‐doped rutile TiO2 ceramics
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/jace.17085
– volume: 10
  start-page: 899
  year: 2011
  ident: 10.1016/j.ceramint.2023.07.180_bib1
  article-title: The route to resource-efficient novel materials
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3180
– volume: 283
  year: 2019
  ident: 10.1016/j.ceramint.2023.07.180_bib3
  article-title: Novel Na0.5Bi0.5Ti0.5O3 based, lead-free energy storage ceramics with high power and energy density and excellent high-temperature stability
  publication-title: Chem. Eng. J.
– volume: 17
  year: 2015
  ident: 10.1016/j.ceramint.2023.07.180_bib30
  article-title: Quasi-intrinsic colossal permittivity in Nb and in co-doped rutile TiO2 nanoceramics synthesized through a oxalate chemical-solution route combined with spark plasma sintering
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C5CP02653A
– volume: 43
  start-page: S265
  year: 2017
  ident: 10.1016/j.ceramint.2023.07.180_bib40
  article-title: Giant dielectric permittivity and electronic structure in (A3+,Nb5+) co-doped TiO2 (A= Al, Ga and In)
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2017.05.255
– volume: 7
  start-page: 25321
  year: 2015
  ident: 10.1016/j.ceramint.2023.07.180_bib21
  article-title: Colossal dielectric behavior of Ga+Nb co-doped rutile TiO2
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b07467
– volume: 106
  start-page: 1859
  year: 2023
  ident: 10.1016/j.ceramint.2023.07.180_bib44
  article-title: Ultralow dielectric loss in Tb+Ta‐modified TiO2 giant dielectric ceramics via designing defect chemistry
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/jace.18873
– volume: 6
  year: 2016
  ident: 10.1016/j.ceramint.2023.07.180_bib53
  article-title: Origin of colossal dielectric permittivity of rutile Ti0.9In0.05Nb0.05O2: single crystal and polycrystalline
  publication-title: Sci. Rep.
– volume: 95
  start-page: 2218
  year: 2012
  ident: 10.1016/j.ceramint.2023.07.180_bib11
  article-title: Giant dielectric constant and good temperature stability in Y2/3Cu3TiO12 ceramics
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1551-2916.2012.05152.x
– volume: 806
  start-page: 89
  year: 2019
  ident: 10.1016/j.ceramint.2023.07.180_bib48
  article-title: Multifarious polarizations in high-performance colossal permittivity titanium dioxide ceramics
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2019.07.278
– volume: 146
  start-page: 110
  year: 2018
  ident: 10.1016/j.ceramint.2023.07.180_bib10
  article-title: Colossal permittivity in niobium doped BaTiO3 ceramics annealed in N2
  publication-title: Scripta Mater.
  doi: 10.1016/j.scriptamat.2017.11.026
– volume: 47
  start-page: 6711
  year: 2021
  ident: 10.1016/j.ceramint.2023.07.180_bib29
  article-title: Colossal permittivity of (Gd+Nb) co-doped TiO2 ceramics induced by interface effects and defect cluster
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2020.11.012
– volume: 6
  year: 2018
  ident: 10.1016/j.ceramint.2023.07.180_bib8
  article-title: Structural, transport and collosal dielectric properties of A-site substituted La2NiO4
  publication-title: Mater. Res. Express
– volume: 18
  start-page: 24270
  year: 2016
  ident: 10.1016/j.ceramint.2023.07.180_bib27
  article-title: High-performance colossal permittivity materials of (Nb+Er) co-doped TiO2 for large capacitors and high-energy-density storage devices
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C6CP02236G
– volume: 5
  start-page: 5170
  year: 2017
  ident: 10.1016/j.ceramint.2023.07.180_bib45
  article-title: Colossal permittivity of (Mg+Nb) co-doped TiO2 ceramics with low dielectric loss
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C7TC01020F
– volume: 703
  start-page: 139
  year: 2017
  ident: 10.1016/j.ceramint.2023.07.180_bib31
  article-title: High-performance giant-dielectric properties of rutile TiO2 co-doped with acceptor-Sc3+ and donor-Nb5+ ions
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2017.01.333
– volume: 143
  year: 2020
  ident: 10.1016/j.ceramint.2023.07.180_bib42
  article-title: Effects of defect dipoles on the colossal permittivity of ambipolar co-doped rutile TiO2 ceramics
  publication-title: J. Phys. Chem. Solid.
– volume: 49
  start-page: 11705
  year: 2023
  ident: 10.1016/j.ceramint.2023.07.180_bib43
  article-title: Good temperature stability and colossal permittivity in TiO2 ceramics doped with Cu2+ and W6+ ions
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2022.12.021
– volume: 100
  start-page: 1452
  year: 2017
  ident: 10.1016/j.ceramint.2023.07.180_bib14
  article-title: Surface barrier layer effect in (In+Nb) co‐doped TiO2 ceramics: an alternative route to design low dielectric loss
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/jace.14688
– volume: 47
  start-page: 2257
  year: 2012
  ident: 10.1016/j.ceramint.2023.07.180_bib12
  article-title: Modified giant dielectric properties of samarium doped CaCu3Ti4O12 ceramics
  publication-title: Mater. Res. Bull.
  doi: 10.1016/j.materresbull.2012.05.058
– volume: 856
  year: 2021
  ident: 10.1016/j.ceramint.2023.07.180_bib49
  article-title: Ag+/W6+ co-doped TiO2 ceramic with colossal permittivity and low loss
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2020.157350
– volume: 46
  start-page: 12059
  year: 2020
  ident: 10.1016/j.ceramint.2023.07.180_bib34
  article-title: Effect of ionic radius on colossal permittivity properties of (A,Ta) co-doped TiO2 (A=alkaline-earth ions) ceramics
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2020.01.247
– volume: 123
  start-page: 15
  year: 2017
  ident: 10.1016/j.ceramint.2023.07.180_bib51
  article-title: Very low dielectric loss and giant dielectric response with excellent temperature stability of Ga3+ and Ta5+ co-doped rutile-TiO2 ceramics
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2017.03.037
– volume: 27
  start-page: 4934
  year: 2015
  ident: 10.1016/j.ceramint.2023.07.180_bib24
  article-title: Colossal dielectric permittivity in (Nb+Al) codoped rutile TiO2 ceramics: compositional gradient and local structure
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.5b01351
– volume: 62
  start-page: 228
  year: 2000
  ident: 10.1016/j.ceramint.2023.07.180_bib54
  article-title: Oxygen-vacancy-related low-frequency dielectric relaxation and electrical conduction in Bi: SrTiO3
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.62.228
– volume: 98
  start-page: 472
  year: 2015
  ident: 10.1016/j.ceramint.2023.07.180_bib56
  article-title: Dielectric relaxation in Zr-doped SrTiO3 ceramics sintered in N2 with giant permittivity and low dielectric loss
  publication-title: J. Am. Ceram. Soc.
– volume: 7
  start-page: 8517
  year: 2017
  ident: 10.1016/j.ceramint.2023.07.180_bib20
  article-title: Dielectric properties of Y and Nb co-doped TiO2 ceramics
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-09141-0
– volume: 921
  year: 2022
  ident: 10.1016/j.ceramint.2023.07.180_bib32
  article-title: Colossal dielectric behavior of (Nb+Ga) co-doped TiO2 single crystal
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2022.166053
– volume: 42
  start-page: 3170
  year: 2016
  ident: 10.1016/j.ceramint.2023.07.180_bib15
  article-title: Stabilized temperature-dependent dielectric properties of Dy-doped BaTiO3 ceramics derived from sol-hydrothermally synthesized nanopowders
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2015.10.107
– volume: 662
  start-page: 467
  year: 2016
  ident: 10.1016/j.ceramint.2023.07.180_bib7
  article-title: Structural, microstructural and dielectric studies in multiferroic LaSrNiO4-δ prepared by mechanical milling method
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2015.12.002
– volume: 89
  year: 2002
  ident: 10.1016/j.ceramint.2023.07.180_bib5
  article-title: Giant dielectric permittivity observed in Li and Ti doped NiO
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.89.217601
– volume: 43
  start-page: 13349
  year: 2017
  ident: 10.1016/j.ceramint.2023.07.180_bib22
  article-title: Colossal permittivity and impedance analysis of tantalum and samarium co-doped TiO2 ceramics
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2017.07.034
– volume: 46
  start-page: 3420
  year: 2020
  ident: 10.1016/j.ceramint.2023.07.180_bib50
  article-title: The effect of sintering atmosphere on colossal permittivity in W+Mg/Al co-doped TiO2 ceramics
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2019.10.054
– volume: 45
  start-page: 1001
  year: 2019
  ident: 10.1016/j.ceramint.2023.07.180_bib52
  article-title: Colossal permittivity of Sb and Ga co-doped rutile TiO2 ceramics
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2018.09.279
– volume: 40
  start-page: 71
  year: 2020
  ident: 10.1016/j.ceramint.2023.07.180_bib4
  article-title: High energy-storage density under low electric fields and improved optical transparency in novel sodium bismuth titanate-based lead-free ceramics
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2019.09.001
– volume: 44
  start-page: 12395
  year: 2018
  ident: 10.1016/j.ceramint.2023.07.180_bib37
  article-title: Disappearance and recovery of colossal permittivity in (Nb+Mn) co-doped TiO2
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2018.04.028
– volume: 109
  start-page: 323
  year: 2011
  ident: 10.1016/j.ceramint.2023.07.180_bib18
  article-title: Extrinsic origins of the apparent relaxorlike behavior in CaCu3Ti4O12 ceramics at high temperatures: a cautionary tale
  publication-title: J. Appl. Phys.
– volume: 768
  start-page: 368
  year: 2018
  ident: 10.1016/j.ceramint.2023.07.180_bib47
  article-title: Colossal permittivity and dielectric relaxations in (La0.5Nb0.5)xTi1-xO2 ceramics
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2018.07.248
– volume: 103
  year: 2008
  ident: 10.1016/j.ceramint.2023.07.180_bib17
  article-title: Colossal dielectric constants in single-crystalline and ceramic CaCu3Ti4O12 investigated by broadband dielectric spectroscopy
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2902374
– volume: 12
  start-page: 821
  year: 2013
  ident: 10.1016/j.ceramint.2023.07.180_bib19
  article-title: Electron-pinned defect-dipoles for high-performance colossal permittivity materials
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3691
– volume: 62
  start-page: 1257
  year: 2001
  ident: 10.1016/j.ceramint.2023.07.180_bib39
  article-title: Theoretical study of F-type color center in rutile TiO2
  publication-title: J. Phys. Chem. Solid.
  doi: 10.1016/S0022-3697(01)00018-X
– volume: 44
  start-page: 12065
  year: 2018
  ident: 10.1016/j.ceramint.2023.07.180_bib55
  article-title: Defect chemistry and dielectric behavior of Sr0.99Ce0.01Ti1-xO3 ceramics with high permittivity
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2018.03.221
– volume: 6
  start-page: 2283
  year: 2018
  ident: 10.1016/j.ceramint.2023.07.180_bib13
  article-title: The effect of segregation structure on the colossal permittivity properties of (La0.5Nb0.5)xTi1-xO2 ceramics
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C7TC05277D
– volume: 100
  start-page: 3505
  year: 2017
  ident: 10.1016/j.ceramint.2023.07.180_bib28
  article-title: Dielectric and electric relaxations induced by the complex defect clusters in (Yb+Nb) co-doped rutile TiO2 ceramics
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/jace.14861
– volume: 101
  start-page: 307
  year: 2018
  ident: 10.1016/j.ceramint.2023.07.180_bib57
  article-title: Colossal permittivity in TiO2 co‐doped by donor Nb and isovalent Zr
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/jace.15196
– volume: 43
  start-page: 15466
  year: 2017
  ident: 10.1016/j.ceramint.2023.07.180_bib25
  article-title: Effect of Zn2+ and Nb5+ co-doping ions on giant dielectric properties of rutile-TiO2 ceramics
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2017.08.093
– volume: 7
  start-page: 95
  year: 2017
  ident: 10.1016/j.ceramint.2023.07.180_bib58
  article-title: Origin(s) of the apparent colossal permittivity in (In1/2Nb1/2)xTi1-xO2: clarification on the strongly induced Maxwell-Wagner polarization relaxation by DC bias
  publication-title: RSC Adv.
  doi: 10.1039/C6RA26728A
– volume: 234
  year: 2021
  ident: 10.1016/j.ceramint.2023.07.180_bib41
  article-title: Tuning oxygen vacancy content in TiO2 nanoparticles to enhance the photocatalytic performance
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2021.116440
– volume: 29
  year: 2019
  ident: 10.1016/j.ceramint.2023.07.180_bib2
  article-title: Colossal permittivity materials as superior dielectrics for diverse applications
  publication-title: Adv. Funct. Mater.
– volume: 60
  start-page: 870
  year: 2009
  ident: 10.1016/j.ceramint.2023.07.180_bib6
  article-title: Giant dielectric response and polarization relaxation mechanism in (Li,V)-doped NiO ceramics
  publication-title: Scripta Mater.
  doi: 10.1016/j.scriptamat.2009.01.037
– volume: 116
  year: 2014
  ident: 10.1016/j.ceramint.2023.07.180_bib35
  article-title: Microstructure and dielectric properties of (Nb+In) co-doped rutile TiO2 ceramics
  publication-title: J. Appl. Phys.
– volume: 21
  start-page: 5283
  year: 2021
  ident: 10.1016/j.ceramint.2023.07.180_bib38
  article-title: Origin of colossal dielectric permittivity in (Nb+Ga) co-doped TiO2 single crystals
  publication-title: Cryst. Growth Des.
  doi: 10.1021/acs.cgd.1c00611
– volume: 38
  start-page: 3847
  year: 2018
  ident: 10.1016/j.ceramint.2023.07.180_bib23
  article-title: Enhanced relative permittivity in niobium and europium co-doped TiO2 ceramics
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2018.04.026
– volume: 20
  start-page: 21814
  year: 2018
  ident: 10.1016/j.ceramint.2023.07.180_bib33
  article-title: Reduced dielectric loss in new colossal permittivity (Pr,Nb)-TiO2 ceramics by suppressing adverse effects of secondary phases
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C8CP03304H
SSID ssj0016940
Score 2.44004
Snippet Various defects have a profound impact on the dielectric properties and polarization mechanisms of (Nb,Ga) codoped TiO2 crystals. However, the research...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 32116
SubjectTerms Annealing process
Colossal dielectric constant
Defect dipoles
TiO2 single crystal
Title Effect of different defects on the polarization mechanism of (Nb,Ga) codoped TiO2 single crystals
URI https://dx.doi.org/10.1016/j.ceramint.2023.07.180
Volume 49
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KvehBfGJ9lD14UDDtZrPJJsdSrFWxHmyht7BPSGnT0MaDF3-7u3mUCkIPHhN2IExmZ-dbvvkGgFuEtQkNpR0dKe6QgEmHCYNapY-ZcDHluOjifxsFwwl5mfrTBujXvTCWVlnl_jKnF9m6etOtvNnNkqT7YQAVDkNizjdkZcqs4qdVrzMx3fne0DzcICLlPQs1O9-s3uoSnnWEWrFFklpOJfasiKdr5SH_OqC2Dp3BETisqkXYKz_oGDRUegIOtjQETwEr9YfhUsN62EkOpSpYGnCZQlPgwczi16rhEi6UbfZN1gtrcjfiD0_sHgqDTjMl4Th5x9BeH8wVFKsvUzrO12dgMngc94dONTfBER4NcycMgpBHAeFcSKp9rBDFQhJOqXKlYJHSCCnEsFmtKBNCa8_3BCEG-TBFZeCdg2a6TNUFgNwnhLuIc4ubuGZRJIWpMLjgoccDgVrAr50Vi0pU3M62mMc1e2wW106OrZNjRGPj5BbobuyyUlZjp0VU_4v4V4DEJvfvsL38h-0V2LdPJX_vGjTz1ae6MXVIzttFoLXBXu_5dTj6AUJI31Q
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED6VdgAGxFO88cAAEqGu48TJiCqgPFoGWqmb5acU1KZVKQP_HrtJUJGQGFiTfFJ0OZ_vc-6-AzjHxDrXMDawqZEBjYUOhHKsVUdEqBZhkiy6-Lu9uDOgj8NoWIN21QvjyyrL2F_E9EW0Lq80S2s2p1nWfHWEiiQJdfsb9jJl4Qo0vDoVrUPj5uGp0_v-mRCntDhqYW7xO8BSo_DbtTIzMc5yX1ZJQq_j2fIKkb_tUUv7zt0mbJQJI7op3mkLaibfhvUlGcEdEIUEMZpYVM07mSNtFoUaaJIjl-OhqaewZc8lGhvf75u9jz3koiev7sUlUo6gTo1G_eyFIH-CMDJIzT5d9jh634XB3W2_3QnK0QmBClkyD5I4TmQaUymVZjYiBjOiNJWMmZZWIjUWY4MFcU8bJpSyNoxCRakjP8IwHYd7UM8nudkHJCNKZQtL6amTtCJNtXJJhlQyCWWs8AFElbG4KnXF_XiLEa8KyN54ZWTujcwx487IB9D8xk0LZY0_EWn1LfgPH-Eu_P-BPfwH9gxWO_3uM39-6D0dwZq_U5TzHUN9PvswJy4tmcvT0u2-AO6Y4gU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+different+defects+on+the+polarization+mechanism+of+%28Nb%2CGa%29+codoped+TiO2+single+crystals&rft.jtitle=Ceramics+international&rft.au=Wang%2C+Lei&rft.au=Li%2C+Jinsheng&rft.au=Liu%2C+Xudong&rft.au=Zhang%2C+Mu&rft.date=2023-10-01&rft.pub=Elsevier+Ltd&rft.issn=0272-8842&rft.eissn=1873-3956&rft.volume=49&rft.issue=19&rft.spage=32116&rft.epage=32126&rft_id=info:doi/10.1016%2Fj.ceramint.2023.07.180&rft.externalDocID=S0272884223021193
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0272-8842&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0272-8842&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0272-8842&client=summon