Effect of different defects on the polarization mechanism of (Nb,Ga) codoped TiO2 single crystals
Various defects have a profound impact on the dielectric properties and polarization mechanisms of (Nb,Ga) codoped TiO2 crystals. However, the research conducted in this area remains limited. To address this, we grew (Nb,Ga) codoped TiO2 crystals via the Verneuil method and investigated their dielec...
Saved in:
Published in | Ceramics international Vol. 49; no. 19; pp. 32116 - 32126 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.10.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 0272-8842 1873-3956 |
DOI | 10.1016/j.ceramint.2023.07.180 |
Cover
Loading…
Abstract | Various defects have a profound impact on the dielectric properties and polarization mechanisms of (Nb,Ga) codoped TiO2 crystals. However, the research conducted in this area remains limited. To address this, we grew (Nb,Ga) codoped TiO2 crystals via the Verneuil method and investigated their dielectric properties under various atmospheric annealing conditions. Annealing in oxygen reduces the number of defects. In this case, the point defects associated with oxygen vacancies is unable to fully form the ideal complex defect clusters which can form effective pegging of free electrons. On the other hand, the defects are mainly in the form of simple defect clusters that causes hopping polarization. Annealing under mixed gas (Ar:H2 = 95%:5%) increases the number of defects and contains more free carriers, which migrate to the interface between the sample and the electrode, leading to interfacial polarization. Both hopping polarization and interfacial polarization are slow polarization, resulting in an increase in dielectric loss and a decrease in frequency stability. Annealing in air or nitrogen atmospheres forms ideal defect dipole clusters, where the electron-pinned defect dipoles (EPDD) are predominantly polarized, resulting in superior dielectric properties. It has been clarified that EPDD as the main polarization form can yield better dielectric properties. By focusing on single crystals as the research subject, we effectively eliminate the influence of grain boundaries, enabling a more accurate assessment of the effects of various crystal defects on dielectric properties. This study holds substantial implications for the advancement of TiO2-based dielectric materials, offering valuable insights into their performance optimization. |
---|---|
AbstractList | Various defects have a profound impact on the dielectric properties and polarization mechanisms of (Nb,Ga) codoped TiO2 crystals. However, the research conducted in this area remains limited. To address this, we grew (Nb,Ga) codoped TiO2 crystals via the Verneuil method and investigated their dielectric properties under various atmospheric annealing conditions. Annealing in oxygen reduces the number of defects. In this case, the point defects associated with oxygen vacancies is unable to fully form the ideal complex defect clusters which can form effective pegging of free electrons. On the other hand, the defects are mainly in the form of simple defect clusters that causes hopping polarization. Annealing under mixed gas (Ar:H2 = 95%:5%) increases the number of defects and contains more free carriers, which migrate to the interface between the sample and the electrode, leading to interfacial polarization. Both hopping polarization and interfacial polarization are slow polarization, resulting in an increase in dielectric loss and a decrease in frequency stability. Annealing in air or nitrogen atmospheres forms ideal defect dipole clusters, where the electron-pinned defect dipoles (EPDD) are predominantly polarized, resulting in superior dielectric properties. It has been clarified that EPDD as the main polarization form can yield better dielectric properties. By focusing on single crystals as the research subject, we effectively eliminate the influence of grain boundaries, enabling a more accurate assessment of the effects of various crystal defects on dielectric properties. This study holds substantial implications for the advancement of TiO2-based dielectric materials, offering valuable insights into their performance optimization. |
Author | Zhang, Mu Sun, Xudong Wang, Lei Li, Xiaodong Li, Jinsheng Liu, Xudong Liu, Shaohong |
Author_xml | – sequence: 1 givenname: Lei surname: Wang fullname: Wang, Lei organization: Key Laboratory for Anisotropy and Texture of Material (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang, Liaoning, 110819, PR China – sequence: 2 givenname: Jinsheng surname: Li fullname: Li, Jinsheng email: jinsheng1986@163.com organization: Key Laboratory for Anisotropy and Texture of Material (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang, Liaoning, 110819, PR China – sequence: 3 givenname: Xudong surname: Liu fullname: Liu, Xudong email: xdsun@neu.edu.cn organization: College of Environmental and Chemical Engineering, Dalian University, Dalian, Liaoning, 116622, PR China – sequence: 4 givenname: Mu surname: Zhang fullname: Zhang, Mu organization: Foshan Graduate School of Innovation, Northeastern University, Foshan, 528311, PR China – sequence: 5 givenname: Xiaodong orcidid: 0000-0002-6601-5788 surname: Li fullname: Li, Xiaodong organization: Key Laboratory for Anisotropy and Texture of Material (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang, Liaoning, 110819, PR China – sequence: 6 givenname: Shaohong surname: Liu fullname: Liu, Shaohong organization: Key Laboratory for Anisotropy and Texture of Material (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang, Liaoning, 110819, PR China – sequence: 7 givenname: Xudong surname: Sun fullname: Sun, Xudong email: liuxudong@dlu.edu.cn organization: Foshan Graduate School of Innovation, Northeastern University, Foshan, 528311, PR China |
BookMark | eNqFkE1LAzEQhoNUsK3-BclRwV2z2W2yCx6UUqtQ7KWeQzaZ2JT9KEkQ6q83a_XipacZXuYZeJ8JGnV9BwhdZyTNSMbud6kCJ1vbhZQSmqeEp1lJztA4K3me5NWMjdCYUE6TsizoBZp4vyMRrAoyRnJhDKiAe4O1jauDLmANQ-Zx3-GwBbzvG-nslww2Bi2oreysbwfk5q2-W8pbrHrd70HjjV1T7G330QBW7uCDbPwlOjdxwNXvnKL358Vm_pKs1svX-dMqUTkvQ1IyVtYVK-paaW5mFAinShc155BpJSswhACRNF4Dl0oZk89yVRQVYxK4ZvkUseNf5XrvHRixd7aV7iAyIgZRYif-RIlBlCBcRFERfPgHKht-ygYnbXMafzziEMt9WnDCKwudAm1dtCh0b0-9-AZQkYz5 |
CitedBy_id | crossref_primary_10_1038_s41598_025_92269_1 crossref_primary_10_1016_j_ceramint_2024_01_106 crossref_primary_10_1002_appl_202400147 crossref_primary_10_1016_j_ijhydene_2024_10_009 crossref_primary_10_1016_j_ceramint_2025_01_039 crossref_primary_10_1016_j_ceramint_2024_02_219 crossref_primary_10_1039_D3RA08336E crossref_primary_10_1038_s41598_024_73732_x crossref_primary_10_1016_j_jallcom_2024_174341 |
Cites_doi | 10.1039/C5CP02741A 10.1016/j.ceramint.2018.03.255 10.1016/j.ceramint.2017.05.246 10.1016/j.jeurceramsoc.2017.10.014 10.1111/jace.17085 10.1038/nmat3180 10.1039/C5CP02653A 10.1016/j.ceramint.2017.05.255 10.1021/acsami.5b07467 10.1111/jace.18873 10.1111/j.1551-2916.2012.05152.x 10.1016/j.jallcom.2019.07.278 10.1016/j.scriptamat.2017.11.026 10.1016/j.ceramint.2020.11.012 10.1039/C6CP02236G 10.1039/C7TC01020F 10.1016/j.jallcom.2017.01.333 10.1016/j.ceramint.2022.12.021 10.1111/jace.14688 10.1016/j.materresbull.2012.05.058 10.1016/j.jallcom.2020.157350 10.1016/j.ceramint.2020.01.247 10.1016/j.matdes.2017.03.037 10.1021/acs.chemmater.5b01351 10.1103/PhysRevB.62.228 10.1038/s41598-017-09141-0 10.1016/j.jallcom.2022.166053 10.1016/j.ceramint.2015.10.107 10.1016/j.jallcom.2015.12.002 10.1103/PhysRevLett.89.217601 10.1016/j.ceramint.2017.07.034 10.1016/j.ceramint.2019.10.054 10.1016/j.ceramint.2018.09.279 10.1016/j.jeurceramsoc.2019.09.001 10.1016/j.ceramint.2018.04.028 10.1016/j.jallcom.2018.07.248 10.1063/1.2902374 10.1038/nmat3691 10.1016/S0022-3697(01)00018-X 10.1016/j.ceramint.2018.03.221 10.1039/C7TC05277D 10.1111/jace.14861 10.1111/jace.15196 10.1016/j.ceramint.2017.08.093 10.1039/C6RA26728A 10.1016/j.ces.2021.116440 10.1016/j.scriptamat.2009.01.037 10.1021/acs.cgd.1c00611 10.1016/j.jeurceramsoc.2018.04.026 10.1039/C8CP03304H |
ContentType | Journal Article |
Copyright | 2023 |
Copyright_xml | – notice: 2023 |
DBID | AAYXX CITATION |
DOI | 10.1016/j.ceramint.2023.07.180 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-3956 |
EndPage | 32126 |
ExternalDocumentID | 10_1016_j_ceramint_2023_07_180 S0272884223021193 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29B 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABJNI ABMAC ABXRA ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SEW SMS SPC SPCBC SSM SSZ T5K ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- RNS SSH WUQ XPP |
ID | FETCH-LOGICAL-c378t-8668b964bbcd7f52e072cd4b77e1dca9ef00e0a2c37e7accff353c44966ae7d63 |
IEDL.DBID | .~1 |
ISSN | 0272-8842 |
IngestDate | Tue Jul 01 04:23:42 EDT 2025 Thu Apr 24 23:01:11 EDT 2025 Sat Mar 02 16:00:09 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 19 |
Keywords | Defect dipoles TiO2 single crystal Colossal dielectric constant Annealing process |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c378t-8668b964bbcd7f52e072cd4b77e1dca9ef00e0a2c37e7accff353c44966ae7d63 |
ORCID | 0000-0002-6601-5788 |
PageCount | 11 |
ParticipantIDs | crossref_primary_10_1016_j_ceramint_2023_07_180 crossref_citationtrail_10_1016_j_ceramint_2023_07_180 elsevier_sciencedirect_doi_10_1016_j_ceramint_2023_07_180 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-10-01 2023-10-00 |
PublicationDateYYYYMMDD | 2023-10-01 |
PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Ceramics international |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Nachaithong, Kidkhunthod, Thongbai, Maensiri (bib14) 2017; 100 Zhou, Cao, Wang, Rao, Luo, Yang, Hao, Yao, Yu, Liu (bib55) 2018; 44 Tuichai, Danwittayakul, Srepusharawoot, Thongbai, Maensiri (bib40) 2017; 43 Zhao, Liu, Song, Zhang, Chen, Zhou (bib36) 2015; 17 Zhou, Jiang, Sun (bib43) 2023; 49 Liu, Wang, Yin, Yu, Xu (bib34) 2020; 46 Krohns, Lunkenheimer, Meissner, Reller, Gleich, Rathgeber, Gaugler, Buhl, Sinclair, Loidl (bib1) 2011; 10 Song, Wang, Sui, Liu, Zhang, Zhan, Song, Liu, Lv, Tao, Tang (bib53) 2016; 6 Tuichai, Thongyong, Danwittayakul, Chanlek, Srepusharawoot, Thongbai, Maensiri (bib51) 2017; 123 Wu, Nan, Lin, Deng (bib5) 2002; 89 Wang, Liu, Bi, Ma, Li, Sun (bib38) 2021; 21 Bi, Du, Kalam, Sun, Yu, Su, Xu, Al-Sehemi (bib41) 2021; 234 Tuichai, Danwittayakul, Chanlek, Thongbai, Maensiri (bib31) 2017; 703 Zhao, Liu (bib28) 2017; 100 Fan, Yang, Cao (bib44) 2023; 106 Liang, Yang, Liu (bib11) 2012; 95 Luo, Wang, Tian, Song, Zhao, Cai, Feng, Li (bib9) 2018; 38 Krohns, Lunkenheimer, Ebbinghaus, Loidl (bib17) 2008; 103 Thongbai, Putasaeng, Maensiri (bib12) 2012; 47 Guo, Peng, Cui, Song (bib47) 2018; 768 Zhu, Wu, Liang, Zhou, Peng, Chao, Yang (bib49) 2021; 856 Wang, Chen, Wang, Xian, Nian, Fan (bib23) 2018; 38 Yang, Zhong, Long, Wei (bib50) 2020; 46 Hu, Lau, Liu, Withers, Chen, Fu, Gong, Hutchison (bib24) 2015; 27 Wang, Li, Lu, Zhang, Luo (bib48) 2019; 806 Liu, Zhao, Wu, Wu (bib33) 2018; 20 Wang, Liu, Zhang, Bi, Ma, Li, Chen, Sun (bib32) 2022; 921 Tuichai, Danwittayakul, Chanlek, Srepusharawoot, Thongbai, Maensiri (bib58) 2017; 7 Li, Li, Zhuang, Jin, Wang, Wei, Xu, Zhang (bib35) 2014; 116 Yang, Wei, Hao (bib37) 2018; 44 Malla, Singh, Mishra, Varshney (bib8) 2018; 6 Yang, Tse, Wei, Hao (bib45) 2017; 5 Wang, Zhang, Xu, Wang, Sun (bib20) 2017; 7 Li, Lu, Zhang, Li, Cai (bib13) 2018; 6 Thongyong, Tuichai, Chanlek, Thongbai (bib25) 2017; 43 Cao, Zhao, Fan, Li, Zhang (bib29) 2021; 47 Ren, He, Wang, Sun, Zhao (bib10) 2018; 146 Li, Sinclair, West (bib18) 2011; 109 Wang, Zhang, Shen, Sun, Hu, Shi, Wang, Jie, Zhang (bib22) 2017; 43 Song, Liu, Guo, Cui, Yang (bib46) 2020; 103 Yang, Wei, Hao (bib57) 2018; 101 Wang, Jie, Yang, Hao (bib2) 2019; 29 Fan, Leng, Cao, He, Gao, Li (bib52) 2019; 45 Sun, Gu, Zhu, Qiu (bib15) 2016; 42 Chen, Lin, Jing (bib39) 2001; 62 Lira, S e Silva, Banerjee, Franco (bib42) 2020; 143 Hu, Liu, Withers, Frankcombe, Noren, Snashall, Kitchin, Smith, Gong, Chen, Schiemer, Brink, Wong-Leung (bib19) 2013; 12 Zhang, Pu, Chen, Wei, Keipper, Shi, Guo, Li, Peng (bib4) 2020; 40 Han, Dufour, Mhin, Ryu, Tenailleau, Guillemet-Fritsch (bib30) 2015; 17 Dong, Hu, Berlie, Lau, Chen, Withers, Liu (bib21) 2015; 7 Tse, Wei, Hao (bib27) 2016; 18 Chen, Yu, Cross (bib54) 2000; 62 Zhang, Pu, Chen, Wei, Peng (bib3) 2019; 283 Pongha, Thongbai, Yamwong, Maensiri (bib6) 2009; 60 Guo, Liu, Cui, Song (bib26) 2018; 44 Wang, Cao, Zhang, Hao, Yao, Wang, Song, Zhang, Hu, Liu, Zhang (bib56) 2015; 98 Chouket, Cheikhrouhou-Koubaa, Cheikhrouhou, Optasanu, Bidault, Khitouni (bib7) 2016; 662 Cheng, Li, Chen, Cui (bib16) 2017; 43 Guo (10.1016/j.ceramint.2023.07.180_bib26) 2018; 44 Zhao (10.1016/j.ceramint.2023.07.180_bib36) 2015; 17 Song (10.1016/j.ceramint.2023.07.180_bib46) 2020; 103 Wang (10.1016/j.ceramint.2023.07.180_bib56) 2015; 98 Wang (10.1016/j.ceramint.2023.07.180_bib23) 2018; 38 Hu (10.1016/j.ceramint.2023.07.180_bib19) 2013; 12 Li (10.1016/j.ceramint.2023.07.180_bib35) 2014; 116 Tuichai (10.1016/j.ceramint.2023.07.180_bib31) 2017; 703 Yang (10.1016/j.ceramint.2023.07.180_bib50) 2020; 46 Chouket (10.1016/j.ceramint.2023.07.180_bib7) 2016; 662 Hu (10.1016/j.ceramint.2023.07.180_bib24) 2015; 27 Liang (10.1016/j.ceramint.2023.07.180_bib11) 2012; 95 Wang (10.1016/j.ceramint.2023.07.180_bib2) 2019; 29 Wang (10.1016/j.ceramint.2023.07.180_bib20) 2017; 7 Dong (10.1016/j.ceramint.2023.07.180_bib21) 2015; 7 Thongyong (10.1016/j.ceramint.2023.07.180_bib25) 2017; 43 Li (10.1016/j.ceramint.2023.07.180_bib13) 2018; 6 Liu (10.1016/j.ceramint.2023.07.180_bib34) 2020; 46 Zhou (10.1016/j.ceramint.2023.07.180_bib55) 2018; 44 Tuichai (10.1016/j.ceramint.2023.07.180_bib58) 2017; 7 Zhao (10.1016/j.ceramint.2023.07.180_bib28) 2017; 100 Pongha (10.1016/j.ceramint.2023.07.180_bib6) 2009; 60 Fan (10.1016/j.ceramint.2023.07.180_bib44) 2023; 106 Zhu (10.1016/j.ceramint.2023.07.180_bib49) 2021; 856 Yang (10.1016/j.ceramint.2023.07.180_bib37) 2018; 44 Yang (10.1016/j.ceramint.2023.07.180_bib45) 2017; 5 Ren (10.1016/j.ceramint.2023.07.180_bib10) 2018; 146 Wu (10.1016/j.ceramint.2023.07.180_bib5) 2002; 89 Cao (10.1016/j.ceramint.2023.07.180_bib29) 2021; 47 Luo (10.1016/j.ceramint.2023.07.180_bib9) 2018; 38 Tuichai (10.1016/j.ceramint.2023.07.180_bib51) 2017; 123 Chen (10.1016/j.ceramint.2023.07.180_bib39) 2001; 62 Bi (10.1016/j.ceramint.2023.07.180_bib41) 2021; 234 Zhang (10.1016/j.ceramint.2023.07.180_bib4) 2020; 40 Tuichai (10.1016/j.ceramint.2023.07.180_bib40) 2017; 43 Tse (10.1016/j.ceramint.2023.07.180_bib27) 2016; 18 Guo (10.1016/j.ceramint.2023.07.180_bib47) 2018; 768 Cheng (10.1016/j.ceramint.2023.07.180_bib16) 2017; 43 Wang (10.1016/j.ceramint.2023.07.180_bib48) 2019; 806 Wang (10.1016/j.ceramint.2023.07.180_bib22) 2017; 43 Lira (10.1016/j.ceramint.2023.07.180_bib42) 2020; 143 Zhou (10.1016/j.ceramint.2023.07.180_bib43) 2023; 49 Thongbai (10.1016/j.ceramint.2023.07.180_bib12) 2012; 47 Fan (10.1016/j.ceramint.2023.07.180_bib52) 2019; 45 Nachaithong (10.1016/j.ceramint.2023.07.180_bib14) 2017; 100 Li (10.1016/j.ceramint.2023.07.180_bib18) 2011; 109 Krohns (10.1016/j.ceramint.2023.07.180_bib17) 2008; 103 Wang (10.1016/j.ceramint.2023.07.180_bib32) 2022; 921 Chen (10.1016/j.ceramint.2023.07.180_bib54) 2000; 62 Wang (10.1016/j.ceramint.2023.07.180_bib38) 2021; 21 Krohns (10.1016/j.ceramint.2023.07.180_bib1) 2011; 10 Sun (10.1016/j.ceramint.2023.07.180_bib15) 2016; 42 Song (10.1016/j.ceramint.2023.07.180_bib53) 2016; 6 Liu (10.1016/j.ceramint.2023.07.180_bib33) 2018; 20 Yang (10.1016/j.ceramint.2023.07.180_bib57) 2018; 101 Zhang (10.1016/j.ceramint.2023.07.180_bib3) 2019; 283 Malla (10.1016/j.ceramint.2023.07.180_bib8) 2018; 6 Han (10.1016/j.ceramint.2023.07.180_bib30) 2015; 17 |
References_xml | – volume: 27 start-page: 4934 year: 2015 end-page: 4942 ident: bib24 article-title: Colossal dielectric permittivity in (Nb+Al) codoped rutile TiO publication-title: Chem. Mater. – volume: 6 year: 2016 ident: bib53 article-title: Origin of colossal dielectric permittivity of rutile Ti publication-title: Sci. Rep. – volume: 6 start-page: 2283 year: 2018 end-page: 2294 ident: bib13 article-title: The effect of segregation structure on the colossal permittivity properties of (La publication-title: J. Mater. Chem. C – volume: 7 start-page: 8517 year: 2017 ident: bib20 article-title: Dielectric properties of Y and Nb co-doped TiO publication-title: Sci. Rep. – volume: 806 start-page: 89 year: 2019 end-page: 98 ident: bib48 article-title: Multifarious polarizations in high-performance colossal permittivity titanium dioxide ceramics publication-title: J. Alloys Compd. – volume: 18 start-page: 24270 year: 2016 end-page: 24277 ident: bib27 article-title: High-performance colossal permittivity materials of (Nb+Er) co-doped TiO publication-title: Phys. Chem. Chem. Phys. – volume: 662 start-page: 467 year: 2016 end-page: 474 ident: bib7 article-title: Structural, microstructural and dielectric studies in multiferroic LaSrNiO publication-title: J. Alloys Compd. – volume: 7 start-page: 25321 year: 2015 end-page: 25325 ident: bib21 article-title: Colossal dielectric behavior of Ga+Nb co-doped rutile TiO publication-title: ACS Appl. Mater. Interfaces – volume: 5 start-page: 5170 year: 2017 end-page: 5175 ident: bib45 article-title: Colossal permittivity of (Mg+Nb) co-doped TiO publication-title: J. Mater. Chem. C – volume: 123 start-page: 15 year: 2017 end-page: 23 ident: bib51 article-title: Very low dielectric loss and giant dielectric response with excellent temperature stability of Ga publication-title: Mater. Des. – volume: 856 year: 2021 ident: bib49 article-title: Ag publication-title: J. Alloys Compd. – volume: 283 year: 2019 ident: bib3 article-title: Novel Na publication-title: Chem. Eng. J. – volume: 47 start-page: 6711 year: 2021 end-page: 6719 ident: bib29 article-title: Colossal permittivity of (Gd+Nb) co-doped TiO publication-title: Ceram. Int. – volume: 62 start-page: 228 year: 2000 end-page: 236 ident: bib54 article-title: Oxygen-vacancy-related low-frequency dielectric relaxation and electrical conduction in Bi: SrTiO publication-title: Phys. Rev. B – volume: 921 year: 2022 ident: bib32 article-title: Colossal dielectric behavior of (Nb+Ga) co-doped TiO publication-title: J. Alloys Compd. – volume: 17 start-page: 23132 year: 2015 end-page: 23139 ident: bib36 article-title: Origin of colossal permittivity in (In publication-title: Phys. Chem. Chem. Phys. – volume: 43 start-page: 15466 year: 2017 end-page: 15471 ident: bib25 article-title: Effect of Zn publication-title: Ceram. Int. – volume: 116 year: 2014 ident: bib35 article-title: Microstructure and dielectric properties of (Nb+In) co-doped rutile TiO publication-title: J. Appl. Phys. – volume: 98 start-page: 472 year: 2015 end-page: 482 ident: bib56 article-title: Dielectric relaxation in Zr-doped SrTiO publication-title: J. Am. Ceram. Soc. – volume: 38 start-page: 3847 year: 2018 end-page: 3852 ident: bib23 article-title: Enhanced relative permittivity in niobium and europium co-doped TiO publication-title: J. Eur. Ceram. Soc. – volume: 43 start-page: 13349 year: 2017 end-page: 13355 ident: bib22 article-title: Colossal permittivity and impedance analysis of tantalum and samarium co-doped TiO publication-title: Ceram. Int. – volume: 44 start-page: 12137 year: 2018 end-page: 12143 ident: bib26 article-title: Colossal permittivity and dielectric relaxations in Tl+Nb codoped TiO publication-title: Ceram. Int. – volume: 234 year: 2021 ident: bib41 article-title: Tuning oxygen vacancy content in TiO publication-title: Chem. Eng. Sci. – volume: 106 start-page: 1859 year: 2023 end-page: 1869 ident: bib44 article-title: Ultralow dielectric loss in Tb+Ta‐modified TiO publication-title: J. Am. Ceram. Soc. – volume: 44 start-page: 12065 year: 2018 end-page: 12072 ident: bib55 article-title: Defect chemistry and dielectric behavior of Sr publication-title: Ceram. Int. – volume: 95 start-page: 2218 year: 2012 end-page: 2225 ident: bib11 article-title: Giant dielectric constant and good temperature stability in Y publication-title: J. Am. Ceram. Soc. – volume: 6 year: 2018 ident: bib8 article-title: Structural, transport and collosal dielectric properties of A-site substituted La publication-title: Mater. Res. Express – volume: 146 start-page: 110 year: 2018 end-page: 114 ident: bib10 article-title: Colossal permittivity in niobium doped BaTiO publication-title: Scripta Mater. – volume: 100 start-page: 3505 year: 2017 end-page: 3513 ident: bib28 article-title: Dielectric and electric relaxations induced by the complex defect clusters in (Yb+Nb) co-doped rutile TiO publication-title: J. Am. Ceram. Soc. – volume: 43 start-page: S265 year: 2017 end-page: S269 ident: bib40 article-title: Giant dielectric permittivity and electronic structure in (A publication-title: Ceram. Int. – volume: 44 start-page: 12395 year: 2018 end-page: 12400 ident: bib37 article-title: Disappearance and recovery of colossal permittivity in (Nb+Mn) co-doped TiO publication-title: Ceram. Int. – volume: 89 year: 2002 ident: bib5 article-title: Giant dielectric permittivity observed in Li and Ti doped NiO publication-title: Phys. Rev. Lett. – volume: 20 start-page: 21814 year: 2018 end-page: 21821 ident: bib33 article-title: Reduced dielectric loss in new colossal permittivity (Pr,Nb)-TiO publication-title: Phys. Chem. Chem. Phys. – volume: 42 start-page: 3170 year: 2016 end-page: 3176 ident: bib15 article-title: Stabilized temperature-dependent dielectric properties of Dy-doped BaTiO publication-title: Ceram. Int. – volume: 703 start-page: 139 year: 2017 end-page: 147 ident: bib31 article-title: High-performance giant-dielectric properties of rutile TiO publication-title: J. Alloys Compd. – volume: 38 start-page: 1562 year: 2018 end-page: 1568 ident: bib9 article-title: Giant permittivity and low dielectric loss of Fe doped BaTiO publication-title: J. Eur. Ceram. Soc. – volume: 109 start-page: 323 year: 2011 ident: bib18 article-title: Extrinsic origins of the apparent relaxorlike behavior in CaCu publication-title: J. Appl. Phys. – volume: 60 start-page: 870 year: 2009 end-page: 873 ident: bib6 article-title: Giant dielectric response and polarization relaxation mechanism in (Li,V)-doped NiO ceramics publication-title: Scripta Mater. – volume: 768 start-page: 368 year: 2018 end-page: 376 ident: bib47 article-title: Colossal permittivity and dielectric relaxations in (La publication-title: J. Alloys Compd. – volume: 43 start-page: S249 year: 2017 end-page: S252 ident: bib16 article-title: Influence of sintering method on the PTCR effect and microstructures of Sm publication-title: Ceram. Int. – volume: 46 start-page: 12059 year: 2020 end-page: 12066 ident: bib34 article-title: Effect of ionic radius on colossal permittivity properties of (A,Ta) co-doped TiO publication-title: Ceram. Int. – volume: 101 start-page: 307 year: 2018 end-page: 315 ident: bib57 article-title: Colossal permittivity in TiO publication-title: J. Am. Ceram. Soc. – volume: 21 start-page: 5283 year: 2021 end-page: 5291 ident: bib38 article-title: Origin of colossal dielectric permittivity in (Nb+Ga) co-doped TiO publication-title: Cryst. Growth Des. – volume: 10 start-page: 899 year: 2011 end-page: 901 ident: bib1 article-title: The route to resource-efficient novel materials publication-title: Nat. Mater. – volume: 62 start-page: 1257 year: 2001 end-page: 1262 ident: bib39 article-title: Theoretical study of F-type color center in rutile TiO publication-title: J. Phys. Chem. Solid. – volume: 103 year: 2008 ident: bib17 article-title: Colossal dielectric constants in single-crystalline and ceramic CaCu publication-title: J. Appl. Phys. – volume: 143 year: 2020 ident: bib42 article-title: Effects of defect dipoles on the colossal permittivity of ambipolar co-doped rutile TiO publication-title: J. Phys. Chem. Solid. – volume: 49 start-page: 11705 year: 2023 end-page: 11710 ident: bib43 article-title: Good temperature stability and colossal permittivity in TiO publication-title: Ceram. Int. – volume: 7 start-page: 95 year: 2017 end-page: 105 ident: bib58 article-title: Origin(s) of the apparent colossal permittivity in (In publication-title: RSC Adv. – volume: 40 start-page: 71 year: 2020 end-page: 77 ident: bib4 article-title: High energy-storage density under low electric fields and improved optical transparency in novel sodium bismuth titanate-based lead-free ceramics publication-title: J. Eur. Ceram. Soc. – volume: 29 year: 2019 ident: bib2 article-title: Colossal permittivity materials as superior dielectrics for diverse applications publication-title: Adv. Funct. Mater. – volume: 103 start-page: 4313 year: 2020 end-page: 4320 ident: bib46 article-title: Giant permittivity up to 100 MHz in La and Nb co‐doped rutile TiO publication-title: J. Am. Ceram. Soc. – volume: 46 start-page: 3420 year: 2020 end-page: 3425 ident: bib50 article-title: The effect of sintering atmosphere on colossal permittivity in W+Mg/Al co-doped TiO publication-title: Ceram. Int. – volume: 45 start-page: 1001 year: 2019 end-page: 1010 ident: bib52 article-title: Colossal permittivity of Sb and Ga co-doped rutile TiO publication-title: Ceram. Int. – volume: 47 start-page: 2257 year: 2012 end-page: 2263 ident: bib12 article-title: Modified giant dielectric properties of samarium doped CaCu publication-title: Mater. Res. Bull. – volume: 100 start-page: 1452 year: 2017 end-page: 1459 ident: bib14 article-title: Surface barrier layer effect in (In+Nb) co‐doped TiO publication-title: J. Am. Ceram. Soc. – volume: 12 start-page: 821 year: 2013 end-page: 826 ident: bib19 article-title: Electron-pinned defect-dipoles for high-performance colossal permittivity materials publication-title: Nat. Mater. – volume: 17 year: 2015 ident: bib30 article-title: Quasi-intrinsic colossal permittivity in Nb and in co-doped rutile TiO publication-title: Phys. Chem. Chem. Phys. – volume: 17 start-page: 23132 year: 2015 ident: 10.1016/j.ceramint.2023.07.180_bib36 article-title: Origin of colossal permittivity in (In1/2Nb1/2)TiO2 via broadband dielectric spectroscopy publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C5CP02741A – volume: 44 start-page: 12137 year: 2018 ident: 10.1016/j.ceramint.2023.07.180_bib26 article-title: Colossal permittivity and dielectric relaxations in Tl+Nb codoped TiO2 ceramics publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2018.03.255 – volume: 43 start-page: S249 year: 2017 ident: 10.1016/j.ceramint.2023.07.180_bib16 article-title: Influence of sintering method on the PTCR effect and microstructures of Sm2O3 doped BaTiO3-based ceramics sintered in a reducing atmosphere publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2017.05.246 – volume: 38 start-page: 1562 year: 2018 ident: 10.1016/j.ceramint.2023.07.180_bib9 article-title: Giant permittivity and low dielectric loss of Fe doped BaTiO3 ceramics: experimental and first-principles calculations publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2017.10.014 – volume: 103 start-page: 4313 year: 2020 ident: 10.1016/j.ceramint.2023.07.180_bib46 article-title: Giant permittivity up to 100 MHz in La and Nb co‐doped rutile TiO2 ceramics publication-title: J. Am. Ceram. Soc. doi: 10.1111/jace.17085 – volume: 10 start-page: 899 year: 2011 ident: 10.1016/j.ceramint.2023.07.180_bib1 article-title: The route to resource-efficient novel materials publication-title: Nat. Mater. doi: 10.1038/nmat3180 – volume: 283 year: 2019 ident: 10.1016/j.ceramint.2023.07.180_bib3 article-title: Novel Na0.5Bi0.5Ti0.5O3 based, lead-free energy storage ceramics with high power and energy density and excellent high-temperature stability publication-title: Chem. Eng. J. – volume: 17 year: 2015 ident: 10.1016/j.ceramint.2023.07.180_bib30 article-title: Quasi-intrinsic colossal permittivity in Nb and in co-doped rutile TiO2 nanoceramics synthesized through a oxalate chemical-solution route combined with spark plasma sintering publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C5CP02653A – volume: 43 start-page: S265 year: 2017 ident: 10.1016/j.ceramint.2023.07.180_bib40 article-title: Giant dielectric permittivity and electronic structure in (A3+,Nb5+) co-doped TiO2 (A= Al, Ga and In) publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2017.05.255 – volume: 7 start-page: 25321 year: 2015 ident: 10.1016/j.ceramint.2023.07.180_bib21 article-title: Colossal dielectric behavior of Ga+Nb co-doped rutile TiO2 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b07467 – volume: 106 start-page: 1859 year: 2023 ident: 10.1016/j.ceramint.2023.07.180_bib44 article-title: Ultralow dielectric loss in Tb+Ta‐modified TiO2 giant dielectric ceramics via designing defect chemistry publication-title: J. Am. Ceram. Soc. doi: 10.1111/jace.18873 – volume: 6 year: 2016 ident: 10.1016/j.ceramint.2023.07.180_bib53 article-title: Origin of colossal dielectric permittivity of rutile Ti0.9In0.05Nb0.05O2: single crystal and polycrystalline publication-title: Sci. Rep. – volume: 95 start-page: 2218 year: 2012 ident: 10.1016/j.ceramint.2023.07.180_bib11 article-title: Giant dielectric constant and good temperature stability in Y2/3Cu3TiO12 ceramics publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1551-2916.2012.05152.x – volume: 806 start-page: 89 year: 2019 ident: 10.1016/j.ceramint.2023.07.180_bib48 article-title: Multifarious polarizations in high-performance colossal permittivity titanium dioxide ceramics publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2019.07.278 – volume: 146 start-page: 110 year: 2018 ident: 10.1016/j.ceramint.2023.07.180_bib10 article-title: Colossal permittivity in niobium doped BaTiO3 ceramics annealed in N2 publication-title: Scripta Mater. doi: 10.1016/j.scriptamat.2017.11.026 – volume: 47 start-page: 6711 year: 2021 ident: 10.1016/j.ceramint.2023.07.180_bib29 article-title: Colossal permittivity of (Gd+Nb) co-doped TiO2 ceramics induced by interface effects and defect cluster publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2020.11.012 – volume: 6 year: 2018 ident: 10.1016/j.ceramint.2023.07.180_bib8 article-title: Structural, transport and collosal dielectric properties of A-site substituted La2NiO4 publication-title: Mater. Res. Express – volume: 18 start-page: 24270 year: 2016 ident: 10.1016/j.ceramint.2023.07.180_bib27 article-title: High-performance colossal permittivity materials of (Nb+Er) co-doped TiO2 for large capacitors and high-energy-density storage devices publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C6CP02236G – volume: 5 start-page: 5170 year: 2017 ident: 10.1016/j.ceramint.2023.07.180_bib45 article-title: Colossal permittivity of (Mg+Nb) co-doped TiO2 ceramics with low dielectric loss publication-title: J. Mater. Chem. C doi: 10.1039/C7TC01020F – volume: 703 start-page: 139 year: 2017 ident: 10.1016/j.ceramint.2023.07.180_bib31 article-title: High-performance giant-dielectric properties of rutile TiO2 co-doped with acceptor-Sc3+ and donor-Nb5+ ions publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2017.01.333 – volume: 143 year: 2020 ident: 10.1016/j.ceramint.2023.07.180_bib42 article-title: Effects of defect dipoles on the colossal permittivity of ambipolar co-doped rutile TiO2 ceramics publication-title: J. Phys. Chem. Solid. – volume: 49 start-page: 11705 year: 2023 ident: 10.1016/j.ceramint.2023.07.180_bib43 article-title: Good temperature stability and colossal permittivity in TiO2 ceramics doped with Cu2+ and W6+ ions publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2022.12.021 – volume: 100 start-page: 1452 year: 2017 ident: 10.1016/j.ceramint.2023.07.180_bib14 article-title: Surface barrier layer effect in (In+Nb) co‐doped TiO2 ceramics: an alternative route to design low dielectric loss publication-title: J. Am. Ceram. Soc. doi: 10.1111/jace.14688 – volume: 47 start-page: 2257 year: 2012 ident: 10.1016/j.ceramint.2023.07.180_bib12 article-title: Modified giant dielectric properties of samarium doped CaCu3Ti4O12 ceramics publication-title: Mater. Res. Bull. doi: 10.1016/j.materresbull.2012.05.058 – volume: 856 year: 2021 ident: 10.1016/j.ceramint.2023.07.180_bib49 article-title: Ag+/W6+ co-doped TiO2 ceramic with colossal permittivity and low loss publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2020.157350 – volume: 46 start-page: 12059 year: 2020 ident: 10.1016/j.ceramint.2023.07.180_bib34 article-title: Effect of ionic radius on colossal permittivity properties of (A,Ta) co-doped TiO2 (A=alkaline-earth ions) ceramics publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2020.01.247 – volume: 123 start-page: 15 year: 2017 ident: 10.1016/j.ceramint.2023.07.180_bib51 article-title: Very low dielectric loss and giant dielectric response with excellent temperature stability of Ga3+ and Ta5+ co-doped rutile-TiO2 ceramics publication-title: Mater. Des. doi: 10.1016/j.matdes.2017.03.037 – volume: 27 start-page: 4934 year: 2015 ident: 10.1016/j.ceramint.2023.07.180_bib24 article-title: Colossal dielectric permittivity in (Nb+Al) codoped rutile TiO2 ceramics: compositional gradient and local structure publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b01351 – volume: 62 start-page: 228 year: 2000 ident: 10.1016/j.ceramint.2023.07.180_bib54 article-title: Oxygen-vacancy-related low-frequency dielectric relaxation and electrical conduction in Bi: SrTiO3 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.62.228 – volume: 98 start-page: 472 year: 2015 ident: 10.1016/j.ceramint.2023.07.180_bib56 article-title: Dielectric relaxation in Zr-doped SrTiO3 ceramics sintered in N2 with giant permittivity and low dielectric loss publication-title: J. Am. Ceram. Soc. – volume: 7 start-page: 8517 year: 2017 ident: 10.1016/j.ceramint.2023.07.180_bib20 article-title: Dielectric properties of Y and Nb co-doped TiO2 ceramics publication-title: Sci. Rep. doi: 10.1038/s41598-017-09141-0 – volume: 921 year: 2022 ident: 10.1016/j.ceramint.2023.07.180_bib32 article-title: Colossal dielectric behavior of (Nb+Ga) co-doped TiO2 single crystal publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2022.166053 – volume: 42 start-page: 3170 year: 2016 ident: 10.1016/j.ceramint.2023.07.180_bib15 article-title: Stabilized temperature-dependent dielectric properties of Dy-doped BaTiO3 ceramics derived from sol-hydrothermally synthesized nanopowders publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2015.10.107 – volume: 662 start-page: 467 year: 2016 ident: 10.1016/j.ceramint.2023.07.180_bib7 article-title: Structural, microstructural and dielectric studies in multiferroic LaSrNiO4-δ prepared by mechanical milling method publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2015.12.002 – volume: 89 year: 2002 ident: 10.1016/j.ceramint.2023.07.180_bib5 article-title: Giant dielectric permittivity observed in Li and Ti doped NiO publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.89.217601 – volume: 43 start-page: 13349 year: 2017 ident: 10.1016/j.ceramint.2023.07.180_bib22 article-title: Colossal permittivity and impedance analysis of tantalum and samarium co-doped TiO2 ceramics publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2017.07.034 – volume: 46 start-page: 3420 year: 2020 ident: 10.1016/j.ceramint.2023.07.180_bib50 article-title: The effect of sintering atmosphere on colossal permittivity in W+Mg/Al co-doped TiO2 ceramics publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2019.10.054 – volume: 45 start-page: 1001 year: 2019 ident: 10.1016/j.ceramint.2023.07.180_bib52 article-title: Colossal permittivity of Sb and Ga co-doped rutile TiO2 ceramics publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2018.09.279 – volume: 40 start-page: 71 year: 2020 ident: 10.1016/j.ceramint.2023.07.180_bib4 article-title: High energy-storage density under low electric fields and improved optical transparency in novel sodium bismuth titanate-based lead-free ceramics publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2019.09.001 – volume: 44 start-page: 12395 year: 2018 ident: 10.1016/j.ceramint.2023.07.180_bib37 article-title: Disappearance and recovery of colossal permittivity in (Nb+Mn) co-doped TiO2 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2018.04.028 – volume: 109 start-page: 323 year: 2011 ident: 10.1016/j.ceramint.2023.07.180_bib18 article-title: Extrinsic origins of the apparent relaxorlike behavior in CaCu3Ti4O12 ceramics at high temperatures: a cautionary tale publication-title: J. Appl. Phys. – volume: 768 start-page: 368 year: 2018 ident: 10.1016/j.ceramint.2023.07.180_bib47 article-title: Colossal permittivity and dielectric relaxations in (La0.5Nb0.5)xTi1-xO2 ceramics publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2018.07.248 – volume: 103 year: 2008 ident: 10.1016/j.ceramint.2023.07.180_bib17 article-title: Colossal dielectric constants in single-crystalline and ceramic CaCu3Ti4O12 investigated by broadband dielectric spectroscopy publication-title: J. Appl. Phys. doi: 10.1063/1.2902374 – volume: 12 start-page: 821 year: 2013 ident: 10.1016/j.ceramint.2023.07.180_bib19 article-title: Electron-pinned defect-dipoles for high-performance colossal permittivity materials publication-title: Nat. Mater. doi: 10.1038/nmat3691 – volume: 62 start-page: 1257 year: 2001 ident: 10.1016/j.ceramint.2023.07.180_bib39 article-title: Theoretical study of F-type color center in rutile TiO2 publication-title: J. Phys. Chem. Solid. doi: 10.1016/S0022-3697(01)00018-X – volume: 44 start-page: 12065 year: 2018 ident: 10.1016/j.ceramint.2023.07.180_bib55 article-title: Defect chemistry and dielectric behavior of Sr0.99Ce0.01Ti1-xO3 ceramics with high permittivity publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2018.03.221 – volume: 6 start-page: 2283 year: 2018 ident: 10.1016/j.ceramint.2023.07.180_bib13 article-title: The effect of segregation structure on the colossal permittivity properties of (La0.5Nb0.5)xTi1-xO2 ceramics publication-title: J. Mater. Chem. C doi: 10.1039/C7TC05277D – volume: 100 start-page: 3505 year: 2017 ident: 10.1016/j.ceramint.2023.07.180_bib28 article-title: Dielectric and electric relaxations induced by the complex defect clusters in (Yb+Nb) co-doped rutile TiO2 ceramics publication-title: J. Am. Ceram. Soc. doi: 10.1111/jace.14861 – volume: 101 start-page: 307 year: 2018 ident: 10.1016/j.ceramint.2023.07.180_bib57 article-title: Colossal permittivity in TiO2 co‐doped by donor Nb and isovalent Zr publication-title: J. Am. Ceram. Soc. doi: 10.1111/jace.15196 – volume: 43 start-page: 15466 year: 2017 ident: 10.1016/j.ceramint.2023.07.180_bib25 article-title: Effect of Zn2+ and Nb5+ co-doping ions on giant dielectric properties of rutile-TiO2 ceramics publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2017.08.093 – volume: 7 start-page: 95 year: 2017 ident: 10.1016/j.ceramint.2023.07.180_bib58 article-title: Origin(s) of the apparent colossal permittivity in (In1/2Nb1/2)xTi1-xO2: clarification on the strongly induced Maxwell-Wagner polarization relaxation by DC bias publication-title: RSC Adv. doi: 10.1039/C6RA26728A – volume: 234 year: 2021 ident: 10.1016/j.ceramint.2023.07.180_bib41 article-title: Tuning oxygen vacancy content in TiO2 nanoparticles to enhance the photocatalytic performance publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2021.116440 – volume: 29 year: 2019 ident: 10.1016/j.ceramint.2023.07.180_bib2 article-title: Colossal permittivity materials as superior dielectrics for diverse applications publication-title: Adv. Funct. Mater. – volume: 60 start-page: 870 year: 2009 ident: 10.1016/j.ceramint.2023.07.180_bib6 article-title: Giant dielectric response and polarization relaxation mechanism in (Li,V)-doped NiO ceramics publication-title: Scripta Mater. doi: 10.1016/j.scriptamat.2009.01.037 – volume: 116 year: 2014 ident: 10.1016/j.ceramint.2023.07.180_bib35 article-title: Microstructure and dielectric properties of (Nb+In) co-doped rutile TiO2 ceramics publication-title: J. Appl. Phys. – volume: 21 start-page: 5283 year: 2021 ident: 10.1016/j.ceramint.2023.07.180_bib38 article-title: Origin of colossal dielectric permittivity in (Nb+Ga) co-doped TiO2 single crystals publication-title: Cryst. Growth Des. doi: 10.1021/acs.cgd.1c00611 – volume: 38 start-page: 3847 year: 2018 ident: 10.1016/j.ceramint.2023.07.180_bib23 article-title: Enhanced relative permittivity in niobium and europium co-doped TiO2 ceramics publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2018.04.026 – volume: 20 start-page: 21814 year: 2018 ident: 10.1016/j.ceramint.2023.07.180_bib33 article-title: Reduced dielectric loss in new colossal permittivity (Pr,Nb)-TiO2 ceramics by suppressing adverse effects of secondary phases publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C8CP03304H |
SSID | ssj0016940 |
Score | 2.44004 |
Snippet | Various defects have a profound impact on the dielectric properties and polarization mechanisms of (Nb,Ga) codoped TiO2 crystals. However, the research... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 32116 |
SubjectTerms | Annealing process Colossal dielectric constant Defect dipoles TiO2 single crystal |
Title | Effect of different defects on the polarization mechanism of (Nb,Ga) codoped TiO2 single crystals |
URI | https://dx.doi.org/10.1016/j.ceramint.2023.07.180 |
Volume | 49 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KvehBfGJ9lD14UDDtZrPJJsdSrFWxHmyht7BPSGnT0MaDF3-7u3mUCkIPHhN2IExmZ-dbvvkGgFuEtQkNpR0dKe6QgEmHCYNapY-ZcDHluOjifxsFwwl5mfrTBujXvTCWVlnl_jKnF9m6etOtvNnNkqT7YQAVDkNizjdkZcqs4qdVrzMx3fne0DzcICLlPQs1O9-s3uoSnnWEWrFFklpOJfasiKdr5SH_OqC2Dp3BETisqkXYKz_oGDRUegIOtjQETwEr9YfhUsN62EkOpSpYGnCZQlPgwczi16rhEi6UbfZN1gtrcjfiD0_sHgqDTjMl4Th5x9BeH8wVFKsvUzrO12dgMngc94dONTfBER4NcycMgpBHAeFcSKp9rBDFQhJOqXKlYJHSCCnEsFmtKBNCa8_3BCEG-TBFZeCdg2a6TNUFgNwnhLuIc4ubuGZRJIWpMLjgoccDgVrAr50Vi0pU3M62mMc1e2wW106OrZNjRGPj5BbobuyyUlZjp0VU_4v4V4DEJvfvsL38h-0V2LdPJX_vGjTz1ae6MXVIzttFoLXBXu_5dTj6AUJI31Q |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED6VdgAGxFO88cAAEqGu48TJiCqgPFoGWqmb5acU1KZVKQP_HrtJUJGQGFiTfFJ0OZ_vc-6-AzjHxDrXMDawqZEBjYUOhHKsVUdEqBZhkiy6-Lu9uDOgj8NoWIN21QvjyyrL2F_E9EW0Lq80S2s2p1nWfHWEiiQJdfsb9jJl4Qo0vDoVrUPj5uGp0_v-mRCntDhqYW7xO8BSo_DbtTIzMc5yX1ZJQq_j2fIKkb_tUUv7zt0mbJQJI7op3mkLaibfhvUlGcEdEIUEMZpYVM07mSNtFoUaaJIjl-OhqaewZc8lGhvf75u9jz3koiev7sUlUo6gTo1G_eyFIH-CMDJIzT5d9jh634XB3W2_3QnK0QmBClkyD5I4TmQaUymVZjYiBjOiNJWMmZZWIjUWY4MFcU8bJpSyNoxCRakjP8IwHYd7UM8nudkHJCNKZQtL6amTtCJNtXJJhlQyCWWs8AFElbG4KnXF_XiLEa8KyN54ZWTujcwx487IB9D8xk0LZY0_EWn1LfgPH-Eu_P-BPfwH9gxWO_3uM39-6D0dwZq_U5TzHUN9PvswJy4tmcvT0u2-AO6Y4gU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+different+defects+on+the+polarization+mechanism+of+%28Nb%2CGa%29+codoped+TiO2+single+crystals&rft.jtitle=Ceramics+international&rft.au=Wang%2C+Lei&rft.au=Li%2C+Jinsheng&rft.au=Liu%2C+Xudong&rft.au=Zhang%2C+Mu&rft.date=2023-10-01&rft.pub=Elsevier+Ltd&rft.issn=0272-8842&rft.eissn=1873-3956&rft.volume=49&rft.issue=19&rft.spage=32116&rft.epage=32126&rft_id=info:doi/10.1016%2Fj.ceramint.2023.07.180&rft.externalDocID=S0272884223021193 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0272-8842&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0272-8842&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0272-8842&client=summon |