Multiple solutions of Kirchhoff type equations involving Neumann conditions and critical growth

In this paper, we consider a Neumann problem of Kirchhoff type equation \begin{equation*} \begin{cases} \displaystyle-\left(a+b\int_{\Omega}|\nabla u|^2dx\right)\Delta u+u= Q(x)|u|^4u+\lambda P(x)|u|^{q-2}u, &\rm \mathrm{in}\ \ \Omega, \\ \displaystyle\frac{\partial u}{\partial v}=0, &\rm \m...

Full description

Saved in:
Bibliographic Details
Published inAIMS mathematics Vol. 6; no. 4; pp. 3821 - 3837
Main Authors Lei, Jun, Suo, Hongmin
Format Journal Article
LanguageEnglish
Published AIMS Press 01.01.2021
Subjects
Online AccessGet full text
ISSN2473-6988
2473-6988
DOI10.3934/math.2021227

Cover

Loading…
Abstract In this paper, we consider a Neumann problem of Kirchhoff type equation \begin{equation*} \begin{cases} \displaystyle-\left(a+b\int_{\Omega}|\nabla u|^2dx\right)\Delta u+u= Q(x)|u|^4u+\lambda P(x)|u|^{q-2}u, &\rm \mathrm{in}\ \ \Omega, \\ \displaystyle\frac{\partial u}{\partial v}=0, &\rm \mathrm{on}\ \ \partial\Omega, \end{cases} \end{equation*} where $\Omega$ $\subset$ $\mathbb{R}^3$ is a bounded domain with a smooth boundary, $a,b>0$, $1<q<2$, $\lambda>0$ is a real parameter, $Q(x)$ and $P(x)$ satisfy some suitable assumptions. By using the variational method and the concentration compactness principle, we obtain the existence and multiplicity of nontrivial solutions.
AbstractList In this paper, we consider a Neumann problem of Kirchhoff type equation \begin{equation*} \begin{cases} \displaystyle-\left(a+b\int_{\Omega}|\nabla u|^2dx\right)\Delta u+u= Q(x)|u|^4u+\lambda P(x)|u|^{q-2}u, &\rm \mathrm{in}\ \ \Omega, \\ \displaystyle\frac{\partial u}{\partial v}=0, &\rm \mathrm{on}\ \ \partial\Omega, \end{cases} \end{equation*} where $\Omega$ $\subset$ $\mathbb{R}^3$ is a bounded domain with a smooth boundary, $a,b>0$, $1<q<2$, $\lambda>0$ is a real parameter, $Q(x)$ and $P(x)$ satisfy some suitable assumptions. By using the variational method and the concentration compactness principle, we obtain the existence and multiplicity of nontrivial solutions.
Author Lei, Jun
Suo, Hongmin
Author_xml – sequence: 1
  givenname: Jun
  surname: Lei
  fullname: Lei, Jun
– sequence: 2
  givenname: Hongmin
  surname: Suo
  fullname: Suo, Hongmin
BookMark eNptUMtOwzAQtFCRKKU3PsAfQIrjvJwjqnhUFLjA2do4duPKtYuTFPXvcZsiIcRpd2d3Z2fnEo2ssxKh65jMkjJJbzfQNTNKaExpcYbGNC2SKC8ZG_3KL9C0bdeEHKZSWqRjxF960-mtkbh1pu-0sy12Cj9rL5rGKYW7_VZi-dnD0NN258xO2xV-lf0GrMXC2VoPTbA1Fj4UAgxeeffVNVfoXIFp5fQUJ-jj4f59_hQt3x4X87tlJJKCdRHLgjxRZgVUNY1VJlhFhAwplLFM8orJgIMSNUtyEkMm8vBlIdIsy1msZJlM0GLgrR2s-dbrDfg9d6D5EXB-xcEHYUZyUgPkdZ0qBiINB5hMRGDP8yIlqhI0cNGBS3jXtl4qLnR3_L_zoA2PCT84zg-O85PjYenmz9KPiH_HvwHj0Ie7
CitedBy_id crossref_primary_10_14232_ejqtde_2022_1_50
crossref_primary_10_1007_s12346_024_00999_w
crossref_primary_10_11948_20230449
crossref_primary_10_1002_mma_10419
Cites_doi 10.1007/s10231-012-0286-6
10.7153/dea-02-25
10.1007/s11587-007-0018-1
10.1016/j.aml.2016.07.029
10.1016/S0304-0208(08)70870-3
10.1016/0022-1236(73)90051-7
10.1016/0022-0396(91)90014-Z
10.1016/j.nonrwa.2010.09.023
10.1007/s40840-018-0623-z
10.1007/s00033-014-0431-8
10.1016/j.jmaa.2015.01.044
10.1515/ans-2014-0214
10.1016/j.jde.2011.08.035
10.1016/j.camwa.2005.01.008
10.3934/cpaa.2013.12.2773
10.3934/cpaa.2018124
10.1016/j.amc.2015.11.024
10.1186/s13662-016-0828-0
10.1016/0022-247X(74)90025-0
10.1016/j.jde.2014.04.011
10.1007/s00033-017-0803-y
10.1016/j.jmaa.2012.12.053
10.1016/S0294-1449(16)30428-0
10.1002/mma.4620
10.1016/j.jde.2012.05.023
10.1002/cpa.3160360405
10.1016/j.jmaa.2019.06.020
10.4064/ap114-3-5
10.1016/j.jde.2014.05.002
ContentType Journal Article
CorporateAuthor School of Data Sciences and Information Engineering, Guizhou Minzu University, Guiyang 550025, China
CorporateAuthor_xml – name: School of Data Sciences and Information Engineering, Guizhou Minzu University, Guiyang 550025, China
DBID AAYXX
CITATION
DOA
DOI 10.3934/math.2021227
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2473-6988
EndPage 3837
ExternalDocumentID oai_doaj_org_article_0daa6dd4f8ac41a98e3cbd266740fbc2
10_3934_math_2021227
GroupedDBID AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
CITATION
EBS
FRJ
GROUPED_DOAJ
IAO
ITC
M~E
OK1
RAN
ID FETCH-LOGICAL-c378t-85698c957abd21f5c8b0ced21a91e36b8ebd2afcd83601a5c62277c455681fe93
IEDL.DBID DOA
ISSN 2473-6988
IngestDate Wed Aug 27 01:25:55 EDT 2025
Thu Apr 24 23:02:38 EDT 2025
Tue Jul 01 03:56:47 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c378t-85698c957abd21f5c8b0ced21a91e36b8ebd2afcd83601a5c62277c455681fe93
OpenAccessLink https://doaj.org/article/0daa6dd4f8ac41a98e3cbd266740fbc2
PageCount 17
ParticipantIDs doaj_primary_oai_doaj_org_article_0daa6dd4f8ac41a98e3cbd266740fbc2
crossref_citationtrail_10_3934_math_2021227
crossref_primary_10_3934_math_2021227
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationTitle AIMS mathematics
PublicationYear 2021
Publisher AIMS Press
Publisher_xml – name: AIMS Press
References key-10.3934/math.2021227-30
key-10.3934/math.2021227-4
key-10.3934/math.2021227-5
key-10.3934/math.2021227-19
key-10.3934/math.2021227-2
key-10.3934/math.2021227-18
key-10.3934/math.2021227-3
key-10.3934/math.2021227-17
key-10.3934/math.2021227-8
key-10.3934/math.2021227-9
key-10.3934/math.2021227-6
key-10.3934/math.2021227-7
key-10.3934/math.2021227-12
key-10.3934/math.2021227-34
key-10.3934/math.2021227-11
key-10.3934/math.2021227-33
key-10.3934/math.2021227-10
key-10.3934/math.2021227-32
key-10.3934/math.2021227-31
key-10.3934/math.2021227-16
key-10.3934/math.2021227-15
key-10.3934/math.2021227-14
key-10.3934/math.2021227-13
key-10.3934/math.2021227-1
key-10.3934/math.2021227-29
key-10.3934/math.2021227-28
key-10.3934/math.2021227-23
key-10.3934/math.2021227-22
key-10.3934/math.2021227-21
key-10.3934/math.2021227-20
key-10.3934/math.2021227-27
key-10.3934/math.2021227-26
key-10.3934/math.2021227-25
key-10.3934/math.2021227-24
References_xml – ident: key-10.3934/math.2021227-24
– ident: key-10.3934/math.2021227-11
  doi: 10.1007/s10231-012-0286-6
– ident: key-10.3934/math.2021227-1
  doi: 10.7153/dea-02-25
– ident: key-10.3934/math.2021227-6
  doi: 10.1007/s11587-007-0018-1
– ident: key-10.3934/math.2021227-32
  doi: 10.1016/j.aml.2016.07.029
– ident: key-10.3934/math.2021227-18
  doi: 10.1016/S0304-0208(08)70870-3
– ident: key-10.3934/math.2021227-3
  doi: 10.1016/0022-1236(73)90051-7
– ident: key-10.3934/math.2021227-26
  doi: 10.1016/0022-0396(91)90014-Z
– ident: key-10.3934/math.2021227-27
  doi: 10.1016/j.nonrwa.2010.09.023
– ident: key-10.3934/math.2021227-13
– ident: key-10.3934/math.2021227-29
  doi: 10.1007/s40840-018-0623-z
– ident: key-10.3934/math.2021227-21
  doi: 10.1007/s00033-014-0431-8
– ident: key-10.3934/math.2021227-22
  doi: 10.1016/j.jmaa.2015.01.044
– ident: key-10.3934/math.2021227-12
  doi: 10.1515/ans-2014-0214
– ident: key-10.3934/math.2021227-10
  doi: 10.1016/j.jde.2011.08.035
– ident: key-10.3934/math.2021227-2
  doi: 10.1016/j.camwa.2005.01.008
– ident: key-10.3934/math.2021227-28
  doi: 10.3934/cpaa.2013.12.2773
– ident: key-10.3934/math.2021227-16
  doi: 10.3934/cpaa.2018124
– ident: key-10.3934/math.2021227-34
  doi: 10.1016/j.amc.2015.11.024
– ident: key-10.3934/math.2021227-31
  doi: 10.1186/s13662-016-0828-0
– ident: key-10.3934/math.2021227-5
– ident: key-10.3934/math.2021227-7
  doi: 10.1016/0022-247X(74)90025-0
– ident: key-10.3934/math.2021227-15
  doi: 10.1016/j.jde.2014.04.011
– ident: key-10.3934/math.2021227-33
  doi: 10.1007/s00033-017-0803-y
– ident: key-10.3934/math.2021227-9
  doi: 10.1016/j.jmaa.2012.12.053
– ident: key-10.3934/math.2021227-19
  doi: 10.1016/S0294-1449(16)30428-0
– ident: key-10.3934/math.2021227-17
– ident: key-10.3934/math.2021227-8
  doi: 10.1002/mma.4620
– ident: key-10.3934/math.2021227-25
  doi: 10.1016/j.jde.2012.05.023
– ident: key-10.3934/math.2021227-4
  doi: 10.1002/cpa.3160360405
– ident: key-10.3934/math.2021227-30
  doi: 10.1016/j.jmaa.2019.06.020
– ident: key-10.3934/math.2021227-14
  doi: 10.4064/ap114-3-5
– ident: key-10.3934/math.2021227-20
– ident: key-10.3934/math.2021227-23
  doi: 10.1016/j.jde.2014.05.002
SSID ssj0002124274
Score 2.1683092
Snippet In this paper, we consider a Neumann problem of Kirchhoff type equation \begin{equation*} \begin{cases} \displaystyle-\left(a+b\int_{\Omega}|\nabla...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 3821
SubjectTerms critical growth
kirchhoff type equation
neumann problem
nontrivial solution
variation methods
Title Multiple solutions of Kirchhoff type equations involving Neumann conditions and critical growth
URI https://doaj.org/article/0daa6dd4f8ac41a98e3cbd266740fbc2
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQEwyIpygveYAJRU1qO7FHQFQVqJ2o1C2yzzathFKg4f9zjkOUBbGwRc4pcj6f7pXLd4RcpxilMq-zBH2vS7hLWSK990nmQzCCGu2aqSXTWT6Z86eFWPRGfYWesEgPHIEbplbr3FrupQaeaSUdA2PRrRQ89QYa64s-r5dMBRuMBpljvhU73ZlifIjxX_j2gDfCAJmeD-pR9Tc-ZbxP9tpgkN7FTRyQLVcdkt1px6S6OSLltO34o52S0LWnzyvUz-XaexpqqNR9RMbuDV1VaG9CkYDOXKjPVxQTXhv7sqiuLIV2tgF9xQS8Xh6T-fjx5WGStEMREmCFrBMpciVBiUIjCpkXIE0KDi-1yhzLjXS4rj3Y8HdGpgXk-MIF8IZpzDvFTsh2ta7cKaEpB-6VAems4ikgwLkZqcIIGDnEVwzI7Q9MJbSM4WFwxVuJmUMAtQygli2oA3LTSb9Hpoxf5O4D4p1M4LduFvDUy_bUy79O_ew_HnJOdsKeYkHlgmzXn1_uEkOM2lw12vQNiMrThw
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiple+solutions+of+Kirchhoff+type+equations+involving+Neumann+conditions+and+critical+growth&rft.jtitle=AIMS+mathematics&rft.au=Jun+Lei&rft.au=Hongmin+Suo&rft.date=2021-01-01&rft.pub=AIMS+Press&rft.eissn=2473-6988&rft.volume=6&rft.issue=4&rft.spage=3821&rft.epage=3837&rft_id=info:doi/10.3934%2Fmath.2021227&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_0daa6dd4f8ac41a98e3cbd266740fbc2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon