Multiple solutions of Kirchhoff type equations involving Neumann conditions and critical growth
In this paper, we consider a Neumann problem of Kirchhoff type equation \begin{equation*} \begin{cases} \displaystyle-\left(a+b\int_{\Omega}|\nabla u|^2dx\right)\Delta u+u= Q(x)|u|^4u+\lambda P(x)|u|^{q-2}u, &\rm \mathrm{in}\ \ \Omega, \\ \displaystyle\frac{\partial u}{\partial v}=0, &\rm \m...
Saved in:
Published in | AIMS mathematics Vol. 6; no. 4; pp. 3821 - 3837 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
AIMS Press
01.01.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 2473-6988 2473-6988 |
DOI | 10.3934/math.2021227 |
Cover
Loading…
Abstract | In this paper, we consider a Neumann problem of Kirchhoff type equation \begin{equation*} \begin{cases} \displaystyle-\left(a+b\int_{\Omega}|\nabla u|^2dx\right)\Delta u+u= Q(x)|u|^4u+\lambda P(x)|u|^{q-2}u, &\rm \mathrm{in}\ \ \Omega, \\ \displaystyle\frac{\partial u}{\partial v}=0, &\rm \mathrm{on}\ \ \partial\Omega, \end{cases} \end{equation*} where $\Omega$ $\subset$ $\mathbb{R}^3$ is a bounded domain with a smooth boundary, $a,b>0$, $1<q<2$, $\lambda>0$ is a real parameter, $Q(x)$ and $P(x)$ satisfy some suitable assumptions. By using the variational method and the concentration compactness principle, we obtain the existence and multiplicity of nontrivial solutions. |
---|---|
AbstractList | In this paper, we consider a Neumann problem of Kirchhoff type equation \begin{equation*} \begin{cases} \displaystyle-\left(a+b\int_{\Omega}|\nabla u|^2dx\right)\Delta u+u= Q(x)|u|^4u+\lambda P(x)|u|^{q-2}u, &\rm \mathrm{in}\ \ \Omega, \\ \displaystyle\frac{\partial u}{\partial v}=0, &\rm \mathrm{on}\ \ \partial\Omega, \end{cases} \end{equation*} where $\Omega$ $\subset$ $\mathbb{R}^3$ is a bounded domain with a smooth boundary, $a,b>0$, $1<q<2$, $\lambda>0$ is a real parameter, $Q(x)$ and $P(x)$ satisfy some suitable assumptions. By using the variational method and the concentration compactness principle, we obtain the existence and multiplicity of nontrivial solutions. |
Author | Lei, Jun Suo, Hongmin |
Author_xml | – sequence: 1 givenname: Jun surname: Lei fullname: Lei, Jun – sequence: 2 givenname: Hongmin surname: Suo fullname: Suo, Hongmin |
BookMark | eNptUMtOwzAQtFCRKKU3PsAfQIrjvJwjqnhUFLjA2do4duPKtYuTFPXvcZsiIcRpd2d3Z2fnEo2ssxKh65jMkjJJbzfQNTNKaExpcYbGNC2SKC8ZG_3KL9C0bdeEHKZSWqRjxF960-mtkbh1pu-0sy12Cj9rL5rGKYW7_VZi-dnD0NN258xO2xV-lf0GrMXC2VoPTbA1Fj4UAgxeeffVNVfoXIFp5fQUJ-jj4f59_hQt3x4X87tlJJKCdRHLgjxRZgVUNY1VJlhFhAwplLFM8orJgIMSNUtyEkMm8vBlIdIsy1msZJlM0GLgrR2s-dbrDfg9d6D5EXB-xcEHYUZyUgPkdZ0qBiINB5hMRGDP8yIlqhI0cNGBS3jXtl4qLnR3_L_zoA2PCT84zg-O85PjYenmz9KPiH_HvwHj0Ie7 |
CitedBy_id | crossref_primary_10_14232_ejqtde_2022_1_50 crossref_primary_10_1007_s12346_024_00999_w crossref_primary_10_11948_20230449 crossref_primary_10_1002_mma_10419 |
Cites_doi | 10.1007/s10231-012-0286-6 10.7153/dea-02-25 10.1007/s11587-007-0018-1 10.1016/j.aml.2016.07.029 10.1016/S0304-0208(08)70870-3 10.1016/0022-1236(73)90051-7 10.1016/0022-0396(91)90014-Z 10.1016/j.nonrwa.2010.09.023 10.1007/s40840-018-0623-z 10.1007/s00033-014-0431-8 10.1016/j.jmaa.2015.01.044 10.1515/ans-2014-0214 10.1016/j.jde.2011.08.035 10.1016/j.camwa.2005.01.008 10.3934/cpaa.2013.12.2773 10.3934/cpaa.2018124 10.1016/j.amc.2015.11.024 10.1186/s13662-016-0828-0 10.1016/0022-247X(74)90025-0 10.1016/j.jde.2014.04.011 10.1007/s00033-017-0803-y 10.1016/j.jmaa.2012.12.053 10.1016/S0294-1449(16)30428-0 10.1002/mma.4620 10.1016/j.jde.2012.05.023 10.1002/cpa.3160360405 10.1016/j.jmaa.2019.06.020 10.4064/ap114-3-5 10.1016/j.jde.2014.05.002 |
ContentType | Journal Article |
CorporateAuthor | School of Data Sciences and Information Engineering, Guizhou Minzu University, Guiyang 550025, China |
CorporateAuthor_xml | – name: School of Data Sciences and Information Engineering, Guizhou Minzu University, Guiyang 550025, China |
DBID | AAYXX CITATION DOA |
DOI | 10.3934/math.2021227 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2473-6988 |
EndPage | 3837 |
ExternalDocumentID | oai_doaj_org_article_0daa6dd4f8ac41a98e3cbd266740fbc2 10_3934_math_2021227 |
GroupedDBID | AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV CITATION EBS FRJ GROUPED_DOAJ IAO ITC M~E OK1 RAN |
ID | FETCH-LOGICAL-c378t-85698c957abd21f5c8b0ced21a91e36b8ebd2afcd83601a5c62277c455681fe93 |
IEDL.DBID | DOA |
ISSN | 2473-6988 |
IngestDate | Wed Aug 27 01:25:55 EDT 2025 Thu Apr 24 23:02:38 EDT 2025 Tue Jul 01 03:56:47 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c378t-85698c957abd21f5c8b0ced21a91e36b8ebd2afcd83601a5c62277c455681fe93 |
OpenAccessLink | https://doaj.org/article/0daa6dd4f8ac41a98e3cbd266740fbc2 |
PageCount | 17 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_0daa6dd4f8ac41a98e3cbd266740fbc2 crossref_citationtrail_10_3934_math_2021227 crossref_primary_10_3934_math_2021227 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-01 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | AIMS mathematics |
PublicationYear | 2021 |
Publisher | AIMS Press |
Publisher_xml | – name: AIMS Press |
References | key-10.3934/math.2021227-30 key-10.3934/math.2021227-4 key-10.3934/math.2021227-5 key-10.3934/math.2021227-19 key-10.3934/math.2021227-2 key-10.3934/math.2021227-18 key-10.3934/math.2021227-3 key-10.3934/math.2021227-17 key-10.3934/math.2021227-8 key-10.3934/math.2021227-9 key-10.3934/math.2021227-6 key-10.3934/math.2021227-7 key-10.3934/math.2021227-12 key-10.3934/math.2021227-34 key-10.3934/math.2021227-11 key-10.3934/math.2021227-33 key-10.3934/math.2021227-10 key-10.3934/math.2021227-32 key-10.3934/math.2021227-31 key-10.3934/math.2021227-16 key-10.3934/math.2021227-15 key-10.3934/math.2021227-14 key-10.3934/math.2021227-13 key-10.3934/math.2021227-1 key-10.3934/math.2021227-29 key-10.3934/math.2021227-28 key-10.3934/math.2021227-23 key-10.3934/math.2021227-22 key-10.3934/math.2021227-21 key-10.3934/math.2021227-20 key-10.3934/math.2021227-27 key-10.3934/math.2021227-26 key-10.3934/math.2021227-25 key-10.3934/math.2021227-24 |
References_xml | – ident: key-10.3934/math.2021227-24 – ident: key-10.3934/math.2021227-11 doi: 10.1007/s10231-012-0286-6 – ident: key-10.3934/math.2021227-1 doi: 10.7153/dea-02-25 – ident: key-10.3934/math.2021227-6 doi: 10.1007/s11587-007-0018-1 – ident: key-10.3934/math.2021227-32 doi: 10.1016/j.aml.2016.07.029 – ident: key-10.3934/math.2021227-18 doi: 10.1016/S0304-0208(08)70870-3 – ident: key-10.3934/math.2021227-3 doi: 10.1016/0022-1236(73)90051-7 – ident: key-10.3934/math.2021227-26 doi: 10.1016/0022-0396(91)90014-Z – ident: key-10.3934/math.2021227-27 doi: 10.1016/j.nonrwa.2010.09.023 – ident: key-10.3934/math.2021227-13 – ident: key-10.3934/math.2021227-29 doi: 10.1007/s40840-018-0623-z – ident: key-10.3934/math.2021227-21 doi: 10.1007/s00033-014-0431-8 – ident: key-10.3934/math.2021227-22 doi: 10.1016/j.jmaa.2015.01.044 – ident: key-10.3934/math.2021227-12 doi: 10.1515/ans-2014-0214 – ident: key-10.3934/math.2021227-10 doi: 10.1016/j.jde.2011.08.035 – ident: key-10.3934/math.2021227-2 doi: 10.1016/j.camwa.2005.01.008 – ident: key-10.3934/math.2021227-28 doi: 10.3934/cpaa.2013.12.2773 – ident: key-10.3934/math.2021227-16 doi: 10.3934/cpaa.2018124 – ident: key-10.3934/math.2021227-34 doi: 10.1016/j.amc.2015.11.024 – ident: key-10.3934/math.2021227-31 doi: 10.1186/s13662-016-0828-0 – ident: key-10.3934/math.2021227-5 – ident: key-10.3934/math.2021227-7 doi: 10.1016/0022-247X(74)90025-0 – ident: key-10.3934/math.2021227-15 doi: 10.1016/j.jde.2014.04.011 – ident: key-10.3934/math.2021227-33 doi: 10.1007/s00033-017-0803-y – ident: key-10.3934/math.2021227-9 doi: 10.1016/j.jmaa.2012.12.053 – ident: key-10.3934/math.2021227-19 doi: 10.1016/S0294-1449(16)30428-0 – ident: key-10.3934/math.2021227-17 – ident: key-10.3934/math.2021227-8 doi: 10.1002/mma.4620 – ident: key-10.3934/math.2021227-25 doi: 10.1016/j.jde.2012.05.023 – ident: key-10.3934/math.2021227-4 doi: 10.1002/cpa.3160360405 – ident: key-10.3934/math.2021227-30 doi: 10.1016/j.jmaa.2019.06.020 – ident: key-10.3934/math.2021227-14 doi: 10.4064/ap114-3-5 – ident: key-10.3934/math.2021227-20 – ident: key-10.3934/math.2021227-23 doi: 10.1016/j.jde.2014.05.002 |
SSID | ssj0002124274 |
Score | 2.1683092 |
Snippet | In this paper, we consider a Neumann problem of Kirchhoff type equation \begin{equation*} \begin{cases} \displaystyle-\left(a+b\int_{\Omega}|\nabla... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
StartPage | 3821 |
SubjectTerms | critical growth kirchhoff type equation neumann problem nontrivial solution variation methods |
Title | Multiple solutions of Kirchhoff type equations involving Neumann conditions and critical growth |
URI | https://doaj.org/article/0daa6dd4f8ac41a98e3cbd266740fbc2 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQEwyIpygveYAJRU1qO7FHQFQVqJ2o1C2yzzathFKg4f9zjkOUBbGwRc4pcj6f7pXLd4RcpxilMq-zBH2vS7hLWSK990nmQzCCGu2aqSXTWT6Z86eFWPRGfYWesEgPHIEbplbr3FrupQaeaSUdA2PRrRQ89QYa64s-r5dMBRuMBpljvhU73ZlifIjxX_j2gDfCAJmeD-pR9Tc-ZbxP9tpgkN7FTRyQLVcdkt1px6S6OSLltO34o52S0LWnzyvUz-XaexpqqNR9RMbuDV1VaG9CkYDOXKjPVxQTXhv7sqiuLIV2tgF9xQS8Xh6T-fjx5WGStEMREmCFrBMpciVBiUIjCpkXIE0KDi-1yhzLjXS4rj3Y8HdGpgXk-MIF8IZpzDvFTsh2ta7cKaEpB-6VAems4ikgwLkZqcIIGDnEVwzI7Q9MJbSM4WFwxVuJmUMAtQygli2oA3LTSb9Hpoxf5O4D4p1M4LduFvDUy_bUy79O_ew_HnJOdsKeYkHlgmzXn1_uEkOM2lw12vQNiMrThw |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiple+solutions+of+Kirchhoff+type+equations+involving+Neumann+conditions+and+critical+growth&rft.jtitle=AIMS+mathematics&rft.au=Jun+Lei&rft.au=Hongmin+Suo&rft.date=2021-01-01&rft.pub=AIMS+Press&rft.eissn=2473-6988&rft.volume=6&rft.issue=4&rft.spage=3821&rft.epage=3837&rft_id=info:doi/10.3934%2Fmath.2021227&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_0daa6dd4f8ac41a98e3cbd266740fbc2 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon |