On distance signless Laplacian eigenvalues of zero divisor graph of commutative rings

For a simple connected graph $ G $ of order $ n $, the distance signless Laplacian matrix is defined by $ D^{Q}(G) = D(G) + Tr(G) $, where $ D(G) $ and $ Tr(G) $ is the distance matrix and the diagonal matrix of vertex transmission degrees, respectively. The zero divisor graph $ \Gamma(R) $ of a fin...

Full description

Saved in:
Bibliographic Details
Published inAIMS mathematics Vol. 7; no. 7; pp. 12635 - 12649
Main Authors Rather, Bilal A., Aijaz, M., Ali, Fawad, Mlaiki, Nabil, Ullah, Asad
Format Journal Article
LanguageEnglish
Published AIMS Press 01.01.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract For a simple connected graph $ G $ of order $ n $, the distance signless Laplacian matrix is defined by $ D^{Q}(G) = D(G) + Tr(G) $, where $ D(G) $ and $ Tr(G) $ is the distance matrix and the diagonal matrix of vertex transmission degrees, respectively. The zero divisor graph $ \Gamma(R) $ of a finite commutative ring $ R $ is a simple graph, whose vertex set is the set of non-zero zero divisors of $ R $ and two vertices $ v, w \in \Gamma(R) $ are edge connected whenever $ vw = wv = 0 $. In this article, we find the $ D^{Q} $-eigenvalues of zero divisor graph of the ring $ \mathbb{Z}_{n} $ for general value $ n = {p_{1}^{l_{1}}p_{2}^{l_{2}}} $, where $ p_1 < p_2 $ are distinct prime numbers and $ l_{1}, l_{2} \in \mathbb{N} $. Further, we investigate the $ D^{Q} $-eigenvalues of zero divisor graphs of local rings and the rings whose associated zero divisor graphs are Hamiltonian. Also, we obtain the trace norm and the Wiener index of $ \Gamma(\mathbb{Z}_{n}) $ for some special values of $ n $.
AbstractList For a simple connected graph $ G $ of order $ n $, the distance signless Laplacian matrix is defined by $ D^{Q}(G) = D(G) + Tr(G) $, where $ D(G) $ and $ Tr(G) $ is the distance matrix and the diagonal matrix of vertex transmission degrees, respectively. The zero divisor graph $ \Gamma(R) $ of a finite commutative ring $ R $ is a simple graph, whose vertex set is the set of non-zero zero divisors of $ R $ and two vertices $ v, w \in \Gamma(R) $ are edge connected whenever $ vw = wv = 0 $. In this article, we find the $ D^{Q} $-eigenvalues of zero divisor graph of the ring $ \mathbb{Z}_{n} $ for general value $ n = {p_{1}^{l_{1}}p_{2}^{l_{2}}} $, where $ p_1 < p_2 $ are distinct prime numbers and $ l_{1}, l_{2} \in \mathbb{N} $. Further, we investigate the $ D^{Q} $-eigenvalues of zero divisor graphs of local rings and the rings whose associated zero divisor graphs are Hamiltonian. Also, we obtain the trace norm and the Wiener index of $ \Gamma(\mathbb{Z}_{n}) $ for some special values of $ n $.
Author Rather, Bilal A.
Ali, Fawad
Aijaz, M.
Mlaiki, Nabil
Ullah, Asad
Author_xml – sequence: 1
  givenname: Bilal A.
  surname: Rather
  fullname: Rather, Bilal A.
  organization: Department of Mathematical Sciences, College of Science, United Arab Emirate University, Al Ain 15551, Abu Dhabi, UAE
– sequence: 2
  givenname: M.
  surname: Aijaz
  fullname: Aijaz, M.
  organization: Department of Computer Science and Engineering, Discipline of Mathematics, Lovely Professional University, Punjab, India
– sequence: 3
  givenname: Fawad
  surname: Ali
  fullname: Ali, Fawad
  organization: Institute of Numerical Sciences, Kohat University of Science and Technology, Kohat 26000, KPK, Pakistan
– sequence: 4
  givenname: Nabil
  surname: Mlaiki
  fullname: Mlaiki, Nabil
  organization: Department of Mathematics and Sciences, Prince Sultan University, Riyadh, Saudi Arabia
– sequence: 5
  givenname: Asad
  surname: Ullah
  fullname: Ullah, Asad
  organization: Department of Mathematical Sciences, University of Lakki Marwat, Lakki Marwat 28420, Pakistan
BookMark eNptkM1qwkAUhYdioda66wPkAaqdv2SSZZH-CIKbug7XyZ04kszITBTap29SpZTS1b0czvkW3y0ZOe-QkHtG56IQ8rGFbjfnlPOsKK7ImEslZlmR56Nf_w2ZxrinlHLGJVdyTDZrl1Q2duA0JtHWrsEYkxUcGtAWXIK2RneC5ogx8Sb5xOD7_slGH5I6wGE3pNq37bGDzp4wCdbV8Y5cG2giTi93QjYvz--Lt9lq_bpcPK1mWqi8m-Wy0gLyjHHOmdJbxYxUwDQThpmtEKkqdCqMppnioDXl2uQmxVwiYqVRiQlZnrmVh315CLaF8FF6sOV34ENdQuisbrAsKllhv6VbKiTN0qJiPa5gPVeiyWjPejizdPAxBjQ_PEbLwXA5GC4vhvs6_1PXdlDgXRfANv-PvgDJIoM5
CitedBy_id crossref_primary_10_3390_sym14061266
crossref_primary_10_1007_s12215_023_00927_y
crossref_primary_10_3934_math_20241166
crossref_primary_10_1007_s12190_023_01837_z
crossref_primary_10_3390_molecules27186081
crossref_primary_10_3390_sym14081710
crossref_primary_10_1016_j_asej_2023_102469
crossref_primary_10_3934_math_2022845
Cites_doi 10.1080/03081087.2015.1073215
10.11650/tjm/181104
10.1080/03081087.2020.1838425
10.3390/e24020213
10.2478/ausm-2021-0028
10.1080/03081087.2020.1856028
10.1142/S1793830922500707
10.15330/cmp.13.1.48-57
10.26493/2590-9770.1393.2be
10.1142/S1793830918500350
10.3390/math9050482
10.1016/j.dam.2018.01.004
10.26493/1855-3974.93.e75
10.1016/0021-8693(88)90202-5
10.1006/jabr.1998.7840
10.1016/j.laa.2018.01.032
10.1016/j.laa.2013.02.030
10.5614/ejgta.2021.9.2.7
10.1016/j.jalgebra.2007.02.051
10.1016/j.laa.2019.08.015
10.1016/j.amc.2016.08.025
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.3934/math.2022699
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2473-6988
EndPage 12649
ExternalDocumentID oai_doaj_org_article_9d4de5e80b0340659d12cf91acc4ef60
10_3934_math_2022699
GroupedDBID AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
CITATION
EBS
FRJ
GROUPED_DOAJ
IAO
ITC
M~E
OK1
RAN
ID FETCH-LOGICAL-c378t-84dc3a86122217cb71f47a1c13f1fb33579c53fc0672acc02cf8f5e84eeedce73
IEDL.DBID DOA
ISSN 2473-6988
IngestDate Wed Aug 27 01:16:48 EDT 2025
Tue Jul 01 03:56:54 EDT 2025
Thu Apr 24 23:09:01 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c378t-84dc3a86122217cb71f47a1c13f1fb33579c53fc0672acc02cf8f5e84eeedce73
OpenAccessLink https://doaj.org/article/9d4de5e80b0340659d12cf91acc4ef60
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_9d4de5e80b0340659d12cf91acc4ef60
crossref_primary_10_3934_math_2022699
crossref_citationtrail_10_3934_math_2022699
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-01
  day: 01
PublicationDecade 2020
PublicationTitle AIMS mathematics
PublicationYear 2022
Publisher AIMS Press
Publisher_xml – name: AIMS Press
References key-10.3934/math.2022699-7
key-10.3934/math.2022699-6
key-10.3934/math.2022699-5
key-10.3934/math.2022699-4
key-10.3934/math.2022699-9
key-10.3934/math.2022699-8
key-10.3934/math.2022699-20
key-10.3934/math.2022699-21
key-10.3934/math.2022699-22
key-10.3934/math.2022699-23
key-10.3934/math.2022699-24
key-10.3934/math.2022699-25
key-10.3934/math.2022699-15
key-10.3934/math.2022699-16
key-10.3934/math.2022699-17
key-10.3934/math.2022699-18
key-10.3934/math.2022699-19
key-10.3934/math.2022699-10
key-10.3934/math.2022699-3
key-10.3934/math.2022699-11
key-10.3934/math.2022699-2
key-10.3934/math.2022699-12
key-10.3934/math.2022699-1
key-10.3934/math.2022699-13
key-10.3934/math.2022699-14
References_xml – ident: key-10.3934/math.2022699-7
  doi: 10.1080/03081087.2015.1073215
– ident: key-10.3934/math.2022699-8
– ident: key-10.3934/math.2022699-13
  doi: 10.11650/tjm/181104
– ident: key-10.3934/math.2022699-16
  doi: 10.1080/03081087.2020.1838425
– ident: key-10.3934/math.2022699-4
  doi: 10.3390/e24020213
– ident: key-10.3934/math.2022699-22
– ident: key-10.3934/math.2022699-19
  doi: 10.2478/ausm-2021-0028
– ident: key-10.3934/math.2022699-3
  doi: 10.1080/03081087.2020.1856028
– ident: key-10.3934/math.2022699-23
  doi: 10.1142/S1793830922500707
– ident: key-10.3934/math.2022699-17
  doi: 10.15330/cmp.13.1.48-57
– ident: key-10.3934/math.2022699-24
  doi: 10.26493/2590-9770.1393.2be
– ident: key-10.3934/math.2022699-12
  doi: 10.11650/tjm/181104
– ident: key-10.3934/math.2022699-2
  doi: 10.1142/S1793830918500350
– ident: key-10.3934/math.2022699-21
  doi: 10.3390/math9050482
– ident: key-10.3934/math.2022699-11
  doi: 10.1016/j.dam.2018.01.004
– ident: key-10.3934/math.2022699-25
  doi: 10.26493/1855-3974.93.e75
– ident: key-10.3934/math.2022699-9
  doi: 10.1016/0021-8693(88)90202-5
– ident: key-10.3934/math.2022699-20
  doi: 10.2478/ausm-2021-0028
– ident: key-10.3934/math.2022699-5
  doi: 10.1006/jabr.1998.7840
– ident: key-10.3934/math.2022699-14
  doi: 10.1016/j.laa.2018.01.032
– ident: key-10.3934/math.2022699-6
  doi: 10.1016/j.laa.2013.02.030
– ident: key-10.3934/math.2022699-18
  doi: 10.5614/ejgta.2021.9.2.7
– ident: key-10.3934/math.2022699-1
  doi: 10.1016/j.jalgebra.2007.02.051
– ident: key-10.3934/math.2022699-10
  doi: 10.1016/j.laa.2019.08.015
– ident: key-10.3934/math.2022699-15
  doi: 10.1016/j.amc.2016.08.025
SSID ssj0002124274
Score 2.2303116
Snippet For a simple connected graph $ G $ of order $ n $, the distance signless Laplacian matrix is defined by $ D^{Q}(G) = D(G) + Tr(G) $, where $ D(G) $ and $ Tr(G)...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 12635
SubjectTerms commutative rings
distance signless laplacian matrix
trace norm
zero divisor graphs
Title On distance signless Laplacian eigenvalues of zero divisor graph of commutative rings
URI https://doaj.org/article/9d4de5e80b0340659d12cf91acc4ef60
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1Fe8gATshrHThOPgKgqRGGhUrfIz6lKUBOW_nrunFC6IBZW62RZ31n38vk7Qm50gGtktWZgBySTY2eZCZlnKldcGGlUZrCgP3sdT-fyeZEttkZ9YU9YRw_cATdSTjqf-SIxiZD4COh4aoPi2lrpwzhm6-DztpIptMFgkCXkW12nu1BCjiD-w7cHiDYizeuPD9qi6o8-ZXJA9vtgkN53hzgkO746InuzDZNqc0zmbxV1GOOBcig2WyzBNNEXjb1UoFnqkU0TGbt9Q-tA135VU_xi1dQrGsmocdXiL5A2UnxTrOM1J2Q-eXp_nLJ-FAKzIi9aVkhnhS4gHEkhh7Am50HmmlsuAg9GiCxXNhPB4sMqIJMARAVAXkjvsc0zF6dkUNWVPyPUKJ-EoIzXGlx7YnD0RpqEVLqAbH16SO6-wSltzxOO4yqWJeQLCGWJUJY9lENyu5H-6PgxfpF7QJw3MshqHRdA12Wv6_IvXZ__xyYXZBfP1JVRLsmgXX36KwgsWnMd79AXflTO5A
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+distance+signless+Laplacian+eigenvalues+of+zero+divisor+graph+of+commutative+rings&rft.jtitle=AIMS+mathematics&rft.au=Bilal+A.+Rather&rft.au=M.+Aijaz&rft.au=Fawad+Ali&rft.au=Nabil+Mlaiki&rft.date=2022-01-01&rft.pub=AIMS+Press&rft.eissn=2473-6988&rft.volume=7&rft.issue=7&rft.spage=12635&rft.epage=12649&rft_id=info:doi/10.3934%2Fmath.2022699&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_9d4de5e80b0340659d12cf91acc4ef60
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon