On distance signless Laplacian eigenvalues of zero divisor graph of commutative rings
For a simple connected graph $ G $ of order $ n $, the distance signless Laplacian matrix is defined by $ D^{Q}(G) = D(G) + Tr(G) $, where $ D(G) $ and $ Tr(G) $ is the distance matrix and the diagonal matrix of vertex transmission degrees, respectively. The zero divisor graph $ \Gamma(R) $ of a fin...
Saved in:
Published in | AIMS mathematics Vol. 7; no. 7; pp. 12635 - 12649 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
AIMS Press
01.01.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | For a simple connected graph $ G $ of order $ n $, the distance signless Laplacian matrix is defined by $ D^{Q}(G) = D(G) + Tr(G) $, where $ D(G) $ and $ Tr(G) $ is the distance matrix and the diagonal matrix of vertex transmission degrees, respectively. The zero divisor graph $ \Gamma(R) $ of a finite commutative ring $ R $ is a simple graph, whose vertex set is the set of non-zero zero divisors of $ R $ and two vertices $ v, w \in \Gamma(R) $ are edge connected whenever $ vw = wv = 0 $. In this article, we find the $ D^{Q} $-eigenvalues of zero divisor graph of the ring $ \mathbb{Z}_{n} $ for general value $ n = {p_{1}^{l_{1}}p_{2}^{l_{2}}} $, where $ p_1 < p_2 $ are distinct prime numbers and $ l_{1}, l_{2} \in \mathbb{N} $. Further, we investigate the $ D^{Q} $-eigenvalues of zero divisor graphs of local rings and the rings whose associated zero divisor graphs are Hamiltonian. Also, we obtain the trace norm and the Wiener index of $ \Gamma(\mathbb{Z}_{n}) $ for some special values of $ n $. |
---|---|
AbstractList | For a simple connected graph $ G $ of order $ n $, the distance signless Laplacian matrix is defined by $ D^{Q}(G) = D(G) + Tr(G) $, where $ D(G) $ and $ Tr(G) $ is the distance matrix and the diagonal matrix of vertex transmission degrees, respectively. The zero divisor graph $ \Gamma(R) $ of a finite commutative ring $ R $ is a simple graph, whose vertex set is the set of non-zero zero divisors of $ R $ and two vertices $ v, w \in \Gamma(R) $ are edge connected whenever $ vw = wv = 0 $. In this article, we find the $ D^{Q} $-eigenvalues of zero divisor graph of the ring $ \mathbb{Z}_{n} $ for general value $ n = {p_{1}^{l_{1}}p_{2}^{l_{2}}} $, where $ p_1 < p_2 $ are distinct prime numbers and $ l_{1}, l_{2} \in \mathbb{N} $. Further, we investigate the $ D^{Q} $-eigenvalues of zero divisor graphs of local rings and the rings whose associated zero divisor graphs are Hamiltonian. Also, we obtain the trace norm and the Wiener index of $ \Gamma(\mathbb{Z}_{n}) $ for some special values of $ n $. |
Author | Rather, Bilal A. Ali, Fawad Aijaz, M. Mlaiki, Nabil Ullah, Asad |
Author_xml | – sequence: 1 givenname: Bilal A. surname: Rather fullname: Rather, Bilal A. organization: Department of Mathematical Sciences, College of Science, United Arab Emirate University, Al Ain 15551, Abu Dhabi, UAE – sequence: 2 givenname: M. surname: Aijaz fullname: Aijaz, M. organization: Department of Computer Science and Engineering, Discipline of Mathematics, Lovely Professional University, Punjab, India – sequence: 3 givenname: Fawad surname: Ali fullname: Ali, Fawad organization: Institute of Numerical Sciences, Kohat University of Science and Technology, Kohat 26000, KPK, Pakistan – sequence: 4 givenname: Nabil surname: Mlaiki fullname: Mlaiki, Nabil organization: Department of Mathematics and Sciences, Prince Sultan University, Riyadh, Saudi Arabia – sequence: 5 givenname: Asad surname: Ullah fullname: Ullah, Asad organization: Department of Mathematical Sciences, University of Lakki Marwat, Lakki Marwat 28420, Pakistan |
BookMark | eNptkM1qwkAUhYdioda66wPkAaqdv2SSZZH-CIKbug7XyZ04kszITBTap29SpZTS1b0czvkW3y0ZOe-QkHtG56IQ8rGFbjfnlPOsKK7ImEslZlmR56Nf_w2ZxrinlHLGJVdyTDZrl1Q2duA0JtHWrsEYkxUcGtAWXIK2RneC5ogx8Sb5xOD7_slGH5I6wGE3pNq37bGDzp4wCdbV8Y5cG2giTi93QjYvz--Lt9lq_bpcPK1mWqi8m-Wy0gLyjHHOmdJbxYxUwDQThpmtEKkqdCqMppnioDXl2uQmxVwiYqVRiQlZnrmVh315CLaF8FF6sOV34ENdQuisbrAsKllhv6VbKiTN0qJiPa5gPVeiyWjPejizdPAxBjQ_PEbLwXA5GC4vhvs6_1PXdlDgXRfANv-PvgDJIoM5 |
CitedBy_id | crossref_primary_10_3390_sym14061266 crossref_primary_10_1007_s12215_023_00927_y crossref_primary_10_3934_math_20241166 crossref_primary_10_1007_s12190_023_01837_z crossref_primary_10_3390_molecules27186081 crossref_primary_10_3390_sym14081710 crossref_primary_10_1016_j_asej_2023_102469 crossref_primary_10_3934_math_2022845 |
Cites_doi | 10.1080/03081087.2015.1073215 10.11650/tjm/181104 10.1080/03081087.2020.1838425 10.3390/e24020213 10.2478/ausm-2021-0028 10.1080/03081087.2020.1856028 10.1142/S1793830922500707 10.15330/cmp.13.1.48-57 10.26493/2590-9770.1393.2be 10.1142/S1793830918500350 10.3390/math9050482 10.1016/j.dam.2018.01.004 10.26493/1855-3974.93.e75 10.1016/0021-8693(88)90202-5 10.1006/jabr.1998.7840 10.1016/j.laa.2018.01.032 10.1016/j.laa.2013.02.030 10.5614/ejgta.2021.9.2.7 10.1016/j.jalgebra.2007.02.051 10.1016/j.laa.2019.08.015 10.1016/j.amc.2016.08.025 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.3934/math.2022699 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2473-6988 |
EndPage | 12649 |
ExternalDocumentID | oai_doaj_org_article_9d4de5e80b0340659d12cf91acc4ef60 10_3934_math_2022699 |
GroupedDBID | AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV CITATION EBS FRJ GROUPED_DOAJ IAO ITC M~E OK1 RAN |
ID | FETCH-LOGICAL-c378t-84dc3a86122217cb71f47a1c13f1fb33579c53fc0672acc02cf8f5e84eeedce73 |
IEDL.DBID | DOA |
ISSN | 2473-6988 |
IngestDate | Wed Aug 27 01:16:48 EDT 2025 Tue Jul 01 03:56:54 EDT 2025 Thu Apr 24 23:09:01 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c378t-84dc3a86122217cb71f47a1c13f1fb33579c53fc0672acc02cf8f5e84eeedce73 |
OpenAccessLink | https://doaj.org/article/9d4de5e80b0340659d12cf91acc4ef60 |
PageCount | 15 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_9d4de5e80b0340659d12cf91acc4ef60 crossref_primary_10_3934_math_2022699 crossref_citationtrail_10_3934_math_2022699 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-01-01 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | AIMS mathematics |
PublicationYear | 2022 |
Publisher | AIMS Press |
Publisher_xml | – name: AIMS Press |
References | key-10.3934/math.2022699-7 key-10.3934/math.2022699-6 key-10.3934/math.2022699-5 key-10.3934/math.2022699-4 key-10.3934/math.2022699-9 key-10.3934/math.2022699-8 key-10.3934/math.2022699-20 key-10.3934/math.2022699-21 key-10.3934/math.2022699-22 key-10.3934/math.2022699-23 key-10.3934/math.2022699-24 key-10.3934/math.2022699-25 key-10.3934/math.2022699-15 key-10.3934/math.2022699-16 key-10.3934/math.2022699-17 key-10.3934/math.2022699-18 key-10.3934/math.2022699-19 key-10.3934/math.2022699-10 key-10.3934/math.2022699-3 key-10.3934/math.2022699-11 key-10.3934/math.2022699-2 key-10.3934/math.2022699-12 key-10.3934/math.2022699-1 key-10.3934/math.2022699-13 key-10.3934/math.2022699-14 |
References_xml | – ident: key-10.3934/math.2022699-7 doi: 10.1080/03081087.2015.1073215 – ident: key-10.3934/math.2022699-8 – ident: key-10.3934/math.2022699-13 doi: 10.11650/tjm/181104 – ident: key-10.3934/math.2022699-16 doi: 10.1080/03081087.2020.1838425 – ident: key-10.3934/math.2022699-4 doi: 10.3390/e24020213 – ident: key-10.3934/math.2022699-22 – ident: key-10.3934/math.2022699-19 doi: 10.2478/ausm-2021-0028 – ident: key-10.3934/math.2022699-3 doi: 10.1080/03081087.2020.1856028 – ident: key-10.3934/math.2022699-23 doi: 10.1142/S1793830922500707 – ident: key-10.3934/math.2022699-17 doi: 10.15330/cmp.13.1.48-57 – ident: key-10.3934/math.2022699-24 doi: 10.26493/2590-9770.1393.2be – ident: key-10.3934/math.2022699-12 doi: 10.11650/tjm/181104 – ident: key-10.3934/math.2022699-2 doi: 10.1142/S1793830918500350 – ident: key-10.3934/math.2022699-21 doi: 10.3390/math9050482 – ident: key-10.3934/math.2022699-11 doi: 10.1016/j.dam.2018.01.004 – ident: key-10.3934/math.2022699-25 doi: 10.26493/1855-3974.93.e75 – ident: key-10.3934/math.2022699-9 doi: 10.1016/0021-8693(88)90202-5 – ident: key-10.3934/math.2022699-20 doi: 10.2478/ausm-2021-0028 – ident: key-10.3934/math.2022699-5 doi: 10.1006/jabr.1998.7840 – ident: key-10.3934/math.2022699-14 doi: 10.1016/j.laa.2018.01.032 – ident: key-10.3934/math.2022699-6 doi: 10.1016/j.laa.2013.02.030 – ident: key-10.3934/math.2022699-18 doi: 10.5614/ejgta.2021.9.2.7 – ident: key-10.3934/math.2022699-1 doi: 10.1016/j.jalgebra.2007.02.051 – ident: key-10.3934/math.2022699-10 doi: 10.1016/j.laa.2019.08.015 – ident: key-10.3934/math.2022699-15 doi: 10.1016/j.amc.2016.08.025 |
SSID | ssj0002124274 |
Score | 2.2303116 |
Snippet | For a simple connected graph $ G $ of order $ n $, the distance signless Laplacian matrix is defined by $ D^{Q}(G) = D(G) + Tr(G) $, where $ D(G) $ and $ Tr(G)... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
StartPage | 12635 |
SubjectTerms | commutative rings distance signless laplacian matrix trace norm zero divisor graphs |
Title | On distance signless Laplacian eigenvalues of zero divisor graph of commutative rings |
URI | https://doaj.org/article/9d4de5e80b0340659d12cf91acc4ef60 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1Fe8gATshrHThOPgKgqRGGhUrfIz6lKUBOW_nrunFC6IBZW62RZ31n38vk7Qm50gGtktWZgBySTY2eZCZlnKldcGGlUZrCgP3sdT-fyeZEttkZ9YU9YRw_cATdSTjqf-SIxiZD4COh4aoPi2lrpwzhm6-DztpIptMFgkCXkW12nu1BCjiD-w7cHiDYizeuPD9qi6o8-ZXJA9vtgkN53hzgkO746InuzDZNqc0zmbxV1GOOBcig2WyzBNNEXjb1UoFnqkU0TGbt9Q-tA135VU_xi1dQrGsmocdXiL5A2UnxTrOM1J2Q-eXp_nLJ-FAKzIi9aVkhnhS4gHEkhh7Am50HmmlsuAg9GiCxXNhPB4sMqIJMARAVAXkjvsc0zF6dkUNWVPyPUKJ-EoIzXGlx7YnD0RpqEVLqAbH16SO6-wSltzxOO4yqWJeQLCGWJUJY9lENyu5H-6PgxfpF7QJw3MshqHRdA12Wv6_IvXZ__xyYXZBfP1JVRLsmgXX36KwgsWnMd79AXflTO5A |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+distance+signless+Laplacian+eigenvalues+of+zero+divisor+graph+of+commutative+rings&rft.jtitle=AIMS+mathematics&rft.au=Bilal+A.+Rather&rft.au=M.+Aijaz&rft.au=Fawad+Ali&rft.au=Nabil+Mlaiki&rft.date=2022-01-01&rft.pub=AIMS+Press&rft.eissn=2473-6988&rft.volume=7&rft.issue=7&rft.spage=12635&rft.epage=12649&rft_id=info:doi/10.3934%2Fmath.2022699&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_9d4de5e80b0340659d12cf91acc4ef60 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon |