Training Restricted Boltzmann Machines With a D-Wave Quantum Annealer

Restricted Boltzmann Machine (RBM) is an energy-based, undirected graphical model. It is commonly used for unsupervised and supervised machine learning. Typically, RBM is trained using contrastive divergence (CD). However, training with CD is slow and does not estimate the exact gradient of the log-...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in physics Vol. 9
Main Authors Dixit, Vivek, Selvarajan, Raja, Alam, Muhammad A., Humble, Travis S., Kais, Sabre
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media SA 29.06.2021
Frontiers Media S.A
Subjects
Online AccessGet full text
ISSN2296-424X
2296-424X
DOI10.3389/fphy.2021.589626

Cover

Loading…
Abstract Restricted Boltzmann Machine (RBM) is an energy-based, undirected graphical model. It is commonly used for unsupervised and supervised machine learning. Typically, RBM is trained using contrastive divergence (CD). However, training with CD is slow and does not estimate the exact gradient of the log-likelihood cost function. In this work, the model expectation of gradient learning for RBM has been calculated using a quantum annealer (D-Wave 2000Q), where obtaining samples is faster than Markov chain Monte Carlo (MCMC) used in CD. Training and classification results of RBM trained using quantum annealing are compared with the CD-based method. The performance of the two approaches is compared with respect to the classification accuracies, image reconstruction, and log-likelihood results. The classification accuracy results indicate comparable performances of the two methods. Image reconstruction and log-likelihood results show improved performance of the CD-based method. It is shown that the samples obtained from quantum annealer can be used to train an RBM on a 64-bit “bars and stripes” dataset with classification performance similar to an RBM trained with CD. Though training based on CD showed improved learning performance, training using a quantum annealer could be useful as it eliminates computationally expensive MCMC steps of CD.
AbstractList Restricted Boltzmann Machine (RBM) is an energy-based, undirected graphical model. It is commonly used for unsupervised and supervised machine learning. Typically, RBM is trained using contrastive divergence (CD). However, training with CD is slow and does not estimate the exact gradient of the log-likelihood cost function. In this work, the model expectation of gradient learning for RBM has been calculated using a quantum annealer (D-Wave 2000Q), where obtaining samples is faster than Markov chain Monte Carlo (MCMC) used in CD. Training and classification results of RBM trained using quantum annealing are compared with the CD-based method. The performance of the two approaches is compared with respect to the classification accuracies, image reconstruction, and log-likelihood results. The classification accuracy results indicate comparable performances of the two methods. Image reconstruction and log-likelihood results show improved performance of the CD-based method. It is shown that the samples obtained from quantum annealer can be used to train an RBM on a 64-bit “bars and stripes” dataset with classification performance similar to an RBM trained with CD. Though training based on CD showed improved learning performance, training using a quantum annealer could be useful as it eliminates computationally expensive MCMC steps of CD.
Author Dixit, Vivek
Alam, Muhammad A.
Humble, Travis S.
Kais, Sabre
Selvarajan, Raja
Author_xml – sequence: 1
  givenname: Vivek
  surname: Dixit
  fullname: Dixit, Vivek
– sequence: 2
  givenname: Raja
  surname: Selvarajan
  fullname: Selvarajan, Raja
– sequence: 3
  givenname: Muhammad A.
  surname: Alam
  fullname: Alam, Muhammad A.
– sequence: 4
  givenname: Travis S.
  surname: Humble
  fullname: Humble, Travis S.
– sequence: 5
  givenname: Sabre
  surname: Kais
  fullname: Kais, Sabre
BackLink https://www.osti.gov/biblio/1804128$$D View this record in Osti.gov
BookMark eNp1kcFLHTEQxkOxUGu997j0vs9JNrtJjtbaVlBKi8XewnR21hfZl0gSBf3r3ddnQQo9zTB838fM_N6KvZgiC_FewqrrrDuabtcPKwVKrnrrBjW8EvtKuaHVSv_ae9G_EYel3ACAVL2zSu-L08uMIYZ43fzgUnOgymPzMc31cYMxNhdI6xC5NFehrhtsPrVXeM_N9zuM9W7THMfIOHN-J15POBc-fK4H4ufn08uTr-35ty9nJ8fnLXXG1tbQOE1AiAAj6tH12tieySL0PKEDlKYHIqXlMPEwgradcuyso14tE9MdiLNd7pjwxt_msMH84BMG_2eQ8rXHXAPN7B2D7iQbNRnS1sjf2AGOgKCcwcHQkvVhl5VKDb5QqExrSstFVL20oKWyi2jYiSinUjJPftFhDSnW5W-zl-C3APwWgN8C8DsAixH-Mf7d9r-WJz3IioM
CitedBy_id crossref_primary_10_1007_s42484_023_00111_6
crossref_primary_10_1038_s41928_022_00774_2
crossref_primary_10_1038_s42254_023_00603_1
crossref_primary_10_1038_s41598_023_32703_4
crossref_primary_10_3390_e25040694
crossref_primary_10_1049_rsn2_12534
crossref_primary_10_3389_fcomp_2023_1281100
crossref_primary_10_1038_s41598_023_30910_7
crossref_primary_10_1038_s41467_024_46879_4
crossref_primary_10_1103_PhysRevA_106_052605
crossref_primary_10_1088_2058_9565_ac91f0
crossref_primary_10_1063_5_0128283
crossref_primary_10_1007_s11433_021_1793_6
crossref_primary_10_1007_s42484_023_00135_y
crossref_primary_10_1038_s41928_024_01182_4
crossref_primary_10_1002_qute_202300330
Cites_doi 10.1137/S0097539705447323
10.1088/0305-4470/39/36/r01
10.1038/nature24047
10.1103/PhysRevE.58.5355
10.1162/neco_a_00974
10.1609/aaai.v28i1.8924
10.1016/0009-2614(94)00117-0
10.1088/2632-2153/aba220
10.1109/JSAIT.2020.3014192
10.1103/PhysRevLett.113.130503
10.1038/s41598-018-36058-z
10.1109/IJCNN.2016.7727438
10.1038/s41534-018-0060-8
10.1007/s11128-018-1863-4
10.1109/IJCNN.2010.5596837
10.1002/9781118742631
10.1103/RevModPhys.90.015002
10.1017/CBO9780511976667
10.1103/physreva.78.012352
10.1038/nphys2900
10.1021/acs.jpcb.7b10371
10.1103/PhysRevX.8.021050
10.1109/TETCI.2018.2871466
10.1162/089976602760128018
10.1007/s11128-019-2236-3
10.1371/journal.pone.0206653
10.1109/IJCNN.2018.8489746
10.1016/j.patrec.2017.11.022
10.1103/PhysRevA.94.022308
10.1103/RevModPhys.80.1061
10.1002/qute.202000133
ContentType Journal Article
DBID AAYXX
CITATION
OTOTI
DOA
DOI 10.3389/fphy.2021.589626
DatabaseName CrossRef
OSTI.GOV
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2296-424X
ExternalDocumentID oai_doaj_org_article_9e0431e72f7c4871ba30ad0a0297a67c
1804128
10_3389_fphy_2021_589626
GroupedDBID 5VS
9T4
AAFWJ
AAYXX
ACGFS
ACXDI
ADBBV
AFPKN
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
GROUPED_DOAJ
KQ8
M~E
OK1
IAO
IEA
IGS
ISR
ITC
OTOTI
ID FETCH-LOGICAL-c378t-7cdff0caa00da4d954785ec8a05efa90a1750cc2416fe6d048329e989c526fe73
IEDL.DBID DOA
ISSN 2296-424X
IngestDate Wed Aug 27 01:24:00 EDT 2025
Thu May 18 22:39:08 EDT 2023
Tue Jul 01 01:02:54 EDT 2025
Thu Apr 24 23:03:31 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c378t-7cdff0caa00da4d954785ec8a05efa90a1750cc2416fe6d048329e989c526fe73
Notes USDOE
OpenAccessLink https://doaj.org/article/9e0431e72f7c4871ba30ad0a0297a67c
ParticipantIDs doaj_primary_oai_doaj_org_article_9e0431e72f7c4871ba30ad0a0297a67c
osti_scitechconnect_1804128
crossref_citationtrail_10_3389_fphy_2021_589626
crossref_primary_10_3389_fphy_2021_589626
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-06-29
PublicationDateYYYYMMDD 2021-06-29
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-29
  day: 29
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in physics
PublicationYear 2021
Publisher Frontiers Media SA
Frontiers Media S.A
Publisher_xml – name: Frontiers Media SA
– name: Frontiers Media S.A
References Albash (B10) 2018; 90
Kais (B3) 2014
Koshka (B33) 2016
Rieffel (B1) 2014
Cho (B46) 2010
Hinton (B20) 2002; 14
Dixit (B34) 2021
Schulz (B42) 2010; 1
Winci (B25) 2020; 1
Goodrich (B39) 2018; 17
Santoro (B8) 2006; 39
Sleeman (B24) 2020
Tieleman (B45) 2008
Kadowaki (B6) 1998; 58
Upadhya (B43) 2017
Rebentrost (B37) 2014; 113
Dixit (B47) 2020
Farhi (B4) 2000
Das (B14) 2019
Korenkevych (B26) 2016
Mott (B13) 2017; 550
Caldeira (B23) 2019
Das (B9) 2008; 80
Adachi (B21) 2015
Koshka (B32) 2017; 29
Nielsen (B2) 2010
Koshka (B30) 2021; 5
Date (B40) 2019; 18
Krause (B41) 2018; 102
O'Malley (B16) 2018; 13
Benedetti (B22) 2016; 94
Hinton (B44) 2012
Amin (B35) 2018; 8
Ushijima-Mwesigwa (B15) 2017
Rocutto (B27) 2021; 4
Wiebe (B38) 2014
Finnila (B7) 1994; 219
Li (B17) 2018; 4
Koshka (B31) 2018
Xia (B19) 2018; 122
Koshka (B28) 2020; 1
Biamonte (B12) 2008; 78
Jiang (B18) 2018; 8
Lloyd (B36) 2013
Aharonov (B5) 2007; 37
Dumoulin (B29) 2014
Boixo (B11) 2014; 10
References_xml – year: 2015
  ident: B21
  article-title: Application of Quantum Annealing to Training of Deep Neural Networks
  publication-title: arXiv preprint arXiv:1510.06356
– volume: 37
  start-page: 166
  year: 2007
  ident: B5
  article-title: Adiabatic Quantum Computation Is Equivalent to Standard Quantum Computation
  publication-title: SIAM J Comput
  doi: 10.1137/S0097539705447323
– volume: 39
  start-page: R393
  year: 2006
  ident: B8
  article-title: Optimization Using Quantum Mechanics: Quantum Annealing through Adiabatic Evolution
  publication-title: J Phys A: Math Gen
  doi: 10.1088/0305-4470/39/36/r01
– volume: 550
  start-page: 375
  year: 2017
  ident: B13
  article-title: Solving a Higgs Optimization Problem with Quantum Annealing for Machine Learning
  publication-title: Nature
  doi: 10.1038/nature24047
– volume: 58
  start-page: 5355
  year: 1998
  ident: B6
  article-title: Quantum Annealing in the Transverse Ising Model
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.58.5355
– volume: 29
  start-page: 1815
  year: 2017
  ident: B32
  article-title: Determination of the Lowest-Energy States for the Model Distribution of Trained Restricted Boltzmann Machines Using a 1000 Qubit D-Wave 2x Quantum Computer
  publication-title: Neural Comput
  doi: 10.1162/neco_a_00974
– year: 2014
  ident: B29
  article-title: On the Challenges of Physical Implementations of Rbms
  doi: 10.1609/aaai.v28i1.8924
– year: 2014
  ident: B38
  article-title: Quantum Deep Learning
  publication-title: arXiv preprint arXiv:1412.3489
– volume: 219
  start-page: 343
  year: 1994
  ident: B7
  article-title: Quantum Annealing: A New Method for Minimizing Multidimensional Functions
  publication-title: Chem Phys Lett
  doi: 10.1016/0009-2614(94)00117-0
– volume: 1
  start-page: 045028
  year: 2020
  ident: B25
  article-title: A Path towards Quantum Advantage in Training Deep Generative Models with Quantum Annealers
  publication-title: Mach Learn Sci Technol
  doi: 10.1088/2632-2153/aba220
– start-page: 599
  volume-title: A Practical Guide to Training Restricted Boltzmann Machines
  year: 2012
  ident: B44
– start-page: 22
  year: 2017
  ident: B15
  article-title: Graph Partitioning Using Quantum Annealing on the D-Wave System
– volume-title: A Hybrid Quantum Enabled Rbm Advantage: Convolutional Autoencoders for Quantum Image Compression and Generative Learning
  year: 2020
  ident: B24
– year: 2000
  ident: B4
  article-title: Quantum Computation by Adiabatic Evolution
  publication-title: arXiv preprint quant-ph/0001106
– volume: 1
  start-page: 515
  year: 2020
  ident: B28
  article-title: Comparison of D-Wave Quantum Annealing and Classical Simulated Annealing for Local Minima Determination
  publication-title: IEEE J Sel Areas Inf Theor
  doi: 10.1109/JSAIT.2020.3014192
– volume: 113
  start-page: 130503
  year: 2014
  ident: B37
  article-title: Quantum Support Vector Machine for Big Data Classification
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.113.130503
– year: 2020
  ident: B47
  article-title: Training and Classification Using a Restricted Boltzmann Machine on the D-Wave 2000Q
  publication-title: arXiv preprint arXiv:2005.03247
– volume: 1
  start-page: 6
  year: 2010
  ident: B42
  article-title: Investigating Convergence of Restricted Boltzmann Machine Learning
– volume: 8
  start-page: 17667
  year: 2018
  ident: B18
  article-title: Quantum Annealing for Prime Factorization
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-36058-z
– start-page: 1948
  year: 2016
  ident: B33
  article-title: Empirical Investigation of the Low Temperature Energy Function of the Restricted Boltzmann Machine Using a 1000 Qubit D-Wave 2X
  doi: 10.1109/IJCNN.2016.7727438
– volume: 4
  start-page: 14
  year: 2018
  ident: B17
  article-title: Quantum Annealing versus Classical Machine Learning Applied to a Simplified Computational Biology Problem
  publication-title: Npj Quan Inf
  doi: 10.1038/s41534-018-0060-8
– year: 2013
  ident: B36
  article-title: Quantum Algorithms for Supervised and Unsupervised Machine Learning
  publication-title: arXiv preprint arXiv:1307.0411
– volume: 17
  start-page: 1
  year: 2018
  ident: B39
  article-title: Optimizing Adiabatic Quantum Program Compilation Using a Graph-Theoretic Framework
  publication-title: Quan Inf Process
  doi: 10.1007/s11128-018-1863-4
– start-page: 1
  year: 2010
  ident: B46
  article-title: Parallel Tempering Is Efficient for Learning Restricted Boltzmann Machines
  doi: 10.1109/IJCNN.2010.5596837
– volume-title: Quantum Information and Computation for Chemistry
  year: 2014
  ident: B3
  doi: 10.1002/9781118742631
– volume: 90
  start-page: 015002
  year: 2018
  ident: B10
  article-title: Adiabatic Quantum Computation
  publication-title: Rev Mod Phys
  doi: 10.1103/RevModPhys.90.015002
– year: 2021
  ident: B34
  article-title: Training a Quantum Annealing Based Restricted Boltzmann Machine on Cybersecurity Data
– volume-title: Quantum Computation and Quantum Information: 10th Anniversary Edition
  year: 2010
  ident: B2
  doi: 10.1017/CBO9780511976667
– volume: 78
  start-page: 012352
  year: 2008
  ident: B12
  article-title: Realizable Hamiltonians for Universal Adiabatic Quantum Computers
  publication-title: Phys Rev A
  doi: 10.1103/physreva.78.012352
– volume: 10
  start-page: 218
  year: 2014
  ident: B11
  article-title: Evidence for Quantum Annealing with More Than One Hundred Qubits
  publication-title: Nat Phys
  doi: 10.1038/nphys2900
– volume: 122
  start-page: 3384
  year: 2018
  ident: B19
  article-title: Electronic Structure Calculations and the Ising Hamiltonian
  publication-title: J Phys Chem B
  doi: 10.1021/acs.jpcb.7b10371
– volume: 8
  start-page: 021050
  year: 2018
  ident: B35
  article-title: Quantum Boltzmann Machine
  publication-title: Phys Rev X
  doi: 10.1103/PhysRevX.8.021050
– volume-title: Benchmarking Quantum Hardware for Training of Fully Visible Boltzmann Machines
  year: 2016
  ident: B26
– year: 2017
  ident: B43
  article-title: Learning Rbm with a Dc Programming Approach
  publication-title: arXiv preprint arXiv:1709.07149
– volume: 5
  start-page: 119
  year: 2021
  ident: B30
  article-title: Comparison of Use of a 2000 Qubit D-Wave Quantum Annealer and Mcmc for Sampling, Image Reconstruction, and Classification
  publication-title: IEEE Trans Emerg Top Comput Intell
  doi: 10.1109/TETCI.2018.2871466
– volume: 14
  start-page: 1771
  year: 2002
  ident: B20
  article-title: Training Products of Experts by Minimizing Contrastive Divergence
  publication-title: Neural Comput
  doi: 10.1162/089976602760128018
– volume: 18
  start-page: 117
  year: 2019
  ident: B40
  article-title: Efficiently Embedding Qubo Problems on Adiabatic Quantum Computers
  publication-title: Quan Inf Process
  doi: 10.1007/s11128-019-2236-3
– volume: 13
  start-page: 1
  year: 2018
  ident: B16
  article-title: Nonnegative/binary Matrix Factorization with a D-Wave Quantum Annealer
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0206653
– year: 2019
  ident: B23
  article-title: Restricted Boltzmann Machines for Galaxy Morphology Classification with a Quantum Annealer
  publication-title: arXiv preprint arXiv:1911.06259
– start-page: 1
  year: 2018
  ident: B31
  article-title: 2000 Qubit D-Wave Quantum Computer Replacing Mcmc for Rbm Image Reconstruction and Classification
  doi: 10.1109/IJCNN.2018.8489746
– volume: 102
  start-page: 1
  year: 2018
  ident: B41
  article-title: Population-contrastive-divergence: Does Consistency Help with Rbm Training?
  publication-title: Pattern Recognition Lett
  doi: 10.1016/j.patrec.2017.11.022
– start-page: 1064
  year: 2008
  ident: B45
  article-title: Training Restricted Boltzmann Machines Using Approximations to the Likelihood Gradient
– volume: 94
  start-page: 022308
  year: 2016
  ident: B22
  article-title: Estimation of Effective Temperatures in Quantum Annealers for Sampling Applications: A Case Study with Possible Applications in Deep Learning
  publication-title: Phys Rev A
  doi: 10.1103/PhysRevA.94.022308
– volume: 80
  start-page: 1061
  year: 2008
  ident: B9
  article-title: Colloquium: Quantum Annealing and Analog Quantum Computation
  publication-title: Rev Mod Phys
  doi: 10.1103/RevModPhys.80.1061
– year: 2019
  ident: B14
  article-title: Track Clustering with a Quantum Annealer for Primary Vertex Reconstruction at Hadron Colliders
  publication-title: arXiv preprint arXiv:1903.08879
– volume-title: Quantum Computing: A Gentle Introduction
  year: 2014
  ident: B1
– volume: 4
  start-page: 2000133
  year: 2021
  ident: B27
  article-title: Quantum Semantic Learning by Reverse Annealing of an Adiabatic Quantum Computer
  publication-title: Adv Quan Tech
  doi: 10.1002/qute.202000133
SSID ssj0001259824
Score 2.3871255
Snippet Restricted Boltzmann Machine (RBM) is an energy-based, undirected graphical model. It is commonly used for unsupervised and supervised machine learning....
SourceID doaj
osti
crossref
SourceType Open Website
Open Access Repository
Enrichment Source
Index Database
SubjectTerms bars and stripes
classification
image reconstruction
log-likelihood
machine learning
quantum annealing
Title Training Restricted Boltzmann Machines With a D-Wave Quantum Annealer
URI https://www.osti.gov/biblio/1804128
https://doaj.org/article/9e0431e72f7c4871ba30ad0a0297a67c
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8QwEA0iCF7ET1xXJQcvHuqmbdo0Rz9ZhBWUFb2FaT5Q0K7sdj34651p67InvXgqhJSGN23eTDO8x9iJ86XCoiuNMvAQSQsQ6SBtJJQqsiwAqEAnuqO7fPgob5-z5yWrL-oJa-WBW-AG2pP8i1dJUBaT67iEVIATQKZLkCtLuy9y3lIx1f5dIWE62Z5LYhWmBwFXjeVgEp9lhc5JS2GJhxq5frxM8LNaopebTbbR5YX8vF3PFlvx1TZba_oz7WyHXY87Kwf-4Mlpw2KiyC8mb_XXO1QVHzUtkX7Gn17rFw78KnqCT8_v54jb_J2f42aKRDDdZY831-PLYdQ5IEQ2VUUdKetCEAigEA6k0yS-lXlbgMh8AC0AyV9YiyycB587kodPtNeFtlmCIyrdY6vVpPL7jLuiTIo4thJyLaVzGInUx7EXGpwuZd5jgx88jO3kwcml4s1gmUAIGkLQEIKmRbDHThd3fLTSGL_MvSCIF_NI1LoZwFCbLtTmr1D3WJ8CZDA3IIFbS51AtjYxSSglxcF_PKLP1mnV1AuW6EO2Wk_n_gizjro8bl6wb1cy03g
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Training+Restricted+Boltzmann+Machines+With+a+D-Wave+Quantum+Annealer&rft.jtitle=Frontiers+in+physics&rft.au=Dixit%2C+Vivek&rft.au=Selvarajan%2C+Raja&rft.au=Alam%2C+Muhammad+A.&rft.au=Humble%2C+Travis+S.&rft.date=2021-06-29&rft.pub=Frontiers+Media+SA&rft.issn=2296-424X&rft.eissn=2296-424X&rft.volume=9&rft_id=info:doi/10.3389%2Ffphy.2021.589626&rft.externalDocID=1804128
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-424X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-424X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-424X&client=summon