Training Restricted Boltzmann Machines With a D-Wave Quantum Annealer
Restricted Boltzmann Machine (RBM) is an energy-based, undirected graphical model. It is commonly used for unsupervised and supervised machine learning. Typically, RBM is trained using contrastive divergence (CD). However, training with CD is slow and does not estimate the exact gradient of the log-...
Saved in:
Published in | Frontiers in physics Vol. 9 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Media SA
29.06.2021
Frontiers Media S.A |
Subjects | |
Online Access | Get full text |
ISSN | 2296-424X 2296-424X |
DOI | 10.3389/fphy.2021.589626 |
Cover
Loading…
Abstract | Restricted Boltzmann Machine (RBM) is an energy-based, undirected graphical model. It is commonly used for unsupervised and supervised machine learning. Typically, RBM is trained using contrastive divergence (CD). However, training with CD is slow and does not estimate the exact gradient of the log-likelihood cost function. In this work, the model expectation of gradient learning for RBM has been calculated using a quantum annealer (D-Wave 2000Q), where obtaining samples is faster than Markov chain Monte Carlo (MCMC) used in CD. Training and classification results of RBM trained using quantum annealing are compared with the CD-based method. The performance of the two approaches is compared with respect to the classification accuracies, image reconstruction, and log-likelihood results. The classification accuracy results indicate comparable performances of the two methods. Image reconstruction and log-likelihood results show improved performance of the CD-based method. It is shown that the samples obtained from quantum annealer can be used to train an RBM on a 64-bit “bars and stripes” dataset with classification performance similar to an RBM trained with CD. Though training based on CD showed improved learning performance, training using a quantum annealer could be useful as it eliminates computationally expensive MCMC steps of CD. |
---|---|
AbstractList | Restricted Boltzmann Machine (RBM) is an energy-based, undirected graphical model. It is commonly used for unsupervised and supervised machine learning. Typically, RBM is trained using contrastive divergence (CD). However, training with CD is slow and does not estimate the exact gradient of the log-likelihood cost function. In this work, the model expectation of gradient learning for RBM has been calculated using a quantum annealer (D-Wave 2000Q), where obtaining samples is faster than Markov chain Monte Carlo (MCMC) used in CD. Training and classification results of RBM trained using quantum annealing are compared with the CD-based method. The performance of the two approaches is compared with respect to the classification accuracies, image reconstruction, and log-likelihood results. The classification accuracy results indicate comparable performances of the two methods. Image reconstruction and log-likelihood results show improved performance of the CD-based method. It is shown that the samples obtained from quantum annealer can be used to train an RBM on a 64-bit “bars and stripes” dataset with classification performance similar to an RBM trained with CD. Though training based on CD showed improved learning performance, training using a quantum annealer could be useful as it eliminates computationally expensive MCMC steps of CD. |
Author | Dixit, Vivek Alam, Muhammad A. Humble, Travis S. Kais, Sabre Selvarajan, Raja |
Author_xml | – sequence: 1 givenname: Vivek surname: Dixit fullname: Dixit, Vivek – sequence: 2 givenname: Raja surname: Selvarajan fullname: Selvarajan, Raja – sequence: 3 givenname: Muhammad A. surname: Alam fullname: Alam, Muhammad A. – sequence: 4 givenname: Travis S. surname: Humble fullname: Humble, Travis S. – sequence: 5 givenname: Sabre surname: Kais fullname: Kais, Sabre |
BackLink | https://www.osti.gov/biblio/1804128$$D View this record in Osti.gov |
BookMark | eNp1kcFLHTEQxkOxUGu997j0vs9JNrtJjtbaVlBKi8XewnR21hfZl0gSBf3r3ddnQQo9zTB838fM_N6KvZgiC_FewqrrrDuabtcPKwVKrnrrBjW8EvtKuaHVSv_ae9G_EYel3ACAVL2zSu-L08uMIYZ43fzgUnOgymPzMc31cYMxNhdI6xC5NFehrhtsPrVXeM_N9zuM9W7THMfIOHN-J15POBc-fK4H4ufn08uTr-35ty9nJ8fnLXXG1tbQOE1AiAAj6tH12tieySL0PKEDlKYHIqXlMPEwgradcuyso14tE9MdiLNd7pjwxt_msMH84BMG_2eQ8rXHXAPN7B2D7iQbNRnS1sjf2AGOgKCcwcHQkvVhl5VKDb5QqExrSstFVL20oKWyi2jYiSinUjJPftFhDSnW5W-zl-C3APwWgN8C8DsAixH-Mf7d9r-WJz3IioM |
CitedBy_id | crossref_primary_10_1007_s42484_023_00111_6 crossref_primary_10_1038_s41928_022_00774_2 crossref_primary_10_1038_s42254_023_00603_1 crossref_primary_10_1038_s41598_023_32703_4 crossref_primary_10_3390_e25040694 crossref_primary_10_1049_rsn2_12534 crossref_primary_10_3389_fcomp_2023_1281100 crossref_primary_10_1038_s41598_023_30910_7 crossref_primary_10_1038_s41467_024_46879_4 crossref_primary_10_1103_PhysRevA_106_052605 crossref_primary_10_1088_2058_9565_ac91f0 crossref_primary_10_1063_5_0128283 crossref_primary_10_1007_s11433_021_1793_6 crossref_primary_10_1007_s42484_023_00135_y crossref_primary_10_1038_s41928_024_01182_4 crossref_primary_10_1002_qute_202300330 |
Cites_doi | 10.1137/S0097539705447323 10.1088/0305-4470/39/36/r01 10.1038/nature24047 10.1103/PhysRevE.58.5355 10.1162/neco_a_00974 10.1609/aaai.v28i1.8924 10.1016/0009-2614(94)00117-0 10.1088/2632-2153/aba220 10.1109/JSAIT.2020.3014192 10.1103/PhysRevLett.113.130503 10.1038/s41598-018-36058-z 10.1109/IJCNN.2016.7727438 10.1038/s41534-018-0060-8 10.1007/s11128-018-1863-4 10.1109/IJCNN.2010.5596837 10.1002/9781118742631 10.1103/RevModPhys.90.015002 10.1017/CBO9780511976667 10.1103/physreva.78.012352 10.1038/nphys2900 10.1021/acs.jpcb.7b10371 10.1103/PhysRevX.8.021050 10.1109/TETCI.2018.2871466 10.1162/089976602760128018 10.1007/s11128-019-2236-3 10.1371/journal.pone.0206653 10.1109/IJCNN.2018.8489746 10.1016/j.patrec.2017.11.022 10.1103/PhysRevA.94.022308 10.1103/RevModPhys.80.1061 10.1002/qute.202000133 |
ContentType | Journal Article |
DBID | AAYXX CITATION OTOTI DOA |
DOI | 10.3389/fphy.2021.589626 |
DatabaseName | CrossRef OSTI.GOV DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2296-424X |
ExternalDocumentID | oai_doaj_org_article_9e0431e72f7c4871ba30ad0a0297a67c 1804128 10_3389_fphy_2021_589626 |
GroupedDBID | 5VS 9T4 AAFWJ AAYXX ACGFS ACXDI ADBBV AFPKN ALMA_UNASSIGNED_HOLDINGS BCNDV CITATION GROUPED_DOAJ KQ8 M~E OK1 IAO IEA IGS ISR ITC OTOTI |
ID | FETCH-LOGICAL-c378t-7cdff0caa00da4d954785ec8a05efa90a1750cc2416fe6d048329e989c526fe73 |
IEDL.DBID | DOA |
ISSN | 2296-424X |
IngestDate | Wed Aug 27 01:24:00 EDT 2025 Thu May 18 22:39:08 EDT 2023 Tue Jul 01 01:02:54 EDT 2025 Thu Apr 24 23:03:31 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c378t-7cdff0caa00da4d954785ec8a05efa90a1750cc2416fe6d048329e989c526fe73 |
Notes | USDOE |
OpenAccessLink | https://doaj.org/article/9e0431e72f7c4871ba30ad0a0297a67c |
ParticipantIDs | doaj_primary_oai_doaj_org_article_9e0431e72f7c4871ba30ad0a0297a67c osti_scitechconnect_1804128 crossref_citationtrail_10_3389_fphy_2021_589626 crossref_primary_10_3389_fphy_2021_589626 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-06-29 |
PublicationDateYYYYMMDD | 2021-06-29 |
PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-29 day: 29 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Frontiers in physics |
PublicationYear | 2021 |
Publisher | Frontiers Media SA Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media SA – name: Frontiers Media S.A |
References | Albash (B10) 2018; 90 Kais (B3) 2014 Koshka (B33) 2016 Rieffel (B1) 2014 Cho (B46) 2010 Hinton (B20) 2002; 14 Dixit (B34) 2021 Schulz (B42) 2010; 1 Winci (B25) 2020; 1 Goodrich (B39) 2018; 17 Santoro (B8) 2006; 39 Sleeman (B24) 2020 Tieleman (B45) 2008 Kadowaki (B6) 1998; 58 Upadhya (B43) 2017 Rebentrost (B37) 2014; 113 Dixit (B47) 2020 Farhi (B4) 2000 Das (B14) 2019 Korenkevych (B26) 2016 Mott (B13) 2017; 550 Caldeira (B23) 2019 Das (B9) 2008; 80 Adachi (B21) 2015 Koshka (B32) 2017; 29 Nielsen (B2) 2010 Koshka (B30) 2021; 5 Date (B40) 2019; 18 Krause (B41) 2018; 102 O'Malley (B16) 2018; 13 Benedetti (B22) 2016; 94 Hinton (B44) 2012 Amin (B35) 2018; 8 Ushijima-Mwesigwa (B15) 2017 Rocutto (B27) 2021; 4 Wiebe (B38) 2014 Finnila (B7) 1994; 219 Li (B17) 2018; 4 Koshka (B31) 2018 Xia (B19) 2018; 122 Koshka (B28) 2020; 1 Biamonte (B12) 2008; 78 Jiang (B18) 2018; 8 Lloyd (B36) 2013 Aharonov (B5) 2007; 37 Dumoulin (B29) 2014 Boixo (B11) 2014; 10 |
References_xml | – year: 2015 ident: B21 article-title: Application of Quantum Annealing to Training of Deep Neural Networks publication-title: arXiv preprint arXiv:1510.06356 – volume: 37 start-page: 166 year: 2007 ident: B5 article-title: Adiabatic Quantum Computation Is Equivalent to Standard Quantum Computation publication-title: SIAM J Comput doi: 10.1137/S0097539705447323 – volume: 39 start-page: R393 year: 2006 ident: B8 article-title: Optimization Using Quantum Mechanics: Quantum Annealing through Adiabatic Evolution publication-title: J Phys A: Math Gen doi: 10.1088/0305-4470/39/36/r01 – volume: 550 start-page: 375 year: 2017 ident: B13 article-title: Solving a Higgs Optimization Problem with Quantum Annealing for Machine Learning publication-title: Nature doi: 10.1038/nature24047 – volume: 58 start-page: 5355 year: 1998 ident: B6 article-title: Quantum Annealing in the Transverse Ising Model publication-title: Phys Rev E doi: 10.1103/PhysRevE.58.5355 – volume: 29 start-page: 1815 year: 2017 ident: B32 article-title: Determination of the Lowest-Energy States for the Model Distribution of Trained Restricted Boltzmann Machines Using a 1000 Qubit D-Wave 2x Quantum Computer publication-title: Neural Comput doi: 10.1162/neco_a_00974 – year: 2014 ident: B29 article-title: On the Challenges of Physical Implementations of Rbms doi: 10.1609/aaai.v28i1.8924 – year: 2014 ident: B38 article-title: Quantum Deep Learning publication-title: arXiv preprint arXiv:1412.3489 – volume: 219 start-page: 343 year: 1994 ident: B7 article-title: Quantum Annealing: A New Method for Minimizing Multidimensional Functions publication-title: Chem Phys Lett doi: 10.1016/0009-2614(94)00117-0 – volume: 1 start-page: 045028 year: 2020 ident: B25 article-title: A Path towards Quantum Advantage in Training Deep Generative Models with Quantum Annealers publication-title: Mach Learn Sci Technol doi: 10.1088/2632-2153/aba220 – start-page: 599 volume-title: A Practical Guide to Training Restricted Boltzmann Machines year: 2012 ident: B44 – start-page: 22 year: 2017 ident: B15 article-title: Graph Partitioning Using Quantum Annealing on the D-Wave System – volume-title: A Hybrid Quantum Enabled Rbm Advantage: Convolutional Autoencoders for Quantum Image Compression and Generative Learning year: 2020 ident: B24 – year: 2000 ident: B4 article-title: Quantum Computation by Adiabatic Evolution publication-title: arXiv preprint quant-ph/0001106 – volume: 1 start-page: 515 year: 2020 ident: B28 article-title: Comparison of D-Wave Quantum Annealing and Classical Simulated Annealing for Local Minima Determination publication-title: IEEE J Sel Areas Inf Theor doi: 10.1109/JSAIT.2020.3014192 – volume: 113 start-page: 130503 year: 2014 ident: B37 article-title: Quantum Support Vector Machine for Big Data Classification publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.113.130503 – year: 2020 ident: B47 article-title: Training and Classification Using a Restricted Boltzmann Machine on the D-Wave 2000Q publication-title: arXiv preprint arXiv:2005.03247 – volume: 1 start-page: 6 year: 2010 ident: B42 article-title: Investigating Convergence of Restricted Boltzmann Machine Learning – volume: 8 start-page: 17667 year: 2018 ident: B18 article-title: Quantum Annealing for Prime Factorization publication-title: Sci Rep doi: 10.1038/s41598-018-36058-z – start-page: 1948 year: 2016 ident: B33 article-title: Empirical Investigation of the Low Temperature Energy Function of the Restricted Boltzmann Machine Using a 1000 Qubit D-Wave 2X doi: 10.1109/IJCNN.2016.7727438 – volume: 4 start-page: 14 year: 2018 ident: B17 article-title: Quantum Annealing versus Classical Machine Learning Applied to a Simplified Computational Biology Problem publication-title: Npj Quan Inf doi: 10.1038/s41534-018-0060-8 – year: 2013 ident: B36 article-title: Quantum Algorithms for Supervised and Unsupervised Machine Learning publication-title: arXiv preprint arXiv:1307.0411 – volume: 17 start-page: 1 year: 2018 ident: B39 article-title: Optimizing Adiabatic Quantum Program Compilation Using a Graph-Theoretic Framework publication-title: Quan Inf Process doi: 10.1007/s11128-018-1863-4 – start-page: 1 year: 2010 ident: B46 article-title: Parallel Tempering Is Efficient for Learning Restricted Boltzmann Machines doi: 10.1109/IJCNN.2010.5596837 – volume-title: Quantum Information and Computation for Chemistry year: 2014 ident: B3 doi: 10.1002/9781118742631 – volume: 90 start-page: 015002 year: 2018 ident: B10 article-title: Adiabatic Quantum Computation publication-title: Rev Mod Phys doi: 10.1103/RevModPhys.90.015002 – year: 2021 ident: B34 article-title: Training a Quantum Annealing Based Restricted Boltzmann Machine on Cybersecurity Data – volume-title: Quantum Computation and Quantum Information: 10th Anniversary Edition year: 2010 ident: B2 doi: 10.1017/CBO9780511976667 – volume: 78 start-page: 012352 year: 2008 ident: B12 article-title: Realizable Hamiltonians for Universal Adiabatic Quantum Computers publication-title: Phys Rev A doi: 10.1103/physreva.78.012352 – volume: 10 start-page: 218 year: 2014 ident: B11 article-title: Evidence for Quantum Annealing with More Than One Hundred Qubits publication-title: Nat Phys doi: 10.1038/nphys2900 – volume: 122 start-page: 3384 year: 2018 ident: B19 article-title: Electronic Structure Calculations and the Ising Hamiltonian publication-title: J Phys Chem B doi: 10.1021/acs.jpcb.7b10371 – volume: 8 start-page: 021050 year: 2018 ident: B35 article-title: Quantum Boltzmann Machine publication-title: Phys Rev X doi: 10.1103/PhysRevX.8.021050 – volume-title: Benchmarking Quantum Hardware for Training of Fully Visible Boltzmann Machines year: 2016 ident: B26 – year: 2017 ident: B43 article-title: Learning Rbm with a Dc Programming Approach publication-title: arXiv preprint arXiv:1709.07149 – volume: 5 start-page: 119 year: 2021 ident: B30 article-title: Comparison of Use of a 2000 Qubit D-Wave Quantum Annealer and Mcmc for Sampling, Image Reconstruction, and Classification publication-title: IEEE Trans Emerg Top Comput Intell doi: 10.1109/TETCI.2018.2871466 – volume: 14 start-page: 1771 year: 2002 ident: B20 article-title: Training Products of Experts by Minimizing Contrastive Divergence publication-title: Neural Comput doi: 10.1162/089976602760128018 – volume: 18 start-page: 117 year: 2019 ident: B40 article-title: Efficiently Embedding Qubo Problems on Adiabatic Quantum Computers publication-title: Quan Inf Process doi: 10.1007/s11128-019-2236-3 – volume: 13 start-page: 1 year: 2018 ident: B16 article-title: Nonnegative/binary Matrix Factorization with a D-Wave Quantum Annealer publication-title: PLOS ONE doi: 10.1371/journal.pone.0206653 – year: 2019 ident: B23 article-title: Restricted Boltzmann Machines for Galaxy Morphology Classification with a Quantum Annealer publication-title: arXiv preprint arXiv:1911.06259 – start-page: 1 year: 2018 ident: B31 article-title: 2000 Qubit D-Wave Quantum Computer Replacing Mcmc for Rbm Image Reconstruction and Classification doi: 10.1109/IJCNN.2018.8489746 – volume: 102 start-page: 1 year: 2018 ident: B41 article-title: Population-contrastive-divergence: Does Consistency Help with Rbm Training? publication-title: Pattern Recognition Lett doi: 10.1016/j.patrec.2017.11.022 – start-page: 1064 year: 2008 ident: B45 article-title: Training Restricted Boltzmann Machines Using Approximations to the Likelihood Gradient – volume: 94 start-page: 022308 year: 2016 ident: B22 article-title: Estimation of Effective Temperatures in Quantum Annealers for Sampling Applications: A Case Study with Possible Applications in Deep Learning publication-title: Phys Rev A doi: 10.1103/PhysRevA.94.022308 – volume: 80 start-page: 1061 year: 2008 ident: B9 article-title: Colloquium: Quantum Annealing and Analog Quantum Computation publication-title: Rev Mod Phys doi: 10.1103/RevModPhys.80.1061 – year: 2019 ident: B14 article-title: Track Clustering with a Quantum Annealer for Primary Vertex Reconstruction at Hadron Colliders publication-title: arXiv preprint arXiv:1903.08879 – volume-title: Quantum Computing: A Gentle Introduction year: 2014 ident: B1 – volume: 4 start-page: 2000133 year: 2021 ident: B27 article-title: Quantum Semantic Learning by Reverse Annealing of an Adiabatic Quantum Computer publication-title: Adv Quan Tech doi: 10.1002/qute.202000133 |
SSID | ssj0001259824 |
Score | 2.3871255 |
Snippet | Restricted Boltzmann Machine (RBM) is an energy-based, undirected graphical model. It is commonly used for unsupervised and supervised machine learning.... |
SourceID | doaj osti crossref |
SourceType | Open Website Open Access Repository Enrichment Source Index Database |
SubjectTerms | bars and stripes classification image reconstruction log-likelihood machine learning quantum annealing |
Title | Training Restricted Boltzmann Machines With a D-Wave Quantum Annealer |
URI | https://www.osti.gov/biblio/1804128 https://doaj.org/article/9e0431e72f7c4871ba30ad0a0297a67c |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8QwEA0iCF7ET1xXJQcvHuqmbdo0Rz9ZhBWUFb2FaT5Q0K7sdj34651p67InvXgqhJSGN23eTDO8x9iJ86XCoiuNMvAQSQsQ6SBtJJQqsiwAqEAnuqO7fPgob5-z5yWrL-oJa-WBW-AG2pP8i1dJUBaT67iEVIATQKZLkCtLuy9y3lIx1f5dIWE62Z5LYhWmBwFXjeVgEp9lhc5JS2GJhxq5frxM8LNaopebTbbR5YX8vF3PFlvx1TZba_oz7WyHXY87Kwf-4Mlpw2KiyC8mb_XXO1QVHzUtkX7Gn17rFw78KnqCT8_v54jb_J2f42aKRDDdZY831-PLYdQ5IEQ2VUUdKetCEAigEA6k0yS-lXlbgMh8AC0AyV9YiyycB587kodPtNeFtlmCIyrdY6vVpPL7jLuiTIo4thJyLaVzGInUx7EXGpwuZd5jgx88jO3kwcml4s1gmUAIGkLQEIKmRbDHThd3fLTSGL_MvSCIF_NI1LoZwFCbLtTmr1D3WJ8CZDA3IIFbS51AtjYxSSglxcF_PKLP1mnV1AuW6EO2Wk_n_gizjro8bl6wb1cy03g |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Training+Restricted+Boltzmann+Machines+With+a+D-Wave+Quantum+Annealer&rft.jtitle=Frontiers+in+physics&rft.au=Dixit%2C+Vivek&rft.au=Selvarajan%2C+Raja&rft.au=Alam%2C+Muhammad+A.&rft.au=Humble%2C+Travis+S.&rft.date=2021-06-29&rft.pub=Frontiers+Media+SA&rft.issn=2296-424X&rft.eissn=2296-424X&rft.volume=9&rft_id=info:doi/10.3389%2Ffphy.2021.589626&rft.externalDocID=1804128 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-424X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-424X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-424X&client=summon |