Rice yield prediction through integration of biophysical parameters with SAR and optical remote sensing data using machine learning models

In an era marked by growing global population and climate variability, ensuring food security has become a paramount concern. Rice, being a staple crop for billions of people, requires accurate and timely yield prediction to ensure global food security. This study was undertaken across two rice crop...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 14; no. 1; pp. 21674 - 17
Main Authors Sah, Sonam, Haldar, Dipanwita, Singh, RN, Das, B., Nain, Ajeet Singh
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 17.09.2024
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In an era marked by growing global population and climate variability, ensuring food security has become a paramount concern. Rice, being a staple crop for billions of people, requires accurate and timely yield prediction to ensure global food security. This study was undertaken across two rice crop seasons in the Udham Singh Nagar district of Uttarakhand state to predict rice yield at 45, 60 and 90 days after transplanting (DAT) through machine learning (ML) models, utilizing a combination of optical and Synthetic Aperture Radar (SAR) data in conjunction with crop biophysical parameters. Results revealed that the ML models were able to provide relatively accurate early yield estimates. For summer rice, eXtreme gradient boosting (XGB) was the best-performing model at all three stages (45, 60, and 90 DAT), while for kharif rice, the best-performing models at 45, 60, and 90 DAT were XGB, Neural network (NNET), and Cubist, respectively. The combined ranking of ML models showed that prediction accuracy improved as the prediction date approaches harvest, and the best prediction of yield was observed at 90 DAT for both summer and kharif rice. Overall rankings indicate that for summer rice, the top three models were XGB, NNET, and Support vector regression, while for kharif rice, these were Cubist, NNET, and Random Forest, respectively. The findings of this study offer valuable insights into the potential of the combined use of remote sensing and biophysical parameters using ML models, which enhances food security planning and resource management by enabling more informed decision-making by stakeholders such as farmers, policy planners as well as researchers.
AbstractList In an era marked by growing global population and climate variability, ensuring food security has become a paramount concern. Rice, being a staple crop for billions of people, requires accurate and timely yield prediction to ensure global food security. This study was undertaken across two rice crop seasons in the Udham Singh Nagar district of Uttarakhand state to predict rice yield at 45, 60 and 90 days after transplanting (DAT) through machine learning (ML) models, utilizing a combination of optical and Synthetic Aperture Radar (SAR) data in conjunction with crop biophysical parameters. Results revealed that the ML models were able to provide relatively accurate early yield estimates. For summer rice, eXtreme gradient boosting (XGB) was the best-performing model at all three stages (45, 60, and 90 DAT), while for kharif rice, the best-performing models at 45, 60, and 90 DAT were XGB, Neural network (NNET), and Cubist, respectively. The combined ranking of ML models showed that prediction accuracy improved as the prediction date approaches harvest, and the best prediction of yield was observed at 90 DAT for both summer and kharif rice. Overall rankings indicate that for summer rice, the top three models were XGB, NNET, and Support vector regression, while for kharif rice, these were Cubist, NNET, and Random Forest, respectively. The findings of this study offer valuable insights into the potential of the combined use of remote sensing and biophysical parameters using ML models, which enhances food security planning and resource management by enabling more informed decision-making by stakeholders such as farmers, policy planners as well as researchers.In an era marked by growing global population and climate variability, ensuring food security has become a paramount concern. Rice, being a staple crop for billions of people, requires accurate and timely yield prediction to ensure global food security. This study was undertaken across two rice crop seasons in the Udham Singh Nagar district of Uttarakhand state to predict rice yield at 45, 60 and 90 days after transplanting (DAT) through machine learning (ML) models, utilizing a combination of optical and Synthetic Aperture Radar (SAR) data in conjunction with crop biophysical parameters. Results revealed that the ML models were able to provide relatively accurate early yield estimates. For summer rice, eXtreme gradient boosting (XGB) was the best-performing model at all three stages (45, 60, and 90 DAT), while for kharif rice, the best-performing models at 45, 60, and 90 DAT were XGB, Neural network (NNET), and Cubist, respectively. The combined ranking of ML models showed that prediction accuracy improved as the prediction date approaches harvest, and the best prediction of yield was observed at 90 DAT for both summer and kharif rice. Overall rankings indicate that for summer rice, the top three models were XGB, NNET, and Support vector regression, while for kharif rice, these were Cubist, NNET, and Random Forest, respectively. The findings of this study offer valuable insights into the potential of the combined use of remote sensing and biophysical parameters using ML models, which enhances food security planning and resource management by enabling more informed decision-making by stakeholders such as farmers, policy planners as well as researchers.
Abstract In an era marked by growing global population and climate variability, ensuring food security has become a paramount concern. Rice, being a staple crop for billions of people, requires accurate and timely yield prediction to ensure global food security. This study was undertaken across two rice crop seasons in the Udham Singh Nagar district of Uttarakhand state to predict rice yield at 45, 60 and 90 days after transplanting (DAT) through machine learning (ML) models, utilizing a combination of optical and Synthetic Aperture Radar (SAR) data in conjunction with crop biophysical parameters. Results revealed that the ML models were able to provide relatively accurate early yield estimates. For summer rice, eXtreme gradient boosting (XGB) was the best-performing model at all three stages (45, 60, and 90 DAT), while for kharif rice, the best-performing models at 45, 60, and 90 DAT were XGB, Neural network (NNET), and Cubist, respectively. The combined ranking of ML models showed that prediction accuracy improved as the prediction date approaches harvest, and the best prediction of yield was observed at 90 DAT for both summer and kharif rice. Overall rankings indicate that for summer rice, the top three models were XGB, NNET, and Support vector regression, while for kharif rice, these were Cubist, NNET, and Random Forest, respectively. The findings of this study offer valuable insights into the potential of the combined use of remote sensing and biophysical parameters using ML models, which enhances food security planning and resource management by enabling more informed decision-making by stakeholders such as farmers, policy planners as well as researchers.
In an era marked by growing global population and climate variability, ensuring food security has become a paramount concern. Rice, being a staple crop for billions of people, requires accurate and timely yield prediction to ensure global food security. This study was undertaken across two rice crop seasons in the Udham Singh Nagar district of Uttarakhand state to predict rice yield at 45, 60 and 90 days after transplanting (DAT) through machine learning (ML) models, utilizing a combination of optical and Synthetic Aperture Radar (SAR) data in conjunction with crop biophysical parameters. Results revealed that the ML models were able to provide relatively accurate early yield estimates. For summer rice, eXtreme gradient boosting (XGB) was the best-performing model at all three stages (45, 60, and 90 DAT), while for kharif rice, the best-performing models at 45, 60, and 90 DAT were XGB, Neural network (NNET), and Cubist, respectively. The combined ranking of ML models showed that prediction accuracy improved as the prediction date approaches harvest, and the best prediction of yield was observed at 90 DAT for both summer and kharif rice. Overall rankings indicate that for summer rice, the top three models were XGB, NNET, and Support vector regression, while for kharif rice, these were Cubist, NNET, and Random Forest, respectively. The findings of this study offer valuable insights into the potential of the combined use of remote sensing and biophysical parameters using ML models, which enhances food security planning and resource management by enabling more informed decision-making by stakeholders such as farmers, policy planners as well as researchers.
In an era marked by growing global population and climate variability, ensuring food security has become a paramount concern. Rice, being a staple crop for billions of people, requires accurate and timely yield prediction to ensure global food security. This study was undertaken across two rice crop seasons in the Udham Singh Nagar district of Uttarakhand state to predict rice yield at 45, 60 and 90 days after transplanting (DAT) through machine learning (ML) models, utilizing a combination of optical and Synthetic Aperture Radar (SAR) data in conjunction with crop biophysical parameters. Results revealed that the ML models were able to provide relatively accurate early yield estimates. For summer rice, eXtreme gradient boosting (XGB) was the best-performing model at all three stages (45, 60, and 90 DAT), while for kharif rice, the best-performing models at 45, 60, and 90 DAT were XGB, Neural network (NNET), and Cubist, respectively. The combined ranking of ML models showed that prediction accuracy improved as the prediction date approaches harvest, and the best prediction of yield was observed at 90 DAT for both summer and kharif rice. Overall rankings indicate that for summer rice, the top three models were XGB, NNET, and Support vector regression, while for kharif rice, these were Cubist, NNET, and Random Forest, respectively. The findings of this study offer valuable insights into the potential of the combined use of remote sensing and biophysical parameters using ML models, which enhances food security planning and resource management by enabling more informed decision-making by stakeholders such as farmers, policy planners as well as researchers.
ArticleNumber 21674
Author Das, B.
Sah, Sonam
Haldar, Dipanwita
Singh, RN
Nain, Ajeet Singh
Author_xml – sequence: 1
  givenname: Sonam
  surname: Sah
  fullname: Sah, Sonam
  organization: G. B. Pant University of Agriculture and Technology, ICAR-National Institute of Abiotic Stress Management
– sequence: 2
  givenname: Dipanwita
  surname: Haldar
  fullname: Haldar, Dipanwita
  organization: Indian Institute of Remote Sensing
– sequence: 3
  givenname: RN
  surname: Singh
  fullname: Singh, RN
  organization: ICAR-National Institute of Abiotic Stress Management
– sequence: 4
  givenname: B.
  surname: Das
  fullname: Das, B.
  organization: ICAR-Central Coastal Agricultural Research Institute
– sequence: 5
  givenname: Ajeet Singh
  surname: Nain
  fullname: Nain, Ajeet Singh
  email: nain.ajeet23@gmail.com
  organization: G. B. Pant University of Agriculture and Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39289440$$D View this record in MEDLINE/PubMed
BookMark eNp9kstu1TAQhiNUREvpC7BAltiwCdiOc_EKVRWXSpWQCqytiTNJfJTYwXZA5xX61DU5pbQs8MIezXzz2zOe59mRdRaz7CWjbxktmndBsFI2OeUir3mVdvEkO-FUlDkvOD96YB9nZyHsaFoll4LJZ9lxIXkjhaAn2c210Uj2BqeOLB47o6NxlsTRu3UYibERBw-bz_WkNW4Z98FomMgCHmaM6AP5ZeJIvp5fE7AdcUvc4h5nF5EEtMHYgXQQgaybOYMejUUyIXi7OVyHU3iRPe1hCnh2d55m3z9--HbxOb_68uny4vwq10XdxLxuhW6LVHdZ1dhzyRl2suepB7KWJVSM1xJbSvuKCt2XtGW87UXRI0qd-K44zS4Pup2DnVq8mcHvlQOjNofzgwKfaphQVQw4L3vQpZaCU5Q1lUmpRdBt04JOWu8PWsvazthptNHD9Ej0ccSaUQ3up2JM0Kaqy6Tw5k7Bux8rhqhmEzROE1h0a1AFo5WoaMWKhL7-B9251dvUq43i6bPLKlH8QGnvQvDY37-GUfV7dNRhdFRqodpGR4mU9OphHfcpfwYlAcUBCClkB_R_7_6P7C0PXNPR
Cites_doi 10.1016/j.asoc.2021.107538
10.1038/s41598-021-89779-z
10.1080/10095020.2021.1936656
10.1109/JSTARS.2021.3118707
10.3390/rs11202384
10.1038/ng.3071
10.1038/s41598-023-45682-3
10.3390/agronomy10071046
10.3390/rs9020119
10.3390/rs14163880
10.1038/nature11420
10.3390/su14169974
10.1016/j.image.2020.116061
10.1016/S2095-3119(14)60817-0
10.1016/j.agrformet.2021.108530
10.1016/j.agrformet.2023.109729
10.1080/01431161.2020.1766148
10.1117/1.JRS.17.014505
10.3390/rs11212568
10.1023/A:1010933404324
10.2135/cropsci2011.04.0222
10.5194/isprs-annals-V-3-2022-405-2022
10.1007/s41324-019-00246-4
10.1016/j.compag.2016.04.016
10.1016/j.ecoinf.2022.101933
10.2307/1403797
10.1016/j.jag.2016.05.010
10.1016/j.isprsjprs.2017.05.003
10.1080/01431161.2020.1851063
10.18637/jss.v015.i09
10.1088/1755-1315/165/1/012002
10.1016/j.agrformet.2020.107922
10.12694/scpe.v21i4.1714
10.12688/f1000research.124604.1
10.1016/j.ecoinf.2022.101618
10.1016/j.rse.2014.03.008
10.3390/rs11121441
10.1016/j.ecolind.2020.106935
10.1007/s42161-020-00683-3
10.3390/rs12030508
10.3390/rs11151745
10.2134/agronj2019.04.0260
10.3390/agriculture12091352
10.1080/1343943X.2020.1819165
10.1016/j.envsoft.2019.01.005
10.3390/pr11020349
10.3390/rs14195045
10.1016/j.compag.2020.105709
10.1080/01904167.2017.1346681
10.1007/s12524-022-01499-7
10.1088/1748-9326/ab7df9
10.1016/j.rse.2011.08.010
10.1017/S2040470017000784
10.1007/978-3-642-19542-6_57
10.3390/agriculture11101026
10.1016/j.compag.2022.106852
10.3390/agronomy11071363
10.1016/j.rse.2019.02.027
10.1080/02723646.1981.10642213
10.3390/s21041406
10.1016/j.agrformet.2019.107886
10.1016/j.fcr.2023.109102
10.3390/rs11131569
10.13031/2013.23153
10.1016/j.ecoinf.2023.102136
10.1016/j.ecoinf.2022.101774
10.1080/14498596.2021.1896393
10.1145/2939672.2939785
10.3389/fpls.2019.00621
10.1007/978-3-030-64583-0_11
10.1016/B978-0-12-815739-8.00004-3
10.1080/10496505.2015.985546
10.1214/aos/1176347963
10.1609/aaai.v31i1.11172
10.1080/10106049.2022.2160831
10.1080/10106049.2022.2113452
10.3390/agronomy9090496
10.18637/jss.v033.i01
10.34044/j.anres.2022.56.2.09
10.3390/app9081621
10.1016/bs.agron.2018.11.002
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2024 2024
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2024 2024
DBID C6C
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PIMPY
PQEST
PQQKQ
PQUKI
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-024-72624-4
DatabaseName SpringerOpen
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
Biological Science Collection
AUTh Library subscriptions: ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Science Journals (ProQuest Database)
Biological Science Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

CrossRef

MEDLINE

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: SpringerOpen
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: BENPR
  name: AUTh Library subscriptions: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 17
ExternalDocumentID oai_doaj_org_article_61a225fac5c9420e97093febeacb8bac
10_1038_s41598_024_72624_4
39289440
Genre Journal Article
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ADBBV
ADRAZ
AENEX
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RIG
RNT
RNTTT
RPM
SNYQT
UKHRP
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
AFPKN
CITATION
7XB
8FK
K9.
M48
PQEST
PQUKI
Q9U
7X8
5PM
ID FETCH-LOGICAL-c378t-7b4cb3024567ef2921ed9f22629795a61279eb00f604cf50b12bf43fee9cef2d3
IEDL.DBID RPM
ISSN 2045-2322
IngestDate Tue Oct 22 14:48:06 EDT 2024
Thu Sep 19 05:32:14 EDT 2024
Sat Oct 26 04:05:21 EDT 2024
Thu Oct 10 21:49:46 EDT 2024
Wed Sep 25 14:02:49 EDT 2024
Thu Oct 24 09:58:39 EDT 2024
Fri Oct 11 20:56:18 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Cubist
XGB
Biomass
LAI
Moisture content
Remote sensing
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c378t-7b4cb3024567ef2921ed9f22629795a61279eb00f604cf50b12bf43fee9cef2d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11408675/
PMID 39289440
PQID 3106223256
PQPubID 2041939
PageCount 17
ParticipantIDs doaj_primary_oai_doaj_org_article_61a225fac5c9420e97093febeacb8bac
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11408675
proquest_miscellaneous_3106460613
proquest_journals_3106223256
crossref_primary_10_1038_s41598_024_72624_4
pubmed_primary_39289440
springer_journals_10_1038_s41598_024_72624_4
PublicationCentury 2000
PublicationDate 2024-09-17
PublicationDateYYYYMMDD 2024-09-17
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-17
  day: 17
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Son (CR28) 2020; 41
Gómez, Salvador, Sanz, Casanova (CR79) 2019; 11
Klompenburg, Kassahun, Catal (CR76) 2020; 177
Das (CR35) 2023; 30
Moriasi (CR71) 2007; 50
Shrivastava, Pradhan (CR92) 2021; 103
CR38
Son (CR30) 2022; 69
CR36
Sharma, Bu, Franzen, Denton (CR56) 2016; 124
Liu (CR74) 2022; 14
Bebie, Cavalaris, Kyparissis (CR80) 2022; 14
Singha, Gulzar, Swain, Pradhan (CR21) 2023; 17
Prasetyo, Sukmono, Aziz, Prakosta Santu Aji (CR63) 2018; 165
CR70
Harfenmeister, Spengler, Weltzien (CR51) 2019; 11
Tuvdendorj, Wu, Zeng, Batdelger, Nanzad (CR12) 2019; 11
Filgueiras, Mantovani, Althoff, Fernandes Filho, da Cunha (CR53) 2019; 11
Ramdani, Furqon (CR90) 2022; 11
Karatzoglou, Meyer, Hornik (CR44) 2006; 15
Alabi, Abebe, Chigeza, Fowobaje (CR88) 2022; 27
CR2
Alebele (CR33) 2021; 14
CR4
CR3
Singh, Krishnan, Singh, Banerjee (CR65) 2022; 71
CR6
Sharma, Kumar, Srivastava, Sivasankar (CR15) 2022; 50
Kang (CR26) 2020; 15
Feng (CR81) 2020; 285–286
Yu (CR34) 2023; 342
Ranjan, Parida (CR75) 2021; 42
Nazir (CR78) 2021; 11
CR9
CR49
CR48
Fu (CR86) 2020; 12
CR47
Singh, Krishnan, Singh, Sah, Das (CR82) 2023; 13
Abbas, Afzaal, Farooque, Tang (CR24) 2020; 10
CR45
Kuhn (CR66) 2020; 223
Khaki, Pham, Wang (CR23) 2021; 11
Fix, Hodges (CR46) 1989; 57
Ruan (CR85) 2022; 195
CR43
CR41
CR40
Johnson (CR13) 2016; 52
Purugganan (CR1) 2014; 46
Singh, Krishnan, Bharadwaj, Das (CR64) 2022; 73
Torbick, Chowdhury, Salas, Qi (CR37) 2017; 9
Ali, Awwad, Al-Razgan, Maarouf (CR68) 2023; 11
Breiman (CR42) 2001; 45
Viña, Gitelson, Nguy-Robertson, Peng (CR61) 2011; 115
Medar, Rajpurohit, Ambekar (CR27) 2019; 11
Tesfaye, Awoke, Sida, Osgood (CR22) 2022; 12
Sah, Haldar, Chandra, Nain (CR20) 2023; 76
CR18
Baral, Kumar Tripathy, Bijayasingh, Das, Stephen, Chaba (CR31) 2011
Guo (CR32) 2021; 120
Mueller (CR10) 2012; 490
CR16
Ranjan, Parida (CR19) 2019; 27
CR54
Willmott (CR72) 1981; 2
Bahrami (CR83) 2021; 11
CR52
Hosseini (CR17) 2022; 3
CR93
CR91
Zhou (CR57) 2017; 130
Ji, Pan, Zhu, Wang, Li (CR14) 2021; 21
Gutierrez, Norton, Thorp, Wang (CR60) 2012; 52
Aschonitis (CR73) 2019; 114
Basha, Rajput, Somula, Ram (CR5) 2020; 21
Ju (CR29) 2021; 307
Mathenge, Sonneveld, Broerse (CR8) 2022; 14
Escolà, Badia, Arnó, Martínez-Casasnovas (CR11) 2017; 8
Karimi, Taban (CR39) 2021; 90
CR25
Olson, Chatterjee, Franzen, Day (CR58) 2019; 111
CR69
CR67
Li (CR84) 2023; 302
Schwalbert (CR77) 2020; 284
Shi, Xu, Li, Li (CR89) 2021; 109
Zhou, Kono, Win, Matsui, Tanaka (CR87) 2021; 24
de la Torre, Gao, Macinnis-Ng (CR7) 2021; 24
Zhu, Walker, Ye, Rüdiger (CR50) 2019; 225
Wang, Tao, Shi (CR62) 2014; 13
Sakamoto, Gitelson, Arkebauer (CR94) 2014; 147
Shaver, Kruger, Rudnick (CR55) 2017; 40
Ali, Martelli, Lupia, Barbanti (CR59) 2019; 11
72624_CR67
M Wang (72624_CR62) 2014; 13
MD Purugganan (72624_CR1) 2014; 46
72624_CR25
72624_CR69
M Bebie (72624_CR80) 2022; 14
YA Ali (72624_CR68) 2023; 11
J Li (72624_CR84) 2023; 302
A Nazir (72624_CR78) 2021; 11
N Karimi (72624_CR39) 2021; 90
D Olson (72624_CR58) 2019; 111
AA Tesfaye (72624_CR22) 2022; 12
A Karatzoglou (72624_CR44) 2006; 15
PK Sharma (72624_CR15) 2022; 50
L Breiman (72624_CR42) 2001; 45
AK Ranjan (72624_CR19) 2019; 27
RN Singh (72624_CR64) 2022; 73
B Tuvdendorj (72624_CR12) 2019; 11
72624_CR54
SM Basha (72624_CR5) 2020; 21
72624_CR16
E Fix (72624_CR46) 1989; 57
TM Shaver (72624_CR55) 2017; 40
M Mathenge (72624_CR8) 2022; 14
R Shi (72624_CR89) 2021; 109
72624_CR18
VG Aschonitis (72624_CR73) 2019; 114
K Harfenmeister (72624_CR51) 2019; 11
LK Sharma (72624_CR56) 2016; 124
D Gómez (72624_CR79) 2019; 11
F Abbas (72624_CR24) 2020; 10
72624_CR9
RA Medar (72624_CR27) 2019; 11
72624_CR3
VK Shrivastava (72624_CR92) 2021; 103
72624_CR4
72624_CR93
72624_CR2
72624_CR91
72624_CR52
R Filgueiras (72624_CR53) 2019; 11
A Viña (72624_CR61) 2011; 115
72624_CR6
72624_CR45
DMG de la Torre (72624_CR7) 2021; 24
M Hosseini (72624_CR17) 2022; 3
Y Kang (72624_CR26) 2020; 15
N-T Son (72624_CR30) 2022; 69
72624_CR43
72624_CR49
Y Guo (72624_CR32) 2021; 120
72624_CR47
72624_CR48
G Ruan (72624_CR85) 2022; 195
N-T Son (72624_CR28) 2020; 41
T Sakamoto (72624_CR94) 2014; 147
S Ju (72624_CR29) 2021; 307
S Sah (72624_CR20) 2023; 76
M Kuhn (72624_CR66) 2020; 223
X Zhou (72624_CR87) 2021; 24
S Baral (72624_CR31) 2011
L Zhu (72624_CR50) 2019; 225
C Singha (72624_CR21) 2023; 17
P Feng (72624_CR81) 2020; 285–286
T Klompenburg (72624_CR76) 2020; 177
H Bahrami (72624_CR83) 2021; 11
Y Prasetyo (72624_CR63) 2018; 165
X Zhou (72624_CR57) 2017; 130
72624_CR41
A Escolà (72624_CR11) 2017; 8
72624_CR40
W Yu (72624_CR34) 2023; 342
72624_CR38
CJ Willmott (72624_CR72) 1981; 2
F Ramdani (72624_CR90) 2022; 11
DN Moriasi (72624_CR71) 2007; 50
72624_CR36
R Singh (72624_CR65) 2022; 71
R Singh (72624_CR82) 2023; 13
A Ali (72624_CR59) 2019; 11
TR Alabi (72624_CR88) 2022; 27
DM Johnson (72624_CR13) 2016; 52
S Khaki (72624_CR23) 2021; 11
Y Alebele (72624_CR33) 2021; 14
Z Ji (72624_CR14) 2021; 21
Y Liu (72624_CR74) 2022; 14
AK Ranjan (72624_CR75) 2021; 42
72624_CR70
A Das (72624_CR35) 2023; 30
N Torbick (72624_CR37) 2017; 9
M Gutierrez (72624_CR60) 2012; 52
RA Schwalbert (72624_CR77) 2020; 284
Z Fu (72624_CR86) 2020; 12
ND Mueller (72624_CR10) 2012; 490
References_xml – ident: CR45
– ident: CR70
– volume: 109
  start-page: 107538
  year: 2021
  ident: CR89
  article-title: Prediction and analysis of train arrival delay based on XGBoost and Bayesian optimization
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2021.107538
  contributor:
    fullname: Li
– volume: 11
  start-page: 1
  year: 2021
  end-page: 14
  ident: CR23
  article-title: Simultaneous corn and soybean yield prediction from remote sensing data using deep transfer learning
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-89779-z
  contributor:
    fullname: Wang
– ident: CR49
– ident: CR93
– ident: CR4
– ident: CR16
– volume: 24
  start-page: 580
  year: 2021
  end-page: 603
  ident: CR7
  article-title: Remote sensing-based estimation of rice yields using various models: A critical review
  publication-title: Geo-Spat. Inform. Sci.
  doi: 10.1080/10095020.2021.1936656
  contributor:
    fullname: Macinnis-Ng
– volume: 14
  start-page: 10520
  year: 2021
  end-page: 10534
  ident: CR33
  article-title: Estimation of crop yield from combined optical and SAR imagery using Gaussian kernel regression
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2021.3118707
  contributor:
    fullname: Alebele
– volume: 11
  start-page: 2384
  year: 2019
  ident: CR59
  article-title: Assessing multiple years’ spatial variability of crop yields using satellite vegetation indices
  publication-title: Remote Sens. (Basel)
  doi: 10.3390/rs11202384
  contributor:
    fullname: Barbanti
– volume: 46
  start-page: 931
  year: 2014
  end-page: 932
  ident: CR1
  article-title: An evolutionary genomic tale of two rice species
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3071
  contributor:
    fullname: Purugganan
– ident: CR54
– volume: 13
  start-page: 18814
  year: 2023
  ident: CR82
  article-title: Combining biophysical parameters with thermal and RGB indices using machine learning models for predicting yield in yellow rust affected wheat crop
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-45682-3
  contributor:
    fullname: Das
– volume: 10
  start-page: 1046
  year: 2020
  ident: CR24
  article-title: Crop yield prediction through proximal sensing and machine learning algorithms
  publication-title: Agronomy
  doi: 10.3390/agronomy10071046
  contributor:
    fullname: Tang
– ident: CR25
– volume: 9
  start-page: 119
  year: 2017
  ident: CR37
  article-title: Monitoring rice agriculture across myanmar using time series sentinel-1 assisted by landsat-8 and PALSAR-2
  publication-title: Remote Sens (Basel)
  doi: 10.3390/rs9020119
  contributor:
    fullname: Qi
– volume: 11
  start-page: 11
  year: 2019
  ident: CR27
  article-title: Sugarcane crop yield forecasting model using supervised machine learning
  publication-title: Int. J. Intell. Syst. Appl.
  contributor:
    fullname: Ambekar
– volume: 14
  start-page: 3880
  year: 2022
  ident: CR80
  article-title: Assessing durum wheat yield through sentinel-2 imagery: A machine learning approach
  publication-title: Remote Sens. (Basel)
  doi: 10.3390/rs14163880
  contributor:
    fullname: Kyparissis
– volume: 490
  start-page: 254
  year: 2012
  end-page: 257
  ident: CR10
  article-title: Closing yield gaps through nutrient and water management
  publication-title: Nature
  doi: 10.1038/nature11420
  contributor:
    fullname: Mueller
– volume: 14
  start-page: 9974
  year: 2022
  ident: CR8
  article-title: Application of GIS in agriculture in promoting evidence-informed decision making for improving agriculture sustainability: A systematic review
  publication-title: Sustainability
  doi: 10.3390/su14169974
  contributor:
    fullname: Broerse
– volume: 90
  start-page: 116061
  year: 2021
  ident: CR39
  article-title: A convex variational method for super resolution of SAR image with speckle noise
  publication-title: Signal Process. Image Commun.
  doi: 10.1016/j.image.2020.116061
  contributor:
    fullname: Taban
– volume: 13
  start-page: 1538
  year: 2014
  end-page: 1545
  ident: CR62
  article-title: Corn yield forecasting in northeast china using remotely sensed spectral indices and crop phenology metrics
  publication-title: J. Integr. Agric.
  doi: 10.1016/S2095-3119(14)60817-0
  contributor:
    fullname: Shi
– volume: 307
  start-page: 108530
  year: 2021
  ident: CR29
  article-title: Optimal county-level crop yield prediction using MODIS-based variables and weather data: A comparative study on machine learning models
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2021.108530
  contributor:
    fullname: Ju
– volume: 342
  start-page: 109729
  year: 2023
  ident: CR34
  article-title: Improved prediction of rice yield at field and county levels by synergistic use of SAR, optical and meteorological data
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2023.109729
  contributor:
    fullname: Yu
– ident: CR67
– volume: 27
  start-page: 100782
  year: 2022
  ident: CR88
  article-title: Estimation of soybean grain yield from multispectral high-resolution UAV data with machine learning models in West Africa
  publication-title: Remote Sens. Appl.
  contributor:
    fullname: Fowobaje
– volume: 41
  start-page: 7868
  year: 2020
  end-page: 7888
  ident: CR28
  article-title: Machine learning approaches for rice crop yield predictions using time-series satellite data in Taiwan
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2020.1766148
  contributor:
    fullname: Son
– volume: 17
  start-page: 014505
  year: 2023
  ident: CR21
  article-title: Apple yield prediction mapping using machine learning techniques through the Google Earth Engine cloud in Kashmir Valley, India
  publication-title: J. Appl. Remote Sens.
  doi: 10.1117/1.JRS.17.014505
  contributor:
    fullname: Pradhan
– volume: 11
  start-page: 2568
  year: 2019
  ident: CR12
  article-title: Determination of appropriate remote sensing indices for spring wheat yield estimation in Mongolia
  publication-title: Remote Sens (Basel)
  doi: 10.3390/rs11212568
  contributor:
    fullname: Nanzad
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: CR42
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
  contributor:
    fullname: Breiman
– volume: 52
  start-page: 849
  year: 2012
  end-page: 857
  ident: CR60
  article-title: Association of spectral reflectance indices with plant growth and lint yield in upland cotton
  publication-title: Crop. Sci.
  doi: 10.2135/cropsci2011.04.0222
  contributor:
    fullname: Wang
– volume: 3
  start-page: 405
  year: 2022
  end-page: 410
  ident: CR17
  article-title: Soybean yield forecast using dual-polarimetric C-band synthetic aperture radar
  publication-title: ISPRS Ann. Photogramm. Remote Sens. Spat. Inform. Sci.
  doi: 10.5194/isprs-annals-V-3-2022-405-2022
  contributor:
    fullname: Hosseini
– volume: 27
  start-page: 399
  year: 2019
  end-page: 410
  ident: CR19
  article-title: Paddy acreage mapping and yield prediction using sentinel-based optical and SAR data in Sahibganj district, Jharkhand (India)
  publication-title: Spat. Inform. Res.
  doi: 10.1007/s41324-019-00246-4
  contributor:
    fullname: Parida
– volume: 124
  start-page: 254
  year: 2016
  end-page: 262
  ident: CR56
  article-title: Use of corn height measured with an acoustic sensor improves yield estimation with ground based active optical sensors
  publication-title: Comput. Electron Agric.
  doi: 10.1016/j.compag.2016.04.016
  contributor:
    fullname: Denton
– volume: 73
  start-page: 101933
  year: 2022
  ident: CR64
  article-title: Improving prediction of chickpea wilt severity using machine learning coupled with model combination techniques under field conditions
  publication-title: Ecol. Inform.
  doi: 10.1016/j.ecoinf.2022.101933
  contributor:
    fullname: Das
– ident: CR9
– volume: 57
  start-page: 238
  year: 1989
  end-page: 247
  ident: CR46
  article-title: Discriminatory analysis. Nonparametric discrimination: Consistency properties
  publication-title: Int. Stat. Rev.
  doi: 10.2307/1403797
  contributor:
    fullname: Hodges
– volume: 52
  start-page: 65
  year: 2016
  end-page: 81
  ident: CR13
  article-title: A comprehensive assessment of the correlations between field crop yields and commonly used MODIS products
  publication-title: Int. J. Appl. Earth Observ. Geoinform.
  doi: 10.1016/j.jag.2016.05.010
  contributor:
    fullname: Johnson
– ident: CR36
– volume: 130
  start-page: 246
  year: 2017
  end-page: 255
  ident: CR57
  article-title: Predicting grain yield in rice using multi-temporal vegetation indices from UAV-based multispectral and digital imagery
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2017.05.003
  contributor:
    fullname: Zhou
– volume: 42
  start-page: 2046
  year: 2021
  end-page: 2071
  ident: CR75
  article-title: Predicting paddy yield at spatial scale using optical and synthetic aperture radar (SAR) based satellite data in conjunction with field-based crop cutting experiment (CCE) data
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2020.1851063
  contributor:
    fullname: Parida
– volume: 15
  start-page: 1
  year: 2006
  end-page: 28
  ident: CR44
  article-title: Support vector machines in R
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v015.i09
  contributor:
    fullname: Hornik
– volume: 165
  start-page: 012002
  year: 2018
  ident: CR63
  article-title: Rice productivity prediction model design based on linear regression of spectral value using NDVI and LSWI combination on landsat-8 imagery
  publication-title: IOP Conf. Ser. Earth Environ. Sci.
  doi: 10.1088/1755-1315/165/1/012002
  contributor:
    fullname: Prakosta Santu Aji
– volume: 285–286
  start-page: 107922
  year: 2020
  ident: CR81
  article-title: Dynamic wheat yield forecasts are improved by a hybrid approach using a biophysical model and machine learning technique
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2020.107922
  contributor:
    fullname: Feng
– volume: 21
  start-page: 591
  year: 2020
  end-page: 599
  ident: CR5
  article-title: Principles and practices of making agriculture sustainable: Crop yield prediction using random forest
  publication-title: Scalable Comput. Pract. Exp.
  doi: 10.12694/scpe.v21i4.1714
  contributor:
    fullname: Ram
– volume: 11
  start-page: 1069
  year: 2022
  ident: CR90
  article-title: The simplicity of XGBoost algorithm versus the complexity of random forest, support vector machine, and neural networks algorithms in urban forest classification
  publication-title: F1000Res
  doi: 10.12688/f1000research.124604.1
  contributor:
    fullname: Furqon
– volume: 69
  start-page: 101618
  year: 2022
  ident: CR30
  article-title: Field-scale rice yield prediction from sentinel-2 monthly image composites using machine learning algorithms
  publication-title: Ecol. Inform.
  doi: 10.1016/j.ecoinf.2022.101618
  contributor:
    fullname: Son
– volume: 147
  start-page: 219
  year: 2014
  end-page: 231
  ident: CR94
  article-title: Near real-time prediction of US corn yields based on time-series MODIS data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.03.008
  contributor:
    fullname: Arkebauer
– volume: 11
  start-page: 1441
  year: 2019
  ident: CR53
  article-title: Crop NDVI monitoring based on sentinel 1
  publication-title: Remote Sens. (Basel)
  doi: 10.3390/rs11121441
  contributor:
    fullname: da Cunha
– volume: 120
  start-page: 106935
  year: 2021
  ident: CR32
  article-title: Integrated phenology and climate in rice yields prediction using machine learning methods
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2020.106935
  contributor:
    fullname: Guo
– volume: 103
  start-page: 17
  year: 2021
  end-page: 26
  ident: CR92
  article-title: Rice plant disease classification using color features: A machine learning paradigm
  publication-title: J. Plant Pathol.
  doi: 10.1007/s42161-020-00683-3
  contributor:
    fullname: Pradhan
– ident: CR18
– ident: CR43
– volume: 12
  start-page: 508
  year: 2020
  ident: CR86
  article-title: Wheat growth monitoring and yield estimation based on multi-rotor unmanned aerial vehicle
  publication-title: Remote Sens. (Basel)
  doi: 10.3390/rs12030508
  contributor:
    fullname: Fu
– volume: 11
  start-page: 1745
  year: 2019
  ident: CR79
  article-title: Potato yield prediction using machine learning techniques and sentinel 2 data
  publication-title: Remote Sens (Basel)
  doi: 10.3390/rs11151745
  contributor:
    fullname: Casanova
– ident: CR91
– ident: CR47
– volume: 111
  start-page: 2545
  year: 2019
  end-page: 2557
  ident: CR58
  article-title: Relationship of drone-based vegetation indices with corn and sugarbeet yields
  publication-title: Agron. J.
  doi: 10.2134/agronj2019.04.0260
  contributor:
    fullname: Day
– ident: CR2
– volume: 12
  start-page: 1352
  year: 2022
  ident: CR22
  article-title: Enhancing smallholder wheat yield prediction through sensor fusion and phenology with machine learning and deep learning methods
  publication-title: Agriculture
  doi: 10.3390/agriculture12091352
  contributor:
    fullname: Osgood
– volume: 24
  start-page: 137
  year: 2021
  end-page: 151
  ident: CR87
  article-title: Predicting within-field variability in grain yield and protein content of winter wheat using UAV-based multispectral imagery and machine learning approaches
  publication-title: Plant Prod. Sci.
  doi: 10.1080/1343943X.2020.1819165
  contributor:
    fullname: Tanaka
– volume: 114
  start-page: 98
  year: 2019
  end-page: 111
  ident: CR73
  article-title: A ranking system for comparing models’ performance combining multiple statistical criteria and scenarios: The case of reference evapotranspiration models
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2019.01.005
  contributor:
    fullname: Aschonitis
– ident: CR6
– volume: 11
  start-page: 349
  year: 2023
  ident: CR68
  article-title: Hyperparameter search for machine learning algorithms for optimizing the computational complexity
  publication-title: Processes
  doi: 10.3390/pr11020349
  contributor:
    fullname: Maarouf
– volume: 30
  start-page: 100962
  year: 2023
  ident: CR35
  article-title: Machine learning model ensemble for predicting sugarcane yield through synergy of optical and SAR remote sensing
  publication-title: Remote Sens. Appl.
  contributor:
    fullname: Das
– ident: CR40
– volume: 14
  start-page: 5045
  year: 2022
  ident: CR74
  article-title: Rice yield prediction and model interpretation based on satellite and climatic indicators using a transformer method
  publication-title: Remote Sens. (Basel)
  doi: 10.3390/rs14195045
  contributor:
    fullname: Liu
– volume: 177
  start-page: 105709
  year: 2020
  ident: CR76
  article-title: Crop yield prediction using machine learning: A systematic literature review
  publication-title: Comput. Electron Agric.
  doi: 10.1016/j.compag.2020.105709
  contributor:
    fullname: Catal
– volume: 40
  start-page: 2217
  year: 2017
  end-page: 2223
  ident: CR55
  article-title: Crop canopy sensor orientation for late season nitrogen determination in corn
  publication-title: J. Plant Nutr.
  doi: 10.1080/01904167.2017.1346681
  contributor:
    fullname: Rudnick
– ident: CR69
– volume: 50
  start-page: 895
  year: 2022
  end-page: 907
  ident: CR15
  article-title: Assessing the potentials of multi-temporal sentinel-1 SAR data for paddy yield forecasting using artificial neural network
  publication-title: J. Indian Soc. Remote Sens.
  doi: 10.1007/s12524-022-01499-7
  contributor:
    fullname: Sivasankar
– volume: 15
  start-page: 064005
  year: 2020
  ident: CR26
  article-title: Comparative assessment of environmental variables and machine learning algorithms for maize yield prediction in the US Midwest
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/ab7df9
  contributor:
    fullname: Kang
– ident: CR48
– volume: 115
  start-page: 3468
  year: 2011
  end-page: 3478
  ident: CR61
  article-title: Comparison of different vegetation indices for the remote assessment of green leaf area index of crops
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.08.010
  contributor:
    fullname: Peng
– volume: 8
  start-page: 377
  year: 2017
  end-page: 382
  ident: CR11
  article-title: Using sentinel-2 images to implement precision agriculture techniques in large arable fields: First results of a case study
  publication-title: Adv. Anim. Biosci.
  doi: 10.1017/S2040470017000784
  contributor:
    fullname: Martínez-Casasnovas
– start-page: 315
  year: 2011
  end-page: 317
  ident: CR31
  article-title: Yield prediction using artificial neural networks
  publication-title: Computer Networks and Information Technologies
  doi: 10.1007/978-3-642-19542-6_57
  contributor:
    fullname: Chaba
– volume: 11
  start-page: 1026
  year: 2021
  ident: CR78
  article-title: Estimation and forecasting of rice yield using phenology-based algorithm and linear regression model on sentinel-ii satellite data
  publication-title: Agriculture
  doi: 10.3390/agriculture11101026
  contributor:
    fullname: Nazir
– volume: 195
  start-page: 106852
  year: 2022
  ident: CR85
  article-title: Improving wheat yield prediction integrating proximal sensing and weather data with machine learning
  publication-title: Comput. Electron Agric.
  doi: 10.1016/j.compag.2022.106852
  contributor:
    fullname: Ruan
– volume: 11
  start-page: 1363
  year: 2021
  ident: CR83
  article-title: Deep learning-based estimation of crop biophysical parameters using multi-source and multi-temporal remote sensing observations
  publication-title: Agronomy
  doi: 10.3390/agronomy11071363
  contributor:
    fullname: Bahrami
– ident: CR3
– ident: CR38
– volume: 225
  start-page: 93
  year: 2019
  end-page: 106
  ident: CR50
  article-title: Roughness and vegetation change detection: A pre-processing for soil moisture retrieval from multi-temporal SAR imagery
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.02.027
  contributor:
    fullname: Rüdiger
– ident: CR52
– volume: 2
  start-page: 184
  year: 1981
  end-page: 194
  ident: CR72
  article-title: On the validation of models
  publication-title: Phys. Geogr.
  doi: 10.1080/02723646.1981.10642213
  contributor:
    fullname: Willmott
– volume: 21
  start-page: 1406
  year: 2021
  ident: CR14
  article-title: Prediction of crop yield using phenological information extracted from remote sensing vegetation index
  publication-title: Sensors
  doi: 10.3390/s21041406
  contributor:
    fullname: Li
– volume: 284
  start-page: 107886
  year: 2020
  ident: CR77
  article-title: Satellite-based soybean yield forecast: Integrating machine learning and weather data for improving crop yield prediction in southern Brazil
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2019.107886
  contributor:
    fullname: Schwalbert
– volume: 223
  start-page: 7
  year: 2020
  ident: CR66
  article-title: Package ‘caret’
  publication-title: R. J.
  contributor:
    fullname: Kuhn
– volume: 302
  start-page: 109102
  year: 2023
  ident: CR84
  article-title: Predicting maize yield in Northeast China by a hybrid approach combining biophysical modelling and machine learning
  publication-title: Field Crops Res.
  doi: 10.1016/j.fcr.2023.109102
  contributor:
    fullname: Li
– volume: 11
  start-page: 1569
  year: 2019
  ident: CR51
  article-title: Analyzing temporal and spatial characteristics of crop parameters using sentinel-1 backscatter data
  publication-title: Remote Sens. (Basel)
  doi: 10.3390/rs11131569
  contributor:
    fullname: Weltzien
– volume: 50
  start-page: 885
  year: 2007
  end-page: 900
  ident: CR71
  article-title: Model evaluation guidelines for systematic quantification of accuracy in watershed simulations
  publication-title: Trans. ASABE
  doi: 10.13031/2013.23153
  contributor:
    fullname: Moriasi
– volume: 76
  start-page: 102136
  year: 2023
  ident: CR20
  article-title: Discrimination and monitoring of rice cultural types using dense time series of sentinel-1 SAR data
  publication-title: Ecol. Inform.
  doi: 10.1016/j.ecoinf.2023.102136
  contributor:
    fullname: Nain
– ident: CR41
– volume: 71
  start-page: 101774
  year: 2022
  ident: CR65
  article-title: Application of thermal and visible imaging to estimate stripe rust disease severity in wheat using supervised image classification methods
  publication-title: Ecol. Inform.
  doi: 10.1016/j.ecoinf.2022.101774
  contributor:
    fullname: Banerjee
– volume: 27
  start-page: 100782
  year: 2022
  ident: 72624_CR88
  publication-title: Remote Sens. Appl.
  contributor:
    fullname: TR Alabi
– ident: 72624_CR40
– ident: 72624_CR18
  doi: 10.1080/14498596.2021.1896393
– volume: 52
  start-page: 849
  year: 2012
  ident: 72624_CR60
  publication-title: Crop. Sci.
  doi: 10.2135/cropsci2011.04.0222
  contributor:
    fullname: M Gutierrez
– volume: 103
  start-page: 17
  year: 2021
  ident: 72624_CR92
  publication-title: J. Plant Pathol.
  doi: 10.1007/s42161-020-00683-3
  contributor:
    fullname: VK Shrivastava
– volume: 342
  start-page: 109729
  year: 2023
  ident: 72624_CR34
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2023.109729
  contributor:
    fullname: W Yu
– ident: 72624_CR47
  doi: 10.1145/2939672.2939785
– volume: 40
  start-page: 2217
  year: 2017
  ident: 72624_CR55
  publication-title: J. Plant Nutr.
  doi: 10.1080/01904167.2017.1346681
  contributor:
    fullname: TM Shaver
– volume: 24
  start-page: 580
  year: 2021
  ident: 72624_CR7
  publication-title: Geo-Spat. Inform. Sci.
  doi: 10.1080/10095020.2021.1936656
  contributor:
    fullname: DMG de la Torre
– ident: 72624_CR38
– volume: 11
  start-page: 1069
  year: 2022
  ident: 72624_CR90
  publication-title: F1000Res
  doi: 10.12688/f1000research.124604.1
  contributor:
    fullname: F Ramdani
– volume: 195
  start-page: 106852
  year: 2022
  ident: 72624_CR85
  publication-title: Comput. Electron Agric.
  doi: 10.1016/j.compag.2022.106852
  contributor:
    fullname: G Ruan
– ident: 72624_CR9
  doi: 10.3389/fpls.2019.00621
– volume: 50
  start-page: 885
  year: 2007
  ident: 72624_CR71
  publication-title: Trans. ASABE
  doi: 10.13031/2013.23153
  contributor:
    fullname: DN Moriasi
– volume: 41
  start-page: 7868
  year: 2020
  ident: 72624_CR28
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2020.1766148
  contributor:
    fullname: N-T Son
– volume: 11
  start-page: 2384
  year: 2019
  ident: 72624_CR59
  publication-title: Remote Sens. (Basel)
  doi: 10.3390/rs11202384
  contributor:
    fullname: A Ali
– volume: 15
  start-page: 1
  year: 2006
  ident: 72624_CR44
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v015.i09
  contributor:
    fullname: A Karatzoglou
– start-page: 315
  volume-title: Computer Networks and Information Technologies
  year: 2011
  ident: 72624_CR31
  doi: 10.1007/978-3-642-19542-6_57
  contributor:
    fullname: S Baral
– volume: 11
  start-page: 11
  year: 2019
  ident: 72624_CR27
  publication-title: Int. J. Intell. Syst. Appl.
  contributor:
    fullname: RA Medar
– ident: 72624_CR69
  doi: 10.1007/978-3-030-64583-0_11
– volume: 71
  start-page: 101774
  year: 2022
  ident: 72624_CR65
  publication-title: Ecol. Inform.
  doi: 10.1016/j.ecoinf.2022.101774
  contributor:
    fullname: R Singh
– volume: 52
  start-page: 65
  year: 2016
  ident: 72624_CR13
  publication-title: Int. J. Appl. Earth Observ. Geoinform.
  doi: 10.1016/j.jag.2016.05.010
  contributor:
    fullname: DM Johnson
– volume: 165
  start-page: 012002
  year: 2018
  ident: 72624_CR63
  publication-title: IOP Conf. Ser. Earth Environ. Sci.
  doi: 10.1088/1755-1315/165/1/012002
  contributor:
    fullname: Y Prasetyo
– volume: 17
  start-page: 014505
  year: 2023
  ident: 72624_CR21
  publication-title: J. Appl. Remote Sens.
  doi: 10.1117/1.JRS.17.014505
  contributor:
    fullname: C Singha
– ident: 72624_CR45
  doi: 10.1016/B978-0-12-815739-8.00004-3
– ident: 72624_CR4
– volume: 14
  start-page: 10520
  year: 2021
  ident: 72624_CR33
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2021.3118707
  contributor:
    fullname: Y Alebele
– volume: 111
  start-page: 2545
  year: 2019
  ident: 72624_CR58
  publication-title: Agron. J.
  doi: 10.2134/agronj2019.04.0260
  contributor:
    fullname: D Olson
– volume: 21
  start-page: 591
  year: 2020
  ident: 72624_CR5
  publication-title: Scalable Comput. Pract. Exp.
  doi: 10.12694/scpe.v21i4.1714
  contributor:
    fullname: SM Basha
– volume: 11
  start-page: 2568
  year: 2019
  ident: 72624_CR12
  publication-title: Remote Sens (Basel)
  doi: 10.3390/rs11212568
  contributor:
    fullname: B Tuvdendorj
– ident: 72624_CR3
  doi: 10.1080/10496505.2015.985546
– volume: 490
  start-page: 254
  year: 2012
  ident: 72624_CR10
  publication-title: Nature
  doi: 10.1038/nature11420
  contributor:
    fullname: ND Mueller
– ident: 72624_CR43
  doi: 10.1214/aos/1176347963
– volume: 223
  start-page: 7
  year: 2020
  ident: 72624_CR66
  publication-title: R. J.
  contributor:
    fullname: M Kuhn
– volume: 14
  start-page: 3880
  year: 2022
  ident: 72624_CR80
  publication-title: Remote Sens. (Basel)
  doi: 10.3390/rs14163880
  contributor:
    fullname: M Bebie
– volume: 225
  start-page: 93
  year: 2019
  ident: 72624_CR50
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.02.027
  contributor:
    fullname: L Zhu
– volume: 115
  start-page: 3468
  year: 2011
  ident: 72624_CR61
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.08.010
  contributor:
    fullname: A Viña
– ident: 72624_CR54
– volume: 11
  start-page: 1745
  year: 2019
  ident: 72624_CR79
  publication-title: Remote Sens (Basel)
  doi: 10.3390/rs11151745
  contributor:
    fullname: D Gómez
– volume: 21
  start-page: 1406
  year: 2021
  ident: 72624_CR14
  publication-title: Sensors
  doi: 10.3390/s21041406
  contributor:
    fullname: Z Ji
– volume: 30
  start-page: 100962
  year: 2023
  ident: 72624_CR35
  publication-title: Remote Sens. Appl.
  contributor:
    fullname: A Das
– volume: 11
  start-page: 349
  year: 2023
  ident: 72624_CR68
  publication-title: Processes
  doi: 10.3390/pr11020349
  contributor:
    fullname: YA Ali
– volume: 57
  start-page: 238
  year: 1989
  ident: 72624_CR46
  publication-title: Int. Stat. Rev.
  doi: 10.2307/1403797
  contributor:
    fullname: E Fix
– ident: 72624_CR48
– volume: 177
  start-page: 105709
  year: 2020
  ident: 72624_CR76
  publication-title: Comput. Electron Agric.
  doi: 10.1016/j.compag.2020.105709
  contributor:
    fullname: T Klompenburg
– volume: 11
  start-page: 1441
  year: 2019
  ident: 72624_CR53
  publication-title: Remote Sens. (Basel)
  doi: 10.3390/rs11121441
  contributor:
    fullname: R Filgueiras
– volume: 50
  start-page: 895
  year: 2022
  ident: 72624_CR15
  publication-title: J. Indian Soc. Remote Sens.
  doi: 10.1007/s12524-022-01499-7
  contributor:
    fullname: PK Sharma
– volume: 15
  start-page: 064005
  year: 2020
  ident: 72624_CR26
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/ab7df9
  contributor:
    fullname: Y Kang
– volume: 69
  start-page: 101618
  year: 2022
  ident: 72624_CR30
  publication-title: Ecol. Inform.
  doi: 10.1016/j.ecoinf.2022.101618
  contributor:
    fullname: N-T Son
– ident: 72624_CR36
– volume: 42
  start-page: 2046
  year: 2021
  ident: 72624_CR75
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2020.1851063
  contributor:
    fullname: AK Ranjan
– volume: 124
  start-page: 254
  year: 2016
  ident: 72624_CR56
  publication-title: Comput. Electron Agric.
  doi: 10.1016/j.compag.2016.04.016
  contributor:
    fullname: LK Sharma
– volume: 76
  start-page: 102136
  year: 2023
  ident: 72624_CR20
  publication-title: Ecol. Inform.
  doi: 10.1016/j.ecoinf.2023.102136
  contributor:
    fullname: S Sah
– volume: 11
  start-page: 1
  year: 2021
  ident: 72624_CR23
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-89779-z
  contributor:
    fullname: S Khaki
– volume: 3
  start-page: 405
  year: 2022
  ident: 72624_CR17
  publication-title: ISPRS Ann. Photogramm. Remote Sens. Spat. Inform. Sci.
  doi: 10.5194/isprs-annals-V-3-2022-405-2022
  contributor:
    fullname: M Hosseini
– volume: 302
  start-page: 109102
  year: 2023
  ident: 72624_CR84
  publication-title: Field Crops Res.
  doi: 10.1016/j.fcr.2023.109102
  contributor:
    fullname: J Li
– ident: 72624_CR93
  doi: 10.1609/aaai.v31i1.11172
– volume: 24
  start-page: 137
  year: 2021
  ident: 72624_CR87
  publication-title: Plant Prod. Sci.
  doi: 10.1080/1343943X.2020.1819165
  contributor:
    fullname: X Zhou
– volume: 9
  start-page: 119
  year: 2017
  ident: 72624_CR37
  publication-title: Remote Sens (Basel)
  doi: 10.3390/rs9020119
  contributor:
    fullname: N Torbick
– volume: 45
  start-page: 5
  year: 2001
  ident: 72624_CR42
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
  contributor:
    fullname: L Breiman
– volume: 14
  start-page: 5045
  year: 2022
  ident: 72624_CR74
  publication-title: Remote Sens. (Basel)
  doi: 10.3390/rs14195045
  contributor:
    fullname: Y Liu
– volume: 46
  start-page: 931
  year: 2014
  ident: 72624_CR1
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3071
  contributor:
    fullname: MD Purugganan
– volume: 13
  start-page: 1538
  year: 2014
  ident: 72624_CR62
  publication-title: J. Integr. Agric.
  doi: 10.1016/S2095-3119(14)60817-0
  contributor:
    fullname: M Wang
– volume: 114
  start-page: 98
  year: 2019
  ident: 72624_CR73
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2019.01.005
  contributor:
    fullname: VG Aschonitis
– volume: 285–286
  start-page: 107922
  year: 2020
  ident: 72624_CR81
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2020.107922
  contributor:
    fullname: P Feng
– volume: 8
  start-page: 377
  year: 2017
  ident: 72624_CR11
  publication-title: Adv. Anim. Biosci.
  doi: 10.1017/S2040470017000784
  contributor:
    fullname: A Escolà
– ident: 72624_CR70
  doi: 10.1080/10106049.2022.2160831
– volume: 11
  start-page: 1026
  year: 2021
  ident: 72624_CR78
  publication-title: Agriculture
  doi: 10.3390/agriculture11101026
  contributor:
    fullname: A Nazir
– volume: 27
  start-page: 399
  year: 2019
  ident: 72624_CR19
  publication-title: Spat. Inform. Res.
  doi: 10.1007/s41324-019-00246-4
  contributor:
    fullname: AK Ranjan
– volume: 307
  start-page: 108530
  year: 2021
  ident: 72624_CR29
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2021.108530
  contributor:
    fullname: S Ju
– ident: 72624_CR16
  doi: 10.1080/10106049.2022.2113452
– volume: 14
  start-page: 9974
  year: 2022
  ident: 72624_CR8
  publication-title: Sustainability
  doi: 10.3390/su14169974
  contributor:
    fullname: M Mathenge
– volume: 12
  start-page: 1352
  year: 2022
  ident: 72624_CR22
  publication-title: Agriculture
  doi: 10.3390/agriculture12091352
  contributor:
    fullname: AA Tesfaye
– volume: 10
  start-page: 1046
  year: 2020
  ident: 72624_CR24
  publication-title: Agronomy
  doi: 10.3390/agronomy10071046
  contributor:
    fullname: F Abbas
– ident: 72624_CR49
– ident: 72624_CR25
  doi: 10.3390/agronomy9090496
– volume: 147
  start-page: 219
  year: 2014
  ident: 72624_CR94
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.03.008
  contributor:
    fullname: T Sakamoto
– ident: 72624_CR2
– volume: 90
  start-page: 116061
  year: 2021
  ident: 72624_CR39
  publication-title: Signal Process. Image Commun.
  doi: 10.1016/j.image.2020.116061
  contributor:
    fullname: N Karimi
– volume: 130
  start-page: 246
  year: 2017
  ident: 72624_CR57
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2017.05.003
  contributor:
    fullname: X Zhou
– volume: 284
  start-page: 107886
  year: 2020
  ident: 72624_CR77
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2019.107886
  contributor:
    fullname: RA Schwalbert
– ident: 72624_CR41
  doi: 10.18637/jss.v033.i01
– volume: 2
  start-page: 184
  year: 1981
  ident: 72624_CR72
  publication-title: Phys. Geogr.
  doi: 10.1080/02723646.1981.10642213
  contributor:
    fullname: CJ Willmott
– volume: 120
  start-page: 106935
  year: 2021
  ident: 72624_CR32
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2020.106935
  contributor:
    fullname: Y Guo
– ident: 72624_CR52
  doi: 10.34044/j.anres.2022.56.2.09
– volume: 11
  start-page: 1363
  year: 2021
  ident: 72624_CR83
  publication-title: Agronomy
  doi: 10.3390/agronomy11071363
  contributor:
    fullname: H Bahrami
– volume: 73
  start-page: 101933
  year: 2022
  ident: 72624_CR64
  publication-title: Ecol. Inform.
  doi: 10.1016/j.ecoinf.2022.101933
  contributor:
    fullname: RN Singh
– ident: 72624_CR91
  doi: 10.3390/app9081621
– volume: 11
  start-page: 1569
  year: 2019
  ident: 72624_CR51
  publication-title: Remote Sens. (Basel)
  doi: 10.3390/rs11131569
  contributor:
    fullname: K Harfenmeister
– volume: 109
  start-page: 107538
  year: 2021
  ident: 72624_CR89
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2021.107538
  contributor:
    fullname: R Shi
– ident: 72624_CR67
– ident: 72624_CR6
  doi: 10.1016/bs.agron.2018.11.002
– volume: 13
  start-page: 18814
  year: 2023
  ident: 72624_CR82
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-45682-3
  contributor:
    fullname: R Singh
– volume: 12
  start-page: 508
  year: 2020
  ident: 72624_CR86
  publication-title: Remote Sens. (Basel)
  doi: 10.3390/rs12030508
  contributor:
    fullname: Z Fu
SSID ssj0000529419
Score 2.4777806
Snippet In an era marked by growing global population and climate variability, ensuring food security has become a paramount concern. Rice, being a staple crop for...
Abstract In an era marked by growing global population and climate variability, ensuring food security has become a paramount concern. Rice, being a staple...
SourceID doaj
pubmedcentral
proquest
crossref
pubmed
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 21674
SubjectTerms 631/158/2456
631/1647/245
631/57
Agricultural production
Biomass
Cereal crops
Climate prediction
Climate variability
Crop yield
Crops
Crops, Agricultural - growth & development
Cubist
Decision making
Food security
Humanities and Social Sciences
LAI
Learning algorithms
Machine Learning
Moisture content
multidisciplinary
Neural networks
Neural Networks, Computer
Oryza - growth & development
Radar
Regression analysis
Remote sensing
Remote Sensing Technology - methods
Resource management
Rice
Science
Science (multidisciplinary)
Seasons
Summer
XGB
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hSkhcEG9SWmQkbhA1sR0nPraIqkKCQ6FSb5af0EOT1Wb30L_Ar2bGyS5dHuLCJYpsSxnNI_7GM54BeO2Fwn8eV6WwKZQyKl12kbsyVs6FOogQ8i3Xj5_U2YX8cNlc3mr1RTlhU3ngiXFHqraocsn6xmvJq6hb9METftp61znr89-3bm45U1NVb65lredbMpXojkbcqeg2GZclkoZPubMT5YL9f0KZvydL_hIxzRvR6QO4PyNIdjxR_hDuxP4R3J16St48hu_naPrshhLT2GJJYRhiPZv78bBNeQgaGxJzV8NilhSjKuDXlB0zMjqdZZ-Pz5ntAxsW-bybLSOKNbKRUt77r4xyS9k6v17njMzI5hYUOED9dcYncHH6_su7s3JuuFB60XarsnXSO0HBWNXGxDWvY9AJARrXrW4sgqFWU6-hpCrpU1O5mrskURpRe1wfxFPY64c-PgfGpZXKeSUDjzKgD44wRFgRXN1EXwdXwJsN881iqqthcjxcdGYSlUE6TBaVkQWckHy2K6kmdh5ATTGzpph_aUoBBxvpmtlQR4PoViFpCPwKeLWdRhOjuInt47Ce1khFwKeAZ5MybClBeNlpKasCuh012SF1d6a_-pbLeKMniv5k2xTwdqNRP-n6Oy_2_wcvXsA9TqZAvTDaA9hbLdfxENHVyr3MhvQDbj4lcQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: AUTh Library subscriptions: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagFRIXxJtAQUbiBlET23HiE2pRqwqJCi1U6s3yK20PTcJm99C_wK9mxnG2Wl6XKHJ8mHjGM-OZ8XyEvHNcgs5jMuem9bkIUuVNYDYPhbW-9Nz7eMv1y6k8OROfz6vzFHAbU1nlrBOjova9wxj5PrghEkwZWOiPw48cUaMwu5ogNO6SXVYKTNPuHh6dfl1soiyYxxKlSrdlCt7sj2Cx8FYZEzmQCE-xZZFi4_6_eZt_Fk3-ljmNBun4IXmQPEl6MLH-EbkTusfk3oQtefOE_FyACqA3WKBGhyWmY5AFNOHy0LlNBI71LbVX_ZA4RrEb-DVWyYwUo7T028GCms7Tfohxb7oMwN5ARyx97y4o1pjSdXy9jpWZgSYoChhAnJ3xKTk7Pvr-6SRPwAu543WzymsrnOWYlJV1aJliZfCqBUeNqVpVBpyiWiHmUCsL4dqqsCWzreBtCMrBfM-fkZ2u78ILQpkwQlonhWdBeDiLAw-54d6WVXCltxl5Py--Hqb-GjrmxXmjJ1ZpoENHVmmRkUPkz2Ym9saOA_3yQqetpmVpQEm1xlVOCVYEVRcKaLNgYmxjjcvI3sxdnTbsqG_FKyNvN59hq2H-xHShX09zhEQHKCPPJ2HYUAJuZqOEKDLSbInJFqnbX7qry9jOG06kcK6sq4x8mCXqlq5_r8XL___GK3KfoZAj2kW9R3ZWy3V4Df7Tyr5Jm-QXgo4ctQ
  priority: 102
  providerName: ProQuest
– databaseName: SpringerOpen
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BERIX1PJqaIuMxA0iEttx4mNZUVVIcChU6s3yK9BDk9Vm99C_wK9mxskuCpQDlyiynWjkmbE_e14Ab7xQuOZxlQvbhlxGpfMmcpfHwrlQBhFCinL9_EWdX8pPV9XVlCaHYmFm9nvRvB9wg6EgMC5z_CM-5X14UJWqIAleqMXuPoUsVrLUU1zM3Z_O9p6Uov8uXPm3e-QfNtK09Zztw-MJM7LTkckHcC92T-DhWEXy9in8vEBlZ7fkisaWKzK80GSzqQIP2yaEoLa-Ze66X068YZT3-4b8YQZG97Hs6-kFs11g_TLdcLNVREZGNpCTe_edkTcp26TXm-SDGdlUdAIbqKLO8Awuzz5-W5znU4mF3Iu6Wee1k94JMr-qOrZc8zIG3SIk47rWlUX4U2uqLtSqQvq2KlzJXStFG6P2OD6I57DX9V08BMallcp5JQOPMuCpG4GHsCK4soq-DC6Dt9vJN8sxk4ZJFnDRmJFVBukwiVVGZvCB-LMbSVmwUwMKh5mUyqjS4nLUWl95LXkRdV1opM3hZuIaZ30Gx1vumkk1B4N4ViFpCPUyeL3rRqUiS4ntYr8Zx0hFUCeDF6Mw7ChBQNloKYsMmpmYzEid93TXP1Libjx74gmyrjJ4t5Wo33T9ey5e_t_wI3jESeipzkV9DHvr1SaeIHJau1dJZX4Bl2QUXA
  priority: 102
  providerName: Springer Nature
Title Rice yield prediction through integration of biophysical parameters with SAR and optical remote sensing data using machine learning models
URI https://link.springer.com/article/10.1038/s41598-024-72624-4
https://www.ncbi.nlm.nih.gov/pubmed/39289440
https://www.proquest.com/docview/3106223256
https://www.proquest.com/docview/3106460613
https://pubmed.ncbi.nlm.nih.gov/PMC11408675
https://doaj.org/article/61a225fac5c9420e97093febeacb8bac
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB6SlEIvpe-6TRcVemudtSVZto7JkhAKCWHbQG7Gejhd6NrLPg75C_3VnZHtbbaPSy_GlgUePDPSJ82nGYAPVigc87iKRVW7WHql48JzE_vEGJc64Vw45Xpxqc6v5eeb7GYP1HAWJpD2rZkdNd_nR83sW-BWLuZ2PPDExlcXE8TwiMTzbLwP-7kQ99boXUZvrmWq-xMyiSjGK5yl6CQZlzGKhVeqxoPAoNCSNj3uTUghb__fwOafnMnfAqdhPjp7Ao97IMmOO4Gfwp5vnsHDrrTk3XP4McURgN0RP40tlhSNIQ2wviwPG7JEUFtbMzNrF73CGCUDnxNJZsVok5Z9OZ6yqnGsXYRtb7b0qF3PVsR8b24ZUUzZJtzOAzHTs74SBTZQmZ3VC7g-O_06OY_7uguxFXmxjnMjrREUk1W5r7nmqXe6RpzGda6zCjFRrqnkUK0SaessMSk3tRS199pifydewkHTNv41MC4rqYxV0nEvHS7FEY2ISjiTZt6mzkTwcfj55aJLr1GGsLgoyk5rJcpRBq2VMoIT0s-2J6XGDg3t8rbsDaRUaYVjVF3ZzGrJE6_zRKNsBmcYU5jKRnA4aLfs_XVVIshVKBrivwjeb1-jp1H4pGp8u-n6SEX4J4JXnTFsJRmMKYJix0x2RN19g8YdsnkPxhzBp8Gifsn173_x5v-_9BYecfIFKoSRH8LBernx7xBarc0I_ekmH8GDk9PLqyk-TdRkFLYpRsHHfgIldSke
link.rule.ids 230,315,733,786,790,870,891,2115,12083,21416,27955,27956,31752,31753,33777,33778,41153,42222,43343,43838,51609,53825,53827,74100,74657
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCNEL4lkCBYzEDaImtuPEJ1QQ1QJtD6WV9mbFj5QemqSb3UP_Ar-aGcfZanldosjxYeIZz4xnxvMR8tZyCTqPyZTXjUuFlyqtPDOpz4xxuePOhVuuR8dydia-zot5DLgNsaxy0olBUbvOYox8D9wQCaYMLPSH_ipF1CjMrkYIjdvkjuBcoJyX83IdY8EslshVvCuT8WpvAHuFd8qYSIFAeIoNexTa9v_N1_yzZPK3vGkwRwcPyP3oR9L9kfEPyS3fPiJ3R2TJ68fk5wkoAHqN5Wm0X2AyBhlAIyoPnZpE4FjXUHPR9ZFfFHuBX2KNzEAxRku_75_QunW060PUmy48MNfTAQvf23OKFaZ0FV4vQ12mpxGIAgYQZWd4Qs4OPp9-mqURdiG1vKyWaWmENRxTsrL0DVMs90414KYxVaqiBpeoVIg41MhM2KbITM5MI3jjvbIw3_GnZKvtWv-MUCZqIY2VwjEvHJzEgYO85s7khbe5Mwl5Ny2-7sfuGjpkxXmlR1ZpoEMHVmmRkI_In_VM7IwdBrrFuY4bTcu8BhXV1LawSrDMqzJTQJsBA2MqU9uE7E7c1XG7DvpGuBLyZv0ZNhpmT-rWd6txjpDo_iRkZxSGNSXgZFZKiCwh1YaYbJC6-aW9-BGaecN5FE6VZZGQ95NE3dD177V4_v_feE3uzU6PDvXhl-NvL8g2Q4FH3Ityl2wtFyv_EjyppXkVtssvP00ePA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCMQF8SalgJG4QbSJ7TjxCZXHqrwqVKi0Nyt-pPTQJN3sHvoX-NXMOM5Wy-sSRY4PE8_TnvF8hLywXILNYzLldeNS4aVKK89M6jNjXO64c-GW65dDeXAsPi6KRax_GmJZ5WQTg6F2ncUz8hmEIRJcGXjoWRPLIr6-m7_uz1NEkMJMa4TTuEqugZfMEMahXJSb8xbMaIlcxXszGa9mA_guvF_GRArEwlNs-abQwv9vceef5ZO_5VCDa5rfJrdiTEn3RyG4Q6749i65PqJMXtwjP4_AGNALLFWj_RITM8gMGhF66NQwAse6hprTro-8o9gX_AzrZQaK57X02_4RrVtHuz6cgNOlB0Z7OmARfHtCsdqUrsPrWajR9DSCUsAAIu4M98nx_P33twdphGBILS-rVVoaYQ3H9KwsfcMUy71TDYRsTJWqqCE8KhWiDzUyE7YpMpMz0wjeeK8szHf8Adlpu9Y_IpSJWkhjpXDMCwe7cuAmr7kzeeFt7kxCXk6Lr_ux04YOGXJe6ZFVGujQgVVaJOQN8mczE7tkh4FueaKj0mmZ12CumtoWVgmWeVVmCmgz4GxMZWqbkL2Juzqq7qAvBS0hzzefQekwk1K3vluPc4TEUCghD0dh2FACAWelhMgSUm2JyRap21_a0x-hsTfsTWGHWRYJeTVJ1CVd_16L3f__xjNyAzRFf_5w-OkxuclQ3hECo9wjO6vl2j-BoGplngZt-QWHziJo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rice+yield+prediction+through+integration+of+biophysical+parameters+with+SAR+and+optical+remote+sensing+data+using+machine+learning+models&rft.jtitle=Scientific+reports&rft.au=Sah%2C+Sonam&rft.au=Haldar%2C+Dipanwita&rft.au=Singh%2C+R+N&rft.au=Das%2C+B&rft.date=2024-09-17&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft.spage=21674&rft_id=info:doi/10.1038%2Fs41598-024-72624-4&rft_id=info%3Apmid%2F39289440&rft.externalDocID=39289440
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon