Rice yield prediction through integration of biophysical parameters with SAR and optical remote sensing data using machine learning models
In an era marked by growing global population and climate variability, ensuring food security has become a paramount concern. Rice, being a staple crop for billions of people, requires accurate and timely yield prediction to ensure global food security. This study was undertaken across two rice crop...
Saved in:
Published in | Scientific reports Vol. 14; no. 1; pp. 21674 - 17 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
17.09.2024
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In an era marked by growing global population and climate variability, ensuring food security has become a paramount concern. Rice, being a staple crop for billions of people, requires accurate and timely yield prediction to ensure global food security. This study was undertaken across two rice crop seasons in the Udham Singh Nagar district of Uttarakhand state to predict rice yield at 45, 60 and 90 days after transplanting (DAT) through machine learning (ML) models, utilizing a combination of optical and Synthetic Aperture Radar (SAR) data in conjunction with crop biophysical parameters. Results revealed that the ML models were able to provide relatively accurate early yield estimates. For summer rice, eXtreme gradient boosting (XGB) was the best-performing model at all three stages (45, 60, and 90 DAT), while for
kharif
rice, the best-performing models at 45, 60, and 90 DAT were XGB, Neural network (NNET), and Cubist, respectively. The combined ranking of ML models showed that prediction accuracy improved as the prediction date approaches harvest, and the best prediction of yield was observed at 90 DAT for both summer and
kharif
rice. Overall rankings indicate that for summer rice, the top three models were XGB, NNET, and Support vector regression, while for
kharif
rice, these were Cubist, NNET, and Random Forest, respectively. The findings of this study offer valuable insights into the potential of the combined use of remote sensing and biophysical parameters using ML models, which enhances food security planning and resource management by enabling more informed decision-making by stakeholders such as farmers, policy planners as well as researchers. |
---|---|
AbstractList | In an era marked by growing global population and climate variability, ensuring food security has become a paramount concern. Rice, being a staple crop for billions of people, requires accurate and timely yield prediction to ensure global food security. This study was undertaken across two rice crop seasons in the Udham Singh Nagar district of Uttarakhand state to predict rice yield at 45, 60 and 90 days after transplanting (DAT) through machine learning (ML) models, utilizing a combination of optical and Synthetic Aperture Radar (SAR) data in conjunction with crop biophysical parameters. Results revealed that the ML models were able to provide relatively accurate early yield estimates. For summer rice, eXtreme gradient boosting (XGB) was the best-performing model at all three stages (45, 60, and 90 DAT), while for kharif rice, the best-performing models at 45, 60, and 90 DAT were XGB, Neural network (NNET), and Cubist, respectively. The combined ranking of ML models showed that prediction accuracy improved as the prediction date approaches harvest, and the best prediction of yield was observed at 90 DAT for both summer and kharif rice. Overall rankings indicate that for summer rice, the top three models were XGB, NNET, and Support vector regression, while for kharif rice, these were Cubist, NNET, and Random Forest, respectively. The findings of this study offer valuable insights into the potential of the combined use of remote sensing and biophysical parameters using ML models, which enhances food security planning and resource management by enabling more informed decision-making by stakeholders such as farmers, policy planners as well as researchers.In an era marked by growing global population and climate variability, ensuring food security has become a paramount concern. Rice, being a staple crop for billions of people, requires accurate and timely yield prediction to ensure global food security. This study was undertaken across two rice crop seasons in the Udham Singh Nagar district of Uttarakhand state to predict rice yield at 45, 60 and 90 days after transplanting (DAT) through machine learning (ML) models, utilizing a combination of optical and Synthetic Aperture Radar (SAR) data in conjunction with crop biophysical parameters. Results revealed that the ML models were able to provide relatively accurate early yield estimates. For summer rice, eXtreme gradient boosting (XGB) was the best-performing model at all three stages (45, 60, and 90 DAT), while for kharif rice, the best-performing models at 45, 60, and 90 DAT were XGB, Neural network (NNET), and Cubist, respectively. The combined ranking of ML models showed that prediction accuracy improved as the prediction date approaches harvest, and the best prediction of yield was observed at 90 DAT for both summer and kharif rice. Overall rankings indicate that for summer rice, the top three models were XGB, NNET, and Support vector regression, while for kharif rice, these were Cubist, NNET, and Random Forest, respectively. The findings of this study offer valuable insights into the potential of the combined use of remote sensing and biophysical parameters using ML models, which enhances food security planning and resource management by enabling more informed decision-making by stakeholders such as farmers, policy planners as well as researchers. Abstract In an era marked by growing global population and climate variability, ensuring food security has become a paramount concern. Rice, being a staple crop for billions of people, requires accurate and timely yield prediction to ensure global food security. This study was undertaken across two rice crop seasons in the Udham Singh Nagar district of Uttarakhand state to predict rice yield at 45, 60 and 90 days after transplanting (DAT) through machine learning (ML) models, utilizing a combination of optical and Synthetic Aperture Radar (SAR) data in conjunction with crop biophysical parameters. Results revealed that the ML models were able to provide relatively accurate early yield estimates. For summer rice, eXtreme gradient boosting (XGB) was the best-performing model at all three stages (45, 60, and 90 DAT), while for kharif rice, the best-performing models at 45, 60, and 90 DAT were XGB, Neural network (NNET), and Cubist, respectively. The combined ranking of ML models showed that prediction accuracy improved as the prediction date approaches harvest, and the best prediction of yield was observed at 90 DAT for both summer and kharif rice. Overall rankings indicate that for summer rice, the top three models were XGB, NNET, and Support vector regression, while for kharif rice, these were Cubist, NNET, and Random Forest, respectively. The findings of this study offer valuable insights into the potential of the combined use of remote sensing and biophysical parameters using ML models, which enhances food security planning and resource management by enabling more informed decision-making by stakeholders such as farmers, policy planners as well as researchers. In an era marked by growing global population and climate variability, ensuring food security has become a paramount concern. Rice, being a staple crop for billions of people, requires accurate and timely yield prediction to ensure global food security. This study was undertaken across two rice crop seasons in the Udham Singh Nagar district of Uttarakhand state to predict rice yield at 45, 60 and 90 days after transplanting (DAT) through machine learning (ML) models, utilizing a combination of optical and Synthetic Aperture Radar (SAR) data in conjunction with crop biophysical parameters. Results revealed that the ML models were able to provide relatively accurate early yield estimates. For summer rice, eXtreme gradient boosting (XGB) was the best-performing model at all three stages (45, 60, and 90 DAT), while for kharif rice, the best-performing models at 45, 60, and 90 DAT were XGB, Neural network (NNET), and Cubist, respectively. The combined ranking of ML models showed that prediction accuracy improved as the prediction date approaches harvest, and the best prediction of yield was observed at 90 DAT for both summer and kharif rice. Overall rankings indicate that for summer rice, the top three models were XGB, NNET, and Support vector regression, while for kharif rice, these were Cubist, NNET, and Random Forest, respectively. The findings of this study offer valuable insights into the potential of the combined use of remote sensing and biophysical parameters using ML models, which enhances food security planning and resource management by enabling more informed decision-making by stakeholders such as farmers, policy planners as well as researchers. In an era marked by growing global population and climate variability, ensuring food security has become a paramount concern. Rice, being a staple crop for billions of people, requires accurate and timely yield prediction to ensure global food security. This study was undertaken across two rice crop seasons in the Udham Singh Nagar district of Uttarakhand state to predict rice yield at 45, 60 and 90 days after transplanting (DAT) through machine learning (ML) models, utilizing a combination of optical and Synthetic Aperture Radar (SAR) data in conjunction with crop biophysical parameters. Results revealed that the ML models were able to provide relatively accurate early yield estimates. For summer rice, eXtreme gradient boosting (XGB) was the best-performing model at all three stages (45, 60, and 90 DAT), while for kharif rice, the best-performing models at 45, 60, and 90 DAT were XGB, Neural network (NNET), and Cubist, respectively. The combined ranking of ML models showed that prediction accuracy improved as the prediction date approaches harvest, and the best prediction of yield was observed at 90 DAT for both summer and kharif rice. Overall rankings indicate that for summer rice, the top three models were XGB, NNET, and Support vector regression, while for kharif rice, these were Cubist, NNET, and Random Forest, respectively. The findings of this study offer valuable insights into the potential of the combined use of remote sensing and biophysical parameters using ML models, which enhances food security planning and resource management by enabling more informed decision-making by stakeholders such as farmers, policy planners as well as researchers. |
ArticleNumber | 21674 |
Author | Das, B. Sah, Sonam Haldar, Dipanwita Singh, RN Nain, Ajeet Singh |
Author_xml | – sequence: 1 givenname: Sonam surname: Sah fullname: Sah, Sonam organization: G. B. Pant University of Agriculture and Technology, ICAR-National Institute of Abiotic Stress Management – sequence: 2 givenname: Dipanwita surname: Haldar fullname: Haldar, Dipanwita organization: Indian Institute of Remote Sensing – sequence: 3 givenname: RN surname: Singh fullname: Singh, RN organization: ICAR-National Institute of Abiotic Stress Management – sequence: 4 givenname: B. surname: Das fullname: Das, B. organization: ICAR-Central Coastal Agricultural Research Institute – sequence: 5 givenname: Ajeet Singh surname: Nain fullname: Nain, Ajeet Singh email: nain.ajeet23@gmail.com organization: G. B. Pant University of Agriculture and Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39289440$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kstu1TAQhiNUREvpC7BAltiwCdiOc_EKVRWXSpWQCqytiTNJfJTYwXZA5xX61DU5pbQs8MIezXzz2zOe59mRdRaz7CWjbxktmndBsFI2OeUir3mVdvEkO-FUlDkvOD96YB9nZyHsaFoll4LJZ9lxIXkjhaAn2c210Uj2BqeOLB47o6NxlsTRu3UYibERBw-bz_WkNW4Z98FomMgCHmaM6AP5ZeJIvp5fE7AdcUvc4h5nF5EEtMHYgXQQgaybOYMejUUyIXi7OVyHU3iRPe1hCnh2d55m3z9--HbxOb_68uny4vwq10XdxLxuhW6LVHdZ1dhzyRl2suepB7KWJVSM1xJbSvuKCt2XtGW87UXRI0qd-K44zS4Pup2DnVq8mcHvlQOjNofzgwKfaphQVQw4L3vQpZaCU5Q1lUmpRdBt04JOWu8PWsvazthptNHD9Ej0ccSaUQ3up2JM0Kaqy6Tw5k7Bux8rhqhmEzROE1h0a1AFo5WoaMWKhL7-B9251dvUq43i6bPLKlH8QGnvQvDY37-GUfV7dNRhdFRqodpGR4mU9OphHfcpfwYlAcUBCClkB_R_7_6P7C0PXNPR |
Cites_doi | 10.1016/j.asoc.2021.107538 10.1038/s41598-021-89779-z 10.1080/10095020.2021.1936656 10.1109/JSTARS.2021.3118707 10.3390/rs11202384 10.1038/ng.3071 10.1038/s41598-023-45682-3 10.3390/agronomy10071046 10.3390/rs9020119 10.3390/rs14163880 10.1038/nature11420 10.3390/su14169974 10.1016/j.image.2020.116061 10.1016/S2095-3119(14)60817-0 10.1016/j.agrformet.2021.108530 10.1016/j.agrformet.2023.109729 10.1080/01431161.2020.1766148 10.1117/1.JRS.17.014505 10.3390/rs11212568 10.1023/A:1010933404324 10.2135/cropsci2011.04.0222 10.5194/isprs-annals-V-3-2022-405-2022 10.1007/s41324-019-00246-4 10.1016/j.compag.2016.04.016 10.1016/j.ecoinf.2022.101933 10.2307/1403797 10.1016/j.jag.2016.05.010 10.1016/j.isprsjprs.2017.05.003 10.1080/01431161.2020.1851063 10.18637/jss.v015.i09 10.1088/1755-1315/165/1/012002 10.1016/j.agrformet.2020.107922 10.12694/scpe.v21i4.1714 10.12688/f1000research.124604.1 10.1016/j.ecoinf.2022.101618 10.1016/j.rse.2014.03.008 10.3390/rs11121441 10.1016/j.ecolind.2020.106935 10.1007/s42161-020-00683-3 10.3390/rs12030508 10.3390/rs11151745 10.2134/agronj2019.04.0260 10.3390/agriculture12091352 10.1080/1343943X.2020.1819165 10.1016/j.envsoft.2019.01.005 10.3390/pr11020349 10.3390/rs14195045 10.1016/j.compag.2020.105709 10.1080/01904167.2017.1346681 10.1007/s12524-022-01499-7 10.1088/1748-9326/ab7df9 10.1016/j.rse.2011.08.010 10.1017/S2040470017000784 10.1007/978-3-642-19542-6_57 10.3390/agriculture11101026 10.1016/j.compag.2022.106852 10.3390/agronomy11071363 10.1016/j.rse.2019.02.027 10.1080/02723646.1981.10642213 10.3390/s21041406 10.1016/j.agrformet.2019.107886 10.1016/j.fcr.2023.109102 10.3390/rs11131569 10.13031/2013.23153 10.1016/j.ecoinf.2023.102136 10.1016/j.ecoinf.2022.101774 10.1080/14498596.2021.1896393 10.1145/2939672.2939785 10.3389/fpls.2019.00621 10.1007/978-3-030-64583-0_11 10.1016/B978-0-12-815739-8.00004-3 10.1080/10496505.2015.985546 10.1214/aos/1176347963 10.1609/aaai.v31i1.11172 10.1080/10106049.2022.2160831 10.1080/10106049.2022.2113452 10.3390/agronomy9090496 10.18637/jss.v033.i01 10.34044/j.anres.2022.56.2.09 10.3390/app9081621 10.1016/bs.agron.2018.11.002 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 2024. The Author(s). The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2024 2024 |
Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2024 2024 |
DBID | C6C CGR CUY CVF ECM EIF NPM AAYXX CITATION 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PIMPY PQEST PQQKQ PQUKI Q9U 7X8 5PM DOA |
DOI | 10.1038/s41598-024-72624-4 |
DatabaseName | SpringerOpen Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials Biological Science Collection AUTh Library subscriptions: ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection (Proquest) (PQ_SDU_P3) ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Science Journals (ProQuest Database) Biological Science Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Publicly Available Content Database ProQuest Central Student ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: SpringerOpen url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: BENPR name: AUTh Library subscriptions: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 17 |
ExternalDocumentID | oai_doaj_org_article_61a225fac5c9420e97093febeacb8bac 10_1038_s41598_024_72624_4 39289440 |
Genre | Journal Article |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ADBBV ADRAZ AENEX AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RIG RNT RNTTT RPM SNYQT UKHRP CGR CUY CVF ECM EIF NPM AAYXX AFPKN CITATION 7XB 8FK K9. M48 PQEST PQUKI Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c378t-7b4cb3024567ef2921ed9f22629795a61279eb00f604cf50b12bf43fee9cef2d3 |
IEDL.DBID | RPM |
ISSN | 2045-2322 |
IngestDate | Tue Oct 22 14:48:06 EDT 2024 Thu Sep 19 05:32:14 EDT 2024 Sat Oct 26 04:05:21 EDT 2024 Thu Oct 10 21:49:46 EDT 2024 Wed Sep 25 14:02:49 EDT 2024 Thu Oct 24 09:58:39 EDT 2024 Fri Oct 11 20:56:18 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Cubist XGB Biomass LAI Moisture content Remote sensing |
Language | English |
License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c378t-7b4cb3024567ef2921ed9f22629795a61279eb00f604cf50b12bf43fee9cef2d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11408675/ |
PMID | 39289440 |
PQID | 3106223256 |
PQPubID | 2041939 |
PageCount | 17 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_61a225fac5c9420e97093febeacb8bac pubmedcentral_primary_oai_pubmedcentral_nih_gov_11408675 proquest_miscellaneous_3106460613 proquest_journals_3106223256 crossref_primary_10_1038_s41598_024_72624_4 pubmed_primary_39289440 springer_journals_10_1038_s41598_024_72624_4 |
PublicationCentury | 2000 |
PublicationDate | 2024-09-17 |
PublicationDateYYYYMMDD | 2024-09-17 |
PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-17 day: 17 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2024 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Son (CR28) 2020; 41 Gómez, Salvador, Sanz, Casanova (CR79) 2019; 11 Klompenburg, Kassahun, Catal (CR76) 2020; 177 Das (CR35) 2023; 30 Moriasi (CR71) 2007; 50 Shrivastava, Pradhan (CR92) 2021; 103 CR38 Son (CR30) 2022; 69 CR36 Sharma, Bu, Franzen, Denton (CR56) 2016; 124 Liu (CR74) 2022; 14 Bebie, Cavalaris, Kyparissis (CR80) 2022; 14 Singha, Gulzar, Swain, Pradhan (CR21) 2023; 17 Prasetyo, Sukmono, Aziz, Prakosta Santu Aji (CR63) 2018; 165 CR70 Harfenmeister, Spengler, Weltzien (CR51) 2019; 11 Tuvdendorj, Wu, Zeng, Batdelger, Nanzad (CR12) 2019; 11 Filgueiras, Mantovani, Althoff, Fernandes Filho, da Cunha (CR53) 2019; 11 Ramdani, Furqon (CR90) 2022; 11 Karatzoglou, Meyer, Hornik (CR44) 2006; 15 Alabi, Abebe, Chigeza, Fowobaje (CR88) 2022; 27 CR2 Alebele (CR33) 2021; 14 CR4 CR3 Singh, Krishnan, Singh, Banerjee (CR65) 2022; 71 CR6 Sharma, Kumar, Srivastava, Sivasankar (CR15) 2022; 50 Kang (CR26) 2020; 15 Feng (CR81) 2020; 285–286 Yu (CR34) 2023; 342 Ranjan, Parida (CR75) 2021; 42 Nazir (CR78) 2021; 11 CR9 CR49 CR48 Fu (CR86) 2020; 12 CR47 Singh, Krishnan, Singh, Sah, Das (CR82) 2023; 13 Abbas, Afzaal, Farooque, Tang (CR24) 2020; 10 CR45 Kuhn (CR66) 2020; 223 Khaki, Pham, Wang (CR23) 2021; 11 Fix, Hodges (CR46) 1989; 57 Ruan (CR85) 2022; 195 CR43 CR41 CR40 Johnson (CR13) 2016; 52 Purugganan (CR1) 2014; 46 Singh, Krishnan, Bharadwaj, Das (CR64) 2022; 73 Torbick, Chowdhury, Salas, Qi (CR37) 2017; 9 Ali, Awwad, Al-Razgan, Maarouf (CR68) 2023; 11 Breiman (CR42) 2001; 45 Viña, Gitelson, Nguy-Robertson, Peng (CR61) 2011; 115 Medar, Rajpurohit, Ambekar (CR27) 2019; 11 Tesfaye, Awoke, Sida, Osgood (CR22) 2022; 12 Sah, Haldar, Chandra, Nain (CR20) 2023; 76 CR18 Baral, Kumar Tripathy, Bijayasingh, Das, Stephen, Chaba (CR31) 2011 Guo (CR32) 2021; 120 Mueller (CR10) 2012; 490 CR16 Ranjan, Parida (CR19) 2019; 27 CR54 Willmott (CR72) 1981; 2 Bahrami (CR83) 2021; 11 CR52 Hosseini (CR17) 2022; 3 CR93 CR91 Zhou (CR57) 2017; 130 Ji, Pan, Zhu, Wang, Li (CR14) 2021; 21 Gutierrez, Norton, Thorp, Wang (CR60) 2012; 52 Aschonitis (CR73) 2019; 114 Basha, Rajput, Somula, Ram (CR5) 2020; 21 Ju (CR29) 2021; 307 Mathenge, Sonneveld, Broerse (CR8) 2022; 14 Escolà, Badia, Arnó, Martínez-Casasnovas (CR11) 2017; 8 Karimi, Taban (CR39) 2021; 90 CR25 Olson, Chatterjee, Franzen, Day (CR58) 2019; 111 CR69 CR67 Li (CR84) 2023; 302 Schwalbert (CR77) 2020; 284 Shi, Xu, Li, Li (CR89) 2021; 109 Zhou, Kono, Win, Matsui, Tanaka (CR87) 2021; 24 de la Torre, Gao, Macinnis-Ng (CR7) 2021; 24 Zhu, Walker, Ye, Rüdiger (CR50) 2019; 225 Wang, Tao, Shi (CR62) 2014; 13 Sakamoto, Gitelson, Arkebauer (CR94) 2014; 147 Shaver, Kruger, Rudnick (CR55) 2017; 40 Ali, Martelli, Lupia, Barbanti (CR59) 2019; 11 72624_CR67 M Wang (72624_CR62) 2014; 13 MD Purugganan (72624_CR1) 2014; 46 72624_CR25 72624_CR69 M Bebie (72624_CR80) 2022; 14 YA Ali (72624_CR68) 2023; 11 J Li (72624_CR84) 2023; 302 A Nazir (72624_CR78) 2021; 11 N Karimi (72624_CR39) 2021; 90 D Olson (72624_CR58) 2019; 111 AA Tesfaye (72624_CR22) 2022; 12 A Karatzoglou (72624_CR44) 2006; 15 PK Sharma (72624_CR15) 2022; 50 L Breiman (72624_CR42) 2001; 45 AK Ranjan (72624_CR19) 2019; 27 RN Singh (72624_CR64) 2022; 73 B Tuvdendorj (72624_CR12) 2019; 11 72624_CR54 SM Basha (72624_CR5) 2020; 21 72624_CR16 E Fix (72624_CR46) 1989; 57 TM Shaver (72624_CR55) 2017; 40 M Mathenge (72624_CR8) 2022; 14 R Shi (72624_CR89) 2021; 109 72624_CR18 VG Aschonitis (72624_CR73) 2019; 114 K Harfenmeister (72624_CR51) 2019; 11 LK Sharma (72624_CR56) 2016; 124 D Gómez (72624_CR79) 2019; 11 F Abbas (72624_CR24) 2020; 10 72624_CR9 RA Medar (72624_CR27) 2019; 11 72624_CR3 VK Shrivastava (72624_CR92) 2021; 103 72624_CR4 72624_CR93 72624_CR2 72624_CR91 72624_CR52 R Filgueiras (72624_CR53) 2019; 11 A Viña (72624_CR61) 2011; 115 72624_CR6 72624_CR45 DMG de la Torre (72624_CR7) 2021; 24 M Hosseini (72624_CR17) 2022; 3 Y Kang (72624_CR26) 2020; 15 N-T Son (72624_CR30) 2022; 69 72624_CR43 72624_CR49 Y Guo (72624_CR32) 2021; 120 72624_CR47 72624_CR48 G Ruan (72624_CR85) 2022; 195 N-T Son (72624_CR28) 2020; 41 T Sakamoto (72624_CR94) 2014; 147 S Ju (72624_CR29) 2021; 307 S Sah (72624_CR20) 2023; 76 M Kuhn (72624_CR66) 2020; 223 X Zhou (72624_CR87) 2021; 24 S Baral (72624_CR31) 2011 L Zhu (72624_CR50) 2019; 225 C Singha (72624_CR21) 2023; 17 P Feng (72624_CR81) 2020; 285–286 T Klompenburg (72624_CR76) 2020; 177 H Bahrami (72624_CR83) 2021; 11 Y Prasetyo (72624_CR63) 2018; 165 X Zhou (72624_CR57) 2017; 130 72624_CR41 A Escolà (72624_CR11) 2017; 8 72624_CR40 W Yu (72624_CR34) 2023; 342 72624_CR38 CJ Willmott (72624_CR72) 1981; 2 F Ramdani (72624_CR90) 2022; 11 DN Moriasi (72624_CR71) 2007; 50 72624_CR36 R Singh (72624_CR65) 2022; 71 R Singh (72624_CR82) 2023; 13 A Ali (72624_CR59) 2019; 11 TR Alabi (72624_CR88) 2022; 27 DM Johnson (72624_CR13) 2016; 52 S Khaki (72624_CR23) 2021; 11 Y Alebele (72624_CR33) 2021; 14 Z Ji (72624_CR14) 2021; 21 Y Liu (72624_CR74) 2022; 14 AK Ranjan (72624_CR75) 2021; 42 72624_CR70 A Das (72624_CR35) 2023; 30 N Torbick (72624_CR37) 2017; 9 M Gutierrez (72624_CR60) 2012; 52 RA Schwalbert (72624_CR77) 2020; 284 Z Fu (72624_CR86) 2020; 12 ND Mueller (72624_CR10) 2012; 490 |
References_xml | – ident: CR45 – ident: CR70 – volume: 109 start-page: 107538 year: 2021 ident: CR89 article-title: Prediction and analysis of train arrival delay based on XGBoost and Bayesian optimization publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2021.107538 contributor: fullname: Li – volume: 11 start-page: 1 year: 2021 end-page: 14 ident: CR23 article-title: Simultaneous corn and soybean yield prediction from remote sensing data using deep transfer learning publication-title: Sci. Rep. doi: 10.1038/s41598-021-89779-z contributor: fullname: Wang – ident: CR49 – ident: CR93 – ident: CR4 – ident: CR16 – volume: 24 start-page: 580 year: 2021 end-page: 603 ident: CR7 article-title: Remote sensing-based estimation of rice yields using various models: A critical review publication-title: Geo-Spat. Inform. Sci. doi: 10.1080/10095020.2021.1936656 contributor: fullname: Macinnis-Ng – volume: 14 start-page: 10520 year: 2021 end-page: 10534 ident: CR33 article-title: Estimation of crop yield from combined optical and SAR imagery using Gaussian kernel regression publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2021.3118707 contributor: fullname: Alebele – volume: 11 start-page: 2384 year: 2019 ident: CR59 article-title: Assessing multiple years’ spatial variability of crop yields using satellite vegetation indices publication-title: Remote Sens. (Basel) doi: 10.3390/rs11202384 contributor: fullname: Barbanti – volume: 46 start-page: 931 year: 2014 end-page: 932 ident: CR1 article-title: An evolutionary genomic tale of two rice species publication-title: Nat. Genet. doi: 10.1038/ng.3071 contributor: fullname: Purugganan – ident: CR54 – volume: 13 start-page: 18814 year: 2023 ident: CR82 article-title: Combining biophysical parameters with thermal and RGB indices using machine learning models for predicting yield in yellow rust affected wheat crop publication-title: Sci. Rep. doi: 10.1038/s41598-023-45682-3 contributor: fullname: Das – volume: 10 start-page: 1046 year: 2020 ident: CR24 article-title: Crop yield prediction through proximal sensing and machine learning algorithms publication-title: Agronomy doi: 10.3390/agronomy10071046 contributor: fullname: Tang – ident: CR25 – volume: 9 start-page: 119 year: 2017 ident: CR37 article-title: Monitoring rice agriculture across myanmar using time series sentinel-1 assisted by landsat-8 and PALSAR-2 publication-title: Remote Sens (Basel) doi: 10.3390/rs9020119 contributor: fullname: Qi – volume: 11 start-page: 11 year: 2019 ident: CR27 article-title: Sugarcane crop yield forecasting model using supervised machine learning publication-title: Int. J. Intell. Syst. Appl. contributor: fullname: Ambekar – volume: 14 start-page: 3880 year: 2022 ident: CR80 article-title: Assessing durum wheat yield through sentinel-2 imagery: A machine learning approach publication-title: Remote Sens. (Basel) doi: 10.3390/rs14163880 contributor: fullname: Kyparissis – volume: 490 start-page: 254 year: 2012 end-page: 257 ident: CR10 article-title: Closing yield gaps through nutrient and water management publication-title: Nature doi: 10.1038/nature11420 contributor: fullname: Mueller – volume: 14 start-page: 9974 year: 2022 ident: CR8 article-title: Application of GIS in agriculture in promoting evidence-informed decision making for improving agriculture sustainability: A systematic review publication-title: Sustainability doi: 10.3390/su14169974 contributor: fullname: Broerse – volume: 90 start-page: 116061 year: 2021 ident: CR39 article-title: A convex variational method for super resolution of SAR image with speckle noise publication-title: Signal Process. Image Commun. doi: 10.1016/j.image.2020.116061 contributor: fullname: Taban – volume: 13 start-page: 1538 year: 2014 end-page: 1545 ident: CR62 article-title: Corn yield forecasting in northeast china using remotely sensed spectral indices and crop phenology metrics publication-title: J. Integr. Agric. doi: 10.1016/S2095-3119(14)60817-0 contributor: fullname: Shi – volume: 307 start-page: 108530 year: 2021 ident: CR29 article-title: Optimal county-level crop yield prediction using MODIS-based variables and weather data: A comparative study on machine learning models publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2021.108530 contributor: fullname: Ju – volume: 342 start-page: 109729 year: 2023 ident: CR34 article-title: Improved prediction of rice yield at field and county levels by synergistic use of SAR, optical and meteorological data publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2023.109729 contributor: fullname: Yu – ident: CR67 – volume: 27 start-page: 100782 year: 2022 ident: CR88 article-title: Estimation of soybean grain yield from multispectral high-resolution UAV data with machine learning models in West Africa publication-title: Remote Sens. Appl. contributor: fullname: Fowobaje – volume: 41 start-page: 7868 year: 2020 end-page: 7888 ident: CR28 article-title: Machine learning approaches for rice crop yield predictions using time-series satellite data in Taiwan publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2020.1766148 contributor: fullname: Son – volume: 17 start-page: 014505 year: 2023 ident: CR21 article-title: Apple yield prediction mapping using machine learning techniques through the Google Earth Engine cloud in Kashmir Valley, India publication-title: J. Appl. Remote Sens. doi: 10.1117/1.JRS.17.014505 contributor: fullname: Pradhan – volume: 11 start-page: 2568 year: 2019 ident: CR12 article-title: Determination of appropriate remote sensing indices for spring wheat yield estimation in Mongolia publication-title: Remote Sens (Basel) doi: 10.3390/rs11212568 contributor: fullname: Nanzad – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: CR42 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 contributor: fullname: Breiman – volume: 52 start-page: 849 year: 2012 end-page: 857 ident: CR60 article-title: Association of spectral reflectance indices with plant growth and lint yield in upland cotton publication-title: Crop. Sci. doi: 10.2135/cropsci2011.04.0222 contributor: fullname: Wang – volume: 3 start-page: 405 year: 2022 end-page: 410 ident: CR17 article-title: Soybean yield forecast using dual-polarimetric C-band synthetic aperture radar publication-title: ISPRS Ann. Photogramm. Remote Sens. Spat. Inform. Sci. doi: 10.5194/isprs-annals-V-3-2022-405-2022 contributor: fullname: Hosseini – volume: 27 start-page: 399 year: 2019 end-page: 410 ident: CR19 article-title: Paddy acreage mapping and yield prediction using sentinel-based optical and SAR data in Sahibganj district, Jharkhand (India) publication-title: Spat. Inform. Res. doi: 10.1007/s41324-019-00246-4 contributor: fullname: Parida – volume: 124 start-page: 254 year: 2016 end-page: 262 ident: CR56 article-title: Use of corn height measured with an acoustic sensor improves yield estimation with ground based active optical sensors publication-title: Comput. Electron Agric. doi: 10.1016/j.compag.2016.04.016 contributor: fullname: Denton – volume: 73 start-page: 101933 year: 2022 ident: CR64 article-title: Improving prediction of chickpea wilt severity using machine learning coupled with model combination techniques under field conditions publication-title: Ecol. Inform. doi: 10.1016/j.ecoinf.2022.101933 contributor: fullname: Das – ident: CR9 – volume: 57 start-page: 238 year: 1989 end-page: 247 ident: CR46 article-title: Discriminatory analysis. Nonparametric discrimination: Consistency properties publication-title: Int. Stat. Rev. doi: 10.2307/1403797 contributor: fullname: Hodges – volume: 52 start-page: 65 year: 2016 end-page: 81 ident: CR13 article-title: A comprehensive assessment of the correlations between field crop yields and commonly used MODIS products publication-title: Int. J. Appl. Earth Observ. Geoinform. doi: 10.1016/j.jag.2016.05.010 contributor: fullname: Johnson – ident: CR36 – volume: 130 start-page: 246 year: 2017 end-page: 255 ident: CR57 article-title: Predicting grain yield in rice using multi-temporal vegetation indices from UAV-based multispectral and digital imagery publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2017.05.003 contributor: fullname: Zhou – volume: 42 start-page: 2046 year: 2021 end-page: 2071 ident: CR75 article-title: Predicting paddy yield at spatial scale using optical and synthetic aperture radar (SAR) based satellite data in conjunction with field-based crop cutting experiment (CCE) data publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2020.1851063 contributor: fullname: Parida – volume: 15 start-page: 1 year: 2006 end-page: 28 ident: CR44 article-title: Support vector machines in R publication-title: J. Stat. Softw. doi: 10.18637/jss.v015.i09 contributor: fullname: Hornik – volume: 165 start-page: 012002 year: 2018 ident: CR63 article-title: Rice productivity prediction model design based on linear regression of spectral value using NDVI and LSWI combination on landsat-8 imagery publication-title: IOP Conf. Ser. Earth Environ. Sci. doi: 10.1088/1755-1315/165/1/012002 contributor: fullname: Prakosta Santu Aji – volume: 285–286 start-page: 107922 year: 2020 ident: CR81 article-title: Dynamic wheat yield forecasts are improved by a hybrid approach using a biophysical model and machine learning technique publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2020.107922 contributor: fullname: Feng – volume: 21 start-page: 591 year: 2020 end-page: 599 ident: CR5 article-title: Principles and practices of making agriculture sustainable: Crop yield prediction using random forest publication-title: Scalable Comput. Pract. Exp. doi: 10.12694/scpe.v21i4.1714 contributor: fullname: Ram – volume: 11 start-page: 1069 year: 2022 ident: CR90 article-title: The simplicity of XGBoost algorithm versus the complexity of random forest, support vector machine, and neural networks algorithms in urban forest classification publication-title: F1000Res doi: 10.12688/f1000research.124604.1 contributor: fullname: Furqon – volume: 69 start-page: 101618 year: 2022 ident: CR30 article-title: Field-scale rice yield prediction from sentinel-2 monthly image composites using machine learning algorithms publication-title: Ecol. Inform. doi: 10.1016/j.ecoinf.2022.101618 contributor: fullname: Son – volume: 147 start-page: 219 year: 2014 end-page: 231 ident: CR94 article-title: Near real-time prediction of US corn yields based on time-series MODIS data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.03.008 contributor: fullname: Arkebauer – volume: 11 start-page: 1441 year: 2019 ident: CR53 article-title: Crop NDVI monitoring based on sentinel 1 publication-title: Remote Sens. (Basel) doi: 10.3390/rs11121441 contributor: fullname: da Cunha – volume: 120 start-page: 106935 year: 2021 ident: CR32 article-title: Integrated phenology and climate in rice yields prediction using machine learning methods publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2020.106935 contributor: fullname: Guo – volume: 103 start-page: 17 year: 2021 end-page: 26 ident: CR92 article-title: Rice plant disease classification using color features: A machine learning paradigm publication-title: J. Plant Pathol. doi: 10.1007/s42161-020-00683-3 contributor: fullname: Pradhan – ident: CR18 – ident: CR43 – volume: 12 start-page: 508 year: 2020 ident: CR86 article-title: Wheat growth monitoring and yield estimation based on multi-rotor unmanned aerial vehicle publication-title: Remote Sens. (Basel) doi: 10.3390/rs12030508 contributor: fullname: Fu – volume: 11 start-page: 1745 year: 2019 ident: CR79 article-title: Potato yield prediction using machine learning techniques and sentinel 2 data publication-title: Remote Sens (Basel) doi: 10.3390/rs11151745 contributor: fullname: Casanova – ident: CR91 – ident: CR47 – volume: 111 start-page: 2545 year: 2019 end-page: 2557 ident: CR58 article-title: Relationship of drone-based vegetation indices with corn and sugarbeet yields publication-title: Agron. J. doi: 10.2134/agronj2019.04.0260 contributor: fullname: Day – ident: CR2 – volume: 12 start-page: 1352 year: 2022 ident: CR22 article-title: Enhancing smallholder wheat yield prediction through sensor fusion and phenology with machine learning and deep learning methods publication-title: Agriculture doi: 10.3390/agriculture12091352 contributor: fullname: Osgood – volume: 24 start-page: 137 year: 2021 end-page: 151 ident: CR87 article-title: Predicting within-field variability in grain yield and protein content of winter wheat using UAV-based multispectral imagery and machine learning approaches publication-title: Plant Prod. Sci. doi: 10.1080/1343943X.2020.1819165 contributor: fullname: Tanaka – volume: 114 start-page: 98 year: 2019 end-page: 111 ident: CR73 article-title: A ranking system for comparing models’ performance combining multiple statistical criteria and scenarios: The case of reference evapotranspiration models publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2019.01.005 contributor: fullname: Aschonitis – ident: CR6 – volume: 11 start-page: 349 year: 2023 ident: CR68 article-title: Hyperparameter search for machine learning algorithms for optimizing the computational complexity publication-title: Processes doi: 10.3390/pr11020349 contributor: fullname: Maarouf – volume: 30 start-page: 100962 year: 2023 ident: CR35 article-title: Machine learning model ensemble for predicting sugarcane yield through synergy of optical and SAR remote sensing publication-title: Remote Sens. Appl. contributor: fullname: Das – ident: CR40 – volume: 14 start-page: 5045 year: 2022 ident: CR74 article-title: Rice yield prediction and model interpretation based on satellite and climatic indicators using a transformer method publication-title: Remote Sens. (Basel) doi: 10.3390/rs14195045 contributor: fullname: Liu – volume: 177 start-page: 105709 year: 2020 ident: CR76 article-title: Crop yield prediction using machine learning: A systematic literature review publication-title: Comput. Electron Agric. doi: 10.1016/j.compag.2020.105709 contributor: fullname: Catal – volume: 40 start-page: 2217 year: 2017 end-page: 2223 ident: CR55 article-title: Crop canopy sensor orientation for late season nitrogen determination in corn publication-title: J. Plant Nutr. doi: 10.1080/01904167.2017.1346681 contributor: fullname: Rudnick – ident: CR69 – volume: 50 start-page: 895 year: 2022 end-page: 907 ident: CR15 article-title: Assessing the potentials of multi-temporal sentinel-1 SAR data for paddy yield forecasting using artificial neural network publication-title: J. Indian Soc. Remote Sens. doi: 10.1007/s12524-022-01499-7 contributor: fullname: Sivasankar – volume: 15 start-page: 064005 year: 2020 ident: CR26 article-title: Comparative assessment of environmental variables and machine learning algorithms for maize yield prediction in the US Midwest publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/ab7df9 contributor: fullname: Kang – ident: CR48 – volume: 115 start-page: 3468 year: 2011 end-page: 3478 ident: CR61 article-title: Comparison of different vegetation indices for the remote assessment of green leaf area index of crops publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.08.010 contributor: fullname: Peng – volume: 8 start-page: 377 year: 2017 end-page: 382 ident: CR11 article-title: Using sentinel-2 images to implement precision agriculture techniques in large arable fields: First results of a case study publication-title: Adv. Anim. Biosci. doi: 10.1017/S2040470017000784 contributor: fullname: Martínez-Casasnovas – start-page: 315 year: 2011 end-page: 317 ident: CR31 article-title: Yield prediction using artificial neural networks publication-title: Computer Networks and Information Technologies doi: 10.1007/978-3-642-19542-6_57 contributor: fullname: Chaba – volume: 11 start-page: 1026 year: 2021 ident: CR78 article-title: Estimation and forecasting of rice yield using phenology-based algorithm and linear regression model on sentinel-ii satellite data publication-title: Agriculture doi: 10.3390/agriculture11101026 contributor: fullname: Nazir – volume: 195 start-page: 106852 year: 2022 ident: CR85 article-title: Improving wheat yield prediction integrating proximal sensing and weather data with machine learning publication-title: Comput. Electron Agric. doi: 10.1016/j.compag.2022.106852 contributor: fullname: Ruan – volume: 11 start-page: 1363 year: 2021 ident: CR83 article-title: Deep learning-based estimation of crop biophysical parameters using multi-source and multi-temporal remote sensing observations publication-title: Agronomy doi: 10.3390/agronomy11071363 contributor: fullname: Bahrami – ident: CR3 – ident: CR38 – volume: 225 start-page: 93 year: 2019 end-page: 106 ident: CR50 article-title: Roughness and vegetation change detection: A pre-processing for soil moisture retrieval from multi-temporal SAR imagery publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.02.027 contributor: fullname: Rüdiger – ident: CR52 – volume: 2 start-page: 184 year: 1981 end-page: 194 ident: CR72 article-title: On the validation of models publication-title: Phys. Geogr. doi: 10.1080/02723646.1981.10642213 contributor: fullname: Willmott – volume: 21 start-page: 1406 year: 2021 ident: CR14 article-title: Prediction of crop yield using phenological information extracted from remote sensing vegetation index publication-title: Sensors doi: 10.3390/s21041406 contributor: fullname: Li – volume: 284 start-page: 107886 year: 2020 ident: CR77 article-title: Satellite-based soybean yield forecast: Integrating machine learning and weather data for improving crop yield prediction in southern Brazil publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2019.107886 contributor: fullname: Schwalbert – volume: 223 start-page: 7 year: 2020 ident: CR66 article-title: Package ‘caret’ publication-title: R. J. contributor: fullname: Kuhn – volume: 302 start-page: 109102 year: 2023 ident: CR84 article-title: Predicting maize yield in Northeast China by a hybrid approach combining biophysical modelling and machine learning publication-title: Field Crops Res. doi: 10.1016/j.fcr.2023.109102 contributor: fullname: Li – volume: 11 start-page: 1569 year: 2019 ident: CR51 article-title: Analyzing temporal and spatial characteristics of crop parameters using sentinel-1 backscatter data publication-title: Remote Sens. (Basel) doi: 10.3390/rs11131569 contributor: fullname: Weltzien – volume: 50 start-page: 885 year: 2007 end-page: 900 ident: CR71 article-title: Model evaluation guidelines for systematic quantification of accuracy in watershed simulations publication-title: Trans. ASABE doi: 10.13031/2013.23153 contributor: fullname: Moriasi – volume: 76 start-page: 102136 year: 2023 ident: CR20 article-title: Discrimination and monitoring of rice cultural types using dense time series of sentinel-1 SAR data publication-title: Ecol. Inform. doi: 10.1016/j.ecoinf.2023.102136 contributor: fullname: Nain – ident: CR41 – volume: 71 start-page: 101774 year: 2022 ident: CR65 article-title: Application of thermal and visible imaging to estimate stripe rust disease severity in wheat using supervised image classification methods publication-title: Ecol. Inform. doi: 10.1016/j.ecoinf.2022.101774 contributor: fullname: Banerjee – volume: 27 start-page: 100782 year: 2022 ident: 72624_CR88 publication-title: Remote Sens. Appl. contributor: fullname: TR Alabi – ident: 72624_CR40 – ident: 72624_CR18 doi: 10.1080/14498596.2021.1896393 – volume: 52 start-page: 849 year: 2012 ident: 72624_CR60 publication-title: Crop. Sci. doi: 10.2135/cropsci2011.04.0222 contributor: fullname: M Gutierrez – volume: 103 start-page: 17 year: 2021 ident: 72624_CR92 publication-title: J. Plant Pathol. doi: 10.1007/s42161-020-00683-3 contributor: fullname: VK Shrivastava – volume: 342 start-page: 109729 year: 2023 ident: 72624_CR34 publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2023.109729 contributor: fullname: W Yu – ident: 72624_CR47 doi: 10.1145/2939672.2939785 – volume: 40 start-page: 2217 year: 2017 ident: 72624_CR55 publication-title: J. Plant Nutr. doi: 10.1080/01904167.2017.1346681 contributor: fullname: TM Shaver – volume: 24 start-page: 580 year: 2021 ident: 72624_CR7 publication-title: Geo-Spat. Inform. Sci. doi: 10.1080/10095020.2021.1936656 contributor: fullname: DMG de la Torre – ident: 72624_CR38 – volume: 11 start-page: 1069 year: 2022 ident: 72624_CR90 publication-title: F1000Res doi: 10.12688/f1000research.124604.1 contributor: fullname: F Ramdani – volume: 195 start-page: 106852 year: 2022 ident: 72624_CR85 publication-title: Comput. Electron Agric. doi: 10.1016/j.compag.2022.106852 contributor: fullname: G Ruan – ident: 72624_CR9 doi: 10.3389/fpls.2019.00621 – volume: 50 start-page: 885 year: 2007 ident: 72624_CR71 publication-title: Trans. ASABE doi: 10.13031/2013.23153 contributor: fullname: DN Moriasi – volume: 41 start-page: 7868 year: 2020 ident: 72624_CR28 publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2020.1766148 contributor: fullname: N-T Son – volume: 11 start-page: 2384 year: 2019 ident: 72624_CR59 publication-title: Remote Sens. (Basel) doi: 10.3390/rs11202384 contributor: fullname: A Ali – volume: 15 start-page: 1 year: 2006 ident: 72624_CR44 publication-title: J. Stat. Softw. doi: 10.18637/jss.v015.i09 contributor: fullname: A Karatzoglou – start-page: 315 volume-title: Computer Networks and Information Technologies year: 2011 ident: 72624_CR31 doi: 10.1007/978-3-642-19542-6_57 contributor: fullname: S Baral – volume: 11 start-page: 11 year: 2019 ident: 72624_CR27 publication-title: Int. J. Intell. Syst. Appl. contributor: fullname: RA Medar – ident: 72624_CR69 doi: 10.1007/978-3-030-64583-0_11 – volume: 71 start-page: 101774 year: 2022 ident: 72624_CR65 publication-title: Ecol. Inform. doi: 10.1016/j.ecoinf.2022.101774 contributor: fullname: R Singh – volume: 52 start-page: 65 year: 2016 ident: 72624_CR13 publication-title: Int. J. Appl. Earth Observ. Geoinform. doi: 10.1016/j.jag.2016.05.010 contributor: fullname: DM Johnson – volume: 165 start-page: 012002 year: 2018 ident: 72624_CR63 publication-title: IOP Conf. Ser. Earth Environ. Sci. doi: 10.1088/1755-1315/165/1/012002 contributor: fullname: Y Prasetyo – volume: 17 start-page: 014505 year: 2023 ident: 72624_CR21 publication-title: J. Appl. Remote Sens. doi: 10.1117/1.JRS.17.014505 contributor: fullname: C Singha – ident: 72624_CR45 doi: 10.1016/B978-0-12-815739-8.00004-3 – ident: 72624_CR4 – volume: 14 start-page: 10520 year: 2021 ident: 72624_CR33 publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2021.3118707 contributor: fullname: Y Alebele – volume: 111 start-page: 2545 year: 2019 ident: 72624_CR58 publication-title: Agron. J. doi: 10.2134/agronj2019.04.0260 contributor: fullname: D Olson – volume: 21 start-page: 591 year: 2020 ident: 72624_CR5 publication-title: Scalable Comput. Pract. Exp. doi: 10.12694/scpe.v21i4.1714 contributor: fullname: SM Basha – volume: 11 start-page: 2568 year: 2019 ident: 72624_CR12 publication-title: Remote Sens (Basel) doi: 10.3390/rs11212568 contributor: fullname: B Tuvdendorj – ident: 72624_CR3 doi: 10.1080/10496505.2015.985546 – volume: 490 start-page: 254 year: 2012 ident: 72624_CR10 publication-title: Nature doi: 10.1038/nature11420 contributor: fullname: ND Mueller – ident: 72624_CR43 doi: 10.1214/aos/1176347963 – volume: 223 start-page: 7 year: 2020 ident: 72624_CR66 publication-title: R. J. contributor: fullname: M Kuhn – volume: 14 start-page: 3880 year: 2022 ident: 72624_CR80 publication-title: Remote Sens. (Basel) doi: 10.3390/rs14163880 contributor: fullname: M Bebie – volume: 225 start-page: 93 year: 2019 ident: 72624_CR50 publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.02.027 contributor: fullname: L Zhu – volume: 115 start-page: 3468 year: 2011 ident: 72624_CR61 publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.08.010 contributor: fullname: A Viña – ident: 72624_CR54 – volume: 11 start-page: 1745 year: 2019 ident: 72624_CR79 publication-title: Remote Sens (Basel) doi: 10.3390/rs11151745 contributor: fullname: D Gómez – volume: 21 start-page: 1406 year: 2021 ident: 72624_CR14 publication-title: Sensors doi: 10.3390/s21041406 contributor: fullname: Z Ji – volume: 30 start-page: 100962 year: 2023 ident: 72624_CR35 publication-title: Remote Sens. Appl. contributor: fullname: A Das – volume: 11 start-page: 349 year: 2023 ident: 72624_CR68 publication-title: Processes doi: 10.3390/pr11020349 contributor: fullname: YA Ali – volume: 57 start-page: 238 year: 1989 ident: 72624_CR46 publication-title: Int. Stat. Rev. doi: 10.2307/1403797 contributor: fullname: E Fix – ident: 72624_CR48 – volume: 177 start-page: 105709 year: 2020 ident: 72624_CR76 publication-title: Comput. Electron Agric. doi: 10.1016/j.compag.2020.105709 contributor: fullname: T Klompenburg – volume: 11 start-page: 1441 year: 2019 ident: 72624_CR53 publication-title: Remote Sens. (Basel) doi: 10.3390/rs11121441 contributor: fullname: R Filgueiras – volume: 50 start-page: 895 year: 2022 ident: 72624_CR15 publication-title: J. Indian Soc. Remote Sens. doi: 10.1007/s12524-022-01499-7 contributor: fullname: PK Sharma – volume: 15 start-page: 064005 year: 2020 ident: 72624_CR26 publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/ab7df9 contributor: fullname: Y Kang – volume: 69 start-page: 101618 year: 2022 ident: 72624_CR30 publication-title: Ecol. Inform. doi: 10.1016/j.ecoinf.2022.101618 contributor: fullname: N-T Son – ident: 72624_CR36 – volume: 42 start-page: 2046 year: 2021 ident: 72624_CR75 publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2020.1851063 contributor: fullname: AK Ranjan – volume: 124 start-page: 254 year: 2016 ident: 72624_CR56 publication-title: Comput. Electron Agric. doi: 10.1016/j.compag.2016.04.016 contributor: fullname: LK Sharma – volume: 76 start-page: 102136 year: 2023 ident: 72624_CR20 publication-title: Ecol. Inform. doi: 10.1016/j.ecoinf.2023.102136 contributor: fullname: S Sah – volume: 11 start-page: 1 year: 2021 ident: 72624_CR23 publication-title: Sci. Rep. doi: 10.1038/s41598-021-89779-z contributor: fullname: S Khaki – volume: 3 start-page: 405 year: 2022 ident: 72624_CR17 publication-title: ISPRS Ann. Photogramm. Remote Sens. Spat. Inform. Sci. doi: 10.5194/isprs-annals-V-3-2022-405-2022 contributor: fullname: M Hosseini – volume: 302 start-page: 109102 year: 2023 ident: 72624_CR84 publication-title: Field Crops Res. doi: 10.1016/j.fcr.2023.109102 contributor: fullname: J Li – ident: 72624_CR93 doi: 10.1609/aaai.v31i1.11172 – volume: 24 start-page: 137 year: 2021 ident: 72624_CR87 publication-title: Plant Prod. Sci. doi: 10.1080/1343943X.2020.1819165 contributor: fullname: X Zhou – volume: 9 start-page: 119 year: 2017 ident: 72624_CR37 publication-title: Remote Sens (Basel) doi: 10.3390/rs9020119 contributor: fullname: N Torbick – volume: 45 start-page: 5 year: 2001 ident: 72624_CR42 publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 contributor: fullname: L Breiman – volume: 14 start-page: 5045 year: 2022 ident: 72624_CR74 publication-title: Remote Sens. (Basel) doi: 10.3390/rs14195045 contributor: fullname: Y Liu – volume: 46 start-page: 931 year: 2014 ident: 72624_CR1 publication-title: Nat. Genet. doi: 10.1038/ng.3071 contributor: fullname: MD Purugganan – volume: 13 start-page: 1538 year: 2014 ident: 72624_CR62 publication-title: J. Integr. Agric. doi: 10.1016/S2095-3119(14)60817-0 contributor: fullname: M Wang – volume: 114 start-page: 98 year: 2019 ident: 72624_CR73 publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2019.01.005 contributor: fullname: VG Aschonitis – volume: 285–286 start-page: 107922 year: 2020 ident: 72624_CR81 publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2020.107922 contributor: fullname: P Feng – volume: 8 start-page: 377 year: 2017 ident: 72624_CR11 publication-title: Adv. Anim. Biosci. doi: 10.1017/S2040470017000784 contributor: fullname: A Escolà – ident: 72624_CR70 doi: 10.1080/10106049.2022.2160831 – volume: 11 start-page: 1026 year: 2021 ident: 72624_CR78 publication-title: Agriculture doi: 10.3390/agriculture11101026 contributor: fullname: A Nazir – volume: 27 start-page: 399 year: 2019 ident: 72624_CR19 publication-title: Spat. Inform. Res. doi: 10.1007/s41324-019-00246-4 contributor: fullname: AK Ranjan – volume: 307 start-page: 108530 year: 2021 ident: 72624_CR29 publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2021.108530 contributor: fullname: S Ju – ident: 72624_CR16 doi: 10.1080/10106049.2022.2113452 – volume: 14 start-page: 9974 year: 2022 ident: 72624_CR8 publication-title: Sustainability doi: 10.3390/su14169974 contributor: fullname: M Mathenge – volume: 12 start-page: 1352 year: 2022 ident: 72624_CR22 publication-title: Agriculture doi: 10.3390/agriculture12091352 contributor: fullname: AA Tesfaye – volume: 10 start-page: 1046 year: 2020 ident: 72624_CR24 publication-title: Agronomy doi: 10.3390/agronomy10071046 contributor: fullname: F Abbas – ident: 72624_CR49 – ident: 72624_CR25 doi: 10.3390/agronomy9090496 – volume: 147 start-page: 219 year: 2014 ident: 72624_CR94 publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.03.008 contributor: fullname: T Sakamoto – ident: 72624_CR2 – volume: 90 start-page: 116061 year: 2021 ident: 72624_CR39 publication-title: Signal Process. Image Commun. doi: 10.1016/j.image.2020.116061 contributor: fullname: N Karimi – volume: 130 start-page: 246 year: 2017 ident: 72624_CR57 publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2017.05.003 contributor: fullname: X Zhou – volume: 284 start-page: 107886 year: 2020 ident: 72624_CR77 publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2019.107886 contributor: fullname: RA Schwalbert – ident: 72624_CR41 doi: 10.18637/jss.v033.i01 – volume: 2 start-page: 184 year: 1981 ident: 72624_CR72 publication-title: Phys. Geogr. doi: 10.1080/02723646.1981.10642213 contributor: fullname: CJ Willmott – volume: 120 start-page: 106935 year: 2021 ident: 72624_CR32 publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2020.106935 contributor: fullname: Y Guo – ident: 72624_CR52 doi: 10.34044/j.anres.2022.56.2.09 – volume: 11 start-page: 1363 year: 2021 ident: 72624_CR83 publication-title: Agronomy doi: 10.3390/agronomy11071363 contributor: fullname: H Bahrami – volume: 73 start-page: 101933 year: 2022 ident: 72624_CR64 publication-title: Ecol. Inform. doi: 10.1016/j.ecoinf.2022.101933 contributor: fullname: RN Singh – ident: 72624_CR91 doi: 10.3390/app9081621 – volume: 11 start-page: 1569 year: 2019 ident: 72624_CR51 publication-title: Remote Sens. (Basel) doi: 10.3390/rs11131569 contributor: fullname: K Harfenmeister – volume: 109 start-page: 107538 year: 2021 ident: 72624_CR89 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2021.107538 contributor: fullname: R Shi – ident: 72624_CR67 – ident: 72624_CR6 doi: 10.1016/bs.agron.2018.11.002 – volume: 13 start-page: 18814 year: 2023 ident: 72624_CR82 publication-title: Sci. Rep. doi: 10.1038/s41598-023-45682-3 contributor: fullname: R Singh – volume: 12 start-page: 508 year: 2020 ident: 72624_CR86 publication-title: Remote Sens. (Basel) doi: 10.3390/rs12030508 contributor: fullname: Z Fu |
SSID | ssj0000529419 |
Score | 2.4777806 |
Snippet | In an era marked by growing global population and climate variability, ensuring food security has become a paramount concern. Rice, being a staple crop for... Abstract In an era marked by growing global population and climate variability, ensuring food security has become a paramount concern. Rice, being a staple... |
SourceID | doaj pubmedcentral proquest crossref pubmed springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 21674 |
SubjectTerms | 631/158/2456 631/1647/245 631/57 Agricultural production Biomass Cereal crops Climate prediction Climate variability Crop yield Crops Crops, Agricultural - growth & development Cubist Decision making Food security Humanities and Social Sciences LAI Learning algorithms Machine Learning Moisture content multidisciplinary Neural networks Neural Networks, Computer Oryza - growth & development Radar Regression analysis Remote sensing Remote Sensing Technology - methods Resource management Rice Science Science (multidisciplinary) Seasons Summer XGB |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hSkhcEG9SWmQkbhA1sR0nPraIqkKCQ6FSb5af0EOT1Wb30L_Ar2bGyS5dHuLCJYpsSxnNI_7GM54BeO2Fwn8eV6WwKZQyKl12kbsyVs6FOogQ8i3Xj5_U2YX8cNlc3mr1RTlhU3ngiXFHqraocsn6xmvJq6hb9METftp61znr89-3bm45U1NVb65lredbMpXojkbcqeg2GZclkoZPubMT5YL9f0KZvydL_hIxzRvR6QO4PyNIdjxR_hDuxP4R3J16St48hu_naPrshhLT2GJJYRhiPZv78bBNeQgaGxJzV8NilhSjKuDXlB0zMjqdZZ-Pz5ntAxsW-bybLSOKNbKRUt77r4xyS9k6v17njMzI5hYUOED9dcYncHH6_su7s3JuuFB60XarsnXSO0HBWNXGxDWvY9AJARrXrW4sgqFWU6-hpCrpU1O5mrskURpRe1wfxFPY64c-PgfGpZXKeSUDjzKgD44wRFgRXN1EXwdXwJsN881iqqthcjxcdGYSlUE6TBaVkQWckHy2K6kmdh5ATTGzpph_aUoBBxvpmtlQR4PoViFpCPwKeLWdRhOjuInt47Ce1khFwKeAZ5MybClBeNlpKasCuh012SF1d6a_-pbLeKMniv5k2xTwdqNRP-n6Oy_2_wcvXsA9TqZAvTDaA9hbLdfxENHVyr3MhvQDbj4lcQ priority: 102 providerName: Directory of Open Access Journals – databaseName: AUTh Library subscriptions: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagFRIXxJtAQUbiBlET23HiE2pRqwqJCi1U6s3yK20PTcJm99C_wK9mxnG2Wl6XKHJ8mHjGM-OZ8XyEvHNcgs5jMuem9bkIUuVNYDYPhbW-9Nz7eMv1y6k8OROfz6vzFHAbU1nlrBOjova9wxj5PrghEkwZWOiPw48cUaMwu5ogNO6SXVYKTNPuHh6dfl1soiyYxxKlSrdlCt7sj2Cx8FYZEzmQCE-xZZFi4_6_eZt_Fk3-ljmNBun4IXmQPEl6MLH-EbkTusfk3oQtefOE_FyACqA3WKBGhyWmY5AFNOHy0LlNBI71LbVX_ZA4RrEb-DVWyYwUo7T028GCms7Tfohxb7oMwN5ARyx97y4o1pjSdXy9jpWZgSYoChhAnJ3xKTk7Pvr-6SRPwAu543WzymsrnOWYlJV1aJliZfCqBUeNqVpVBpyiWiHmUCsL4dqqsCWzreBtCMrBfM-fkZ2u78ILQpkwQlonhWdBeDiLAw-54d6WVXCltxl5Py--Hqb-GjrmxXmjJ1ZpoENHVmmRkUPkz2Ym9saOA_3yQqetpmVpQEm1xlVOCVYEVRcKaLNgYmxjjcvI3sxdnTbsqG_FKyNvN59hq2H-xHShX09zhEQHKCPPJ2HYUAJuZqOEKDLSbInJFqnbX7qry9jOG06kcK6sq4x8mCXqlq5_r8XL___GK3KfoZAj2kW9R3ZWy3V4Df7Tyr5Jm-QXgo4ctQ priority: 102 providerName: ProQuest – databaseName: SpringerOpen dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BERIX1PJqaIuMxA0iEttx4mNZUVVIcChU6s3yK9BDk9Vm99C_wK9mxskuCpQDlyiynWjkmbE_e14Ab7xQuOZxlQvbhlxGpfMmcpfHwrlQBhFCinL9_EWdX8pPV9XVlCaHYmFm9nvRvB9wg6EgMC5z_CM-5X14UJWqIAleqMXuPoUsVrLUU1zM3Z_O9p6Uov8uXPm3e-QfNtK09Zztw-MJM7LTkckHcC92T-DhWEXy9in8vEBlZ7fkisaWKzK80GSzqQIP2yaEoLa-Ze66X068YZT3-4b8YQZG97Hs6-kFs11g_TLdcLNVREZGNpCTe_edkTcp26TXm-SDGdlUdAIbqKLO8Awuzz5-W5znU4mF3Iu6Wee1k94JMr-qOrZc8zIG3SIk47rWlUX4U2uqLtSqQvq2KlzJXStFG6P2OD6I57DX9V08BMallcp5JQOPMuCpG4GHsCK4soq-DC6Dt9vJN8sxk4ZJFnDRmJFVBukwiVVGZvCB-LMbSVmwUwMKh5mUyqjS4nLUWl95LXkRdV1opM3hZuIaZ30Gx1vumkk1B4N4ViFpCPUyeL3rRqUiS4ntYr8Zx0hFUCeDF6Mw7ChBQNloKYsMmpmYzEid93TXP1Libjx74gmyrjJ4t5Wo33T9ey5e_t_wI3jESeipzkV9DHvr1SaeIHJau1dJZX4Bl2QUXA priority: 102 providerName: Springer Nature |
Title | Rice yield prediction through integration of biophysical parameters with SAR and optical remote sensing data using machine learning models |
URI | https://link.springer.com/article/10.1038/s41598-024-72624-4 https://www.ncbi.nlm.nih.gov/pubmed/39289440 https://www.proquest.com/docview/3106223256 https://www.proquest.com/docview/3106460613 https://pubmed.ncbi.nlm.nih.gov/PMC11408675 https://doaj.org/article/61a225fac5c9420e97093febeacb8bac |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB6SlEIvpe-6TRcVemudtSVZto7JkhAKCWHbQG7Gejhd6NrLPg75C_3VnZHtbbaPSy_GlgUePDPSJ82nGYAPVigc87iKRVW7WHql48JzE_vEGJc64Vw45Xpxqc6v5eeb7GYP1HAWJpD2rZkdNd_nR83sW-BWLuZ2PPDExlcXE8TwiMTzbLwP-7kQ99boXUZvrmWq-xMyiSjGK5yl6CQZlzGKhVeqxoPAoNCSNj3uTUghb__fwOafnMnfAqdhPjp7Ao97IMmOO4Gfwp5vnsHDrrTk3XP4McURgN0RP40tlhSNIQ2wviwPG7JEUFtbMzNrF73CGCUDnxNJZsVok5Z9OZ6yqnGsXYRtb7b0qF3PVsR8b24ZUUzZJtzOAzHTs74SBTZQmZ3VC7g-O_06OY_7uguxFXmxjnMjrREUk1W5r7nmqXe6RpzGda6zCjFRrqnkUK0SaessMSk3tRS199pifydewkHTNv41MC4rqYxV0nEvHS7FEY2ISjiTZt6mzkTwcfj55aJLr1GGsLgoyk5rJcpRBq2VMoIT0s-2J6XGDg3t8rbsDaRUaYVjVF3ZzGrJE6_zRKNsBmcYU5jKRnA4aLfs_XVVIshVKBrivwjeb1-jp1H4pGp8u-n6SEX4J4JXnTFsJRmMKYJix0x2RN19g8YdsnkPxhzBp8Gifsn173_x5v-_9BYecfIFKoSRH8LBernx7xBarc0I_ekmH8GDk9PLqyk-TdRkFLYpRsHHfgIldSke |
link.rule.ids | 230,315,733,786,790,870,891,2115,12083,21416,27955,27956,31752,31753,33777,33778,41153,42222,43343,43838,51609,53825,53827,74100,74657 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCNEL4lkCBYzEDaImtuPEJ1QQ1QJtD6WV9mbFj5QemqSb3UP_Ar-aGcfZanldosjxYeIZz4xnxvMR8tZyCTqPyZTXjUuFlyqtPDOpz4xxuePOhVuuR8dydia-zot5DLgNsaxy0olBUbvOYox8D9wQCaYMLPSH_ipF1CjMrkYIjdvkjuBcoJyX83IdY8EslshVvCuT8WpvAHuFd8qYSIFAeIoNexTa9v_N1_yzZPK3vGkwRwcPyP3oR9L9kfEPyS3fPiJ3R2TJ68fk5wkoAHqN5Wm0X2AyBhlAIyoPnZpE4FjXUHPR9ZFfFHuBX2KNzEAxRku_75_QunW060PUmy48MNfTAQvf23OKFaZ0FV4vQ12mpxGIAgYQZWd4Qs4OPp9-mqURdiG1vKyWaWmENRxTsrL0DVMs90414KYxVaqiBpeoVIg41MhM2KbITM5MI3jjvbIw3_GnZKvtWv-MUCZqIY2VwjEvHJzEgYO85s7khbe5Mwl5Ny2-7sfuGjpkxXmlR1ZpoEMHVmmRkI_In_VM7IwdBrrFuY4bTcu8BhXV1LawSrDMqzJTQJsBA2MqU9uE7E7c1XG7DvpGuBLyZv0ZNhpmT-rWd6txjpDo_iRkZxSGNSXgZFZKiCwh1YaYbJC6-aW9-BGaecN5FE6VZZGQ95NE3dD177V4_v_feE3uzU6PDvXhl-NvL8g2Q4FH3Ityl2wtFyv_EjyppXkVtssvP00ePA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCMQF8SalgJG4QbSJ7TjxCZXHqrwqVKi0Nyt-pPTQJN3sHvoX-NXMOM5Wy-sSRY4PE8_TnvF8hLywXILNYzLldeNS4aVKK89M6jNjXO64c-GW65dDeXAsPi6KRax_GmJZ5WQTg6F2ncUz8hmEIRJcGXjoWRPLIr6-m7_uz1NEkMJMa4TTuEqugZfMEMahXJSb8xbMaIlcxXszGa9mA_guvF_GRArEwlNs-abQwv9vceef5ZO_5VCDa5rfJrdiTEn3RyG4Q6749i65PqJMXtwjP4_AGNALLFWj_RITM8gMGhF66NQwAse6hprTro-8o9gX_AzrZQaK57X02_4RrVtHuz6cgNOlB0Z7OmARfHtCsdqUrsPrWajR9DSCUsAAIu4M98nx_P33twdphGBILS-rVVoaYQ3H9KwsfcMUy71TDYRsTJWqqCE8KhWiDzUyE7YpMpMz0wjeeK8szHf8Adlpu9Y_IpSJWkhjpXDMCwe7cuAmr7kzeeFt7kxCXk6Lr_ux04YOGXJe6ZFVGujQgVVaJOQN8mczE7tkh4FueaKj0mmZ12CumtoWVgmWeVVmCmgz4GxMZWqbkL2Juzqq7qAvBS0hzzefQekwk1K3vluPc4TEUCghD0dh2FACAWelhMgSUm2JyRap21_a0x-hsTfsTWGHWRYJeTVJ1CVd_16L3f__xjNyAzRFf_5w-OkxuclQ3hECo9wjO6vl2j-BoGplngZt-QWHziJo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rice+yield+prediction+through+integration+of+biophysical+parameters+with+SAR+and+optical+remote+sensing+data+using+machine+learning+models&rft.jtitle=Scientific+reports&rft.au=Sah%2C+Sonam&rft.au=Haldar%2C+Dipanwita&rft.au=Singh%2C+R+N&rft.au=Das%2C+B&rft.date=2024-09-17&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft.spage=21674&rft_id=info:doi/10.1038%2Fs41598-024-72624-4&rft_id=info%3Apmid%2F39289440&rft.externalDocID=39289440 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |