Extended CODAS method for MAGDM with $ 2 $-tuple linguistic $ T $-spherical fuzzy sets
In the literature, extensions of common fuzzy sets have been proposed one after another. The recent addition is spherical fuzzy sets theory, which is based on three independent membership parameters established on a unit sphere with a restriction linked to their squared summation. This article uses...
Saved in:
Published in | AIMS mathematics Vol. 8; no. 2; pp. 3428 - 3468 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
AIMS Press
01.01.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 2473-6988 2473-6988 |
DOI | 10.3934/math.2023176 |
Cover
Loading…
Abstract | In the literature, extensions of common fuzzy sets have been proposed one after another. The recent addition is spherical fuzzy sets theory, which is based on three independent membership parameters established on a unit sphere with a restriction linked to their squared summation. This article uses the new extension that presents bigger domains for each parameter for production design. A systematic approach for determining customer demands or requirements, Quality Function Deployment (QFD) converts them into the final production to fulfill these demands in a decision-making environment. In order to prevent information loss during the decision-making process, it offers a useful technique to describe the linguistic analysis in terms of 2-tuples. This research introduces a novel decision-making method utilizing the 2-tuple linguistic $ T $-spherical fuzzy numbers (2TL$ T $-SFNs) in order to select the best alternative to manufacturing a linear delta robot. Taking into account the interaction between the attributes, we develop the 2TL$ T $-SF Hamacher (2TL$ T $-SFH) operators by using innovative operational rules. These operators include the 2TL$ T $-SFH weighted average (2TL$ T $-SFHWA) operator, 2TL$ T $-SFH ordered weighted average (2TL$ T $-SFHOWA) operator, 2TL$ T $-SFH hybrid average (2TL$ T $-SFHHA) operator, 2TL$ T $-SFH weighted geometric (2TL$ T $-SFHWG) operator, 2TL$ T $-SFH ordered weighted geometric (2TL$ T $-SFHOWG) operator, and 2TL$ T $-SFH hybrid geometric (2TL$ T $-SFHHG) operator. In addition, we discuss the properties of 2TL$ T $-SFH operators such as idempotency, boundedness, and monotonicity. We develop a novel approach according to the CODAS (Combinative Distance-based Assessment) model in order to deal with the problems of the 2TL$ T $-SF multi-attribute group decision-making (MAGDM) environment. Finally, to validate the feasibility of the given strategy, we employ a quantitative example to select the best alternative to manufacture a linear delta robot. The suggested information-based decision-making methodology which is more extensively adaptable than existing techniques prevents the risk of data loss and makes rational decisions. |
---|---|
AbstractList | In the literature, extensions of common fuzzy sets have been proposed one after another. The recent addition is spherical fuzzy sets theory, which is based on three independent membership parameters established on a unit sphere with a restriction linked to their squared summation. This article uses the new extension that presents bigger domains for each parameter for production design. A systematic approach for determining customer demands or requirements, Quality Function Deployment (QFD) converts them into the final production to fulfill these demands in a decision-making environment. In order to prevent information loss during the decision-making process, it offers a useful technique to describe the linguistic analysis in terms of 2-tuples. This research introduces a novel decision-making method utilizing the 2-tuple linguistic T-spherical fuzzy numbers (2TLT-SFNs) in order to select the best alternative to manufacturing a linear delta robot. Taking into account the interaction between the attributes, we develop the 2TLT-SF Hamacher (2TLT-SFH) operators by using innovative operational rules. These operators include the 2TLT-SFH weighted average (2TLT-SFHWA) operator, 2TLT-SFH ordered weighted average (2TLT-SFHOWA) operator, 2TLT-SFH hybrid average (2TLT-SFHHA) operator, 2TLT-SFH weighted geometric (2TLT-SFHWG) operator, 2TLT-SFH ordered weighted geometric (2TLT-SFHOWG) operator, and 2TLT-SFH hybrid geometric (2TLT-SFHHG) operator. In addition, we discuss the properties of 2TLT-SFH operators such as idempotency, boundedness, and monotonicity. We develop a novel approach according to the CODAS (Combinative Distance-based Assessment) model in order to deal with the problems of the 2TLT-SF multi-attribute group decision-making (MAGDM) environment. Finally, to validate the feasibility of the given strategy, we employ a quantitative example to select the best alternative to manufacture a linear delta robot. The suggested information-based decision-making methodology which is more extensively adaptable than existing techniques prevents the risk of data loss and makes rational decisions. In the literature, extensions of common fuzzy sets have been proposed one after another. The recent addition is spherical fuzzy sets theory, which is based on three independent membership parameters established on a unit sphere with a restriction linked to their squared summation. This article uses the new extension that presents bigger domains for each parameter for production design. A systematic approach for determining customer demands or requirements, Quality Function Deployment (QFD) converts them into the final production to fulfill these demands in a decision-making environment. In order to prevent information loss during the decision-making process, it offers a useful technique to describe the linguistic analysis in terms of 2-tuples. This research introduces a novel decision-making method utilizing the 2-tuple linguistic $ T $-spherical fuzzy numbers (2TL$ T $-SFNs) in order to select the best alternative to manufacturing a linear delta robot. Taking into account the interaction between the attributes, we develop the 2TL$ T $-SF Hamacher (2TL$ T $-SFH) operators by using innovative operational rules. These operators include the 2TL$ T $-SFH weighted average (2TL$ T $-SFHWA) operator, 2TL$ T $-SFH ordered weighted average (2TL$ T $-SFHOWA) operator, 2TL$ T $-SFH hybrid average (2TL$ T $-SFHHA) operator, 2TL$ T $-SFH weighted geometric (2TL$ T $-SFHWG) operator, 2TL$ T $-SFH ordered weighted geometric (2TL$ T $-SFHOWG) operator, and 2TL$ T $-SFH hybrid geometric (2TL$ T $-SFHHG) operator. In addition, we discuss the properties of 2TL$ T $-SFH operators such as idempotency, boundedness, and monotonicity. We develop a novel approach according to the CODAS (Combinative Distance-based Assessment) model in order to deal with the problems of the 2TL$ T $-SF multi-attribute group decision-making (MAGDM) environment. Finally, to validate the feasibility of the given strategy, we employ a quantitative example to select the best alternative to manufacture a linear delta robot. The suggested information-based decision-making methodology which is more extensively adaptable than existing techniques prevents the risk of data loss and makes rational decisions. |
Author | Saeed, Muhammad Ramzan Akram, Muhammad Naz, Sumera Santos-García, Gustavo |
Author_xml | – sequence: 1 givenname: Muhammad surname: Akram fullname: Akram, Muhammad organization: Department of Mathematics, University of the Punjab, New Campus, Lahore 54590, Pakistan – sequence: 2 givenname: Sumera surname: Naz fullname: Naz, Sumera organization: Department of Mathematics, Division of Science and Technology, University of Education, Lahore, Pakistan – sequence: 3 givenname: Gustavo surname: Santos-García fullname: Santos-García, Gustavo organization: IME, Universidad de Salamanca, Salamanca 37007, Spain – sequence: 4 givenname: Muhammad Ramzan surname: Saeed fullname: Saeed, Muhammad Ramzan organization: Department of Mathematics, Division of Science and Technology, University of Education, Lahore, Pakistan |
BookMark | eNptkEtLAzEUhYNU8LnzB2Th0tFMkk4yy1K1CpUufGzDnTycyHRSkhStv97Rioi4uofDOR-Xc4BGfegtQiclOWc14xdLyO05JZSVotpB-5QLVlS1lKNfeg8dp_RCCKEl5VTwffR09ZZtb6zB08Xl5B4vbW6DwS5EfDeZXd7hV59bfIopPi3yetVZ3Pn-ee1T9nqwHwY7rVobvYYOu_X7-wYnm9MR2nXQJXv8fQ_R4_XVw_SmmC9mt9PJvNBMyFyImoEkY25EJbWTJZeNE1VjGm6kLTU0hpuamjFl3GlWmXHZCMOY0Y4zKVjFDtHtlmsCvKhV9EuIGxXAqy8jxGcFcXi1s4oDSBgL4ayTQ1sCgLYV54RYqCjwgXW2ZekYUorW_fBKoj4nVp8Tq--Jhzj9E9c-Q_ahzxF893_pA4HIf6k |
CitedBy_id | crossref_primary_10_1007_s41066_024_00481_7 crossref_primary_10_3934_math_2023708 crossref_primary_10_1016_j_engappai_2023_105892 crossref_primary_10_1007_s41066_023_00442_6 crossref_primary_10_1109_TEM_2024_3488325 crossref_primary_10_1007_s13042_023_01911_9 crossref_primary_10_3934_math_2024047 crossref_primary_10_1007_s41066_023_00432_8 crossref_primary_10_1007_s41066_023_00433_7 crossref_primary_10_1007_s41066_023_00437_3 crossref_primary_10_1109_ACCESS_2024_3412193 crossref_primary_10_1007_s40314_025_03111_3 crossref_primary_10_1007_s00500_023_08739_z crossref_primary_10_1016_j_eswa_2024_126162 crossref_primary_10_1007_s11227_023_05678_2 crossref_primary_10_1007_s00500_025_10417_1 crossref_primary_10_1109_ACCESS_2025_3548889 crossref_primary_10_3934_math_2023539 crossref_primary_10_1007_s41066_023_00388_9 crossref_primary_10_1155_2023_1487724 crossref_primary_10_1016_j_engappai_2025_110080 crossref_primary_10_3389_frai_2024_1496689 crossref_primary_10_1007_s10462_023_10461_z crossref_primary_10_1016_j_engappai_2024_108165 crossref_primary_10_1016_j_neucom_2024_128593 crossref_primary_10_1016_j_heliyon_2024_e33004 crossref_primary_10_1038_s41598_023_35909_8 |
Cites_doi | 10.3934/mbe.2022177 10.1002/int.21978 10.1007/s00500-021-05771-9 10.1016/0020-0255(75)90036-5 10.1016/j.eswa.2020.114311 10.1002/int.20498 10.1007/s00500-021-06231-0 10.15625/1813-9663/30/4/5032 10.1007/s10668-021-01742-0 10.1007/s10489-021-02853-x 10.1155/2022/8239263 10.1142/S0218488500000381 10.1016/j.eswa.2021.115088 10.1007/s40314-019-0773-0 10.1007/s13042-021-01425-2 10.1002/int.22338 10.1002/int.22514 10.1155/2022/5075998 10.1007/s10462-020-09925-3 10.1007/s13369-020-05313-9 10.1002/int.22563 10.3846/tede.2020.11970 10.1109/TFUZZ.2013.2278989 10.1007/s12652-020-02600-z 10.1111/exsy.13005 10.1007/s13042-020-01208-1 10.1109/IAEAC.2017.8054284 10.1007/s00500-022-07208-3 10.1109/91.890332 10.3233/JIFS-210366 10.31181/dmame2003134p 10.1155/2022/4523287 10.1002/int.22423 10.1016/S0165-0114(86)80034-3 10.2991/ijcis.d.201204.001 10.1007/s12652-022-03746-8 10.1007/s00521-018-3521-2 10.1109/TFUZZ.2003.822678 10.1007/s10489-020-02148-7 10.1016/S0165-0114(99)00024-X 10.1088/1402-4896/ac7980 10.1007/s40314-021-01670-9 10.3934/math.2022966 10.1109/ACCESS.2021.3129807 10.1007/s10462-019-09780-x 10.3233/JIFS-179223 10.1007/s10489-021-02921-2 10.1007/s40747-021-00446-2 10.1002/int.22303 10.1016/j.eswa.2021.114644 10.1109/TFUZZ.2016.2604005 10.1016/S0019-9958(65)90241-X 10.1007/s10489-019-01532-2 10.1007/s00500-021-05658-9 10.3390/sym11121498 10.3233/JIFS-181401 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.3934/math.2023176 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2473-6988 |
EndPage | 3468 |
ExternalDocumentID | oai_doaj_org_article_4aa8a577fef84388aaace64400ea62a4 10_3934_math_2023176 |
GroupedDBID | AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV CITATION EBS FRJ GROUPED_DOAJ IAO ITC M~E OK1 RAN |
ID | FETCH-LOGICAL-c378t-793a8054d768cf8148bf76bdb4d8e1cabd4d92d5234fc36d51b7d33dcf4387363 |
IEDL.DBID | DOA |
ISSN | 2473-6988 |
IngestDate | Wed Aug 27 01:29:35 EDT 2025 Thu Apr 24 23:12:03 EDT 2025 Tue Jul 01 03:56:58 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c378t-793a8054d768cf8148bf76bdb4d8e1cabd4d92d5234fc36d51b7d33dcf4387363 |
OpenAccessLink | https://doaj.org/article/4aa8a577fef84388aaace64400ea62a4 |
PageCount | 41 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_4aa8a577fef84388aaace64400ea62a4 crossref_primary_10_3934_math_2023176 crossref_citationtrail_10_3934_math_2023176 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-01-01 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | AIMS mathematics |
PublicationYear | 2023 |
Publisher | AIMS Press |
Publisher_xml | – name: AIMS Press |
References | key-10.3934/math.2023176-39 key-10.3934/math.2023176-38 key-10.3934/math.2023176-42 key-10.3934/math.2023176-41 key-10.3934/math.2023176-44 key-10.3934/math.2023176-43 key-10.3934/math.2023176-46 key-10.3934/math.2023176-45 key-10.3934/math.2023176-48 key-10.3934/math.2023176-47 key-10.3934/math.2023176-40 key-10.3934/math.2023176-28 key-10.3934/math.2023176-27 key-10.3934/math.2023176-29 key-10.3934/math.2023176-31 key-10.3934/math.2023176-30 key-10.3934/math.2023176-33 key-10.3934/math.2023176-32 key-10.3934/math.2023176-35 key-10.3934/math.2023176-34 key-10.3934/math.2023176-37 key-10.3934/math.2023176-36 key-10.3934/math.2023176-17 key-10.3934/math.2023176-16 key-10.3934/math.2023176-19 key-10.3934/math.2023176-18 key-10.3934/math.2023176-20 key-10.3934/math.2023176-63 key-10.3934/math.2023176-22 key-10.3934/math.2023176-21 key-10.3934/math.2023176-24 key-10.3934/math.2023176-23 key-10.3934/math.2023176-26 key-10.3934/math.2023176-25 key-10.3934/math.2023176-60 key-10.3934/math.2023176-62 key-10.3934/math.2023176-61 key-10.3934/math.2023176-1 key-10.3934/math.2023176-2 key-10.3934/math.2023176-3 key-10.3934/math.2023176-4 key-10.3934/math.2023176-49 key-10.3934/math.2023176-5 key-10.3934/math.2023176-6 key-10.3934/math.2023176-7 key-10.3934/math.2023176-8 key-10.3934/math.2023176-9 key-10.3934/math.2023176-53 key-10.3934/math.2023176-52 key-10.3934/math.2023176-11 key-10.3934/math.2023176-55 key-10.3934/math.2023176-10 key-10.3934/math.2023176-54 key-10.3934/math.2023176-13 key-10.3934/math.2023176-57 key-10.3934/math.2023176-12 key-10.3934/math.2023176-56 key-10.3934/math.2023176-15 key-10.3934/math.2023176-59 key-10.3934/math.2023176-14 key-10.3934/math.2023176-58 key-10.3934/math.2023176-51 key-10.3934/math.2023176-50 |
References_xml | – ident: key-10.3934/math.2023176-29 doi: 10.3934/mbe.2022177 – ident: key-10.3934/math.2023176-39 doi: 10.1002/int.21978 – ident: key-10.3934/math.2023176-26 doi: 10.1007/s00500-021-05771-9 – ident: key-10.3934/math.2023176-16 doi: 10.1016/0020-0255(75)90036-5 – ident: key-10.3934/math.2023176-19 doi: 10.1016/j.eswa.2020.114311 – ident: key-10.3934/math.2023176-38 – ident: key-10.3934/math.2023176-53 doi: 10.1002/int.20498 – ident: key-10.3934/math.2023176-32 doi: 10.1007/s00500-021-06231-0 – ident: key-10.3934/math.2023176-8 doi: 10.15625/1813-9663/30/4/5032 – ident: key-10.3934/math.2023176-42 doi: 10.1007/s10668-021-01742-0 – ident: key-10.3934/math.2023176-60 doi: 10.1007/s10489-021-02853-x – ident: key-10.3934/math.2023176-63 doi: 10.1155/2022/8239263 – ident: key-10.3934/math.2023176-17 doi: 10.1142/S0218488500000381 – ident: key-10.3934/math.2023176-43 doi: 10.1016/j.eswa.2021.115088 – ident: key-10.3934/math.2023176-62 – ident: key-10.3934/math.2023176-27 doi: 10.1007/s40314-019-0773-0 – ident: key-10.3934/math.2023176-33 doi: 10.1007/s13042-021-01425-2 – ident: key-10.3934/math.2023176-54 – ident: key-10.3934/math.2023176-20 doi: 10.1002/int.22338 – ident: key-10.3934/math.2023176-47 doi: 10.1002/int.22514 – ident: key-10.3934/math.2023176-31 doi: 10.1155/2022/5075998 – ident: key-10.3934/math.2023176-36 doi: 10.1007/s10462-020-09925-3 – ident: key-10.3934/math.2023176-44 doi: 10.1007/s13369-020-05313-9 – ident: key-10.3934/math.2023176-23 doi: 10.1002/int.22563 – ident: key-10.3934/math.2023176-57 doi: 10.3846/tede.2020.11970 – ident: key-10.3934/math.2023176-4 doi: 10.1109/TFUZZ.2013.2278989 – ident: key-10.3934/math.2023176-13 doi: 10.1007/s12652-020-02600-z – ident: key-10.3934/math.2023176-30 doi: 10.1111/exsy.13005 – ident: key-10.3934/math.2023176-56 doi: 10.1007/s13042-020-01208-1 – ident: key-10.3934/math.2023176-58 doi: 10.1109/IAEAC.2017.8054284 – ident: key-10.3934/math.2023176-24 doi: 10.1007/s00500-022-07208-3 – ident: key-10.3934/math.2023176-51 – ident: key-10.3934/math.2023176-1 – ident: key-10.3934/math.2023176-18 doi: 10.1109/91.890332 – ident: key-10.3934/math.2023176-49 doi: 10.3233/JIFS-210366 – ident: key-10.3934/math.2023176-59 doi: 10.31181/dmame2003134p – ident: key-10.3934/math.2023176-21 doi: 10.1155/2022/4523287 – ident: key-10.3934/math.2023176-45 doi: 10.1002/int.22423 – ident: key-10.3934/math.2023176-3 doi: 10.1016/S0165-0114(86)80034-3 – ident: key-10.3934/math.2023176-28 doi: 10.2991/ijcis.d.201204.001 – ident: key-10.3934/math.2023176-7 doi: 10.1007/s12652-022-03746-8 – ident: key-10.3934/math.2023176-10 doi: 10.1007/s00521-018-3521-2 – ident: key-10.3934/math.2023176-40 doi: 10.1109/TFUZZ.2003.822678 – ident: key-10.3934/math.2023176-61 doi: 10.1007/s10489-020-02148-7 – ident: key-10.3934/math.2023176-52 doi: 10.1016/S0165-0114(99)00024-X – ident: key-10.3934/math.2023176-15 doi: 10.1088/1402-4896/ac7980 – ident: key-10.3934/math.2023176-12 doi: 10.1007/s40314-021-01670-9 – ident: key-10.3934/math.2023176-50 doi: 10.3934/math.2022966 – ident: key-10.3934/math.2023176-11 doi: 10.1109/ACCESS.2021.3129807 – ident: key-10.3934/math.2023176-25 – ident: key-10.3934/math.2023176-37 doi: 10.1007/s10462-019-09780-x – ident: key-10.3934/math.2023176-55 doi: 10.3233/JIFS-179223 – ident: key-10.3934/math.2023176-6 doi: 10.1007/s10489-021-02921-2 – ident: key-10.3934/math.2023176-14 doi: 10.1007/s40747-021-00446-2 – ident: key-10.3934/math.2023176-22 doi: 10.1002/int.22303 – ident: key-10.3934/math.2023176-48 doi: 10.1016/j.eswa.2021.114644 – ident: key-10.3934/math.2023176-5 doi: 10.1109/TFUZZ.2016.2604005 – ident: key-10.3934/math.2023176-46 – ident: key-10.3934/math.2023176-2 doi: 10.1016/S0019-9958(65)90241-X – ident: key-10.3934/math.2023176-34 doi: 10.1007/s10489-019-01532-2 – ident: key-10.3934/math.2023176-41 doi: 10.1007/s00500-021-05658-9 – ident: key-10.3934/math.2023176-35 doi: 10.3390/sym11121498 – ident: key-10.3934/math.2023176-9 doi: 10.3233/JIFS-181401 |
SSID | ssj0002124274 |
Score | 2.3593905 |
Snippet | In the literature, extensions of common fuzzy sets have been proposed one after another. The recent addition is spherical fuzzy sets theory, which is based on... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
StartPage | 3428 |
SubjectTerms | 2-tuple linguistic t-spherical fuzzy set codas method hamacher aggregation operators manufacturing of linear delta robot |
Title | Extended CODAS method for MAGDM with $ 2 $-tuple linguistic $ T $-spherical fuzzy sets |
URI | https://doaj.org/article/4aa8a577fef84388aaace64400ea62a4 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1Fe8gATstrEju2OpQ8qpJSBVuoW-TlVpSLJQH895yRUWRALS4boFEXfJb7vuzjfIfTAbcw484IMhEkIC87a0mlJLOfSxS4S0oSGfjrnsyV7XSWr1qivsCestgeugesxpaRKhPDOS0alVEoZB0W833eKx6pyAoWa1xJTYQ2GBZmB3qp3utMBZT3gf-HbA9CZYC_SqkEtq_6qpkxP0HFDBvGwvolTdOA2Z-go3Tup5udoPmm61Hj0Nh6-43riMwaqidPhyzjFoZGKY1KU27XD4d_ysrJexguSB8eAkAPsy93uC-euyC_QcjpZjGakmYFADBWyIPD6KAm0yoIsMF6CeNFecG01s9JFRmnL7CC2ICeZN5TbJNLCUmqNB7AE5fQSdTYfG3eFsGPCM8v7EK4Zl3AwVlvPfKy0iJjooqcfVDLTGISHORXrDIRCwDALGGYNhl30uI_e1sYYv8Q9B4D3McHOujoBSc6aJGd_Jfn6Py5ygw7DPdX9k1vUKT5LdweMotD31cPzDfT1yg8 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extended+CODAS+method+for+MAGDM+with+%24+2+%24-tuple+linguistic+%24+T+%24-spherical+fuzzy+sets&rft.jtitle=AIMS+mathematics&rft.au=Akram%2C+Muhammad&rft.au=Naz%2C+Sumera&rft.au=Santos-Garc%C3%ADa%2C+Gustavo&rft.au=Saeed%2C+Muhammad+Ramzan&rft.date=2023-01-01&rft.issn=2473-6988&rft.eissn=2473-6988&rft.volume=8&rft.issue=2&rft.spage=3428&rft.epage=3468&rft_id=info:doi/10.3934%2Fmath.2023176&rft.externalDBID=n%2Fa&rft.externalDocID=10_3934_math_2023176 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon |