Extended CODAS method for MAGDM with $ 2 $-tuple linguistic $ T $-spherical fuzzy sets

In the literature, extensions of common fuzzy sets have been proposed one after another. The recent addition is spherical fuzzy sets theory, which is based on three independent membership parameters established on a unit sphere with a restriction linked to their squared summation. This article uses...

Full description

Saved in:
Bibliographic Details
Published inAIMS mathematics Vol. 8; no. 2; pp. 3428 - 3468
Main Authors Akram, Muhammad, Naz, Sumera, Santos-García, Gustavo, Saeed, Muhammad Ramzan
Format Journal Article
LanguageEnglish
Published AIMS Press 01.01.2023
Subjects
Online AccessGet full text
ISSN2473-6988
2473-6988
DOI10.3934/math.2023176

Cover

Loading…
Abstract In the literature, extensions of common fuzzy sets have been proposed one after another. The recent addition is spherical fuzzy sets theory, which is based on three independent membership parameters established on a unit sphere with a restriction linked to their squared summation. This article uses the new extension that presents bigger domains for each parameter for production design. A systematic approach for determining customer demands or requirements, Quality Function Deployment (QFD) converts them into the final production to fulfill these demands in a decision-making environment. In order to prevent information loss during the decision-making process, it offers a useful technique to describe the linguistic analysis in terms of 2-tuples. This research introduces a novel decision-making method utilizing the 2-tuple linguistic $ T $-spherical fuzzy numbers (2TL$ T $-SFNs) in order to select the best alternative to manufacturing a linear delta robot. Taking into account the interaction between the attributes, we develop the 2TL$ T $-SF Hamacher (2TL$ T $-SFH) operators by using innovative operational rules. These operators include the 2TL$ T $-SFH weighted average (2TL$ T $-SFHWA) operator, 2TL$ T $-SFH ordered weighted average (2TL$ T $-SFHOWA) operator, 2TL$ T $-SFH hybrid average (2TL$ T $-SFHHA) operator, 2TL$ T $-SFH weighted geometric (2TL$ T $-SFHWG) operator, 2TL$ T $-SFH ordered weighted geometric (2TL$ T $-SFHOWG) operator, and 2TL$ T $-SFH hybrid geometric (2TL$ T $-SFHHG) operator. In addition, we discuss the properties of 2TL$ T $-SFH operators such as idempotency, boundedness, and monotonicity. We develop a novel approach according to the CODAS (Combinative Distance-based Assessment) model in order to deal with the problems of the 2TL$ T $-SF multi-attribute group decision-making (MAGDM) environment. Finally, to validate the feasibility of the given strategy, we employ a quantitative example to select the best alternative to manufacture a linear delta robot. The suggested information-based decision-making methodology which is more extensively adaptable than existing techniques prevents the risk of data loss and makes rational decisions.
AbstractList In the literature, extensions of common fuzzy sets have been proposed one after another. The recent addition is spherical fuzzy sets theory, which is based on three independent membership parameters established on a unit sphere with a restriction linked to their squared summation. This article uses the new extension that presents bigger domains for each parameter for production design. A systematic approach for determining customer demands or requirements, Quality Function Deployment (QFD) converts them into the final production to fulfill these demands in a decision-making environment. In order to prevent information loss during the decision-making process, it offers a useful technique to describe the linguistic analysis in terms of 2-tuples. This research introduces a novel decision-making method utilizing the 2-tuple linguistic T-spherical fuzzy numbers (2TLT-SFNs) in order to select the best alternative to manufacturing a linear delta robot. Taking into account the interaction between the attributes, we develop the 2TLT-SF Hamacher (2TLT-SFH) operators by using innovative operational rules. These operators include the 2TLT-SFH weighted average (2TLT-SFHWA) operator, 2TLT-SFH ordered weighted average (2TLT-SFHOWA) operator, 2TLT-SFH hybrid average (2TLT-SFHHA) operator, 2TLT-SFH weighted geometric (2TLT-SFHWG) operator, 2TLT-SFH ordered weighted geometric (2TLT-SFHOWG) operator, and 2TLT-SFH hybrid geometric (2TLT-SFHHG) operator. In addition, we discuss the properties of 2TLT-SFH operators such as idempotency, boundedness, and monotonicity. We develop a novel approach according to the CODAS (Combinative Distance-based Assessment) model in order to deal with the problems of the 2TLT-SF multi-attribute group decision-making (MAGDM) environment. Finally, to validate the feasibility of the given strategy, we employ a quantitative example to select the best alternative to manufacture a linear delta robot. The suggested information-based decision-making methodology which is more extensively adaptable than existing techniques prevents the risk of data loss and makes rational decisions.
In the literature, extensions of common fuzzy sets have been proposed one after another. The recent addition is spherical fuzzy sets theory, which is based on three independent membership parameters established on a unit sphere with a restriction linked to their squared summation. This article uses the new extension that presents bigger domains for each parameter for production design. A systematic approach for determining customer demands or requirements, Quality Function Deployment (QFD) converts them into the final production to fulfill these demands in a decision-making environment. In order to prevent information loss during the decision-making process, it offers a useful technique to describe the linguistic analysis in terms of 2-tuples. This research introduces a novel decision-making method utilizing the 2-tuple linguistic $ T $-spherical fuzzy numbers (2TL$ T $-SFNs) in order to select the best alternative to manufacturing a linear delta robot. Taking into account the interaction between the attributes, we develop the 2TL$ T $-SF Hamacher (2TL$ T $-SFH) operators by using innovative operational rules. These operators include the 2TL$ T $-SFH weighted average (2TL$ T $-SFHWA) operator, 2TL$ T $-SFH ordered weighted average (2TL$ T $-SFHOWA) operator, 2TL$ T $-SFH hybrid average (2TL$ T $-SFHHA) operator, 2TL$ T $-SFH weighted geometric (2TL$ T $-SFHWG) operator, 2TL$ T $-SFH ordered weighted geometric (2TL$ T $-SFHOWG) operator, and 2TL$ T $-SFH hybrid geometric (2TL$ T $-SFHHG) operator. In addition, we discuss the properties of 2TL$ T $-SFH operators such as idempotency, boundedness, and monotonicity. We develop a novel approach according to the CODAS (Combinative Distance-based Assessment) model in order to deal with the problems of the 2TL$ T $-SF multi-attribute group decision-making (MAGDM) environment. Finally, to validate the feasibility of the given strategy, we employ a quantitative example to select the best alternative to manufacture a linear delta robot. The suggested information-based decision-making methodology which is more extensively adaptable than existing techniques prevents the risk of data loss and makes rational decisions.
Author Saeed, Muhammad Ramzan
Akram, Muhammad
Naz, Sumera
Santos-García, Gustavo
Author_xml – sequence: 1
  givenname: Muhammad
  surname: Akram
  fullname: Akram, Muhammad
  organization: Department of Mathematics, University of the Punjab, New Campus, Lahore 54590, Pakistan
– sequence: 2
  givenname: Sumera
  surname: Naz
  fullname: Naz, Sumera
  organization: Department of Mathematics, Division of Science and Technology, University of Education, Lahore, Pakistan
– sequence: 3
  givenname: Gustavo
  surname: Santos-García
  fullname: Santos-García, Gustavo
  organization: IME, Universidad de Salamanca, Salamanca 37007, Spain
– sequence: 4
  givenname: Muhammad Ramzan
  surname: Saeed
  fullname: Saeed, Muhammad Ramzan
  organization: Department of Mathematics, Division of Science and Technology, University of Education, Lahore, Pakistan
BookMark eNptkEtLAzEUhYNU8LnzB2Th0tFMkk4yy1K1CpUufGzDnTycyHRSkhStv97Rioi4uofDOR-Xc4BGfegtQiclOWc14xdLyO05JZSVotpB-5QLVlS1lKNfeg8dp_RCCKEl5VTwffR09ZZtb6zB08Xl5B4vbW6DwS5EfDeZXd7hV59bfIopPi3yetVZ3Pn-ee1T9nqwHwY7rVobvYYOu_X7-wYnm9MR2nXQJXv8fQ_R4_XVw_SmmC9mt9PJvNBMyFyImoEkY25EJbWTJZeNE1VjGm6kLTU0hpuamjFl3GlWmXHZCMOY0Y4zKVjFDtHtlmsCvKhV9EuIGxXAqy8jxGcFcXi1s4oDSBgL4ayTQ1sCgLYV54RYqCjwgXW2ZekYUorW_fBKoj4nVp8Tq--Jhzj9E9c-Q_ahzxF893_pA4HIf6k
CitedBy_id crossref_primary_10_1007_s41066_024_00481_7
crossref_primary_10_3934_math_2023708
crossref_primary_10_1016_j_engappai_2023_105892
crossref_primary_10_1007_s41066_023_00442_6
crossref_primary_10_1109_TEM_2024_3488325
crossref_primary_10_1007_s13042_023_01911_9
crossref_primary_10_3934_math_2024047
crossref_primary_10_1007_s41066_023_00432_8
crossref_primary_10_1007_s41066_023_00433_7
crossref_primary_10_1007_s41066_023_00437_3
crossref_primary_10_1109_ACCESS_2024_3412193
crossref_primary_10_1007_s40314_025_03111_3
crossref_primary_10_1007_s00500_023_08739_z
crossref_primary_10_1016_j_eswa_2024_126162
crossref_primary_10_1007_s11227_023_05678_2
crossref_primary_10_1007_s00500_025_10417_1
crossref_primary_10_1109_ACCESS_2025_3548889
crossref_primary_10_3934_math_2023539
crossref_primary_10_1007_s41066_023_00388_9
crossref_primary_10_1155_2023_1487724
crossref_primary_10_1016_j_engappai_2025_110080
crossref_primary_10_3389_frai_2024_1496689
crossref_primary_10_1007_s10462_023_10461_z
crossref_primary_10_1016_j_engappai_2024_108165
crossref_primary_10_1016_j_neucom_2024_128593
crossref_primary_10_1016_j_heliyon_2024_e33004
crossref_primary_10_1038_s41598_023_35909_8
Cites_doi 10.3934/mbe.2022177
10.1002/int.21978
10.1007/s00500-021-05771-9
10.1016/0020-0255(75)90036-5
10.1016/j.eswa.2020.114311
10.1002/int.20498
10.1007/s00500-021-06231-0
10.15625/1813-9663/30/4/5032
10.1007/s10668-021-01742-0
10.1007/s10489-021-02853-x
10.1155/2022/8239263
10.1142/S0218488500000381
10.1016/j.eswa.2021.115088
10.1007/s40314-019-0773-0
10.1007/s13042-021-01425-2
10.1002/int.22338
10.1002/int.22514
10.1155/2022/5075998
10.1007/s10462-020-09925-3
10.1007/s13369-020-05313-9
10.1002/int.22563
10.3846/tede.2020.11970
10.1109/TFUZZ.2013.2278989
10.1007/s12652-020-02600-z
10.1111/exsy.13005
10.1007/s13042-020-01208-1
10.1109/IAEAC.2017.8054284
10.1007/s00500-022-07208-3
10.1109/91.890332
10.3233/JIFS-210366
10.31181/dmame2003134p
10.1155/2022/4523287
10.1002/int.22423
10.1016/S0165-0114(86)80034-3
10.2991/ijcis.d.201204.001
10.1007/s12652-022-03746-8
10.1007/s00521-018-3521-2
10.1109/TFUZZ.2003.822678
10.1007/s10489-020-02148-7
10.1016/S0165-0114(99)00024-X
10.1088/1402-4896/ac7980
10.1007/s40314-021-01670-9
10.3934/math.2022966
10.1109/ACCESS.2021.3129807
10.1007/s10462-019-09780-x
10.3233/JIFS-179223
10.1007/s10489-021-02921-2
10.1007/s40747-021-00446-2
10.1002/int.22303
10.1016/j.eswa.2021.114644
10.1109/TFUZZ.2016.2604005
10.1016/S0019-9958(65)90241-X
10.1007/s10489-019-01532-2
10.1007/s00500-021-05658-9
10.3390/sym11121498
10.3233/JIFS-181401
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.3934/math.2023176
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2473-6988
EndPage 3468
ExternalDocumentID oai_doaj_org_article_4aa8a577fef84388aaace64400ea62a4
10_3934_math_2023176
GroupedDBID AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
CITATION
EBS
FRJ
GROUPED_DOAJ
IAO
ITC
M~E
OK1
RAN
ID FETCH-LOGICAL-c378t-793a8054d768cf8148bf76bdb4d8e1cabd4d92d5234fc36d51b7d33dcf4387363
IEDL.DBID DOA
ISSN 2473-6988
IngestDate Wed Aug 27 01:29:35 EDT 2025
Thu Apr 24 23:12:03 EDT 2025
Tue Jul 01 03:56:58 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c378t-793a8054d768cf8148bf76bdb4d8e1cabd4d92d5234fc36d51b7d33dcf4387363
OpenAccessLink https://doaj.org/article/4aa8a577fef84388aaace64400ea62a4
PageCount 41
ParticipantIDs doaj_primary_oai_doaj_org_article_4aa8a577fef84388aaace64400ea62a4
crossref_primary_10_3934_math_2023176
crossref_citationtrail_10_3934_math_2023176
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationTitle AIMS mathematics
PublicationYear 2023
Publisher AIMS Press
Publisher_xml – name: AIMS Press
References key-10.3934/math.2023176-39
key-10.3934/math.2023176-38
key-10.3934/math.2023176-42
key-10.3934/math.2023176-41
key-10.3934/math.2023176-44
key-10.3934/math.2023176-43
key-10.3934/math.2023176-46
key-10.3934/math.2023176-45
key-10.3934/math.2023176-48
key-10.3934/math.2023176-47
key-10.3934/math.2023176-40
key-10.3934/math.2023176-28
key-10.3934/math.2023176-27
key-10.3934/math.2023176-29
key-10.3934/math.2023176-31
key-10.3934/math.2023176-30
key-10.3934/math.2023176-33
key-10.3934/math.2023176-32
key-10.3934/math.2023176-35
key-10.3934/math.2023176-34
key-10.3934/math.2023176-37
key-10.3934/math.2023176-36
key-10.3934/math.2023176-17
key-10.3934/math.2023176-16
key-10.3934/math.2023176-19
key-10.3934/math.2023176-18
key-10.3934/math.2023176-20
key-10.3934/math.2023176-63
key-10.3934/math.2023176-22
key-10.3934/math.2023176-21
key-10.3934/math.2023176-24
key-10.3934/math.2023176-23
key-10.3934/math.2023176-26
key-10.3934/math.2023176-25
key-10.3934/math.2023176-60
key-10.3934/math.2023176-62
key-10.3934/math.2023176-61
key-10.3934/math.2023176-1
key-10.3934/math.2023176-2
key-10.3934/math.2023176-3
key-10.3934/math.2023176-4
key-10.3934/math.2023176-49
key-10.3934/math.2023176-5
key-10.3934/math.2023176-6
key-10.3934/math.2023176-7
key-10.3934/math.2023176-8
key-10.3934/math.2023176-9
key-10.3934/math.2023176-53
key-10.3934/math.2023176-52
key-10.3934/math.2023176-11
key-10.3934/math.2023176-55
key-10.3934/math.2023176-10
key-10.3934/math.2023176-54
key-10.3934/math.2023176-13
key-10.3934/math.2023176-57
key-10.3934/math.2023176-12
key-10.3934/math.2023176-56
key-10.3934/math.2023176-15
key-10.3934/math.2023176-59
key-10.3934/math.2023176-14
key-10.3934/math.2023176-58
key-10.3934/math.2023176-51
key-10.3934/math.2023176-50
References_xml – ident: key-10.3934/math.2023176-29
  doi: 10.3934/mbe.2022177
– ident: key-10.3934/math.2023176-39
  doi: 10.1002/int.21978
– ident: key-10.3934/math.2023176-26
  doi: 10.1007/s00500-021-05771-9
– ident: key-10.3934/math.2023176-16
  doi: 10.1016/0020-0255(75)90036-5
– ident: key-10.3934/math.2023176-19
  doi: 10.1016/j.eswa.2020.114311
– ident: key-10.3934/math.2023176-38
– ident: key-10.3934/math.2023176-53
  doi: 10.1002/int.20498
– ident: key-10.3934/math.2023176-32
  doi: 10.1007/s00500-021-06231-0
– ident: key-10.3934/math.2023176-8
  doi: 10.15625/1813-9663/30/4/5032
– ident: key-10.3934/math.2023176-42
  doi: 10.1007/s10668-021-01742-0
– ident: key-10.3934/math.2023176-60
  doi: 10.1007/s10489-021-02853-x
– ident: key-10.3934/math.2023176-63
  doi: 10.1155/2022/8239263
– ident: key-10.3934/math.2023176-17
  doi: 10.1142/S0218488500000381
– ident: key-10.3934/math.2023176-43
  doi: 10.1016/j.eswa.2021.115088
– ident: key-10.3934/math.2023176-62
– ident: key-10.3934/math.2023176-27
  doi: 10.1007/s40314-019-0773-0
– ident: key-10.3934/math.2023176-33
  doi: 10.1007/s13042-021-01425-2
– ident: key-10.3934/math.2023176-54
– ident: key-10.3934/math.2023176-20
  doi: 10.1002/int.22338
– ident: key-10.3934/math.2023176-47
  doi: 10.1002/int.22514
– ident: key-10.3934/math.2023176-31
  doi: 10.1155/2022/5075998
– ident: key-10.3934/math.2023176-36
  doi: 10.1007/s10462-020-09925-3
– ident: key-10.3934/math.2023176-44
  doi: 10.1007/s13369-020-05313-9
– ident: key-10.3934/math.2023176-23
  doi: 10.1002/int.22563
– ident: key-10.3934/math.2023176-57
  doi: 10.3846/tede.2020.11970
– ident: key-10.3934/math.2023176-4
  doi: 10.1109/TFUZZ.2013.2278989
– ident: key-10.3934/math.2023176-13
  doi: 10.1007/s12652-020-02600-z
– ident: key-10.3934/math.2023176-30
  doi: 10.1111/exsy.13005
– ident: key-10.3934/math.2023176-56
  doi: 10.1007/s13042-020-01208-1
– ident: key-10.3934/math.2023176-58
  doi: 10.1109/IAEAC.2017.8054284
– ident: key-10.3934/math.2023176-24
  doi: 10.1007/s00500-022-07208-3
– ident: key-10.3934/math.2023176-51
– ident: key-10.3934/math.2023176-1
– ident: key-10.3934/math.2023176-18
  doi: 10.1109/91.890332
– ident: key-10.3934/math.2023176-49
  doi: 10.3233/JIFS-210366
– ident: key-10.3934/math.2023176-59
  doi: 10.31181/dmame2003134p
– ident: key-10.3934/math.2023176-21
  doi: 10.1155/2022/4523287
– ident: key-10.3934/math.2023176-45
  doi: 10.1002/int.22423
– ident: key-10.3934/math.2023176-3
  doi: 10.1016/S0165-0114(86)80034-3
– ident: key-10.3934/math.2023176-28
  doi: 10.2991/ijcis.d.201204.001
– ident: key-10.3934/math.2023176-7
  doi: 10.1007/s12652-022-03746-8
– ident: key-10.3934/math.2023176-10
  doi: 10.1007/s00521-018-3521-2
– ident: key-10.3934/math.2023176-40
  doi: 10.1109/TFUZZ.2003.822678
– ident: key-10.3934/math.2023176-61
  doi: 10.1007/s10489-020-02148-7
– ident: key-10.3934/math.2023176-52
  doi: 10.1016/S0165-0114(99)00024-X
– ident: key-10.3934/math.2023176-15
  doi: 10.1088/1402-4896/ac7980
– ident: key-10.3934/math.2023176-12
  doi: 10.1007/s40314-021-01670-9
– ident: key-10.3934/math.2023176-50
  doi: 10.3934/math.2022966
– ident: key-10.3934/math.2023176-11
  doi: 10.1109/ACCESS.2021.3129807
– ident: key-10.3934/math.2023176-25
– ident: key-10.3934/math.2023176-37
  doi: 10.1007/s10462-019-09780-x
– ident: key-10.3934/math.2023176-55
  doi: 10.3233/JIFS-179223
– ident: key-10.3934/math.2023176-6
  doi: 10.1007/s10489-021-02921-2
– ident: key-10.3934/math.2023176-14
  doi: 10.1007/s40747-021-00446-2
– ident: key-10.3934/math.2023176-22
  doi: 10.1002/int.22303
– ident: key-10.3934/math.2023176-48
  doi: 10.1016/j.eswa.2021.114644
– ident: key-10.3934/math.2023176-5
  doi: 10.1109/TFUZZ.2016.2604005
– ident: key-10.3934/math.2023176-46
– ident: key-10.3934/math.2023176-2
  doi: 10.1016/S0019-9958(65)90241-X
– ident: key-10.3934/math.2023176-34
  doi: 10.1007/s10489-019-01532-2
– ident: key-10.3934/math.2023176-41
  doi: 10.1007/s00500-021-05658-9
– ident: key-10.3934/math.2023176-35
  doi: 10.3390/sym11121498
– ident: key-10.3934/math.2023176-9
  doi: 10.3233/JIFS-181401
SSID ssj0002124274
Score 2.3593905
Snippet In the literature, extensions of common fuzzy sets have been proposed one after another. The recent addition is spherical fuzzy sets theory, which is based on...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 3428
SubjectTerms 2-tuple linguistic t-spherical fuzzy set
codas method
hamacher aggregation operators
manufacturing of linear delta robot
Title Extended CODAS method for MAGDM with $ 2 $-tuple linguistic $ T $-spherical fuzzy sets
URI https://doaj.org/article/4aa8a577fef84388aaace64400ea62a4
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1Fe8gATstrEju2OpQ8qpJSBVuoW-TlVpSLJQH895yRUWRALS4boFEXfJb7vuzjfIfTAbcw484IMhEkIC87a0mlJLOfSxS4S0oSGfjrnsyV7XSWr1qivsCestgeugesxpaRKhPDOS0alVEoZB0W833eKx6pyAoWa1xJTYQ2GBZmB3qp3utMBZT3gf-HbA9CZYC_SqkEtq_6qpkxP0HFDBvGwvolTdOA2Z-go3Tup5udoPmm61Hj0Nh6-43riMwaqidPhyzjFoZGKY1KU27XD4d_ysrJexguSB8eAkAPsy93uC-euyC_QcjpZjGakmYFADBWyIPD6KAm0yoIsMF6CeNFecG01s9JFRmnL7CC2ICeZN5TbJNLCUmqNB7AE5fQSdTYfG3eFsGPCM8v7EK4Zl3AwVlvPfKy0iJjooqcfVDLTGISHORXrDIRCwDALGGYNhl30uI_e1sYYv8Q9B4D3McHOujoBSc6aJGd_Jfn6Py5ygw7DPdX9k1vUKT5LdweMotD31cPzDfT1yg8
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extended+CODAS+method+for+MAGDM+with+%24+2+%24-tuple+linguistic+%24+T+%24-spherical+fuzzy+sets&rft.jtitle=AIMS+mathematics&rft.au=Akram%2C+Muhammad&rft.au=Naz%2C+Sumera&rft.au=Santos-Garc%C3%ADa%2C+Gustavo&rft.au=Saeed%2C+Muhammad+Ramzan&rft.date=2023-01-01&rft.issn=2473-6988&rft.eissn=2473-6988&rft.volume=8&rft.issue=2&rft.spage=3428&rft.epage=3468&rft_id=info:doi/10.3934%2Fmath.2023176&rft.externalDBID=n%2Fa&rft.externalDocID=10_3934_math_2023176
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon