Effect of urban morphology on air pollution distribution in high-density urban blocks based on mobile monitoring and machine learning
It is essential to investigate the morphological factors that contribute to air pollution's spatial distribution using mobile monitoring data, and to regulate them at the urban planning level. However, mobile monitoring data are unstable and more difficult to model under real-world atmospheric...
Saved in:
Published in | Building and environment Vol. 219; p. 109173 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.07.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | It is essential to investigate the morphological factors that contribute to air pollution's spatial distribution using mobile monitoring data, and to regulate them at the urban planning level. However, mobile monitoring data are unstable and more difficult to model under real-world atmospheric circumstances. This work assesses the nonlinear relationship between spatial distribution of air pollutants and building morphological indicators in a high-density city based on mobile monitoring and machine learning. By conducting a vehicle-mounted mobile monitoring experiment, we establish spatial distribution data sets for PM2.5 and PM10 on three typical regions in Huangpu District, Shanghai. 9 indicators of urban morphology are derived, including green view index and sky view factor, using semantic segmentation and deep learning on street-view images. Correlation analysis demonstrates that the difficulty lies in implementing linear modeling methods. The performances of six machine learning algorithms for predicting the spatial variability of pollutants are compared. The result shows that neural networks have the highest performance for repidly predicting pollutant diffusion levels in conceptual designs.
•Spatial distribution of pollutants is strongly related to urban morphology.•Long-term mobile monitoring of pollutants in high-density urban blocks has been conducted.•Semantic segmentation-based indicators such as green view index have been investigated.•Machine learning is better at identifying non-linear patterns in pollutants distribution.•An open neural network model has optimal performance and allows for ongoing improvement. |
---|---|
AbstractList | It is essential to investigate the morphological factors that contribute to air pollution's spatial distribution using mobile monitoring data, and to regulate them at the urban planning level. However, mobile monitoring data are unstable and more difficult to model under real-world atmospheric circumstances. This work assesses the nonlinear relationship between spatial distribution of air pollutants and building morphological indicators in a high-density city based on mobile monitoring and machine learning. By conducting a vehicle-mounted mobile monitoring experiment, we establish spatial distribution data sets for PM2.5 and PM10 on three typical regions in Huangpu District, Shanghai. 9 indicators of urban morphology are derived, including green view index and sky view factor, using semantic segmentation and deep learning on street-view images. Correlation analysis demonstrates that the difficulty lies in implementing linear modeling methods. The performances of six machine learning algorithms for predicting the spatial variability of pollutants are compared. The result shows that neural networks have the highest performance for repidly predicting pollutant diffusion levels in conceptual designs.
•Spatial distribution of pollutants is strongly related to urban morphology.•Long-term mobile monitoring of pollutants in high-density urban blocks has been conducted.•Semantic segmentation-based indicators such as green view index have been investigated.•Machine learning is better at identifying non-linear patterns in pollutants distribution.•An open neural network model has optimal performance and allows for ongoing improvement. |
ArticleNumber | 109173 |
Author | Chen, Nan Li, Qingyu Duan, Yusen Wang, Qi Rao, Pinhua Huang, Chenyu Zhou, Mengge Hu, Tingting |
Author_xml | – sequence: 1 givenname: Chenyu surname: Huang fullname: Huang, Chenyu organization: School of Architecture and Art, North China University of Technology, Beijing, 100144, China – sequence: 2 givenname: Tingting surname: Hu fullname: Hu, Tingting email: tingtinghu@sues.edu.cn organization: College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China – sequence: 3 givenname: Yusen surname: Duan fullname: Duan, Yusen organization: Shanghai Environmental Monitoring Center, Shanghai, 200030, China – sequence: 4 givenname: Qingyu surname: Li fullname: Li, Qingyu organization: College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China – sequence: 5 givenname: Nan surname: Chen fullname: Chen, Nan organization: College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China – sequence: 6 givenname: Qi surname: Wang fullname: Wang, Qi organization: College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China – sequence: 7 givenname: Mengge surname: Zhou fullname: Zhou, Mengge organization: College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China – sequence: 8 givenname: Pinhua surname: Rao fullname: Rao, Pinhua organization: College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China |
BookMark | eNqFkNtKAzEQhoMoWA-vIHmBrTmsu1vwQhFPIHij4F3IYbadmiYl2Qp9AN_bLNUbb3o1_APfP8x3Qg5DDEDIBWdTznhzuZyaDXoH4WsqmBBlOeOtPCAT3rWyarr645BMmGxYxaWQx-Qk5yUr4EzWE_J93_dgBxp7uklGB7qKab2IPs63NAaqMdF19H4zYEkO85DQ7AIGusD5oiqHMw7bX9z4aD8zNTqDGwtW0aCHMgIOMWGYUx0cXWm7wADUg06hLM_IUa99hvPfeUreH-7f7p6ql9fH57vbl8rKthuqtq1b0Tl5BbJ2M8ZrbYyQM9dzaF3NO10zC1ecOeasMzUI142EEL3WDStSTsn1rtemmHOCXlkc9PjOkDR6xZkalaql-lOqRqVqp7TgzT98nXCl03Y_eLMDoTz3hZBUtgjBgsNU7CsXcV_FD4m9mqM |
CitedBy_id | crossref_primary_10_1016_j_enbuild_2023_112809 crossref_primary_10_1016_j_scs_2022_104279 crossref_primary_10_1080_13547860_2024_2370152 crossref_primary_10_1016_j_buildenv_2024_111838 crossref_primary_10_1016_j_buildenv_2025_112634 crossref_primary_10_1016_j_apr_2025_102426 crossref_primary_10_1016_j_apr_2025_102503 crossref_primary_10_1016_j_buildenv_2025_112804 crossref_primary_10_1016_j_cities_2024_105022 crossref_primary_10_3390_buildings14103147 crossref_primary_10_1016_j_enbuild_2024_113894 crossref_primary_10_1016_j_buildenv_2023_110695 crossref_primary_10_1016_j_scs_2023_105029 crossref_primary_10_3390_land14010007 crossref_primary_10_3390_land14030632 crossref_primary_10_1016_j_isci_2024_110125 crossref_primary_10_1016_j_scs_2022_104225 crossref_primary_10_1016_j_scs_2022_104221 crossref_primary_10_3390_su16030976 crossref_primary_10_1016_j_jclepro_2023_139040 crossref_primary_10_1016_j_jclepro_2025_144813 crossref_primary_10_1016_j_ufug_2023_127917 crossref_primary_10_3390_app132413013 crossref_primary_10_1016_j_buildenv_2025_112543 crossref_primary_10_1016_j_buildenv_2023_110998 crossref_primary_10_3390_land14020289 crossref_primary_10_1007_s00704_025_05399_x crossref_primary_10_1016_j_buildenv_2023_110587 crossref_primary_10_1016_j_buildenv_2024_112467 crossref_primary_10_1016_j_envpol_2023_122436 crossref_primary_10_1016_j_buildenv_2023_111157 crossref_primary_10_3390_su16167193 crossref_primary_10_1016_j_enbuild_2024_114797 crossref_primary_10_1016_j_eneco_2024_107574 crossref_primary_10_1016_j_buildenv_2023_111032 crossref_primary_10_1016_j_buildenv_2024_112141 |
Cites_doi | 10.1021/es400156t 10.1016/j.buildenv.2018.12.044 10.1016/j.ejor.2020.08.045 10.1613/jair.731 10.1007/s11356-014-3893-5 10.1016/j.patrec.2008.04.005 10.1016/j.jclepro.2019.119841 10.1007/s007040170036 10.1016/j.buildenv.2021.108265 10.1016/j.jweia.2012.11.002 10.1021/es304495s 10.1016/j.scs.2019.101917 10.1016/j.buildenv.2021.107861 10.1016/j.apgeog.2020.102228 10.1126/science.1111772 10.1016/j.uclim.2019.100498 10.1016/j.uclim.2012.10.008 10.1016/j.scs.2018.08.024 10.1016/j.buildenv.2020.107120 10.1016/j.atmosenv.2012.04.004 10.1016/j.egyr.2019.11.029 10.1177/1536867X20976313 10.1016/j.landurbplan.2016.04.004 10.1109/MGRS.2020.2994107 10.1016/j.landurbplan.2019.04.004 10.1016/j.buildenv.2018.06.038 10.1016/j.envpol.2017.07.060 10.1016/j.jenvman.2015.12.012 10.1016/j.buildenv.2008.06.013 10.1016/j.ufug.2015.06.006 10.1016/j.buildenv.2020.106916 10.1016/j.landurbplan.2018.07.011 10.1016/j.buildenv.2017.11.043 10.1016/j.scitotenv.2013.11.064 10.3390/ijerph14091008 10.1016/j.envres.2017.05.007 10.1016/j.buildenv.2018.07.014 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd |
Copyright_xml | – notice: 2022 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.buildenv.2022.109173 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-684X |
ExternalDocumentID | 10_1016_j_buildenv_2022_109173 S0360132322004103 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARJD AAXUO ABFNM ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE JJJVA KCYFY KOM LY6 LY7 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 RNS ROL RPZ SDF SDG SDP SEN SES SPC SPCBC SSJ SSR SST SSZ T5K ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HMC HVGLF HZ~ R2- RIG SAC SET SEW SSH VH1 WUQ ZMT |
ID | FETCH-LOGICAL-c378t-774728d35e34d9014abb239df1e7d418a40ce510d0dcdb4e2d8747222faa60173 |
IEDL.DBID | .~1 |
ISSN | 0360-1323 |
IngestDate | Thu Apr 24 23:10:23 EDT 2025 Tue Jul 01 00:25:14 EDT 2025 Fri Feb 23 02:40:05 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | High-density urban blocks Mobile monitoring Semantic segmentation Pollutant concentration Urban morphology Machine learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c378t-774728d35e34d9014abb239df1e7d418a40ce510d0dcdb4e2d8747222faa60173 |
ParticipantIDs | crossref_citationtrail_10_1016_j_buildenv_2022_109173 crossref_primary_10_1016_j_buildenv_2022_109173 elsevier_sciencedirect_doi_10_1016_j_buildenv_2022_109173 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-07-01 2022-07-00 |
PublicationDateYYYYMMDD | 2022-07-01 |
PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Building and environment |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Yu, Yu, Song, Wu, Zhou, Huang, Mao (bib25) 2016; 152 Vargas-Munoz, Srivastava, Tuia, Falcao (bib42) 2020; 9 Gambella, Ghaddar, Naoum-Sawaya (bib35) 2021; 290 De Hoogh, Wang, Adam, Badaloni, Beelen, Birk, Hoek (bib8) 2013; 47 Adams, Kanaroglou (bib37) 2016; 168 (bib4) 2016 Lee, Wu, Hoek, de Hoogh, Beelen, Brunekreef, Chan (bib13) 2014; 472 Liu, Chen, Wei, Wu, Li (bib38) 2021; 205 Shi, Ng (bib6) 2017; 14 Baxter (bib39) 2000; 12 Chapman, Thornes, Bradley (bib45) 2001; 69 Wu, Song, Peng (bib36) 2021 Shi, Ming, Wu, Peng, Fang (bib3) 2020; 181 Li, Yabuki, Fukuda, Zhang (bib32) 2020 Chen, Li, Luo, Deng, Zhou, Chen (bib41) 2020; 120 Hu, Yoshie (bib21) 2013; 112 Xue, Li (bib43) 2020; 20 Fuller, Brugge, Williams, Mittleman, Durant, Spengler (bib9) 2012; 57 Wu, Wang, Wang, Song, Gao, Yu (bib29) 2020; 86 Wu, Li, Peng, Li, Xu, Dong (bib11) 2015; 22 Gao, Wang, Liu, Peng (bib16) 2019; 155 Keshavarzian, Jin, Dong, Kwok (bib23) 2021; 197 Shi, Xie, Fung, Ng (bib19) 2018; 128 Liu, Cai, Zhu, Dai (bib12) 2020; 53 Shi, Lau, Ng (bib14) 2017; 157 Dirksen, Ronda, Theeuwes, Pagani (bib26) 2019; 30 Hao, Zheng, Zhao, Wu, Guo, Li (bib31) 2020; 6 Ng (bib18) 2009; 44 Wang, Shaw (bib1) 2018; 43 Zhang, Ou, Chen, Wu, Liu, Wang, Hang (bib22) 2020; 177 Wang, Li, Wang, Zhao, Peng (bib48) 2020; 253 Oke (bib2) 2002 Li, Zhang, Li, Ricard, Meng, Zhang (bib24) 2015; 14 Rafieian, Rad, Sharifi (bib27) 2014 Shi, Cai, Shi, Lu (bib28) 2019 Li, Ming, Liu, Peng, de Richter, Li, Wen (bib20) 2020 Abernethy, Allen, McKendry, Brauer (bib10) 2013; 47 Brostow, Fauqueur, Cipolla (bib47) 2009; 30 Li, Fung, Lau (bib30) 2018; 143 Chen, Zhu, Papandreou, Schroff, Adam (bib46) 2018 Li, Ratti (bib44) 2019; 191 Cui, Shi (bib40) 2012; 2 Foley, DeFries, Asner, Barford, Bonan, Carpenter, Snyder (bib7) 2005; 309 Shi, Ren, Lau, Ng (bib15) 2019; 189 Gao, Wang, Liu, Peng (bib34) 2019; 155 Lin, Ma, Qiu, Wang, Trevathan, Yao, Tian (bib5) 2017; 229 Li, Wang, Li, Peng, Fu (bib17) 2019; 147 Wang, Li, Wang, Zhao, Peng (bib33) 2020; 253 Yu (10.1016/j.buildenv.2022.109173_bib25) 2016; 152 Baxter (10.1016/j.buildenv.2022.109173_bib39) 2000; 12 Shi (10.1016/j.buildenv.2022.109173_bib14) 2017; 157 Hao (10.1016/j.buildenv.2022.109173_bib31) 2020; 6 Li (10.1016/j.buildenv.2022.109173_bib20) 2020 Vargas-Munoz (10.1016/j.buildenv.2022.109173_bib42) 2020; 9 Hu (10.1016/j.buildenv.2022.109173_bib21) 2013; 112 Liu (10.1016/j.buildenv.2022.109173_bib38) 2021; 205 Li (10.1016/j.buildenv.2022.109173_bib17) 2019; 147 Foley (10.1016/j.buildenv.2022.109173_bib7) 2005; 309 Shi (10.1016/j.buildenv.2022.109173_bib28) 2019 Gambella (10.1016/j.buildenv.2022.109173_bib35) 2021; 290 Shi (10.1016/j.buildenv.2022.109173_bib3) 2020; 181 Lin (10.1016/j.buildenv.2022.109173_bib5) 2017; 229 Wu (10.1016/j.buildenv.2022.109173_bib11) 2015; 22 Ng (10.1016/j.buildenv.2022.109173_bib18) 2009; 44 Shi (10.1016/j.buildenv.2022.109173_bib19) 2018; 128 Adams (10.1016/j.buildenv.2022.109173_bib37) 2016; 168 Zhang (10.1016/j.buildenv.2022.109173_bib22) 2020; 177 Keshavarzian (10.1016/j.buildenv.2022.109173_bib23) 2021; 197 Li (10.1016/j.buildenv.2022.109173_bib32) 2020 Li (10.1016/j.buildenv.2022.109173_bib44) 2019; 191 Li (10.1016/j.buildenv.2022.109173_bib30) 2018; 143 Wang (10.1016/j.buildenv.2022.109173_bib33) 2020; 253 Liu (10.1016/j.buildenv.2022.109173_bib12) 2020; 53 Rafieian (10.1016/j.buildenv.2022.109173_bib27) 2014 Dirksen (10.1016/j.buildenv.2022.109173_bib26) 2019; 30 Fuller (10.1016/j.buildenv.2022.109173_bib9) 2012; 57 Wu (10.1016/j.buildenv.2022.109173_bib29) 2020; 86 Wang (10.1016/j.buildenv.2022.109173_bib1) 2018; 43 Abernethy (10.1016/j.buildenv.2022.109173_bib10) 2013; 47 Li (10.1016/j.buildenv.2022.109173_bib24) 2015; 14 Xue (10.1016/j.buildenv.2022.109173_bib43) 2020; 20 Shi (10.1016/j.buildenv.2022.109173_bib15) 2019; 189 Chen (10.1016/j.buildenv.2022.109173_bib46) 2018 Shi (10.1016/j.buildenv.2022.109173_bib6) 2017; 14 Chen (10.1016/j.buildenv.2022.109173_bib41) 2020; 120 Gao (10.1016/j.buildenv.2022.109173_bib16) 2019; 155 Chapman (10.1016/j.buildenv.2022.109173_bib45) 2001; 69 Oke (10.1016/j.buildenv.2022.109173_bib2) 2002 Lee (10.1016/j.buildenv.2022.109173_bib13) 2014; 472 (10.1016/j.buildenv.2022.109173_bib4) 2016 Wu (10.1016/j.buildenv.2022.109173_bib36) 2021 De Hoogh (10.1016/j.buildenv.2022.109173_bib8) 2013; 47 Brostow (10.1016/j.buildenv.2022.109173_bib47) 2009; 30 Wang (10.1016/j.buildenv.2022.109173_bib48) 2020; 253 Gao (10.1016/j.buildenv.2022.109173_bib34) 2019; 155 Cui (10.1016/j.buildenv.2022.109173_bib40) 2012; 2 |
References_xml | – volume: 253 year: 2020 ident: bib33 article-title: Regional prediction of ground-level ozone using a hybrid sequence-to-sequence deep learning approach publication-title: J. Clean. Prod. – volume: 157 start-page: 17 year: 2017 end-page: 29 ident: bib14 article-title: Incorporating wind availability into land use regression modelling of air quality in mountainous high-density urban environment publication-title: Environ. Res. – volume: 30 year: 2019 ident: bib26 article-title: Sky view factor calculations and its application in urban heat island studies publication-title: Urban Clim. – volume: 12 start-page: 149 year: 2000 end-page: 198 ident: bib39 article-title: A model of inductive bias learning publication-title: J. Artif. Intell. Res. – volume: 44 start-page: 1478 year: 2009 end-page: 1488 ident: bib18 article-title: Policies and technical guidelines for urban planning of high-density cities–air ventilation assessment (AVA) of Hong Kong publication-title: Build. Environ. – volume: 147 start-page: 559 year: 2019 end-page: 568 ident: bib17 article-title: Investigating the relationship between air pollution variation and urban form publication-title: Build. Environ. – volume: 155 start-page: 15 year: 2019 end-page: 24 ident: bib34 article-title: Assessing neighborhood air pollution exposure and its relationship with the urban form publication-title: Build. Environ. – volume: 112 start-page: 39 year: 2013 end-page: 51 ident: bib21 article-title: Indices to evaluate ventilation efficiency in newly-built urban area at pedestrian level publication-title: J. Wind Eng. Ind. Aerod. – volume: 191 year: 2019 ident: bib44 article-title: Mapping the spatio-temporal distribution of solar radiation within street canyons of Boston using Google Street View panoramas and building height model publication-title: Landsc. Urban Plann. – volume: 30 start-page: 88 year: 2009 end-page: 97 ident: bib47 article-title: Semantic object classes in video: a high-definition ground truth database publication-title: Pattern Recogn. Lett. – volume: 20 start-page: 805 year: 2020 end-page: 811 ident: bib43 article-title: Extracting Chinese geographic data from Baidu map API publication-title: STATA J. – start-page: 801 year: 2018 end-page: 818 ident: bib46 article-title: Encoder-decoder with atrous separable convolution for semantic image segmentation publication-title: Proceedings of the European Conference on Computer Vision – volume: 309 start-page: 570 year: 2005 end-page: 574 ident: bib7 article-title: Global consequences of land use publication-title: Science – start-page: 1 year: 2014 end-page: 5 ident: bib27 article-title: March). The necessity of using Sky View Factor in urban planning: a case study of Narmak neighborhood, Tehran publication-title: 2014 International Conference and Utility Exhibition on Green Energy for Sustainable Development (ICUE) – volume: 205 year: 2021 ident: bib38 article-title: Nonlinear relationship between urban form and street-level PM2. 5 and CO based on mobile measurements and gradient boosting decision tree models publication-title: Build. Environ. – volume: 9 start-page: 184 year: 2020 end-page: 199 ident: bib42 article-title: OpenStreetMap: challenges and opportunities in machine learning and remote sensing publication-title: IEEE Geoscience and Remote Sensing Magazine – volume: 181 year: 2020 ident: bib3 article-title: The effect of exhaust emissions from a group of moving vehicles on pollutant dispersion in the street canyons publication-title: Build. Environ. – volume: 152 start-page: 13 year: 2016 end-page: 26 ident: bib25 article-title: View-based greenery: a three-dimensional assessment of city buildings' green visibility using Floor Green View Index publication-title: Landsc. Urban Plann. – volume: 143 start-page: 196 year: 2018 end-page: 205 ident: bib30 article-title: High spatiotemporal characterization of on-road PM2. 5 concentrations in high-density urban areas using mobile monitoring publication-title: Build. Environ. – year: 2021 ident: bib36 article-title: Prediction of air pollutants on roadside of the elevated roads with combination of pollutants periodicity and deep learning method publication-title: Build. Environ. – year: 2016 ident: bib4 article-title: Vast Majority of World – 6.76 Billion People – Living with Excessive Air Pollution – UN Report – volume: 253 year: 2020 ident: bib48 article-title: Regional prediction of ground-level ozone using a hybrid sequence-to-sequence deep learning approach publication-title: J. Clean. Prod. – volume: 155 start-page: 15 year: 2019 end-page: 24 ident: bib16 article-title: Assessing neighborhood air pollution exposure and its relationship with the urban form publication-title: Build. Environ. – volume: 47 start-page: 5217 year: 2013 end-page: 5225 ident: bib10 article-title: A land use regression model for ultrafine particles in Vancouver, Canada publication-title: Environ. Sci. Technol. – volume: 177 year: 2020 ident: bib22 article-title: Numerical studies of passive and reactive pollutant dispersion in high-density urban models with various building densities and height variations publication-title: Build. Environ. – volume: 197 year: 2021 ident: bib23 article-title: Effect of building cross-section shape on air pollutant dispersion around buildings publication-title: Build. Environ. – volume: 168 start-page: 133 year: 2016 end-page: 141 ident: bib37 article-title: Mapping real-time air pollution health risk for environmental management: combining mobile and stationary air pollution monitoring with neural network models publication-title: J. Environ. Manag. – volume: 43 start-page: 578 year: 2018 end-page: 586 ident: bib1 article-title: The complexity of high-density neighbourhood development in China: intensification, deregulation and social sustainability challenges publication-title: Sustain. Cities Soc. – volume: 189 start-page: 15 year: 2019 end-page: 26 ident: bib15 article-title: Investigating the influence of urban land use and landscape pattern on PM2. 5 spatial variation using mobile monitoring and WUDAPT publication-title: Landsc. Urban Plann. – volume: 2 start-page: 1 year: 2012 end-page: 15 ident: bib40 article-title: Urbanization and its environmental effects in Shanghai, China publication-title: Urban Clim. – volume: 128 start-page: 248 year: 2018 end-page: 259 ident: bib19 article-title: Identifying critical building morphological design factors of street-level air pollution dispersion in high-density built environment using mobile monitoring publication-title: Build. Environ. – volume: 6 start-page: 28 year: 2020 end-page: 39 ident: bib31 article-title: Reexamining the relationships among urbanization, industrial structure, and environmental pollution in China—new evidence using the dynamic threshold panel model publication-title: Energy Rep. – volume: 47 start-page: 5778 year: 2013 end-page: 5786 ident: bib8 article-title: Development of land use regression models for particle composition in twenty study areas in Europe publication-title: Environ. Sci. Technol. – volume: 472 start-page: 1163 year: 2014 end-page: 1171 ident: bib13 article-title: Land use regression models for estimating individual NOx and NO2 exposures in a metropolis with a high density of traffic roads and population publication-title: Sci. Total Environ. – volume: 14 start-page: 1008 year: 2017 ident: bib6 article-title: Fine-scale spatial variability of pedestrian-level particulate matters in compact urban commercial districts in Hong Kong publication-title: Int. J. Environ. Res. Publ. Health – volume: 86 year: 2020 ident: bib29 article-title: Application of a taxi-based mobile atmospheric monitoring system in Cangzhou, China publication-title: Transport. Res. Transport Environ. – year: 2002 ident: bib2 article-title: Boundary Layer Climates – volume: 14 start-page: 675 year: 2015 end-page: 685 ident: bib24 article-title: Assessing street-level urban greenery using Google Street View and a modified green view index publication-title: Urban For. Urban Green. – volume: 120 year: 2020 ident: bib41 article-title: Simulating the effects of land urbanization on regional meteorology and air quality in Yangtze River Delta, China publication-title: Appl. Geogr. – volume: 53 year: 2020 ident: bib12 article-title: Impacts of vehicle emission from a major road on spatiotemporal variations of neighborhood particulate pollution—a case study in a university campus publication-title: Sustain. Cities Soc. – year: 2020 ident: bib20 article-title: Review on Pollutant Dispersion in Urban Areas-Part A: Effects of Mechanical Factors and Urban Morphology – volume: 229 start-page: 896 year: 2017 end-page: 901 ident: bib5 article-title: Using daily excessive concentration hours to explore the short-term mortality effects of ambient PM2.5 in Hong Kong publication-title: Environ. Pollut. – year: 2019 ident: bib28 article-title: Study on Green View Index of Shangxiahang Historic District in Fuzhou City – year: 2020 ident: bib32 article-title: A Big Data Evaluation of Urban Street Walkability Using Deep Learning and Environmental Sensors-A Case Study Around Osaka University Suita Campus – volume: 69 start-page: 81 year: 2001 end-page: 89 ident: bib45 article-title: Rapid determination of canyon geometry parameters for use in surface radiation budgets publication-title: Theor. Appl. Climatol. – volume: 57 start-page: 257 year: 2012 end-page: 265 ident: bib9 article-title: Estimation of ultrafine particle concentrations at near-highway residences using data from local and central monitors publication-title: Atmos. Environ. – volume: 22 start-page: 7045 year: 2015 end-page: 7061 ident: bib11 article-title: Applying land use regression model to estimate spatial variation of PM 2.5 in Beijing, China publication-title: Environ. Sci. Pollut. Control Ser. – volume: 290 start-page: 807 year: 2021 end-page: 828 ident: bib35 article-title: Optimization problems for machine learning: a survey publication-title: Eur. J. Oper. Res. – year: 2016 ident: 10.1016/j.buildenv.2022.109173_bib4 – volume: 47 start-page: 5778 issue: 11 year: 2013 ident: 10.1016/j.buildenv.2022.109173_bib8 article-title: Development of land use regression models for particle composition in twenty study areas in Europe publication-title: Environ. Sci. Technol. doi: 10.1021/es400156t – volume: 155 start-page: 15 year: 2019 ident: 10.1016/j.buildenv.2022.109173_bib34 article-title: Assessing neighborhood air pollution exposure and its relationship with the urban form publication-title: Build. Environ. doi: 10.1016/j.buildenv.2018.12.044 – volume: 290 start-page: 807 issue: 3 year: 2021 ident: 10.1016/j.buildenv.2022.109173_bib35 article-title: Optimization problems for machine learning: a survey publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2020.08.045 – volume: 12 start-page: 149 year: 2000 ident: 10.1016/j.buildenv.2022.109173_bib39 article-title: A model of inductive bias learning publication-title: J. Artif. Intell. Res. doi: 10.1613/jair.731 – volume: 22 start-page: 7045 issue: 9 year: 2015 ident: 10.1016/j.buildenv.2022.109173_bib11 article-title: Applying land use regression model to estimate spatial variation of PM 2.5 in Beijing, China publication-title: Environ. Sci. Pollut. Control Ser. doi: 10.1007/s11356-014-3893-5 – volume: 30 start-page: 88 issue: 2 year: 2009 ident: 10.1016/j.buildenv.2022.109173_bib47 article-title: Semantic object classes in video: a high-definition ground truth database publication-title: Pattern Recogn. Lett. doi: 10.1016/j.patrec.2008.04.005 – volume: 253 year: 2020 ident: 10.1016/j.buildenv.2022.109173_bib48 article-title: Regional prediction of ground-level ozone using a hybrid sequence-to-sequence deep learning approach publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2019.119841 – volume: 69 start-page: 81 issue: 1 year: 2001 ident: 10.1016/j.buildenv.2022.109173_bib45 article-title: Rapid determination of canyon geometry parameters for use in surface radiation budgets publication-title: Theor. Appl. Climatol. doi: 10.1007/s007040170036 – volume: 205 year: 2021 ident: 10.1016/j.buildenv.2022.109173_bib38 article-title: Nonlinear relationship between urban form and street-level PM2. 5 and CO based on mobile measurements and gradient boosting decision tree models publication-title: Build. Environ. doi: 10.1016/j.buildenv.2021.108265 – volume: 112 start-page: 39 year: 2013 ident: 10.1016/j.buildenv.2022.109173_bib21 article-title: Indices to evaluate ventilation efficiency in newly-built urban area at pedestrian level publication-title: J. Wind Eng. Ind. Aerod. doi: 10.1016/j.jweia.2012.11.002 – volume: 47 start-page: 5217 issue: 10 year: 2013 ident: 10.1016/j.buildenv.2022.109173_bib10 article-title: A land use regression model for ultrafine particles in Vancouver, Canada publication-title: Environ. Sci. Technol. doi: 10.1021/es304495s – year: 2002 ident: 10.1016/j.buildenv.2022.109173_bib2 – volume: 53 year: 2020 ident: 10.1016/j.buildenv.2022.109173_bib12 article-title: Impacts of vehicle emission from a major road on spatiotemporal variations of neighborhood particulate pollution—a case study in a university campus publication-title: Sustain. Cities Soc. doi: 10.1016/j.scs.2019.101917 – volume: 197 year: 2021 ident: 10.1016/j.buildenv.2022.109173_bib23 article-title: Effect of building cross-section shape on air pollutant dispersion around buildings publication-title: Build. Environ. doi: 10.1016/j.buildenv.2021.107861 – volume: 120 year: 2020 ident: 10.1016/j.buildenv.2022.109173_bib41 article-title: Simulating the effects of land urbanization on regional meteorology and air quality in Yangtze River Delta, China publication-title: Appl. Geogr. doi: 10.1016/j.apgeog.2020.102228 – year: 2020 ident: 10.1016/j.buildenv.2022.109173_bib20 – volume: 309 start-page: 570 issue: 5734 year: 2005 ident: 10.1016/j.buildenv.2022.109173_bib7 article-title: Global consequences of land use publication-title: Science doi: 10.1126/science.1111772 – volume: 30 year: 2019 ident: 10.1016/j.buildenv.2022.109173_bib26 article-title: Sky view factor calculations and its application in urban heat island studies publication-title: Urban Clim. doi: 10.1016/j.uclim.2019.100498 – volume: 2 start-page: 1 year: 2012 ident: 10.1016/j.buildenv.2022.109173_bib40 article-title: Urbanization and its environmental effects in Shanghai, China publication-title: Urban Clim. doi: 10.1016/j.uclim.2012.10.008 – year: 2020 ident: 10.1016/j.buildenv.2022.109173_bib32 – volume: 43 start-page: 578 year: 2018 ident: 10.1016/j.buildenv.2022.109173_bib1 article-title: The complexity of high-density neighbourhood development in China: intensification, deregulation and social sustainability challenges publication-title: Sustain. Cities Soc. doi: 10.1016/j.scs.2018.08.024 – volume: 155 start-page: 15 year: 2019 ident: 10.1016/j.buildenv.2022.109173_bib16 article-title: Assessing neighborhood air pollution exposure and its relationship with the urban form publication-title: Build. Environ. doi: 10.1016/j.buildenv.2018.12.044 – year: 2021 ident: 10.1016/j.buildenv.2022.109173_bib36 article-title: Prediction of air pollutants on roadside of the elevated roads with combination of pollutants periodicity and deep learning method publication-title: Build. Environ. – volume: 181 year: 2020 ident: 10.1016/j.buildenv.2022.109173_bib3 article-title: The effect of exhaust emissions from a group of moving vehicles on pollutant dispersion in the street canyons publication-title: Build. Environ. doi: 10.1016/j.buildenv.2020.107120 – volume: 57 start-page: 257 year: 2012 ident: 10.1016/j.buildenv.2022.109173_bib9 article-title: Estimation of ultrafine particle concentrations at near-highway residences using data from local and central monitors publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2012.04.004 – volume: 6 start-page: 28 year: 2020 ident: 10.1016/j.buildenv.2022.109173_bib31 article-title: Reexamining the relationships among urbanization, industrial structure, and environmental pollution in China—new evidence using the dynamic threshold panel model publication-title: Energy Rep. doi: 10.1016/j.egyr.2019.11.029 – volume: 20 start-page: 805 issue: 4 year: 2020 ident: 10.1016/j.buildenv.2022.109173_bib43 article-title: Extracting Chinese geographic data from Baidu map API publication-title: STATA J. doi: 10.1177/1536867X20976313 – volume: 152 start-page: 13 year: 2016 ident: 10.1016/j.buildenv.2022.109173_bib25 article-title: View-based greenery: a three-dimensional assessment of city buildings' green visibility using Floor Green View Index publication-title: Landsc. Urban Plann. doi: 10.1016/j.landurbplan.2016.04.004 – year: 2019 ident: 10.1016/j.buildenv.2022.109173_bib28 – volume: 9 start-page: 184 issue: 1 year: 2020 ident: 10.1016/j.buildenv.2022.109173_bib42 article-title: OpenStreetMap: challenges and opportunities in machine learning and remote sensing publication-title: IEEE Geoscience and Remote Sensing Magazine doi: 10.1109/MGRS.2020.2994107 – start-page: 1 year: 2014 ident: 10.1016/j.buildenv.2022.109173_bib27 article-title: March). The necessity of using Sky View Factor in urban planning: a case study of Narmak neighborhood, Tehran – volume: 189 start-page: 15 year: 2019 ident: 10.1016/j.buildenv.2022.109173_bib15 article-title: Investigating the influence of urban land use and landscape pattern on PM2. 5 spatial variation using mobile monitoring and WUDAPT publication-title: Landsc. Urban Plann. doi: 10.1016/j.landurbplan.2019.04.004 – volume: 147 start-page: 559 year: 2019 ident: 10.1016/j.buildenv.2022.109173_bib17 article-title: Investigating the relationship between air pollution variation and urban form publication-title: Build. Environ. doi: 10.1016/j.buildenv.2018.06.038 – start-page: 801 year: 2018 ident: 10.1016/j.buildenv.2022.109173_bib46 article-title: Encoder-decoder with atrous separable convolution for semantic image segmentation – volume: 229 start-page: 896 year: 2017 ident: 10.1016/j.buildenv.2022.109173_bib5 article-title: Using daily excessive concentration hours to explore the short-term mortality effects of ambient PM2.5 in Hong Kong publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2017.07.060 – volume: 168 start-page: 133 year: 2016 ident: 10.1016/j.buildenv.2022.109173_bib37 article-title: Mapping real-time air pollution health risk for environmental management: combining mobile and stationary air pollution monitoring with neural network models publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2015.12.012 – volume: 44 start-page: 1478 issue: 7 year: 2009 ident: 10.1016/j.buildenv.2022.109173_bib18 article-title: Policies and technical guidelines for urban planning of high-density cities–air ventilation assessment (AVA) of Hong Kong publication-title: Build. Environ. doi: 10.1016/j.buildenv.2008.06.013 – volume: 14 start-page: 675 issue: 3 year: 2015 ident: 10.1016/j.buildenv.2022.109173_bib24 article-title: Assessing street-level urban greenery using Google Street View and a modified green view index publication-title: Urban For. Urban Green. doi: 10.1016/j.ufug.2015.06.006 – volume: 86 year: 2020 ident: 10.1016/j.buildenv.2022.109173_bib29 article-title: Application of a taxi-based mobile atmospheric monitoring system in Cangzhou, China publication-title: Transport. Res. Transport Environ. – volume: 177 year: 2020 ident: 10.1016/j.buildenv.2022.109173_bib22 article-title: Numerical studies of passive and reactive pollutant dispersion in high-density urban models with various building densities and height variations publication-title: Build. Environ. doi: 10.1016/j.buildenv.2020.106916 – volume: 191 year: 2019 ident: 10.1016/j.buildenv.2022.109173_bib44 article-title: Mapping the spatio-temporal distribution of solar radiation within street canyons of Boston using Google Street View panoramas and building height model publication-title: Landsc. Urban Plann. doi: 10.1016/j.landurbplan.2018.07.011 – volume: 128 start-page: 248 year: 2018 ident: 10.1016/j.buildenv.2022.109173_bib19 article-title: Identifying critical building morphological design factors of street-level air pollution dispersion in high-density built environment using mobile monitoring publication-title: Build. Environ. doi: 10.1016/j.buildenv.2017.11.043 – volume: 253 year: 2020 ident: 10.1016/j.buildenv.2022.109173_bib33 article-title: Regional prediction of ground-level ozone using a hybrid sequence-to-sequence deep learning approach publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2019.119841 – volume: 472 start-page: 1163 year: 2014 ident: 10.1016/j.buildenv.2022.109173_bib13 article-title: Land use regression models for estimating individual NOx and NO2 exposures in a metropolis with a high density of traffic roads and population publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2013.11.064 – volume: 14 start-page: 1008 issue: 9 year: 2017 ident: 10.1016/j.buildenv.2022.109173_bib6 article-title: Fine-scale spatial variability of pedestrian-level particulate matters in compact urban commercial districts in Hong Kong publication-title: Int. J. Environ. Res. Publ. Health doi: 10.3390/ijerph14091008 – volume: 157 start-page: 17 year: 2017 ident: 10.1016/j.buildenv.2022.109173_bib14 article-title: Incorporating wind availability into land use regression modelling of air quality in mountainous high-density urban environment publication-title: Environ. Res. doi: 10.1016/j.envres.2017.05.007 – volume: 143 start-page: 196 year: 2018 ident: 10.1016/j.buildenv.2022.109173_bib30 article-title: High spatiotemporal characterization of on-road PM2. 5 concentrations in high-density urban areas using mobile monitoring publication-title: Build. Environ. doi: 10.1016/j.buildenv.2018.07.014 |
SSID | ssj0016934 |
Score | 2.5370657 |
Snippet | It is essential to investigate the morphological factors that contribute to air pollution's spatial distribution using mobile monitoring data, and to regulate... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 109173 |
SubjectTerms | High-density urban blocks Machine learning Mobile monitoring Pollutant concentration Semantic segmentation Urban morphology |
Title | Effect of urban morphology on air pollution distribution in high-density urban blocks based on mobile monitoring and machine learning |
URI | https://dx.doi.org/10.1016/j.buildenv.2022.109173 |
Volume | 219 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KvehBfGJ9lD14TdMmm0ePpViqYi9a6C3sZjaSapNSU8GLN_-3M8mmVBA8eAoJO0mYmZ2ZZL_9hrHrnu854IeeRQhvS2gd45QCz3K9mHgnYxkGtBv5YeKPp-Ju5s0abFjvhSFYpYn9VUwvo7W5Yhtt2ss0tR8x9tJCAXokkUaVjJ9CBOTlnc8NzIO4RgyFVNei0Vu7hOcdRa2ndfaO34mOQ8xKvcD9PUFtJZ3RAds31SIfVC90yBo6O2J7WxyCx-yr4h_mecLXKyUzvshRdeXPcp5nXKYrvqR2xmQADkSTazpc8TTjRFZsAWHYiw8jrjC7vbxxym5AN1jkCgMHHmju0yO5zIAvSgym5qbpxPMJm45unoZjy_RWsGI3CAssqkXghOB62hVAS6lSKcftQ9LTAYheKEU31jhfoQsxKKEdCEnCcRIpUe2Be8qaWZ7pM8YTP1QCEyAOBQEaVBeDuasl1ipJIH3ZYl6t0Cg2xOPU_-I1qhFm86g2RESGiCpDtJi9kVtW1Bt_SvRre0U_nCjC_PCH7Pk_ZC_YLp1VKN5L1ixWa32FtUqh2qUzttnO4PZ-PPkGLKftLg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB6F9AA9VC0PlUfpHuBo4qzXjxw4VC0okMAFkLiZXc8ahTZ2FAKIS2_8ov5BZuJ1FCQkDhUnS7Zn15qZndn1zn4fwE47CiVGSehxhbenrM1oSGHoBWHGuJOZTmI-jXxyGnUv1PFleNmAf_VZGC6rdLG_iunTaO3utJw2W6PBoHVGsZc3CsgjGTTKrxmse_bxgdZtt_tHv8jIu1IeHpz_7HqOWsDLgjiZ0JxSxTLBILSBQt5J1MbIoIN528ao2olWfmbJXdHHDI2yEhOWkDLXmnqNA2p3AT4oChdMm7D3d1ZXwuAmDrPK9_jz5o4l3-wZ5rq2xT0tTKVkKKd2HLyeEeey3OFn-OSmp-JHpYEv0LDFMnycAy1cgacK8FiUubgbG12IYUm2mv6dF2Uh9GAsRsyfzBYXyLi8jlJLDArB6MgectH85NGJG0qnv28Fp1PkBoaloUhFFw423KXQBYrhtOjTCsdycb0KF--i8TVoFmVhv4LIo8Qoyrj0Kiq0aHzKHoHVNDnKYx3pdQhrhaaZQzpnwo0_aV3SdpPWhkjZEGlliHVozeRGFdbHmxKd2l7pC69NKSG9IbvxH7LfYbF7ftJP-0envU1Y4idVCfEWNCfjO_uNJkoTsz11TAFX7z0SngGCOign |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+urban+morphology+on+air+pollution+distribution+in+high-density+urban+blocks+based+on+mobile+monitoring+and+machine+learning&rft.jtitle=Building+and+environment&rft.au=Huang%2C+Chenyu&rft.au=Hu%2C+Tingting&rft.au=Duan%2C+Yusen&rft.au=Li%2C+Qingyu&rft.date=2022-07-01&rft.issn=0360-1323&rft.volume=219&rft.spage=109173&rft_id=info:doi/10.1016%2Fj.buildenv.2022.109173&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_buildenv_2022_109173 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-1323&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-1323&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-1323&client=summon |