Effect of urban morphology on air pollution distribution in high-density urban blocks based on mobile monitoring and machine learning

It is essential to investigate the morphological factors that contribute to air pollution's spatial distribution using mobile monitoring data, and to regulate them at the urban planning level. However, mobile monitoring data are unstable and more difficult to model under real-world atmospheric...

Full description

Saved in:
Bibliographic Details
Published inBuilding and environment Vol. 219; p. 109173
Main Authors Huang, Chenyu, Hu, Tingting, Duan, Yusen, Li, Qingyu, Chen, Nan, Wang, Qi, Zhou, Mengge, Rao, Pinhua
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.07.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract It is essential to investigate the morphological factors that contribute to air pollution's spatial distribution using mobile monitoring data, and to regulate them at the urban planning level. However, mobile monitoring data are unstable and more difficult to model under real-world atmospheric circumstances. This work assesses the nonlinear relationship between spatial distribution of air pollutants and building morphological indicators in a high-density city based on mobile monitoring and machine learning. By conducting a vehicle-mounted mobile monitoring experiment, we establish spatial distribution data sets for PM2.5 and PM10 on three typical regions in Huangpu District, Shanghai. 9 indicators of urban morphology are derived, including green view index and sky view factor, using semantic segmentation and deep learning on street-view images. Correlation analysis demonstrates that the difficulty lies in implementing linear modeling methods. The performances of six machine learning algorithms for predicting the spatial variability of pollutants are compared. The result shows that neural networks have the highest performance for repidly predicting pollutant diffusion levels in conceptual designs. •Spatial distribution of pollutants is strongly related to urban morphology.•Long-term mobile monitoring of pollutants in high-density urban blocks has been conducted.•Semantic segmentation-based indicators such as green view index have been investigated.•Machine learning is better at identifying non-linear patterns in pollutants distribution.•An open neural network model has optimal performance and allows for ongoing improvement.
AbstractList It is essential to investigate the morphological factors that contribute to air pollution's spatial distribution using mobile monitoring data, and to regulate them at the urban planning level. However, mobile monitoring data are unstable and more difficult to model under real-world atmospheric circumstances. This work assesses the nonlinear relationship between spatial distribution of air pollutants and building morphological indicators in a high-density city based on mobile monitoring and machine learning. By conducting a vehicle-mounted mobile monitoring experiment, we establish spatial distribution data sets for PM2.5 and PM10 on three typical regions in Huangpu District, Shanghai. 9 indicators of urban morphology are derived, including green view index and sky view factor, using semantic segmentation and deep learning on street-view images. Correlation analysis demonstrates that the difficulty lies in implementing linear modeling methods. The performances of six machine learning algorithms for predicting the spatial variability of pollutants are compared. The result shows that neural networks have the highest performance for repidly predicting pollutant diffusion levels in conceptual designs. •Spatial distribution of pollutants is strongly related to urban morphology.•Long-term mobile monitoring of pollutants in high-density urban blocks has been conducted.•Semantic segmentation-based indicators such as green view index have been investigated.•Machine learning is better at identifying non-linear patterns in pollutants distribution.•An open neural network model has optimal performance and allows for ongoing improvement.
ArticleNumber 109173
Author Chen, Nan
Li, Qingyu
Duan, Yusen
Wang, Qi
Rao, Pinhua
Huang, Chenyu
Zhou, Mengge
Hu, Tingting
Author_xml – sequence: 1
  givenname: Chenyu
  surname: Huang
  fullname: Huang, Chenyu
  organization: School of Architecture and Art, North China University of Technology, Beijing, 100144, China
– sequence: 2
  givenname: Tingting
  surname: Hu
  fullname: Hu, Tingting
  email: tingtinghu@sues.edu.cn
  organization: College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
– sequence: 3
  givenname: Yusen
  surname: Duan
  fullname: Duan, Yusen
  organization: Shanghai Environmental Monitoring Center, Shanghai, 200030, China
– sequence: 4
  givenname: Qingyu
  surname: Li
  fullname: Li, Qingyu
  organization: College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
– sequence: 5
  givenname: Nan
  surname: Chen
  fullname: Chen, Nan
  organization: College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
– sequence: 6
  givenname: Qi
  surname: Wang
  fullname: Wang, Qi
  organization: College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
– sequence: 7
  givenname: Mengge
  surname: Zhou
  fullname: Zhou, Mengge
  organization: College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
– sequence: 8
  givenname: Pinhua
  surname: Rao
  fullname: Rao, Pinhua
  organization: College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
BookMark eNqFkNtKAzEQhoMoWA-vIHmBrTmsu1vwQhFPIHij4F3IYbadmiYl2Qp9AN_bLNUbb3o1_APfP8x3Qg5DDEDIBWdTznhzuZyaDXoH4WsqmBBlOeOtPCAT3rWyarr645BMmGxYxaWQx-Qk5yUr4EzWE_J93_dgBxp7uklGB7qKab2IPs63NAaqMdF19H4zYEkO85DQ7AIGusD5oiqHMw7bX9z4aD8zNTqDGwtW0aCHMgIOMWGYUx0cXWm7wADUg06hLM_IUa99hvPfeUreH-7f7p6ql9fH57vbl8rKthuqtq1b0Tl5BbJ2M8ZrbYyQM9dzaF3NO10zC1ecOeasMzUI142EEL3WDStSTsn1rtemmHOCXlkc9PjOkDR6xZkalaql-lOqRqVqp7TgzT98nXCl03Y_eLMDoTz3hZBUtgjBgsNU7CsXcV_FD4m9mqM
CitedBy_id crossref_primary_10_1016_j_enbuild_2023_112809
crossref_primary_10_1016_j_scs_2022_104279
crossref_primary_10_1080_13547860_2024_2370152
crossref_primary_10_1016_j_buildenv_2024_111838
crossref_primary_10_1016_j_buildenv_2025_112634
crossref_primary_10_1016_j_apr_2025_102426
crossref_primary_10_1016_j_apr_2025_102503
crossref_primary_10_1016_j_buildenv_2025_112804
crossref_primary_10_1016_j_cities_2024_105022
crossref_primary_10_3390_buildings14103147
crossref_primary_10_1016_j_enbuild_2024_113894
crossref_primary_10_1016_j_buildenv_2023_110695
crossref_primary_10_1016_j_scs_2023_105029
crossref_primary_10_3390_land14010007
crossref_primary_10_3390_land14030632
crossref_primary_10_1016_j_isci_2024_110125
crossref_primary_10_1016_j_scs_2022_104225
crossref_primary_10_1016_j_scs_2022_104221
crossref_primary_10_3390_su16030976
crossref_primary_10_1016_j_jclepro_2023_139040
crossref_primary_10_1016_j_jclepro_2025_144813
crossref_primary_10_1016_j_ufug_2023_127917
crossref_primary_10_3390_app132413013
crossref_primary_10_1016_j_buildenv_2025_112543
crossref_primary_10_1016_j_buildenv_2023_110998
crossref_primary_10_3390_land14020289
crossref_primary_10_1007_s00704_025_05399_x
crossref_primary_10_1016_j_buildenv_2023_110587
crossref_primary_10_1016_j_buildenv_2024_112467
crossref_primary_10_1016_j_envpol_2023_122436
crossref_primary_10_1016_j_buildenv_2023_111157
crossref_primary_10_3390_su16167193
crossref_primary_10_1016_j_enbuild_2024_114797
crossref_primary_10_1016_j_eneco_2024_107574
crossref_primary_10_1016_j_buildenv_2023_111032
crossref_primary_10_1016_j_buildenv_2024_112141
Cites_doi 10.1021/es400156t
10.1016/j.buildenv.2018.12.044
10.1016/j.ejor.2020.08.045
10.1613/jair.731
10.1007/s11356-014-3893-5
10.1016/j.patrec.2008.04.005
10.1016/j.jclepro.2019.119841
10.1007/s007040170036
10.1016/j.buildenv.2021.108265
10.1016/j.jweia.2012.11.002
10.1021/es304495s
10.1016/j.scs.2019.101917
10.1016/j.buildenv.2021.107861
10.1016/j.apgeog.2020.102228
10.1126/science.1111772
10.1016/j.uclim.2019.100498
10.1016/j.uclim.2012.10.008
10.1016/j.scs.2018.08.024
10.1016/j.buildenv.2020.107120
10.1016/j.atmosenv.2012.04.004
10.1016/j.egyr.2019.11.029
10.1177/1536867X20976313
10.1016/j.landurbplan.2016.04.004
10.1109/MGRS.2020.2994107
10.1016/j.landurbplan.2019.04.004
10.1016/j.buildenv.2018.06.038
10.1016/j.envpol.2017.07.060
10.1016/j.jenvman.2015.12.012
10.1016/j.buildenv.2008.06.013
10.1016/j.ufug.2015.06.006
10.1016/j.buildenv.2020.106916
10.1016/j.landurbplan.2018.07.011
10.1016/j.buildenv.2017.11.043
10.1016/j.scitotenv.2013.11.064
10.3390/ijerph14091008
10.1016/j.envres.2017.05.007
10.1016/j.buildenv.2018.07.014
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.buildenv.2022.109173
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-684X
ExternalDocumentID 10_1016_j_buildenv_2022_109173
S0360132322004103
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AAXUO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KCYFY
KOM
LY6
LY7
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SEN
SES
SPC
SPCBC
SSJ
SSR
SST
SSZ
T5K
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HMC
HVGLF
HZ~
R2-
RIG
SAC
SET
SEW
SSH
VH1
WUQ
ZMT
ID FETCH-LOGICAL-c378t-774728d35e34d9014abb239df1e7d418a40ce510d0dcdb4e2d8747222faa60173
IEDL.DBID .~1
ISSN 0360-1323
IngestDate Thu Apr 24 23:10:23 EDT 2025
Tue Jul 01 00:25:14 EDT 2025
Fri Feb 23 02:40:05 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords High-density urban blocks
Mobile monitoring
Semantic segmentation
Pollutant concentration
Urban morphology
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c378t-774728d35e34d9014abb239df1e7d418a40ce510d0dcdb4e2d8747222faa60173
ParticipantIDs crossref_citationtrail_10_1016_j_buildenv_2022_109173
crossref_primary_10_1016_j_buildenv_2022_109173
elsevier_sciencedirect_doi_10_1016_j_buildenv_2022_109173
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-07-01
2022-07-00
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-01
  day: 01
PublicationDecade 2020
PublicationTitle Building and environment
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Yu, Yu, Song, Wu, Zhou, Huang, Mao (bib25) 2016; 152
Vargas-Munoz, Srivastava, Tuia, Falcao (bib42) 2020; 9
Gambella, Ghaddar, Naoum-Sawaya (bib35) 2021; 290
De Hoogh, Wang, Adam, Badaloni, Beelen, Birk, Hoek (bib8) 2013; 47
Adams, Kanaroglou (bib37) 2016; 168
(bib4) 2016
Lee, Wu, Hoek, de Hoogh, Beelen, Brunekreef, Chan (bib13) 2014; 472
Liu, Chen, Wei, Wu, Li (bib38) 2021; 205
Shi, Ng (bib6) 2017; 14
Baxter (bib39) 2000; 12
Chapman, Thornes, Bradley (bib45) 2001; 69
Wu, Song, Peng (bib36) 2021
Shi, Ming, Wu, Peng, Fang (bib3) 2020; 181
Li, Yabuki, Fukuda, Zhang (bib32) 2020
Chen, Li, Luo, Deng, Zhou, Chen (bib41) 2020; 120
Hu, Yoshie (bib21) 2013; 112
Xue, Li (bib43) 2020; 20
Fuller, Brugge, Williams, Mittleman, Durant, Spengler (bib9) 2012; 57
Wu, Wang, Wang, Song, Gao, Yu (bib29) 2020; 86
Wu, Li, Peng, Li, Xu, Dong (bib11) 2015; 22
Gao, Wang, Liu, Peng (bib16) 2019; 155
Keshavarzian, Jin, Dong, Kwok (bib23) 2021; 197
Shi, Xie, Fung, Ng (bib19) 2018; 128
Liu, Cai, Zhu, Dai (bib12) 2020; 53
Shi, Lau, Ng (bib14) 2017; 157
Dirksen, Ronda, Theeuwes, Pagani (bib26) 2019; 30
Hao, Zheng, Zhao, Wu, Guo, Li (bib31) 2020; 6
Ng (bib18) 2009; 44
Wang, Shaw (bib1) 2018; 43
Zhang, Ou, Chen, Wu, Liu, Wang, Hang (bib22) 2020; 177
Wang, Li, Wang, Zhao, Peng (bib48) 2020; 253
Oke (bib2) 2002
Li, Zhang, Li, Ricard, Meng, Zhang (bib24) 2015; 14
Rafieian, Rad, Sharifi (bib27) 2014
Shi, Cai, Shi, Lu (bib28) 2019
Li, Ming, Liu, Peng, de Richter, Li, Wen (bib20) 2020
Abernethy, Allen, McKendry, Brauer (bib10) 2013; 47
Brostow, Fauqueur, Cipolla (bib47) 2009; 30
Li, Fung, Lau (bib30) 2018; 143
Chen, Zhu, Papandreou, Schroff, Adam (bib46) 2018
Li, Ratti (bib44) 2019; 191
Cui, Shi (bib40) 2012; 2
Foley, DeFries, Asner, Barford, Bonan, Carpenter, Snyder (bib7) 2005; 309
Shi, Ren, Lau, Ng (bib15) 2019; 189
Gao, Wang, Liu, Peng (bib34) 2019; 155
Lin, Ma, Qiu, Wang, Trevathan, Yao, Tian (bib5) 2017; 229
Li, Wang, Li, Peng, Fu (bib17) 2019; 147
Wang, Li, Wang, Zhao, Peng (bib33) 2020; 253
Yu (10.1016/j.buildenv.2022.109173_bib25) 2016; 152
Baxter (10.1016/j.buildenv.2022.109173_bib39) 2000; 12
Shi (10.1016/j.buildenv.2022.109173_bib14) 2017; 157
Hao (10.1016/j.buildenv.2022.109173_bib31) 2020; 6
Li (10.1016/j.buildenv.2022.109173_bib20) 2020
Vargas-Munoz (10.1016/j.buildenv.2022.109173_bib42) 2020; 9
Hu (10.1016/j.buildenv.2022.109173_bib21) 2013; 112
Liu (10.1016/j.buildenv.2022.109173_bib38) 2021; 205
Li (10.1016/j.buildenv.2022.109173_bib17) 2019; 147
Foley (10.1016/j.buildenv.2022.109173_bib7) 2005; 309
Shi (10.1016/j.buildenv.2022.109173_bib28) 2019
Gambella (10.1016/j.buildenv.2022.109173_bib35) 2021; 290
Shi (10.1016/j.buildenv.2022.109173_bib3) 2020; 181
Lin (10.1016/j.buildenv.2022.109173_bib5) 2017; 229
Wu (10.1016/j.buildenv.2022.109173_bib11) 2015; 22
Ng (10.1016/j.buildenv.2022.109173_bib18) 2009; 44
Shi (10.1016/j.buildenv.2022.109173_bib19) 2018; 128
Adams (10.1016/j.buildenv.2022.109173_bib37) 2016; 168
Zhang (10.1016/j.buildenv.2022.109173_bib22) 2020; 177
Keshavarzian (10.1016/j.buildenv.2022.109173_bib23) 2021; 197
Li (10.1016/j.buildenv.2022.109173_bib32) 2020
Li (10.1016/j.buildenv.2022.109173_bib44) 2019; 191
Li (10.1016/j.buildenv.2022.109173_bib30) 2018; 143
Wang (10.1016/j.buildenv.2022.109173_bib33) 2020; 253
Liu (10.1016/j.buildenv.2022.109173_bib12) 2020; 53
Rafieian (10.1016/j.buildenv.2022.109173_bib27) 2014
Dirksen (10.1016/j.buildenv.2022.109173_bib26) 2019; 30
Fuller (10.1016/j.buildenv.2022.109173_bib9) 2012; 57
Wu (10.1016/j.buildenv.2022.109173_bib29) 2020; 86
Wang (10.1016/j.buildenv.2022.109173_bib1) 2018; 43
Abernethy (10.1016/j.buildenv.2022.109173_bib10) 2013; 47
Li (10.1016/j.buildenv.2022.109173_bib24) 2015; 14
Xue (10.1016/j.buildenv.2022.109173_bib43) 2020; 20
Shi (10.1016/j.buildenv.2022.109173_bib15) 2019; 189
Chen (10.1016/j.buildenv.2022.109173_bib46) 2018
Shi (10.1016/j.buildenv.2022.109173_bib6) 2017; 14
Chen (10.1016/j.buildenv.2022.109173_bib41) 2020; 120
Gao (10.1016/j.buildenv.2022.109173_bib16) 2019; 155
Chapman (10.1016/j.buildenv.2022.109173_bib45) 2001; 69
Oke (10.1016/j.buildenv.2022.109173_bib2) 2002
Lee (10.1016/j.buildenv.2022.109173_bib13) 2014; 472
(10.1016/j.buildenv.2022.109173_bib4) 2016
Wu (10.1016/j.buildenv.2022.109173_bib36) 2021
De Hoogh (10.1016/j.buildenv.2022.109173_bib8) 2013; 47
Brostow (10.1016/j.buildenv.2022.109173_bib47) 2009; 30
Wang (10.1016/j.buildenv.2022.109173_bib48) 2020; 253
Gao (10.1016/j.buildenv.2022.109173_bib34) 2019; 155
Cui (10.1016/j.buildenv.2022.109173_bib40) 2012; 2
References_xml – volume: 253
  year: 2020
  ident: bib33
  article-title: Regional prediction of ground-level ozone using a hybrid sequence-to-sequence deep learning approach
  publication-title: J. Clean. Prod.
– volume: 157
  start-page: 17
  year: 2017
  end-page: 29
  ident: bib14
  article-title: Incorporating wind availability into land use regression modelling of air quality in mountainous high-density urban environment
  publication-title: Environ. Res.
– volume: 30
  year: 2019
  ident: bib26
  article-title: Sky view factor calculations and its application in urban heat island studies
  publication-title: Urban Clim.
– volume: 12
  start-page: 149
  year: 2000
  end-page: 198
  ident: bib39
  article-title: A model of inductive bias learning
  publication-title: J. Artif. Intell. Res.
– volume: 44
  start-page: 1478
  year: 2009
  end-page: 1488
  ident: bib18
  article-title: Policies and technical guidelines for urban planning of high-density cities–air ventilation assessment (AVA) of Hong Kong
  publication-title: Build. Environ.
– volume: 147
  start-page: 559
  year: 2019
  end-page: 568
  ident: bib17
  article-title: Investigating the relationship between air pollution variation and urban form
  publication-title: Build. Environ.
– volume: 155
  start-page: 15
  year: 2019
  end-page: 24
  ident: bib34
  article-title: Assessing neighborhood air pollution exposure and its relationship with the urban form
  publication-title: Build. Environ.
– volume: 112
  start-page: 39
  year: 2013
  end-page: 51
  ident: bib21
  article-title: Indices to evaluate ventilation efficiency in newly-built urban area at pedestrian level
  publication-title: J. Wind Eng. Ind. Aerod.
– volume: 191
  year: 2019
  ident: bib44
  article-title: Mapping the spatio-temporal distribution of solar radiation within street canyons of Boston using Google Street View panoramas and building height model
  publication-title: Landsc. Urban Plann.
– volume: 30
  start-page: 88
  year: 2009
  end-page: 97
  ident: bib47
  article-title: Semantic object classes in video: a high-definition ground truth database
  publication-title: Pattern Recogn. Lett.
– volume: 20
  start-page: 805
  year: 2020
  end-page: 811
  ident: bib43
  article-title: Extracting Chinese geographic data from Baidu map API
  publication-title: STATA J.
– start-page: 801
  year: 2018
  end-page: 818
  ident: bib46
  article-title: Encoder-decoder with atrous separable convolution for semantic image segmentation
  publication-title: Proceedings of the European Conference on Computer Vision
– volume: 309
  start-page: 570
  year: 2005
  end-page: 574
  ident: bib7
  article-title: Global consequences of land use
  publication-title: Science
– start-page: 1
  year: 2014
  end-page: 5
  ident: bib27
  article-title: March). The necessity of using Sky View Factor in urban planning: a case study of Narmak neighborhood, Tehran
  publication-title: 2014 International Conference and Utility Exhibition on Green Energy for Sustainable Development (ICUE)
– volume: 205
  year: 2021
  ident: bib38
  article-title: Nonlinear relationship between urban form and street-level PM2. 5 and CO based on mobile measurements and gradient boosting decision tree models
  publication-title: Build. Environ.
– volume: 9
  start-page: 184
  year: 2020
  end-page: 199
  ident: bib42
  article-title: OpenStreetMap: challenges and opportunities in machine learning and remote sensing
  publication-title: IEEE Geoscience and Remote Sensing Magazine
– volume: 181
  year: 2020
  ident: bib3
  article-title: The effect of exhaust emissions from a group of moving vehicles on pollutant dispersion in the street canyons
  publication-title: Build. Environ.
– volume: 152
  start-page: 13
  year: 2016
  end-page: 26
  ident: bib25
  article-title: View-based greenery: a three-dimensional assessment of city buildings' green visibility using Floor Green View Index
  publication-title: Landsc. Urban Plann.
– volume: 143
  start-page: 196
  year: 2018
  end-page: 205
  ident: bib30
  article-title: High spatiotemporal characterization of on-road PM2. 5 concentrations in high-density urban areas using mobile monitoring
  publication-title: Build. Environ.
– year: 2021
  ident: bib36
  article-title: Prediction of air pollutants on roadside of the elevated roads with combination of pollutants periodicity and deep learning method
  publication-title: Build. Environ.
– year: 2016
  ident: bib4
  article-title: Vast Majority of World – 6.76 Billion People – Living with Excessive Air Pollution – UN Report
– volume: 253
  year: 2020
  ident: bib48
  article-title: Regional prediction of ground-level ozone using a hybrid sequence-to-sequence deep learning approach
  publication-title: J. Clean. Prod.
– volume: 155
  start-page: 15
  year: 2019
  end-page: 24
  ident: bib16
  article-title: Assessing neighborhood air pollution exposure and its relationship with the urban form
  publication-title: Build. Environ.
– volume: 47
  start-page: 5217
  year: 2013
  end-page: 5225
  ident: bib10
  article-title: A land use regression model for ultrafine particles in Vancouver, Canada
  publication-title: Environ. Sci. Technol.
– volume: 177
  year: 2020
  ident: bib22
  article-title: Numerical studies of passive and reactive pollutant dispersion in high-density urban models with various building densities and height variations
  publication-title: Build. Environ.
– volume: 197
  year: 2021
  ident: bib23
  article-title: Effect of building cross-section shape on air pollutant dispersion around buildings
  publication-title: Build. Environ.
– volume: 168
  start-page: 133
  year: 2016
  end-page: 141
  ident: bib37
  article-title: Mapping real-time air pollution health risk for environmental management: combining mobile and stationary air pollution monitoring with neural network models
  publication-title: J. Environ. Manag.
– volume: 43
  start-page: 578
  year: 2018
  end-page: 586
  ident: bib1
  article-title: The complexity of high-density neighbourhood development in China: intensification, deregulation and social sustainability challenges
  publication-title: Sustain. Cities Soc.
– volume: 189
  start-page: 15
  year: 2019
  end-page: 26
  ident: bib15
  article-title: Investigating the influence of urban land use and landscape pattern on PM2. 5 spatial variation using mobile monitoring and WUDAPT
  publication-title: Landsc. Urban Plann.
– volume: 2
  start-page: 1
  year: 2012
  end-page: 15
  ident: bib40
  article-title: Urbanization and its environmental effects in Shanghai, China
  publication-title: Urban Clim.
– volume: 128
  start-page: 248
  year: 2018
  end-page: 259
  ident: bib19
  article-title: Identifying critical building morphological design factors of street-level air pollution dispersion in high-density built environment using mobile monitoring
  publication-title: Build. Environ.
– volume: 6
  start-page: 28
  year: 2020
  end-page: 39
  ident: bib31
  article-title: Reexamining the relationships among urbanization, industrial structure, and environmental pollution in China—new evidence using the dynamic threshold panel model
  publication-title: Energy Rep.
– volume: 47
  start-page: 5778
  year: 2013
  end-page: 5786
  ident: bib8
  article-title: Development of land use regression models for particle composition in twenty study areas in Europe
  publication-title: Environ. Sci. Technol.
– volume: 472
  start-page: 1163
  year: 2014
  end-page: 1171
  ident: bib13
  article-title: Land use regression models for estimating individual NOx and NO2 exposures in a metropolis with a high density of traffic roads and population
  publication-title: Sci. Total Environ.
– volume: 14
  start-page: 1008
  year: 2017
  ident: bib6
  article-title: Fine-scale spatial variability of pedestrian-level particulate matters in compact urban commercial districts in Hong Kong
  publication-title: Int. J. Environ. Res. Publ. Health
– volume: 86
  year: 2020
  ident: bib29
  article-title: Application of a taxi-based mobile atmospheric monitoring system in Cangzhou, China
  publication-title: Transport. Res. Transport Environ.
– year: 2002
  ident: bib2
  article-title: Boundary Layer Climates
– volume: 14
  start-page: 675
  year: 2015
  end-page: 685
  ident: bib24
  article-title: Assessing street-level urban greenery using Google Street View and a modified green view index
  publication-title: Urban For. Urban Green.
– volume: 120
  year: 2020
  ident: bib41
  article-title: Simulating the effects of land urbanization on regional meteorology and air quality in Yangtze River Delta, China
  publication-title: Appl. Geogr.
– volume: 53
  year: 2020
  ident: bib12
  article-title: Impacts of vehicle emission from a major road on spatiotemporal variations of neighborhood particulate pollution—a case study in a university campus
  publication-title: Sustain. Cities Soc.
– year: 2020
  ident: bib20
  article-title: Review on Pollutant Dispersion in Urban Areas-Part A: Effects of Mechanical Factors and Urban Morphology
– volume: 229
  start-page: 896
  year: 2017
  end-page: 901
  ident: bib5
  article-title: Using daily excessive concentration hours to explore the short-term mortality effects of ambient PM2.5 in Hong Kong
  publication-title: Environ. Pollut.
– year: 2019
  ident: bib28
  article-title: Study on Green View Index of Shangxiahang Historic District in Fuzhou City
– year: 2020
  ident: bib32
  article-title: A Big Data Evaluation of Urban Street Walkability Using Deep Learning and Environmental Sensors-A Case Study Around Osaka University Suita Campus
– volume: 69
  start-page: 81
  year: 2001
  end-page: 89
  ident: bib45
  article-title: Rapid determination of canyon geometry parameters for use in surface radiation budgets
  publication-title: Theor. Appl. Climatol.
– volume: 57
  start-page: 257
  year: 2012
  end-page: 265
  ident: bib9
  article-title: Estimation of ultrafine particle concentrations at near-highway residences using data from local and central monitors
  publication-title: Atmos. Environ.
– volume: 22
  start-page: 7045
  year: 2015
  end-page: 7061
  ident: bib11
  article-title: Applying land use regression model to estimate spatial variation of PM 2.5 in Beijing, China
  publication-title: Environ. Sci. Pollut. Control Ser.
– volume: 290
  start-page: 807
  year: 2021
  end-page: 828
  ident: bib35
  article-title: Optimization problems for machine learning: a survey
  publication-title: Eur. J. Oper. Res.
– year: 2016
  ident: 10.1016/j.buildenv.2022.109173_bib4
– volume: 47
  start-page: 5778
  issue: 11
  year: 2013
  ident: 10.1016/j.buildenv.2022.109173_bib8
  article-title: Development of land use regression models for particle composition in twenty study areas in Europe
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es400156t
– volume: 155
  start-page: 15
  year: 2019
  ident: 10.1016/j.buildenv.2022.109173_bib34
  article-title: Assessing neighborhood air pollution exposure and its relationship with the urban form
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2018.12.044
– volume: 290
  start-page: 807
  issue: 3
  year: 2021
  ident: 10.1016/j.buildenv.2022.109173_bib35
  article-title: Optimization problems for machine learning: a survey
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2020.08.045
– volume: 12
  start-page: 149
  year: 2000
  ident: 10.1016/j.buildenv.2022.109173_bib39
  article-title: A model of inductive bias learning
  publication-title: J. Artif. Intell. Res.
  doi: 10.1613/jair.731
– volume: 22
  start-page: 7045
  issue: 9
  year: 2015
  ident: 10.1016/j.buildenv.2022.109173_bib11
  article-title: Applying land use regression model to estimate spatial variation of PM 2.5 in Beijing, China
  publication-title: Environ. Sci. Pollut. Control Ser.
  doi: 10.1007/s11356-014-3893-5
– volume: 30
  start-page: 88
  issue: 2
  year: 2009
  ident: 10.1016/j.buildenv.2022.109173_bib47
  article-title: Semantic object classes in video: a high-definition ground truth database
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/j.patrec.2008.04.005
– volume: 253
  year: 2020
  ident: 10.1016/j.buildenv.2022.109173_bib48
  article-title: Regional prediction of ground-level ozone using a hybrid sequence-to-sequence deep learning approach
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2019.119841
– volume: 69
  start-page: 81
  issue: 1
  year: 2001
  ident: 10.1016/j.buildenv.2022.109173_bib45
  article-title: Rapid determination of canyon geometry parameters for use in surface radiation budgets
  publication-title: Theor. Appl. Climatol.
  doi: 10.1007/s007040170036
– volume: 205
  year: 2021
  ident: 10.1016/j.buildenv.2022.109173_bib38
  article-title: Nonlinear relationship between urban form and street-level PM2. 5 and CO based on mobile measurements and gradient boosting decision tree models
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2021.108265
– volume: 112
  start-page: 39
  year: 2013
  ident: 10.1016/j.buildenv.2022.109173_bib21
  article-title: Indices to evaluate ventilation efficiency in newly-built urban area at pedestrian level
  publication-title: J. Wind Eng. Ind. Aerod.
  doi: 10.1016/j.jweia.2012.11.002
– volume: 47
  start-page: 5217
  issue: 10
  year: 2013
  ident: 10.1016/j.buildenv.2022.109173_bib10
  article-title: A land use regression model for ultrafine particles in Vancouver, Canada
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es304495s
– year: 2002
  ident: 10.1016/j.buildenv.2022.109173_bib2
– volume: 53
  year: 2020
  ident: 10.1016/j.buildenv.2022.109173_bib12
  article-title: Impacts of vehicle emission from a major road on spatiotemporal variations of neighborhood particulate pollution—a case study in a university campus
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2019.101917
– volume: 197
  year: 2021
  ident: 10.1016/j.buildenv.2022.109173_bib23
  article-title: Effect of building cross-section shape on air pollutant dispersion around buildings
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2021.107861
– volume: 120
  year: 2020
  ident: 10.1016/j.buildenv.2022.109173_bib41
  article-title: Simulating the effects of land urbanization on regional meteorology and air quality in Yangtze River Delta, China
  publication-title: Appl. Geogr.
  doi: 10.1016/j.apgeog.2020.102228
– year: 2020
  ident: 10.1016/j.buildenv.2022.109173_bib20
– volume: 309
  start-page: 570
  issue: 5734
  year: 2005
  ident: 10.1016/j.buildenv.2022.109173_bib7
  article-title: Global consequences of land use
  publication-title: Science
  doi: 10.1126/science.1111772
– volume: 30
  year: 2019
  ident: 10.1016/j.buildenv.2022.109173_bib26
  article-title: Sky view factor calculations and its application in urban heat island studies
  publication-title: Urban Clim.
  doi: 10.1016/j.uclim.2019.100498
– volume: 2
  start-page: 1
  year: 2012
  ident: 10.1016/j.buildenv.2022.109173_bib40
  article-title: Urbanization and its environmental effects in Shanghai, China
  publication-title: Urban Clim.
  doi: 10.1016/j.uclim.2012.10.008
– year: 2020
  ident: 10.1016/j.buildenv.2022.109173_bib32
– volume: 43
  start-page: 578
  year: 2018
  ident: 10.1016/j.buildenv.2022.109173_bib1
  article-title: The complexity of high-density neighbourhood development in China: intensification, deregulation and social sustainability challenges
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2018.08.024
– volume: 155
  start-page: 15
  year: 2019
  ident: 10.1016/j.buildenv.2022.109173_bib16
  article-title: Assessing neighborhood air pollution exposure and its relationship with the urban form
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2018.12.044
– year: 2021
  ident: 10.1016/j.buildenv.2022.109173_bib36
  article-title: Prediction of air pollutants on roadside of the elevated roads with combination of pollutants periodicity and deep learning method
  publication-title: Build. Environ.
– volume: 181
  year: 2020
  ident: 10.1016/j.buildenv.2022.109173_bib3
  article-title: The effect of exhaust emissions from a group of moving vehicles on pollutant dispersion in the street canyons
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2020.107120
– volume: 57
  start-page: 257
  year: 2012
  ident: 10.1016/j.buildenv.2022.109173_bib9
  article-title: Estimation of ultrafine particle concentrations at near-highway residences using data from local and central monitors
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2012.04.004
– volume: 6
  start-page: 28
  year: 2020
  ident: 10.1016/j.buildenv.2022.109173_bib31
  article-title: Reexamining the relationships among urbanization, industrial structure, and environmental pollution in China—new evidence using the dynamic threshold panel model
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2019.11.029
– volume: 20
  start-page: 805
  issue: 4
  year: 2020
  ident: 10.1016/j.buildenv.2022.109173_bib43
  article-title: Extracting Chinese geographic data from Baidu map API
  publication-title: STATA J.
  doi: 10.1177/1536867X20976313
– volume: 152
  start-page: 13
  year: 2016
  ident: 10.1016/j.buildenv.2022.109173_bib25
  article-title: View-based greenery: a three-dimensional assessment of city buildings' green visibility using Floor Green View Index
  publication-title: Landsc. Urban Plann.
  doi: 10.1016/j.landurbplan.2016.04.004
– year: 2019
  ident: 10.1016/j.buildenv.2022.109173_bib28
– volume: 9
  start-page: 184
  issue: 1
  year: 2020
  ident: 10.1016/j.buildenv.2022.109173_bib42
  article-title: OpenStreetMap: challenges and opportunities in machine learning and remote sensing
  publication-title: IEEE Geoscience and Remote Sensing Magazine
  doi: 10.1109/MGRS.2020.2994107
– start-page: 1
  year: 2014
  ident: 10.1016/j.buildenv.2022.109173_bib27
  article-title: March). The necessity of using Sky View Factor in urban planning: a case study of Narmak neighborhood, Tehran
– volume: 189
  start-page: 15
  year: 2019
  ident: 10.1016/j.buildenv.2022.109173_bib15
  article-title: Investigating the influence of urban land use and landscape pattern on PM2. 5 spatial variation using mobile monitoring and WUDAPT
  publication-title: Landsc. Urban Plann.
  doi: 10.1016/j.landurbplan.2019.04.004
– volume: 147
  start-page: 559
  year: 2019
  ident: 10.1016/j.buildenv.2022.109173_bib17
  article-title: Investigating the relationship between air pollution variation and urban form
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2018.06.038
– start-page: 801
  year: 2018
  ident: 10.1016/j.buildenv.2022.109173_bib46
  article-title: Encoder-decoder with atrous separable convolution for semantic image segmentation
– volume: 229
  start-page: 896
  year: 2017
  ident: 10.1016/j.buildenv.2022.109173_bib5
  article-title: Using daily excessive concentration hours to explore the short-term mortality effects of ambient PM2.5 in Hong Kong
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2017.07.060
– volume: 168
  start-page: 133
  year: 2016
  ident: 10.1016/j.buildenv.2022.109173_bib37
  article-title: Mapping real-time air pollution health risk for environmental management: combining mobile and stationary air pollution monitoring with neural network models
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2015.12.012
– volume: 44
  start-page: 1478
  issue: 7
  year: 2009
  ident: 10.1016/j.buildenv.2022.109173_bib18
  article-title: Policies and technical guidelines for urban planning of high-density cities–air ventilation assessment (AVA) of Hong Kong
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2008.06.013
– volume: 14
  start-page: 675
  issue: 3
  year: 2015
  ident: 10.1016/j.buildenv.2022.109173_bib24
  article-title: Assessing street-level urban greenery using Google Street View and a modified green view index
  publication-title: Urban For. Urban Green.
  doi: 10.1016/j.ufug.2015.06.006
– volume: 86
  year: 2020
  ident: 10.1016/j.buildenv.2022.109173_bib29
  article-title: Application of a taxi-based mobile atmospheric monitoring system in Cangzhou, China
  publication-title: Transport. Res. Transport Environ.
– volume: 177
  year: 2020
  ident: 10.1016/j.buildenv.2022.109173_bib22
  article-title: Numerical studies of passive and reactive pollutant dispersion in high-density urban models with various building densities and height variations
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2020.106916
– volume: 191
  year: 2019
  ident: 10.1016/j.buildenv.2022.109173_bib44
  article-title: Mapping the spatio-temporal distribution of solar radiation within street canyons of Boston using Google Street View panoramas and building height model
  publication-title: Landsc. Urban Plann.
  doi: 10.1016/j.landurbplan.2018.07.011
– volume: 128
  start-page: 248
  year: 2018
  ident: 10.1016/j.buildenv.2022.109173_bib19
  article-title: Identifying critical building morphological design factors of street-level air pollution dispersion in high-density built environment using mobile monitoring
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2017.11.043
– volume: 253
  year: 2020
  ident: 10.1016/j.buildenv.2022.109173_bib33
  article-title: Regional prediction of ground-level ozone using a hybrid sequence-to-sequence deep learning approach
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2019.119841
– volume: 472
  start-page: 1163
  year: 2014
  ident: 10.1016/j.buildenv.2022.109173_bib13
  article-title: Land use regression models for estimating individual NOx and NO2 exposures in a metropolis with a high density of traffic roads and population
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2013.11.064
– volume: 14
  start-page: 1008
  issue: 9
  year: 2017
  ident: 10.1016/j.buildenv.2022.109173_bib6
  article-title: Fine-scale spatial variability of pedestrian-level particulate matters in compact urban commercial districts in Hong Kong
  publication-title: Int. J. Environ. Res. Publ. Health
  doi: 10.3390/ijerph14091008
– volume: 157
  start-page: 17
  year: 2017
  ident: 10.1016/j.buildenv.2022.109173_bib14
  article-title: Incorporating wind availability into land use regression modelling of air quality in mountainous high-density urban environment
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2017.05.007
– volume: 143
  start-page: 196
  year: 2018
  ident: 10.1016/j.buildenv.2022.109173_bib30
  article-title: High spatiotemporal characterization of on-road PM2. 5 concentrations in high-density urban areas using mobile monitoring
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2018.07.014
SSID ssj0016934
Score 2.5370657
Snippet It is essential to investigate the morphological factors that contribute to air pollution's spatial distribution using mobile monitoring data, and to regulate...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 109173
SubjectTerms High-density urban blocks
Machine learning
Mobile monitoring
Pollutant concentration
Semantic segmentation
Urban morphology
Title Effect of urban morphology on air pollution distribution in high-density urban blocks based on mobile monitoring and machine learning
URI https://dx.doi.org/10.1016/j.buildenv.2022.109173
Volume 219
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KvehBfGJ9lD14TdMmm0ePpViqYi9a6C3sZjaSapNSU8GLN_-3M8mmVBA8eAoJO0mYmZ2ZZL_9hrHrnu854IeeRQhvS2gd45QCz3K9mHgnYxkGtBv5YeKPp-Ju5s0abFjvhSFYpYn9VUwvo7W5Yhtt2ss0tR8x9tJCAXokkUaVjJ9CBOTlnc8NzIO4RgyFVNei0Vu7hOcdRa2ndfaO34mOQ8xKvcD9PUFtJZ3RAds31SIfVC90yBo6O2J7WxyCx-yr4h_mecLXKyUzvshRdeXPcp5nXKYrvqR2xmQADkSTazpc8TTjRFZsAWHYiw8jrjC7vbxxym5AN1jkCgMHHmju0yO5zIAvSgym5qbpxPMJm45unoZjy_RWsGI3CAssqkXghOB62hVAS6lSKcftQ9LTAYheKEU31jhfoQsxKKEdCEnCcRIpUe2Be8qaWZ7pM8YTP1QCEyAOBQEaVBeDuasl1ipJIH3ZYl6t0Cg2xOPU_-I1qhFm86g2RESGiCpDtJi9kVtW1Bt_SvRre0U_nCjC_PCH7Pk_ZC_YLp1VKN5L1ixWa32FtUqh2qUzttnO4PZ-PPkGLKftLg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB6F9AA9VC0PlUfpHuBo4qzXjxw4VC0okMAFkLiZXc8ahTZ2FAKIS2_8ov5BZuJ1FCQkDhUnS7Zn15qZndn1zn4fwE47CiVGSehxhbenrM1oSGHoBWHGuJOZTmI-jXxyGnUv1PFleNmAf_VZGC6rdLG_iunTaO3utJw2W6PBoHVGsZc3CsgjGTTKrxmse_bxgdZtt_tHv8jIu1IeHpz_7HqOWsDLgjiZ0JxSxTLBILSBQt5J1MbIoIN528ao2olWfmbJXdHHDI2yEhOWkDLXmnqNA2p3AT4oChdMm7D3d1ZXwuAmDrPK9_jz5o4l3-wZ5rq2xT0tTKVkKKd2HLyeEeey3OFn-OSmp-JHpYEv0LDFMnycAy1cgacK8FiUubgbG12IYUm2mv6dF2Uh9GAsRsyfzBYXyLi8jlJLDArB6MgectH85NGJG0qnv28Fp1PkBoaloUhFFw423KXQBYrhtOjTCsdycb0KF--i8TVoFmVhv4LIo8Qoyrj0Kiq0aHzKHoHVNDnKYx3pdQhrhaaZQzpnwo0_aV3SdpPWhkjZEGlliHVozeRGFdbHmxKd2l7pC69NKSG9IbvxH7LfYbF7ftJP-0envU1Y4idVCfEWNCfjO_uNJkoTsz11TAFX7z0SngGCOign
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+urban+morphology+on+air+pollution+distribution+in+high-density+urban+blocks+based+on+mobile+monitoring+and+machine+learning&rft.jtitle=Building+and+environment&rft.au=Huang%2C+Chenyu&rft.au=Hu%2C+Tingting&rft.au=Duan%2C+Yusen&rft.au=Li%2C+Qingyu&rft.date=2022-07-01&rft.issn=0360-1323&rft.volume=219&rft.spage=109173&rft_id=info:doi/10.1016%2Fj.buildenv.2022.109173&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_buildenv_2022_109173
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-1323&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-1323&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-1323&client=summon