Label2label: training a neural network to selectively restore cellular structures in fluorescence microscopy
Immunofluorescence microscopy is routinely used to visualise the spatial distribution of proteins that dictates their cellular function. However, unspecific antibody binding often results in high cytosolic background signals, decreasing the image contrast of a target structure. Recently, convolution...
Saved in:
Published in | Journal of cell science Vol. 135; no. 3 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
The Company of Biologists Ltd
01.02.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Immunofluorescence microscopy is routinely used to visualise the spatial distribution of proteins that dictates their cellular function. However, unspecific antibody binding often results in high cytosolic background signals, decreasing the image contrast of a target structure. Recently, convolutional neural networks (CNNs) were successfully employed for image restoration in immunofluorescence microscopy, but current methods cannot correct for those background signals. We report a new method that trains a CNN to reduce unspecific signals in immunofluorescence images; we name this method label2label (L2L). In L2L, a CNN is trained with image pairs of two non-identical labels that target the same cellular structure. We show that after L2L training a network predicts images with significantly increased contrast of a target structure, which is further improved after implementing a multiscale structural similarity loss function. Here, our results suggest that sample differences in the training data decrease hallucination effects that are observed with other methods. We further assess the performance of a cycle generative adversarial network, and show that a CNN can be trained to separate structures in superposed immunofluorescence images of two targets. |
---|---|
AbstractList | Immunofluorescence microscopy is routinely used to visualise the spatial distribution of proteins that dictates their cellular function. However, unspecific antibody binding often results in high cytosolic background signals, decreasing the image contrast of a target structure. Recently, convolutional neural networks (CNNs) were successfully employed for image restoration in immunofluorescence microscopy, but current methods cannot correct for those background signals. We report a new method that trains a CNN to reduce unspecific signals in immunofluorescence images; we name this method label2label (L2L). In L2L, a CNN is trained with image pairs of two non-identical labels that target the same cellular structure. We show that after L2L training a network predicts images with significantly increased contrast of a target structure, which is further improved after implementing a multiscale structural similarity loss function. Here, our results suggest that sample differences in the training data decrease hallucination effects that are observed with other methods. We further assess the performance of a cycle generative adversarial network, and show that a CNN can be trained to separate structures in superposed immunofluorescence images of two targets. Immunofluorescence microscopy is routinely used to visualise the spatial distribution of proteins that dictates their cellular function. However, unspecific antibody binding often results in high cytosolic background signals, decreasing the image contrast of a target structure. Recently, convolutional neural networks (CNNs) were successfully employed for image restoration in immunofluorescence microscopy, but current methods cannot correct for those background signals. We report a new method that trains a CNN to reduce unspecific signals in immunofluorescence images; we name this method label2label (L2L). In L2L, a CNN is trained with image pairs of two non-identical labels that target the same cellular structure. We show that after L2L training a network predicts images with significantly increased contrast of a target structure, which is further improved after implementing a multiscale structural similarity loss function. Here, our results suggest that sample differences in the training data decrease hallucination effects that are observed with other methods. We further assess the performance of a cycle generative adversarial network, and show that a CNN can be trained to separate structures in superposed immunofluorescence images of two targets. Summary: Label2label is a new deep learning-based image restoration method that reduces cytosolic background signals in immunofluorescence images of cellular structures. |
Author | Hansen, Carsten Gram Salem, Omar Kölln, Lisa Sophie McConnell, Gail Valli, Jessica |
AuthorAffiliation | 2 University of Edinburgh, Centre for Inflammation Research , Edinburgh EH16 4TJ , UK 1 University of Strathclyde , Department of Physics, Glasgow G4 0NG , UK 4 Edinburgh Super Resolution Imaging Consortium , Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University , Edinburgh EH14 4AS , UK 3 University of Edinburgh, Institute for Regeneration and Repair , Edinburgh EH16 4UU , UK |
AuthorAffiliation_xml | – name: 2 University of Edinburgh, Centre for Inflammation Research , Edinburgh EH16 4TJ , UK – name: 3 University of Edinburgh, Institute for Regeneration and Repair , Edinburgh EH16 4UU , UK – name: 1 University of Strathclyde , Department of Physics, Glasgow G4 0NG , UK – name: 4 Edinburgh Super Resolution Imaging Consortium , Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University , Edinburgh EH14 4AS , UK |
Author_xml | – sequence: 1 givenname: Lisa Sophie orcidid: 0000-0001-9562-7292 surname: Kölln fullname: Kölln, Lisa Sophie organization: University of Edinburgh, Institute for Regeneration and Repair, Edinburgh EH16 4UU, UK – sequence: 2 givenname: Omar orcidid: 0000-0002-3072-9228 surname: Salem fullname: Salem, Omar organization: University of Edinburgh, Institute for Regeneration and Repair, Edinburgh EH16 4UU, UK – sequence: 3 givenname: Jessica orcidid: 0000-0003-4346-0317 surname: Valli fullname: Valli, Jessica organization: Edinburgh Super Resolution Imaging Consortium, Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh EH14 4AS, UK – sequence: 4 givenname: Carsten Gram orcidid: 0000-0003-0746-7482 surname: Hansen fullname: Hansen, Carsten Gram organization: University of Edinburgh, Institute for Regeneration and Repair, Edinburgh EH16 4UU, UK – sequence: 5 givenname: Gail orcidid: 0000-0002-7213-0686 surname: McConnell fullname: McConnell, Gail organization: University of Strathclyde, Department of Physics, Glasgow G4 0NG, UK |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35022745$$D View this record in MEDLINE/PubMed |
BookMark | eNpVkUtLQzEQhYMoWh8bf4BkKcLVPG6axIUg4gsKbnQd0nSq0TSpyb2V_ntTWkU3GcgczpyPs4-2Y4qA0DEl55S17OLdlXMmlNbtFhrQVspGUy630YAQRhstON9D-6W8E0Ik03IX7XFBGJOtGKAwsmMILKzeS9xl66OPr9jiCH22oY7uK-UP3CVcIIDr_ALCEmcoXcqAHYTQB5tx6XLvur7-Yx_xNPR1WxxEB3jmXU7FpfnyEO1MbShwtJkH6OXu9vnmoRk93T_eXI8ax6XqGil4De440CmQseKtGNbkQisGmg2lAz2xygquHK2EY0o5WDJsKWFEEyAtP0BXa995P57BpMaoYMHMs5_ZvDTJevN_E_2beU0LozRViqpqcLoxyOmzr6xm5suK1UZIfTFsSLVoiaa6Ss_W0hVkyTD9PUOJWdVjaj1mXU8Vn_wN9iv96YN_A0AvjxY |
CitedBy_id | crossref_primary_10_1186_s43074_023_00113_4 crossref_primary_10_1111_jmi_13189 crossref_primary_10_1016_j_ceb_2024_102378 crossref_primary_10_1371_journal_pone_0276726 |
Cites_doi | 10.1038/s41592-018-0111-2 10.1080/10428199909169610 10.1038/s41467-021-22518-0 10.1109/TCI.2020.3006735 10.1038/s41592-019-0686-2 10.1109/TIP.2003.819861 10.1109/TVCG.2019.2921336 10.1038/s41598-018-27216-4 10.3389/fphys.2018.00824 10.1081/CNV-200055970 10.1016/j.tcb.2019.10.005 10.1038/s41592-018-0261-2 10.1267/ahc.07023 10.1146/annurev.biochem.69.1.277 10.1007/978-1-4939-8910-2_8 10.1038/s41592-018-0239-0 10.1038/nrm.2016.106 10.1364/JOSAA.7.002032 10.1016/j.tcb.2010.01.005 10.1126/science.1146598 10.1038/s41592-018-0216-7 10.1002/cyto.a.23863 10.1016/S0091-679X(08)61396-5 10.1038/s41592-019-0458-z 10.1016/j.cell.2018.03.040 10.1242/jcs.041970 10.1007/978-3-319-24574-4_28 10.1369/jhc.2008.952770 10.1109/TCI.2016.2644865 10.1039/c0sm01414a |
ContentType | Journal Article |
Copyright | 2022. Published by The Company of Biologists Ltd. 2022. Published by The Company of Biologists Ltd 2022 |
Copyright_xml | – notice: 2022. Published by The Company of Biologists Ltd. – notice: 2022. Published by The Company of Biologists Ltd 2022 |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 5PM |
DOI | 10.1242/jcs.258994 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1477-9137 |
ExternalDocumentID | 10_1242_jcs_258994 35022745 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Wellcome Trust – fundername: Worldwide Cancer Research grantid: 19-0238 – fundername: Medical Research Council grantid: EP/L016559/1 – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/T011602/1 – fundername: Medical Research Council grantid: MR/K015583/1 – fundername: Wellcome Trust grantid: 208345/Z/17/Z – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/P02565X/1 – fundername: ; – fundername: ; grantid: BB/P02565X/1; MR/K015583/1; BB/T011602/1 – fundername: ; grantid: 19-0238 – fundername: ; grantid: 208345/Z/17/Z – fundername: ; grantid: EP/L016559/1 |
GroupedDBID | --- -DZ -~X 0R~ 18M 2WC 34G 39C 4.4 53G 5GY 5RE 5VS 85S ABDNZ ABJNI ABPPZ ACGFO ACGFS ACIWK ACNCT ACPRK ADBBV ADCOW AEILP AENEX AFFNX AFRAH AGGIJ ALMA_UNASSIGNED_HOLDINGS BAWUL BTFSW CGR CS3 CUY CVF DIK DU5 E3Z EBS ECM EIF F5P F9R GX1 H13 HZ~ IH2 INIJC KQ8 NPM O9- OK1 P2P R.V RCB RHF RHI RNS SJN TN5 TR2 UPT W2D W8F WH7 WOQ YQT ~02 ~KM AAYXX CITATION 7X8 5PM |
ID | FETCH-LOGICAL-c378t-753021c3e1fe0b834560075982e9267ce9da8a538c1002b113ea064102090e043 |
ISSN | 0021-9533 |
IngestDate | Tue Sep 17 21:23:07 EDT 2024 Sat Oct 26 05:28:57 EDT 2024 Fri Dec 06 00:55:18 EST 2024 Sat Nov 02 12:21:35 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Content-aware image restoration Noise2noise Antibody labelling Convolutional neural networks Fluorescence microscopy Cellular structures |
Language | English |
License | 2022. Published by The Company of Biologists Ltd. http://creativecommons.org/licenses/by/4.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c378t-753021c3e1fe0b834560075982e9267ce9da8a538c1002b113ea064102090e043 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Handling Editor: Jennifer Lippincott-Schwartz |
ORCID | 0000-0002-3072-9228 0000-0002-7213-0686 0000-0003-4346-0317 0000-0003-0746-7482 0000-0001-9562-7292 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC8918818 |
PMID | 35022745 |
PQID | 2619540919 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8918818 proquest_miscellaneous_2619540919 crossref_primary_10_1242_jcs_258994 pubmed_primary_35022745 |
PublicationCentury | 2000 |
PublicationDate | 2022-02-01 |
PublicationDateYYYYMMDD | 2022-02-01 |
PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Journal of cell science |
PublicationTitleAlternate | J Cell Sci |
PublicationYear | 2022 |
Publisher | The Company of Biologists Ltd |
Publisher_xml | – name: The Company of Biologists Ltd |
References | Rausch (2022021408161888600_JCS258994C24) 2020; 30 Zhao (2022021408161888600_JCS258994C36) 2016; 3 Ilangumaran (2022021408161888600_JCS258994C10) 2010; 35 Suzuki (2022021408161888600_JCS258994C28) 2007; 40 Caicedo (2022021408161888600_JCS258994C4) 2019; 95 Ronneberger (2022021408161888600_JCS258994C25) 2015; 9351 Virtanen (2022021408161888600_JCS258994C29) 2020; 17 Wang (2022021408161888600_JCS258994C32) 2004; 13 Jing (2022021408161888600_JCS258994C11) 2020; 26 Krull (2022021408161888600_JCS258994C13) 2019 Ounkomol (2022021408161888600_JCS258994C20) 2018; 15 Weigert (2022021408161888600_JCS258994C35) 2018; 15 Zhu (2022021408161888600_JCS258994C37) 2017 Wang (2022021408161888600_JCS258994C33) 2019; 16 Saper (2022021408161888600_JCS258994C26) 2009; 57 Hansen (2022021408161888600_JCS258994C9) 2010; 20 Christiansen (2022021408161888600_JCS258994C5) 2018; 173 Bates (2022021408161888600_JCS258994C1) 2007; 317 Martino (2022021408161888600_JCS258994C17) 2018; 9 Bradski (2022021408161888600_JCS258994C3) 2000; 120 Lehtinen (2022021408161888600_JCS258994C15) 2018 Suarez (2022021408161888600_JCS258994C27) 2016; 17 Wagner (2022021408161888600_JCS258994C31) 2011; 7 Belthangady (2022021408161888600_JCS258994C2) 2019; 16 Wang (2022021408161888600_JCS258994C34) 2003; 2 Miller (2022021408161888600_JCS258994C18) 1995; 48 Nogales (2022021408161888600_JCS258994C19) 2000; 69 Von Chamier (2022021408161888600_JCS258994C30) 2021; 12 Goodfellow (2022021408161888600_JCS258994C8) 2014 Dugina (2022021408161888600_JCS258994C6) 2009; 122 Larsen (2022021408161888600_JCS258994C14) 2016 Pellegrini (2022021408161888600_JCS258994C22) 2005; 23 Rausch (2022021408161888600_JCS258994C23) 2019; 1893 Khater (2022021408161888600_JCS258994C12) 2018; 8 Peli (2022021408161888600_JCS258994C21) 1990; 7 Falk (2022021408161888600_JCS258994C7) 2019; 16 Lim (2022021408161888600_JCS258994C16) 2020; 6 |
References_xml | – volume: 15 start-page: 917 year: 2018 ident: 2022021408161888600_JCS258994C20 article-title: Label-free prediction of three-dimensional fluorescence images from transmitted-light microscopy publication-title: Nat. Methods doi: 10.1038/s41592-018-0111-2 contributor: fullname: Ounkomol – volume: 35 start-page: 455 year: 2010 ident: 2022021408161888600_JCS258994C10 article-title: Signal transduction via CD44: role of plasma membrane microdomains publication-title: Leuk. Lymphoma. doi: 10.1080/10428199909169610 contributor: fullname: Ilangumaran – volume: 12 start-page: 2276 year: 2021 ident: 2022021408161888600_JCS258994C30 article-title: Democratising deep learning for microscopy with ZeroCostDL4Mic publication-title: Nat. Commun. doi: 10.1038/s41467-021-22518-0 contributor: fullname: Von Chamier – volume: 6 start-page: 1127 year: 2020 ident: 2022021408161888600_JCS258994C16 article-title: CycleGAN with a blur kernel for deconvolution microscopy: optimal transport geometry publication-title: IEEE Trans. Comput. Imaging doi: 10.1109/TCI.2020.3006735 contributor: fullname: Lim – volume: 17 start-page: 261 year: 2020 ident: 2022021408161888600_JCS258994C29 article-title: SciPy 1.0: fundamental algorithms for scientific computing in Python publication-title: Nat. Methods doi: 10.1038/s41592-019-0686-2 contributor: fullname: Virtanen – volume: 13 start-page: 600 year: 2004 ident: 2022021408161888600_JCS258994C32 article-title: Image quality assessment: from error visibility to structural similarity publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2003.819861 contributor: fullname: Wang – volume: 26 start-page: 3365 year: 2020 ident: 2022021408161888600_JCS258994C11 article-title: Neural style transfer: a review publication-title: IEEE Trans. Vis. Comput. Graph doi: 10.1109/TVCG.2019.2921336 contributor: fullname: Jing – volume: 8 start-page: 1 year: 2018 ident: 2022021408161888600_JCS258994C12 article-title: Super resolution network analysis defines the molecular architecture of caveolae and caveolin-1 scaffolds publication-title: Sci. Rep. doi: 10.1038/s41598-018-27216-4 contributor: fullname: Khater – volume: 9 start-page: 824 year: 2018 ident: 2022021408161888600_JCS258994C17 article-title: Cellular mechanotransduction: from tension to function publication-title: Front. Physiol. doi: 10.3389/fphys.2018.00824 contributor: fullname: Martino – start-page: 2242 year: 2017 ident: 2022021408161888600_JCS258994C37 article-title: Unpaired image-to-image translation using cycle-consistent adversarial networks contributor: fullname: Zhu – volume: 23 start-page: 264 year: 2005 ident: 2022021408161888600_JCS258994C22 article-title: Review: tubulin function, action of antitubulin drugs, and new drug development publication-title: Cancer Investig. doi: 10.1081/CNV-200055970 contributor: fullname: Pellegrini – volume: 30 start-page: 32 year: 2020 ident: 2022021408161888600_JCS258994C24 article-title: The hippo pathway, YAP/TAZ, and the plasma membrane publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2019.10.005 contributor: fullname: Rausch – volume: 16 start-page: 67 year: 2019 ident: 2022021408161888600_JCS258994C7 article-title: U-Net: deep learning for cell counting, detection, and morphometry publication-title: Nat. Methods doi: 10.1038/s41592-018-0261-2 contributor: fullname: Falk – volume: 40 start-page: 131 year: 2007 ident: 2022021408161888600_JCS258994C28 article-title: Recent advances in fluorescent labeling techniques for fluorescence microscopy publication-title: Acta Histochem. Cytochem. doi: 10.1267/ahc.07023 contributor: fullname: Suzuki – volume: 69 start-page: 277 year: 2000 ident: 2022021408161888600_JCS258994C19 article-title: Structural insights into microtubule function publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.biochem.69.1.277 contributor: fullname: Nogales – start-page: 2129 year: 2019 ident: 2022021408161888600_JCS258994C13 article-title: Noise2Void - Learning Denoising from Single Noisy Images contributor: fullname: Krull – start-page: 1558 year: 2016 ident: 2022021408161888600_JCS258994C14 article-title: Autoencoding beyond pixels using a learned similarity metric contributor: fullname: Larsen – start-page: 2965 year: 2018 ident: 2022021408161888600_JCS258994C15 article-title: Noise2Noise: Learning Image Restoration without Clean Data contributor: fullname: Lehtinen – volume: 2 start-page: 1398 year: 2003 ident: 2022021408161888600_JCS258994C34 article-title: Multi-scale structural similarity for image quality assessment publication-title: Conference Record of the Asilomar Conference on Signals, Systems and Computers contributor: fullname: Wang – volume: 1893 start-page: 97 year: 2019 ident: 2022021408161888600_JCS258994C23 article-title: Immunofluorescence study of endogenous YAP in mammalian cells publication-title: Methods Mol. Biol. doi: 10.1007/978-1-4939-8910-2_8 contributor: fullname: Rausch – volume: 16 start-page: 103 year: 2019 ident: 2022021408161888600_JCS258994C33 article-title: Deep learning enables cross-modality super-resolution in fluorescence microscopy publication-title: Nat. Methods doi: 10.1038/s41592-018-0239-0 contributor: fullname: Wang – start-page: 2672 volume-title: Advances in Neural Information Processing Systems year: 2014 ident: 2022021408161888600_JCS258994C8 article-title: Generative adversarial nets contributor: fullname: Goodfellow – volume: 17 start-page: 799 year: 2016 ident: 2022021408161888600_JCS258994C27 article-title: Internetwork competition for monomers governs actin cytoskeleton organization publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm.2016.106 contributor: fullname: Suarez – volume: 7 start-page: 2032 year: 1990 ident: 2022021408161888600_JCS258994C21 article-title: Contrast in complex images publication-title: J. Opt. Soc. Am. A doi: 10.1364/JOSAA.7.002032 contributor: fullname: Peli – volume: 20 start-page: 177 year: 2010 ident: 2022021408161888600_JCS258994C9 article-title: Exploring the caves: cavins, caveolins and caveolae publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2010.01.005 contributor: fullname: Hansen – volume: 317 start-page: 1749 year: 2007 ident: 2022021408161888600_JCS258994C1 article-title: Multicolor super-resolution imaging with photo-switchable fluorescent probes publication-title: Science doi: 10.1126/science.1146598 contributor: fullname: Bates – volume: 15 start-page: 1090 year: 2018 ident: 2022021408161888600_JCS258994C35 article-title: Content-aware image restoration: pushing the limits of fluorescence microscopy publication-title: Nat. Methods doi: 10.1038/s41592-018-0216-7 contributor: fullname: Weigert – volume: 95 start-page: 952 year: 2019 ident: 2022021408161888600_JCS258994C4 article-title: Evaluation of deep learning strategies for nucleus segmentation in fluorescence images publication-title: Cytometry Part A doi: 10.1002/cyto.a.23863 contributor: fullname: Caicedo – volume: 48 start-page: 365 year: 1995 ident: 2022021408161888600_JCS258994C18 article-title: Immunofluorescence microscopy publication-title: Methods Cell Biol. doi: 10.1016/S0091-679X(08)61396-5 contributor: fullname: Miller – volume: 16 start-page: 1215 year: 2019 ident: 2022021408161888600_JCS258994C2 article-title: Applications, promises, and pitfalls of deep learning for fluorescence image reconstruction publication-title: Nat. Methods doi: 10.1038/s41592-019-0458-z contributor: fullname: Belthangady – volume: 120 start-page: 122 year: 2000 ident: 2022021408161888600_JCS258994C3 article-title: The OpenCV library publication-title: Dr. Dobb's J. Software Tools contributor: fullname: Bradski – volume: 173 start-page: 792 year: 2018 ident: 2022021408161888600_JCS258994C5 article-title: In silico labeling: predicting fluorescent labels in unlabeled images publication-title: Cell doi: 10.1016/j.cell.2018.03.040 contributor: fullname: Christiansen – volume: 122 start-page: 2980 year: 2009 ident: 2022021408161888600_JCS258994C6 article-title: Beta and gamma-cytoplasmic actins display distinct distribution and functional diversity publication-title: J. Cell Sci. doi: 10.1242/jcs.041970 contributor: fullname: Dugina – volume: 9351 start-page: 234 year: 2015 ident: 2022021408161888600_JCS258994C25 article-title: U-Net: convolutional networks for biomedical image segmentation publication-title: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015. MICCAI 2015. Lecture Notes in Computer Science doi: 10.1007/978-3-319-24574-4_28 contributor: fullname: Ronneberger – volume: 57 start-page: 1 year: 2009 ident: 2022021408161888600_JCS258994C26 article-title: A guide to the perplexed on the specificity of antibodies publication-title: J. Histochem. Cytochem. doi: 10.1369/jhc.2008.952770 contributor: fullname: Saper – volume: 3 start-page: 47 year: 2016 ident: 2022021408161888600_JCS258994C36 article-title: Loss functions for image restoration with neural networks publication-title: IEEE Trans. Comput. Imaging doi: 10.1109/TCI.2016.2644865 contributor: fullname: Zhao – volume: 7 start-page: 4370 year: 2011 ident: 2022021408161888600_JCS258994C31 article-title: Dynamic force spectroscopy on the binding of monoclonal antibodies and tau peptides publication-title: Soft Mat. doi: 10.1039/c0sm01414a contributor: fullname: Wagner |
SSID | ssj0007297 |
Score | 2.4634478 |
Snippet | Immunofluorescence microscopy is routinely used to visualise the spatial distribution of proteins that dictates their cellular function. However, unspecific... |
SourceID | pubmedcentral proquest crossref pubmed |
SourceType | Open Access Repository Aggregation Database Index Database |
SubjectTerms | Cellular Structures Image Processing, Computer-Assisted - methods Imaging Microscopy, Fluorescence Neural Networks, Computer Tools in Cell Biology |
Title | Label2label: training a neural network to selectively restore cellular structures in fluorescence microscopy |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35022745 https://search.proquest.com/docview/2619540919 https://pubmed.ncbi.nlm.nih.gov/PMC8918818 |
Volume | 135 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FIlAvVXmVQEGL4Gal2N71i1sbQaOKAlJblJu162zUSI4T5XFo_xB_kxnP-gU9QC9WZDt-zHy7O-v95hvGPoRKGamCCbQ0X8IERaiBNoE3yEQ0CQFfQmtMTj7_Fo6u5Nk4GPd6v1qspe1GH2W3d-aV3MersA_8ilmy_-HZ-qKwA36Df2ELHobtP_n4q9Im93PclvwMW-7BUQ7KVILxCyJ5Y4C5LgveQN-W3zirspyMcfCrfUlDJRXZ7apkZznTfAtHUeYJGv0cGXuYu9JZ_23FsXgRxw6kdfeN6-8nYZ5TYsNsrZyLxfJ6Vp9wAeNSicTvc1XTg3-qnJK1z5Cb23CIRqqw34mGMA2HIN85Xal5-3sFTHXdDveDyvERmwGekSpuAqLXLRoTZRl4uLRMnZ-hzlnicrNHIjF1701qJxam4s5RAcIQHBWy9ZEfwPxStk8C9yznJT5EgHKKJG7ZFeb-cT6MEy-G2OYBe4iKi1ik4XTccIlghmJrA9NDWx1cuO_H5q677HF1i24Q9NfM5k-Cbiviudxne9bF_Jhw94T1TPGUPSJT3jxjeQt9n3iFPa44YY9b7PHNgrewxy32eIU93mCPzwrexh5vsPecXX35fDkcDWztDmzl8WYQYTUqLxPGmxpXx0JiZB2hWqRJ_DDKTDJRsYLRNkMNYO15wiiIjiHcdRPXuFK8YDvFojAvGc9kPDU6yEwopxKiS6WFDCeREsrz3SD2--x9Zcx0SRItKU5twfopWD8l6_fZu8rOKfSg-JKqMIstHA9R9RDi5qTPDsju9XUqh_VZ1PFIfQKqs3ePFLPrUqXdIubVvf_5mu027eeQ7YA3zBuIgDf6bYm-3yNtt-c |
link.rule.ids | 230,314,780,784,885,27924,27925 |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Label2label%3A+training+a+neural+network+to+selectively+restore+cellular+structures+in+fluorescence+microscopy&rft.jtitle=Journal+of+cell+science&rft.au=K%C3%B6lln%2C+Lisa+Sophie&rft.au=Salem%2C+Omar&rft.au=Valli%2C+Jessica&rft.au=Hansen%2C+Carsten+Gram&rft.date=2022-02-01&rft.pub=The+Company+of+Biologists+Ltd&rft.issn=0021-9533&rft.eissn=1477-9137&rft.volume=135&rft.issue=3&rft_id=info:doi/10.1242%2Fjcs.258994&rft_id=info%3Apmid%2F35022745&rft.externalDBID=PMC8918818 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9533&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9533&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9533&client=summon |