Using a three-axis accelerometer to identify and classify sheep behaviour at pasture
•We used tri-axial accelerometers to discriminate sheep behaviours at pasture.•Three time epochs were tested: 3, 5 and 10s.•The 5s time epoch had the highest precision to predict grazing behaviour.•Natural log transformed X-axis mean can identify grazing and non-grazing behaviour. Identifying and cl...
Saved in:
Published in | Applied animal behaviour science Vol. 181; pp. 91 - 99 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.08.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •We used tri-axial accelerometers to discriminate sheep behaviours at pasture.•Three time epochs were tested: 3, 5 and 10s.•The 5s time epoch had the highest precision to predict grazing behaviour.•Natural log transformed X-axis mean can identify grazing and non-grazing behaviour.
Identifying and classifying feeding behaviour in free-ranging ruminants will help improve efficiency of animal production. Another potential benefit would be in understanding the role behaviour has in determining heritability of methane measurement. The aim of this study was to determine the accuracy, sensitivity, specificity and precision with which tri-axial accelerometers can identify sheep behaviour at pasture. Two studies, the first over six days and the other over two days were conducted using South African Meat Merino×Merino ewes averaging 55 (±5)kg and 22 months of age, respectively. The animals were located in either a semi-improved pasture (0.3ha) or in a small (30m2) area with access to water to observe five mutually exclusive behaviours, grazing, lying, running, standing and walking. A tri-axial accelerometer was attached to a halter on the under-jaw of each animal. Three epochs (3s, 5s and 10s) with forty-four features calculated from acceleration signals were used to classify behaviours. The five most important features for each epoch were determined using random forest and the five behaviours were classified using a decision-tree algorithm to determine model accuracy, sensitivity, specificity and precision. The decision-tree algorithm correctly classified 90.5, 92.5 and 91.3% of the evaluation data set for grazing behaviour for the 3, 5 and 10s epochs, respectively. There was no difference in the accuracy between the evaluation and validation data sets for grazing behaviour at each epoch. The model predicted grazing and running behaviour highly accurately and with the highest precision, sensitivity and specificity for the validation data set for the 10s epoch. The 5s epoch for both the evaluation and validation data sets was selected as the most suitable epoch based on the Kappa values. We successfully identified from the distribution of component populations that the natural log-transformation of the mean of X-axis accelerations for each epoch could identify grazing and non-grazing states. Therefore, this methodology will be useful in identifying sheep activity for research applications such as before methane measurement using portable accumulation chambers or other applications addressing temporal grazing patterns. |
---|---|
AbstractList | Identifying and classifying feeding behaviour in free-ranging ruminants will help improve efficiency of animal production. Another potential benefit would be in understanding the role behaviour has in determining heritability of methane measurement. The aim of this study was to determine the accuracy, sensitivity, specificity and precision with which tri-axial accelerometers can identify sheep behaviour at pasture. Two studies, the first over six days and the other over two days were conducted using South African Meat MerinoMerino ewes averaging 55 ( plus or minus 5)kg and 22 months of age, respectively. The animals were located in either a semi-improved pasture (0.3ha) or in a small (30m2) area with access to water to observe five mutually exclusive behaviours, grazing, lying, running, standing and walking. A tri-axial accelerometer was attached to a halter on the under-jaw of each animal. Three epochs (3s, 5s and 10s) with forty-four features calculated from acceleration signals were used to classify behaviours. The five most important features for each epoch were determined using random forest and the five behaviours were classified using a decision-tree algorithm to determine model accuracy, sensitivity, specificity and precision. The decision-tree algorithm correctly classified 90.5, 92.5 and 91.3% of the evaluation data set for grazing behaviour for the 3, 5 and 10s epochs, respectively. There was no difference in the accuracy between the evaluation and validation data sets for grazing behaviour at each epoch. The model predicted grazing and running behaviour highly accurately and with the highest precision, sensitivity and specificity for the validation data set for the 10s epoch. The 5s epoch for both the evaluation and validation data sets was selected as the most suitable epoch based on the Kappa values. We successfully identified from the distribution of component populations that the natural log-transformation of the mean of X-axis accelerations for each epoch could identify grazing and non-grazing states. Therefore, this methodology will be useful in identifying sheep activity for research applications such as before methane measurement using portable accumulation chambers or other applications addressing temporal grazing patterns. •We used tri-axial accelerometers to discriminate sheep behaviours at pasture.•Three time epochs were tested: 3, 5 and 10s.•The 5s time epoch had the highest precision to predict grazing behaviour.•Natural log transformed X-axis mean can identify grazing and non-grazing behaviour. Identifying and classifying feeding behaviour in free-ranging ruminants will help improve efficiency of animal production. Another potential benefit would be in understanding the role behaviour has in determining heritability of methane measurement. The aim of this study was to determine the accuracy, sensitivity, specificity and precision with which tri-axial accelerometers can identify sheep behaviour at pasture. Two studies, the first over six days and the other over two days were conducted using South African Meat Merino×Merino ewes averaging 55 (±5)kg and 22 months of age, respectively. The animals were located in either a semi-improved pasture (0.3ha) or in a small (30m2) area with access to water to observe five mutually exclusive behaviours, grazing, lying, running, standing and walking. A tri-axial accelerometer was attached to a halter on the under-jaw of each animal. Three epochs (3s, 5s and 10s) with forty-four features calculated from acceleration signals were used to classify behaviours. The five most important features for each epoch were determined using random forest and the five behaviours were classified using a decision-tree algorithm to determine model accuracy, sensitivity, specificity and precision. The decision-tree algorithm correctly classified 90.5, 92.5 and 91.3% of the evaluation data set for grazing behaviour for the 3, 5 and 10s epochs, respectively. There was no difference in the accuracy between the evaluation and validation data sets for grazing behaviour at each epoch. The model predicted grazing and running behaviour highly accurately and with the highest precision, sensitivity and specificity for the validation data set for the 10s epoch. The 5s epoch for both the evaluation and validation data sets was selected as the most suitable epoch based on the Kappa values. We successfully identified from the distribution of component populations that the natural log-transformation of the mean of X-axis accelerations for each epoch could identify grazing and non-grazing states. Therefore, this methodology will be useful in identifying sheep activity for research applications such as before methane measurement using portable accumulation chambers or other applications addressing temporal grazing patterns. Identifying and classifying feeding behaviour in free-ranging ruminants will help improve efficiency of animal production. Another potential benefit would be in understanding the role behaviour has in determining heritability of methane measurement. The aim of this study was to determine the accuracy, sensitivity, specificity and precision with which tri-axial accelerometers can identify sheep behaviour at pasture. Two studies, the first over six days and the other over two days were conducted using South African Meat Merino×Merino ewes averaging 55 (±5)kg and 22 months of age, respectively. The animals were located in either a semi-improved pasture (0.3ha) or in a small (30m2) area with access to water to observe five mutually exclusive behaviours, grazing, lying, running, standing and walking. A tri-axial accelerometer was attached to a halter on the under-jaw of each animal. Three epochs (3s, 5s and 10s) with forty-four features calculated from acceleration signals were used to classify behaviours. The five most important features for each epoch were determined using random forest and the five behaviours were classified using a decision-tree algorithm to determine model accuracy, sensitivity, specificity and precision. The decision-tree algorithm correctly classified 90.5, 92.5 and 91.3% of the evaluation data set for grazing behaviour for the 3, 5 and 10s epochs, respectively. There was no difference in the accuracy between the evaluation and validation data sets for grazing behaviour at each epoch. The model predicted grazing and running behaviour highly accurately and with the highest precision, sensitivity and specificity for the validation data set for the 10s epoch. The 5s epoch for both the evaluation and validation data sets was selected as the most suitable epoch based on the Kappa values. We successfully identified from the distribution of component populations that the natural log-transformation of the mean of X-axis accelerations for each epoch could identify grazing and non-grazing states. Therefore, this methodology will be useful in identifying sheep activity for research applications such as before methane measurement using portable accumulation chambers or other applications addressing temporal grazing patterns. |
Author | Oddy, V.H. Dobos, R.C. Palkovič, L. Rodina, J. Alvarenga, F.A.P. Borges, I. |
Author_xml | – sequence: 1 givenname: F.A.P. surname: Alvarenga fullname: Alvarenga, F.A.P. organization: Federal University of Minas Gerais—UFMG, Animal Science Department, Belo Horizonte, Minas Gerais, Brazil – sequence: 2 givenname: I. surname: Borges fullname: Borges, I. organization: Federal University of Minas Gerais—UFMG, Animal Science Department, Belo Horizonte, Minas Gerais, Brazil – sequence: 3 givenname: L. surname: Palkovič fullname: Palkovič, L. organization: AerobTec, s.r.o., Ilkovičova 3, 841 04 Bratislava, Slovakia – sequence: 4 givenname: J. orcidid: 0000-0002-0932-6328 surname: Rodina fullname: Rodina, J. organization: Institute of Robotics and Cybernetics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Bratislava, Slovakia – sequence: 5 givenname: V.H. surname: Oddy fullname: Oddy, V.H. email: hutton.oddy@dpi.nsw.gov.au organization: Federal University of Minas Gerais—UFMG, Animal Science Department, Belo Horizonte, Minas Gerais, Brazil – sequence: 6 givenname: R.C. surname: Dobos fullname: Dobos, R.C. organization: NSW Department of Primary Industries, Beef Industry Centre of Excellence, Armidale, NSW, Australia |
BookMark | eNqNkE1LAzEQhoNUsK3-BcnRy67JfmbBgyJ-QcFLew6zycSmbDdrkhb9926pXrzoaXiZ9xmGZ0YmveuRkEvOUs54db1JYRg66O02zcacsjJlWXVCplzUWdKwopyQ6bgQCS8bfkZmIWwYY2XO2ZQsV8H2bxRoXHvEBD5soKAUdujdFiN6Gh21GvtozSeFXlPVQQiHENaIA21xDXvrdp5CpAOEuPN4Tk4NdAEvvuecrB4flvfPyeL16eX-bpGovBYxqUsmsjYTJQotjC5UDo1RCLwGUeVKta1hVVFx1IZpRJPXWSGKph0Z1Sij8zm5Ot4dvHvfYYhya8P4-ygD3S5ILooqzzivi39UOReiFOJQrY5V5V0IHo0cvN2C_5ScyYNxuZE_xuXBuGSlHI2P4M0vUNkI0bo-erDd3_jtEcdR2d6il0FZ7BVq61FFqZ3968QXnlmlGg |
CitedBy_id | crossref_primary_10_1186_s40317_018_0158_y crossref_primary_10_1038_s41598_022_06650_5 crossref_primary_10_1016_j_rama_2020_10_001 crossref_primary_10_1016_j_anbehav_2023_10_013 crossref_primary_10_1016_j_animal_2021_100429 crossref_primary_10_1002_ece3_11380 crossref_primary_10_3390_ani14243667 crossref_primary_10_7120_09627286_28_4_407 crossref_primary_10_1016_j_compag_2020_105857 crossref_primary_10_1098_rsos_171442 crossref_primary_10_7717_peerj_5489 crossref_primary_10_3390_app13169281 crossref_primary_10_1016_j_animal_2024_101377 crossref_primary_10_3389_fvets_2022_822621 crossref_primary_10_1016_j_compag_2018_04_018 crossref_primary_10_3389_fanim_2022_928514 crossref_primary_10_1016_j_compag_2018_04_017 crossref_primary_10_1016_j_applanim_2021_105296 crossref_primary_10_3390_agriculture13020288 crossref_primary_10_1016_j_applanim_2022_105630 crossref_primary_10_1016_j_biosystemseng_2019_04_021 crossref_primary_10_3390_ani13091500 crossref_primary_10_1016_j_animal_2021_100269 crossref_primary_10_1016_j_compag_2019_105051 crossref_primary_10_1016_j_compag_2023_108171 crossref_primary_10_1016_j_smallrumres_2021_106445 crossref_primary_10_3390_agriculture15050448 crossref_primary_10_3390_ani11020303 crossref_primary_10_1016_j_agee_2018_11_023 crossref_primary_10_1109_ACCESS_2024_3365552 crossref_primary_10_11595_jpnjsheepsci_2020_57_1 crossref_primary_10_1186_s40317_020_00225_9 crossref_primary_10_1016_j_jveb_2017_04_003 crossref_primary_10_1016_j_compag_2020_105444 crossref_primary_10_1016_j_compag_2020_105605 crossref_primary_10_1109_ACCESS_2022_3194507 crossref_primary_10_1016_j_atech_2022_100112 crossref_primary_10_1016_j_vetpar_2020_109188 crossref_primary_10_1016_j_livsci_2018_06_008 crossref_primary_10_1071_AN21464 crossref_primary_10_3390_ani10071137 crossref_primary_10_1071_AN21460 crossref_primary_10_3390_s23135831 crossref_primary_10_1016_j_compag_2019_104961 crossref_primary_10_1016_j_biosystemseng_2024_08_003 crossref_primary_10_3390_j5040030 crossref_primary_10_1016_j_compag_2021_105995 crossref_primary_10_1016_j_compag_2018_08_033 crossref_primary_10_1016_j_compag_2018_01_007 crossref_primary_10_1016_j_compag_2021_106610 crossref_primary_10_3390_ani14131957 crossref_primary_10_1016_j_rama_2021_02_013 crossref_primary_10_1016_j_compag_2019_05_021 crossref_primary_10_1016_j_compag_2019_105027 crossref_primary_10_3390_s19030603 crossref_primary_10_1016_j_compag_2020_105531 crossref_primary_10_1016_j_animal_2021_100234 crossref_primary_10_3390_ani12070885 crossref_primary_10_3390_ani14142080 crossref_primary_10_3390_ani11041153 crossref_primary_10_3389_fvets_2022_830450 crossref_primary_10_3390_ani11092625 crossref_primary_10_1186_s40317_023_00345_y crossref_primary_10_1016_j_compag_2018_05_004 crossref_primary_10_1016_j_measurement_2020_107963 crossref_primary_10_1186_s40462_022_00339_0 crossref_primary_10_3390_ani14030416 crossref_primary_10_1016_j_livsci_2016_12_011 crossref_primary_10_1109_JIOT_2023_3267108 crossref_primary_10_1093_jas_skab062 crossref_primary_10_1098_rsos_190824 crossref_primary_10_3354_esr00779 crossref_primary_10_1016_j_atech_2024_100542 crossref_primary_10_3390_ani11123438 crossref_primary_10_3390_s18103532 crossref_primary_10_1016_j_inpa_2022_04_001 crossref_primary_10_1016_j_applanim_2021_105491 crossref_primary_10_1016_j_eswa_2022_117925 crossref_primary_10_3390_ani15030331 crossref_primary_10_3390_ani8010012 crossref_primary_10_1016_j_applanim_2023_105847 crossref_primary_10_1016_j_compag_2020_105392 crossref_primary_10_3390_app12199427 crossref_primary_10_1016_j_physbeh_2024_114525 crossref_primary_10_1016_j_compag_2018_09_002 crossref_primary_10_1049_iet_cvi_2017_0085 crossref_primary_10_1016_j_compag_2022_107010 crossref_primary_10_1016_j_ecoinf_2025_102996 crossref_primary_10_3390_ani12141744 crossref_primary_10_3390_ani11102972 crossref_primary_10_1016_j_compag_2019_105175 crossref_primary_10_1016_j_compag_2019_105179 crossref_primary_10_3390_s21206816 crossref_primary_10_1109_ACCESS_2021_3099212 crossref_primary_10_1016_j_smallrumres_2024_107224 crossref_primary_10_1016_j_atech_2022_100040 crossref_primary_10_1016_j_compag_2020_105957 crossref_primary_10_3390_s19040852 crossref_primary_10_1016_j_compag_2024_109635 crossref_primary_10_3390_s20133670 crossref_primary_10_1186_s40317_017_0123_1 crossref_primary_10_3390_ani11113333 crossref_primary_10_1590_1809_4430_eng_agric_v41n3p286_296_2021 crossref_primary_10_1016_j_neucom_2021_10_126 crossref_primary_10_1093_jas_skab206 crossref_primary_10_1071_AN18654 crossref_primary_10_12968_live_2023_28_4_180 crossref_primary_10_1016_j_compag_2019_04_020 crossref_primary_10_1186_s40317_020_00198_9 crossref_primary_10_1017_S1466252321000177 crossref_primary_10_3390_rs12040646 crossref_primary_10_1016_j_atech_2021_100031 crossref_primary_10_3390_ani13162636 crossref_primary_10_1016_j_compag_2024_108894 crossref_primary_10_1016_j_compag_2024_108657 crossref_primary_10_3390_ani11010091 crossref_primary_10_1016_j_compag_2023_107787 crossref_primary_10_1242_jeb_184085 crossref_primary_10_3390_dairy3010002 |
Cites_doi | 10.1111/j.1365-2494.1983.tb01626.x 10.1071/AN13370 10.1016/j.compag.2008.05.004 10.3168/jds.S0022-0302(00)75087-9 10.1016/j.compag.2013.01.001 10.2307/2529310 10.1111/j.1744-697X.2008.00126.x 10.3758/BF03192796 10.2527/1990.68113871x 10.1186/s40317-015-0045-8 10.1109/MPRV.2007.47 10.3168/jds.2013-7560 10.1017/S0021859600045809 10.2527/jas.2014-8042 10.1242/jeb.089805 10.1016/S0168-1699(96)01301-4 10.1016/j.compag.2009.03.002 10.1016/j.compag.2014.10.018 10.1016/j.applanim.2005.08.011 10.1016/j.compag.2014.06.010 |
ContentType | Journal Article |
Copyright | 2016 Elsevier B.V. |
Copyright_xml | – notice: 2016 Elsevier B.V. |
DBID | AAYXX CITATION 7QG 7S9 L.6 |
DOI | 10.1016/j.applanim.2016.05.026 |
DatabaseName | CrossRef Animal Behavior Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Animal Behavior Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Animal Behavior Abstracts AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Veterinary Medicine Zoology Psychology |
EISSN | 1872-9045 |
EndPage | 99 |
ExternalDocumentID | 10_1016_j_applanim_2016_05_026 S0168159116301733 |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABBQC ABFNM ABGRD ABIVO ABKYH ABMAC ABMZM ABRWV ABXDB ABYKQ ACDAQ ACGFS ACIUM ACPRK ACRLP ADBBV ADEZE ADMUD ADQTV AEBSH AEKER AENEX AEQOU AEXOQ AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AI. AIEXJ AIKHN AITUG AJBFU AJOXV AJRQY ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CBWCG CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HVGLF HZ~ IHE J1W KOM LCYCR LW9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 QYZTP R2- RIG ROL RPZ SAB SCC SDF SDG SDP SEL SES SEW SPCBC SSA SSZ SVS T5K VH1 WUQ ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7QG 7S9 L.6 |
ID | FETCH-LOGICAL-c378t-75082b285e8d8fd4c3a9fcea17a863ccbbf06461edf0deef3724849b2b2c9cfd3 |
IEDL.DBID | .~1 |
ISSN | 0168-1591 |
IngestDate | Fri Jul 11 07:55:38 EDT 2025 Fri Jul 11 12:28:57 EDT 2025 Tue Jul 01 03:24:42 EDT 2025 Thu Apr 24 22:57:11 EDT 2025 Fri Feb 23 02:21:55 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Decision-tree Activity Grazing Ruminant Sensor |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c378t-75082b285e8d8fd4c3a9fcea17a863ccbbf06461edf0deef3724849b2b2c9cfd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-0932-6328 |
PQID | 1811885884 |
PQPubID | 23462 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1846321174 proquest_miscellaneous_1811885884 crossref_primary_10_1016_j_applanim_2016_05_026 crossref_citationtrail_10_1016_j_applanim_2016_05_026 elsevier_sciencedirect_doi_10_1016_j_applanim_2016_05_026 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2016 2016-08-00 20160801 |
PublicationDateYYYYMMDD | 2016-08-01 |
PublicationDate_xml | – month: 08 year: 2016 text: August 2016 |
PublicationDecade | 2010 |
PublicationTitle | Applied animal behaviour science |
PublicationYear | 2016 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Deswysen, Ellis (bib0035) 1990; 68 Bikker, van Laar, Rump, Doorenbos, van Meurs, Griffioen, Dijkstra (bib0015) 2014; 97 Robert, White, Renter, Larson (bib0100) 2009; 67 Scheibe, Gromann (bib0110) 2006; 38 Kuhn, M., 2015. caret: classification and regression training R package version 6 0-47. Landis, Koch (bib0075) 1977; 33 Liaw, Wiener (bib0080) 2002; 2 Ungar, Rutter (bib0140) 2005; 98 Goopy, Robinson, Woodgate, Donaldson, Oddy, Vercoe, Hegarty (bib0055) 2016; 56 Robinson, Goopy, Hegarty, Oddy, Thompson, Toovey, Macleay, Briegal, Woodgate, Donaldson, Vercoe (bib0105) 2014; 92 Vázquez Diosdado, Barker, Hodges, Amory, Croft, Bell, Codling (bib0145) 2015; 3 Wark, Corke, Sikka, Klingbeil, Guo, Crossman, Valencia, Swain, Bishop-Hurley (bib0155) 2007; 6 Umstatter, Waterhouse, Holland (bib0135) 2008; 64 Watanabe, Sakanoue, Kawamura, Kozakai (bib0160) 2008; 54 González, Bishop-Hurley, Handcock, Crossman (bib0050) 2015; 110 Campbell, Gao, Bidder, Hunter, Franklin (bib0030) 2013; 216 Jones, Cowper (bib0065) 1975; 9 Therneau, Atkinson, Ripley (bib0125) 2015 Viera, Garrett (bib0150) 2005; 37 Tani, Yokota, Yayota, Ohtani (bib0120) 2013; 92 Penning, Rutter (bib0085) 2004 Tolkamp, Schweitzer, Kyriazakis (bib0130) 2000; 83 Baker (bib0010) 2004; 25 R Core Team (bib0095) 2014 . Allden (bib0005) 1962; 4 Buchel, Sundrum (bib0025) 2014; 108 Diaz-Uriarte, R., 2014. varSelRF: Variable Selection using Random Forests R package version 0 7-5. Frost, Schofield, Beaulah, Mottram, Lines, Wathes (bib0045) 1997; 17 Contributions from Wing, J., Weston, S., Williams, A., Keefer, C., Engelhardt, A., Cooper, T., Mayer, Z., Kenkel, B., the R Core Team, Benesty, M., Lescarbeau, R., Ziem, A., and Scrucca, L. Penning (bib0090) 1983; 38 Breiman, Friedman, Olshen, Stone (bib0020) 1984 Stobbs, Cowper (bib0115) 1972; 2 Hancock (bib0060) 1954; 45 Umstatter (10.1016/j.applanim.2016.05.026_bib0135) 2008; 64 Tolkamp (10.1016/j.applanim.2016.05.026_bib0130) 2000; 83 Landis (10.1016/j.applanim.2016.05.026_bib0075) 1977; 33 Ungar (10.1016/j.applanim.2016.05.026_bib0140) 2005; 98 10.1016/j.applanim.2016.05.026_bib0070 Tani (10.1016/j.applanim.2016.05.026_bib0120) 2013; 92 Watanabe (10.1016/j.applanim.2016.05.026_bib0160) 2008; 54 Bikker (10.1016/j.applanim.2016.05.026_bib0015) 2014; 97 Therneau (10.1016/j.applanim.2016.05.026_bib0125) 2015 Campbell (10.1016/j.applanim.2016.05.026_bib0030) 2013; 216 Allden (10.1016/j.applanim.2016.05.026_bib0005) 1962; 4 Scheibe (10.1016/j.applanim.2016.05.026_bib0110) 2006; 38 Penning (10.1016/j.applanim.2016.05.026_bib0090) 1983; 38 Frost (10.1016/j.applanim.2016.05.026_bib0045) 1997; 17 Vázquez Diosdado (10.1016/j.applanim.2016.05.026_bib0145) 2015; 3 10.1016/j.applanim.2016.05.026_bib0040 Jones (10.1016/j.applanim.2016.05.026_bib0065) 1975; 9 Baker (10.1016/j.applanim.2016.05.026_bib0010) 2004; 25 R Core Team (10.1016/j.applanim.2016.05.026_bib0095) 2014 Breiman (10.1016/j.applanim.2016.05.026_bib0020) 1984 Buchel (10.1016/j.applanim.2016.05.026_bib0025) 2014; 108 Hancock (10.1016/j.applanim.2016.05.026_bib0060) 1954; 45 Wark (10.1016/j.applanim.2016.05.026_bib0155) 2007; 6 Deswysen (10.1016/j.applanim.2016.05.026_bib0035) 1990; 68 González (10.1016/j.applanim.2016.05.026_bib0050) 2015; 110 Goopy (10.1016/j.applanim.2016.05.026_bib0055) 2016; 56 Viera (10.1016/j.applanim.2016.05.026_bib0150) 2005; 37 Liaw (10.1016/j.applanim.2016.05.026_bib0080) 2002; 2 Robinson (10.1016/j.applanim.2016.05.026_bib0105) 2014; 92 Stobbs (10.1016/j.applanim.2016.05.026_bib0115) 1972; 2 Robert (10.1016/j.applanim.2016.05.026_bib0100) 2009; 67 Penning (10.1016/j.applanim.2016.05.026_bib0085) 2004 |
References_xml | – volume: 64 start-page: 19 year: 2008 end-page: 26 ident: bib0135 article-title: An automated sensor-based method of simple behavioural classification of sheep in extensive systems publication-title: Comp. Electr. Agric. – volume: 37 start-page: 360 year: 2005 end-page: 363 ident: bib0150 article-title: Understanding interobserver agreement: the kappa statistic publication-title: Fam. Med. – volume: 33 start-page: 159 year: 1977 end-page: 174 ident: bib0075 article-title: The measurement of observer agreement for categorical data publication-title: Biometrics – volume: 38 start-page: 427 year: 2006 end-page: 433 ident: bib0110 article-title: Application testing of a new three-dimensional acceleration measuring system with wireless data transfer (WAS) for behaviour analysis publication-title: Behav. Res. Methods – reference: . Contributions from Wing, J., Weston, S., Williams, A., Keefer, C., Engelhardt, A., Cooper, T., Mayer, Z., Kenkel, B., the R Core Team, Benesty, M., Lescarbeau, R., Ziem, A., and Scrucca, L. – volume: 45 start-page: 80 year: 1954 end-page: 95 ident: bib0060 article-title: Studies in grazing behaviour of dairy cattle. II. Bloat in relation to grazing behaviour publication-title: J. Sci. Camb. – volume: 110 start-page: 91 year: 2015 end-page: 102 ident: bib0050 article-title: Behavioral classification of data from collars containing motion sensors in grazing cattle publication-title: Comp. Electr. Agric. – reference: Diaz-Uriarte, R., 2014. varSelRF: Variable Selection using Random Forests R package version 0 7-5. – volume: 108 start-page: 12 year: 2014 end-page: 16 ident: bib0025 article-title: Technical note: evaluation of a new system for measuring feeding behaviour of dairy cows publication-title: Comp. Electr. Agri. – start-page: 151 year: 2004 end-page: 173 ident: bib0085 article-title: Ingestive behaviour publication-title: Herbage Intake Handbook – volume: 56 start-page: 116 year: 2016 end-page: 122 ident: bib0055 article-title: Estimates of repeatability and heritability of methane production in sheep using portable accumulation chambers publication-title: Anim. Prod. Sci. – volume: 4 start-page: 163 year: 1962 end-page: 166 ident: bib0005 article-title: Rate of herbage intake and grazing time in relation to herbage availability publication-title: Anim. Prod. Australia – volume: 2 start-page: 107 year: 1972 end-page: 112 ident: bib0115 article-title: Automatic measurement of the jaw movements of dairy cows during grazing and rumination publication-title: Trop. Grass – volume: 68 start-page: 3871 year: 1990 end-page: 3879 ident: bib0035 article-title: Fragmentation and ruminal escape of particles as related to variations in voluntary intake, chewing behaviour and extent of digestion of potentially digestible NDF in heifers publication-title: J. Anim. Sci. – volume: 38 start-page: 89 year: 1983 end-page: 96 ident: bib0090 article-title: A technique to record automatically some aspects of grazing and ruminating behaviour in sheep publication-title: Grass Forage Sci. – volume: 97 start-page: 2974 year: 2014 end-page: 2979 ident: bib0015 article-title: Technical note: evaluation of an ear-attached movement sensor to record cow feeding behavior and activity publication-title: J. Dairy Sci. – volume: 67 start-page: 80 year: 2009 end-page: 84 ident: bib0100 article-title: Evaluation of three-dimensional accelerometers to monitor and classify behaviour patterns in cattle publication-title: Comp. Electr. Agric. – volume: 216 start-page: 4501 year: 2013 end-page: 4506 ident: bib0030 article-title: Creating a behavioural classification module for acceleration data: using a captive surrogate for difficult to observe species publication-title: J. Expt. Biol. – volume: 9 start-page: 235 year: 1975 end-page: 241 ident: bib0065 article-title: A lightweight, electronic device for measurement of grazing time in cattle publication-title: Trop. Grass – reference: . – volume: 92 start-page: 54 year: 2013 end-page: 65 ident: bib0120 article-title: Automatic recognition and classification of cattle chewing activity by an acoustic monitoring method with a single-axis acceleration sensor publication-title: Comp. Electr. Agric. – reference: Kuhn, M., 2015. caret: classification and regression training R package version 6 0-47. – year: 1984 ident: bib0020 article-title: Classification and Regression Trees – volume: 2 start-page: 18 year: 2002 end-page: 22 ident: bib0080 article-title: Classification and Regression by randomForest publication-title: R News – volume: 54 start-page: 231 year: 2008 end-page: 237 ident: bib0160 article-title: Development of an automatic classification system for eating, ruminating and resting behavior of cattle using an accelerometer publication-title: Jap. Soc. Grass Sci. – year: 2015 ident: bib0125 article-title: rpart: Recursive Partitioning and Regression Trees. R package version 4. 1-9 – volume: 92 start-page: 4349 year: 2014 end-page: 4363 ident: bib0105 article-title: Genetic and environmental variation in methane emissions of sheep at pasture publication-title: J. Anim. Sci. – volume: 6 start-page: 50 year: 2007 end-page: 57 ident: bib0155 article-title: Transforming agriculture through pervasive wireless sensor networks publication-title: Perv. Comp. – volume: 17 start-page: 139 year: 1997 end-page: 159 ident: bib0045 article-title: A review of livestock monitoring and the need for integrated systems publication-title: Comp. Electr. Agric. – volume: 3 start-page: 15 year: 2015 ident: bib0145 article-title: Classification of behaviour in housed dairy cows using an accelerometer-based activity monitoring system publication-title: Anim. Biotelem. – volume: 98 start-page: 11 year: 2005 end-page: 27 ident: bib0140 article-title: Classifying cattle jaw movements: comparing IGER Behaviour Recorder and acoustic techniques publication-title: Appl. Anim. Behav. Sci. – volume: 25 start-page: 213 year: 2004 ident: bib0010 article-title: Patterns of methane production and feed intake in ruminants publication-title: Anim. Prod. Australia – year: 2014 ident: bib0095 article-title: R: A Language and Environment for Statistical Computing – volume: 83 start-page: 2057 year: 2000 end-page: 2068 ident: bib0130 article-title: The biologically relevant unit for the analysis of short-term feeding behavior of dairy cows publication-title: J. Dairy Sci. – volume: 38 start-page: 89 year: 1983 ident: 10.1016/j.applanim.2016.05.026_bib0090 article-title: A technique to record automatically some aspects of grazing and ruminating behaviour in sheep publication-title: Grass Forage Sci. doi: 10.1111/j.1365-2494.1983.tb01626.x – year: 1984 ident: 10.1016/j.applanim.2016.05.026_bib0020 – volume: 56 start-page: 116 year: 2016 ident: 10.1016/j.applanim.2016.05.026_bib0055 article-title: Estimates of repeatability and heritability of methane production in sheep using portable accumulation chambers publication-title: Anim. Prod. Sci. doi: 10.1071/AN13370 – volume: 64 start-page: 19 year: 2008 ident: 10.1016/j.applanim.2016.05.026_bib0135 article-title: An automated sensor-based method of simple behavioural classification of sheep in extensive systems publication-title: Comp. Electr. Agric. doi: 10.1016/j.compag.2008.05.004 – volume: 9 start-page: 235 year: 1975 ident: 10.1016/j.applanim.2016.05.026_bib0065 article-title: A lightweight, electronic device for measurement of grazing time in cattle publication-title: Trop. Grass – volume: 83 start-page: 2057 year: 2000 ident: 10.1016/j.applanim.2016.05.026_bib0130 article-title: The biologically relevant unit for the analysis of short-term feeding behavior of dairy cows publication-title: J. Dairy Sci. doi: 10.3168/jds.S0022-0302(00)75087-9 – volume: 92 start-page: 54 year: 2013 ident: 10.1016/j.applanim.2016.05.026_bib0120 article-title: Automatic recognition and classification of cattle chewing activity by an acoustic monitoring method with a single-axis acceleration sensor publication-title: Comp. Electr. Agric. doi: 10.1016/j.compag.2013.01.001 – volume: 33 start-page: 159 year: 1977 ident: 10.1016/j.applanim.2016.05.026_bib0075 article-title: The measurement of observer agreement for categorical data publication-title: Biometrics doi: 10.2307/2529310 – volume: 54 start-page: 231 year: 2008 ident: 10.1016/j.applanim.2016.05.026_bib0160 article-title: Development of an automatic classification system for eating, ruminating and resting behavior of cattle using an accelerometer publication-title: Jap. Soc. Grass Sci. doi: 10.1111/j.1744-697X.2008.00126.x – volume: 38 start-page: 427 year: 2006 ident: 10.1016/j.applanim.2016.05.026_bib0110 article-title: Application testing of a new three-dimensional acceleration measuring system with wireless data transfer (WAS) for behaviour analysis publication-title: Behav. Res. Methods doi: 10.3758/BF03192796 – volume: 68 start-page: 3871 year: 1990 ident: 10.1016/j.applanim.2016.05.026_bib0035 article-title: Fragmentation and ruminal escape of particles as related to variations in voluntary intake, chewing behaviour and extent of digestion of potentially digestible NDF in heifers publication-title: J. Anim. Sci. doi: 10.2527/1990.68113871x – start-page: 151 year: 2004 ident: 10.1016/j.applanim.2016.05.026_bib0085 article-title: Ingestive behaviour – volume: 3 start-page: 15 year: 2015 ident: 10.1016/j.applanim.2016.05.026_bib0145 article-title: Classification of behaviour in housed dairy cows using an accelerometer-based activity monitoring system publication-title: Anim. Biotelem. doi: 10.1186/s40317-015-0045-8 – volume: 6 start-page: 50 year: 2007 ident: 10.1016/j.applanim.2016.05.026_bib0155 article-title: Transforming agriculture through pervasive wireless sensor networks publication-title: Perv. Comp. doi: 10.1109/MPRV.2007.47 – volume: 97 start-page: 2974 year: 2014 ident: 10.1016/j.applanim.2016.05.026_bib0015 article-title: Technical note: evaluation of an ear-attached movement sensor to record cow feeding behavior and activity publication-title: J. Dairy Sci. doi: 10.3168/jds.2013-7560 – volume: 25 start-page: 213 year: 2004 ident: 10.1016/j.applanim.2016.05.026_bib0010 article-title: Patterns of methane production and feed intake in ruminants publication-title: Anim. Prod. Australia – volume: 45 start-page: 80 year: 1954 ident: 10.1016/j.applanim.2016.05.026_bib0060 article-title: Studies in grazing behaviour of dairy cattle. II. Bloat in relation to grazing behaviour publication-title: J. Sci. Camb. doi: 10.1017/S0021859600045809 – volume: 92 start-page: 4349 year: 2014 ident: 10.1016/j.applanim.2016.05.026_bib0105 article-title: Genetic and environmental variation in methane emissions of sheep at pasture publication-title: J. Anim. Sci. doi: 10.2527/jas.2014-8042 – volume: 216 start-page: 4501 year: 2013 ident: 10.1016/j.applanim.2016.05.026_bib0030 article-title: Creating a behavioural classification module for acceleration data: using a captive surrogate for difficult to observe species publication-title: J. Expt. Biol. doi: 10.1242/jeb.089805 – ident: 10.1016/j.applanim.2016.05.026_bib0040 – volume: 4 start-page: 163 year: 1962 ident: 10.1016/j.applanim.2016.05.026_bib0005 article-title: Rate of herbage intake and grazing time in relation to herbage availability publication-title: Anim. Prod. Australia – volume: 17 start-page: 139 year: 1997 ident: 10.1016/j.applanim.2016.05.026_bib0045 article-title: A review of livestock monitoring and the need for integrated systems publication-title: Comp. Electr. Agric. doi: 10.1016/S0168-1699(96)01301-4 – volume: 2 start-page: 107 year: 1972 ident: 10.1016/j.applanim.2016.05.026_bib0115 article-title: Automatic measurement of the jaw movements of dairy cows during grazing and rumination publication-title: Trop. Grass – volume: 67 start-page: 80 year: 2009 ident: 10.1016/j.applanim.2016.05.026_bib0100 article-title: Evaluation of three-dimensional accelerometers to monitor and classify behaviour patterns in cattle publication-title: Comp. Electr. Agric. doi: 10.1016/j.compag.2009.03.002 – ident: 10.1016/j.applanim.2016.05.026_bib0070 – volume: 110 start-page: 91 year: 2015 ident: 10.1016/j.applanim.2016.05.026_bib0050 article-title: Behavioral classification of data from collars containing motion sensors in grazing cattle publication-title: Comp. Electr. Agric. doi: 10.1016/j.compag.2014.10.018 – volume: 37 start-page: 360 year: 2005 ident: 10.1016/j.applanim.2016.05.026_bib0150 article-title: Understanding interobserver agreement: the kappa statistic publication-title: Fam. Med. – year: 2015 ident: 10.1016/j.applanim.2016.05.026_bib0125 – year: 2014 ident: 10.1016/j.applanim.2016.05.026_bib0095 – volume: 98 start-page: 11 year: 2005 ident: 10.1016/j.applanim.2016.05.026_bib0140 article-title: Classifying cattle jaw movements: comparing IGER Behaviour Recorder and acoustic techniques publication-title: Appl. Anim. Behav. Sci. doi: 10.1016/j.applanim.2005.08.011 – volume: 108 start-page: 12 year: 2014 ident: 10.1016/j.applanim.2016.05.026_bib0025 article-title: Technical note: evaluation of a new system for measuring feeding behaviour of dairy cows publication-title: Comp. Electr. Agri. doi: 10.1016/j.compag.2014.06.010 – volume: 2 start-page: 18 year: 2002 ident: 10.1016/j.applanim.2016.05.026_bib0080 article-title: Classification and Regression by randomForest publication-title: R News |
SSID | ssj0005310 |
Score | 2.5081515 |
Snippet | •We used tri-axial accelerometers to discriminate sheep behaviours at pasture.•Three time epochs were tested: 3, 5 and 10s.•The 5s time epoch had the highest... Identifying and classifying feeding behaviour in free-ranging ruminants will help improve efficiency of animal production. Another potential benefit would be... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 91 |
SubjectTerms | Activity algorithms animal behavior animal production data collection decision support systems Decision-tree ewes Grazing heritability meat methane pastures Ruminant Ruminantia Sensor walking |
Title | Using a three-axis accelerometer to identify and classify sheep behaviour at pasture |
URI | https://dx.doi.org/10.1016/j.applanim.2016.05.026 https://www.proquest.com/docview/1811885884 https://www.proquest.com/docview/1846321174 |
Volume | 181 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Na9wwEB1CQiGX0m5bmjYNKvSq7NqSZfkYQsOmS3Jokzb0ImR9UIfgXbJeaC757Z3R2iENoTn0ZGRpwGjGM0_MvBHAJylwAg9pvNZuwiUCUl650vNKhrzCmGPzdHXCyamanssvF8XFBhwOXBgqq-x9_9qnJ2_dvxn3uzleNM34G4IVjcE4Q0SBZiWo46eUJVn5_u29Mg-ROhLQYk6r77GEL_cpSWzbhhjpmUodPKnJwuMB6oGrTvHn6AU874EjO1h_20vYCO0Itu_8180IRt-ptCXxa9lJnzIfwbOf8zT_Cs5SeQCzrEP9BW5_N0tmncO4Qy0LUJR1c9Yk4m68Ybb1zBG0psHyVwgL1lP6V9fMdmxhl5R8eA3nR5_PDqe8v1SBO1HqjiNC0Hmd6yJor6OXTtgqumCz0molnKvriChFZcHHiQ8hijKXWlY1yrjKRS_ewGY7b8NbYC4vS4WSqo5aRos26Ssni9wrZTPh6h0ohp00ru84ThdfXJmhtOzSDBowpAEzKQxqYAfGd3KLdc-NJyWqQVHmL-sxGBielP04aNbgr0X5EtuG-WppEPxkWhOT919rpBJ4iC7lu__4hvewTaN1YeEubHbXq_ABwU5X7yVr3oOtg-PZ9JSes68_Zn8A428Dqg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB6VVIheUAkgSikYiatJdu31eo9V1SqlTS6kqOJief1Qt0KbqNlI9N937HgLRYgeOO7an2R5xjOfNQ8DfOIMB_CSRmtpxpQjIaWVKS2tuMsr9Dk6j08nTGdicsG_XBaXW3DU18KEtMpk-zc2PVrr9GeUdnO0bJrRVyQrEp1xhowC1YqxJ7AdulMVA9g-PD2bzH5lerDYlCDMpwHwW6Hw9ecQJ9ZtE4rSMxGbeIY-C3_3UX9Y6-iCTnbheeKO5HCzvBew5doh7NybsNshDL-F7JZYYkumKWo-hKffF3H8JcxjhgDRpEMROqp_NiuijUHXE7oWIJR0C9LE2l1_S3RriQnsOnysrpxbklTVv74huiNLvQrxh1dwcXI8P5rQ9K4CNayUHUWSIPM6l4WTVnrLDdOVN05npZaCGVPXHomKyJz1Y-ucZ2XOJa9qxJjKeMtew6BdtO4NEJOXpUCkqL3kXqNa2srwIrdC6IyZeg-KfieVSU3Hw9sXP1SfXXategmoIAE1LhRKYA9G97jlpu3Go4iqF5R6oEAKfcOj2I-9ZBWerhAy0a1brFcK-U8mZSjm_dccLhjeo0v-9j_W8AGeTebTc3V-Ojvbh50wsskzfAeD7mbtDpD7dPX7pNt3lf8EuA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+a+three-axis+accelerometer+to+identify+and+classify+sheep+behaviour+at+pasture&rft.jtitle=Applied+animal+behaviour+science&rft.au=Alvarenga%2C+F.A.P.&rft.au=Borges%2C+I&rft.au=Palkovi%C4%8D%2C+L&rft.au=Rodina%2C+J.&rft.date=2016-08-01&rft.issn=0168-1591&rft.volume=181+p.91-99&rft.spage=91&rft.epage=99&rft_id=info:doi/10.1016%2Fj.applanim.2016.05.026&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-1591&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-1591&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-1591&client=summon |