Using a three-axis accelerometer to identify and classify sheep behaviour at pasture

•We used tri-axial accelerometers to discriminate sheep behaviours at pasture.•Three time epochs were tested: 3, 5 and 10s.•The 5s time epoch had the highest precision to predict grazing behaviour.•Natural log transformed X-axis mean can identify grazing and non-grazing behaviour. Identifying and cl...

Full description

Saved in:
Bibliographic Details
Published inApplied animal behaviour science Vol. 181; pp. 91 - 99
Main Authors Alvarenga, F.A.P., Borges, I., Palkovič, L., Rodina, J., Oddy, V.H., Dobos, R.C.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.08.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •We used tri-axial accelerometers to discriminate sheep behaviours at pasture.•Three time epochs were tested: 3, 5 and 10s.•The 5s time epoch had the highest precision to predict grazing behaviour.•Natural log transformed X-axis mean can identify grazing and non-grazing behaviour. Identifying and classifying feeding behaviour in free-ranging ruminants will help improve efficiency of animal production. Another potential benefit would be in understanding the role behaviour has in determining heritability of methane measurement. The aim of this study was to determine the accuracy, sensitivity, specificity and precision with which tri-axial accelerometers can identify sheep behaviour at pasture. Two studies, the first over six days and the other over two days were conducted using South African Meat Merino×Merino ewes averaging 55 (±5)kg and 22 months of age, respectively. The animals were located in either a semi-improved pasture (0.3ha) or in a small (30m2) area with access to water to observe five mutually exclusive behaviours, grazing, lying, running, standing and walking. A tri-axial accelerometer was attached to a halter on the under-jaw of each animal. Three epochs (3s, 5s and 10s) with forty-four features calculated from acceleration signals were used to classify behaviours. The five most important features for each epoch were determined using random forest and the five behaviours were classified using a decision-tree algorithm to determine model accuracy, sensitivity, specificity and precision. The decision-tree algorithm correctly classified 90.5, 92.5 and 91.3% of the evaluation data set for grazing behaviour for the 3, 5 and 10s epochs, respectively. There was no difference in the accuracy between the evaluation and validation data sets for grazing behaviour at each epoch. The model predicted grazing and running behaviour highly accurately and with the highest precision, sensitivity and specificity for the validation data set for the 10s epoch. The 5s epoch for both the evaluation and validation data sets was selected as the most suitable epoch based on the Kappa values. We successfully identified from the distribution of component populations that the natural log-transformation of the mean of X-axis accelerations for each epoch could identify grazing and non-grazing states. Therefore, this methodology will be useful in identifying sheep activity for research applications such as before methane measurement using portable accumulation chambers or other applications addressing temporal grazing patterns.
AbstractList Identifying and classifying feeding behaviour in free-ranging ruminants will help improve efficiency of animal production. Another potential benefit would be in understanding the role behaviour has in determining heritability of methane measurement. The aim of this study was to determine the accuracy, sensitivity, specificity and precision with which tri-axial accelerometers can identify sheep behaviour at pasture. Two studies, the first over six days and the other over two days were conducted using South African Meat MerinoMerino ewes averaging 55 ( plus or minus 5)kg and 22 months of age, respectively. The animals were located in either a semi-improved pasture (0.3ha) or in a small (30m2) area with access to water to observe five mutually exclusive behaviours, grazing, lying, running, standing and walking. A tri-axial accelerometer was attached to a halter on the under-jaw of each animal. Three epochs (3s, 5s and 10s) with forty-four features calculated from acceleration signals were used to classify behaviours. The five most important features for each epoch were determined using random forest and the five behaviours were classified using a decision-tree algorithm to determine model accuracy, sensitivity, specificity and precision. The decision-tree algorithm correctly classified 90.5, 92.5 and 91.3% of the evaluation data set for grazing behaviour for the 3, 5 and 10s epochs, respectively. There was no difference in the accuracy between the evaluation and validation data sets for grazing behaviour at each epoch. The model predicted grazing and running behaviour highly accurately and with the highest precision, sensitivity and specificity for the validation data set for the 10s epoch. The 5s epoch for both the evaluation and validation data sets was selected as the most suitable epoch based on the Kappa values. We successfully identified from the distribution of component populations that the natural log-transformation of the mean of X-axis accelerations for each epoch could identify grazing and non-grazing states. Therefore, this methodology will be useful in identifying sheep activity for research applications such as before methane measurement using portable accumulation chambers or other applications addressing temporal grazing patterns.
•We used tri-axial accelerometers to discriminate sheep behaviours at pasture.•Three time epochs were tested: 3, 5 and 10s.•The 5s time epoch had the highest precision to predict grazing behaviour.•Natural log transformed X-axis mean can identify grazing and non-grazing behaviour. Identifying and classifying feeding behaviour in free-ranging ruminants will help improve efficiency of animal production. Another potential benefit would be in understanding the role behaviour has in determining heritability of methane measurement. The aim of this study was to determine the accuracy, sensitivity, specificity and precision with which tri-axial accelerometers can identify sheep behaviour at pasture. Two studies, the first over six days and the other over two days were conducted using South African Meat Merino×Merino ewes averaging 55 (±5)kg and 22 months of age, respectively. The animals were located in either a semi-improved pasture (0.3ha) or in a small (30m2) area with access to water to observe five mutually exclusive behaviours, grazing, lying, running, standing and walking. A tri-axial accelerometer was attached to a halter on the under-jaw of each animal. Three epochs (3s, 5s and 10s) with forty-four features calculated from acceleration signals were used to classify behaviours. The five most important features for each epoch were determined using random forest and the five behaviours were classified using a decision-tree algorithm to determine model accuracy, sensitivity, specificity and precision. The decision-tree algorithm correctly classified 90.5, 92.5 and 91.3% of the evaluation data set for grazing behaviour for the 3, 5 and 10s epochs, respectively. There was no difference in the accuracy between the evaluation and validation data sets for grazing behaviour at each epoch. The model predicted grazing and running behaviour highly accurately and with the highest precision, sensitivity and specificity for the validation data set for the 10s epoch. The 5s epoch for both the evaluation and validation data sets was selected as the most suitable epoch based on the Kappa values. We successfully identified from the distribution of component populations that the natural log-transformation of the mean of X-axis accelerations for each epoch could identify grazing and non-grazing states. Therefore, this methodology will be useful in identifying sheep activity for research applications such as before methane measurement using portable accumulation chambers or other applications addressing temporal grazing patterns.
Identifying and classifying feeding behaviour in free-ranging ruminants will help improve efficiency of animal production. Another potential benefit would be in understanding the role behaviour has in determining heritability of methane measurement. The aim of this study was to determine the accuracy, sensitivity, specificity and precision with which tri-axial accelerometers can identify sheep behaviour at pasture. Two studies, the first over six days and the other over two days were conducted using South African Meat Merino×Merino ewes averaging 55 (±5)kg and 22 months of age, respectively. The animals were located in either a semi-improved pasture (0.3ha) or in a small (30m2) area with access to water to observe five mutually exclusive behaviours, grazing, lying, running, standing and walking. A tri-axial accelerometer was attached to a halter on the under-jaw of each animal. Three epochs (3s, 5s and 10s) with forty-four features calculated from acceleration signals were used to classify behaviours. The five most important features for each epoch were determined using random forest and the five behaviours were classified using a decision-tree algorithm to determine model accuracy, sensitivity, specificity and precision. The decision-tree algorithm correctly classified 90.5, 92.5 and 91.3% of the evaluation data set for grazing behaviour for the 3, 5 and 10s epochs, respectively. There was no difference in the accuracy between the evaluation and validation data sets for grazing behaviour at each epoch. The model predicted grazing and running behaviour highly accurately and with the highest precision, sensitivity and specificity for the validation data set for the 10s epoch. The 5s epoch for both the evaluation and validation data sets was selected as the most suitable epoch based on the Kappa values. We successfully identified from the distribution of component populations that the natural log-transformation of the mean of X-axis accelerations for each epoch could identify grazing and non-grazing states. Therefore, this methodology will be useful in identifying sheep activity for research applications such as before methane measurement using portable accumulation chambers or other applications addressing temporal grazing patterns.
Author Oddy, V.H.
Dobos, R.C.
Palkovič, L.
Rodina, J.
Alvarenga, F.A.P.
Borges, I.
Author_xml – sequence: 1
  givenname: F.A.P.
  surname: Alvarenga
  fullname: Alvarenga, F.A.P.
  organization: Federal University of Minas Gerais—UFMG, Animal Science Department, Belo Horizonte, Minas Gerais, Brazil
– sequence: 2
  givenname: I.
  surname: Borges
  fullname: Borges, I.
  organization: Federal University of Minas Gerais—UFMG, Animal Science Department, Belo Horizonte, Minas Gerais, Brazil
– sequence: 3
  givenname: L.
  surname: Palkovič
  fullname: Palkovič, L.
  organization: AerobTec, s.r.o., Ilkovičova 3, 841 04 Bratislava, Slovakia
– sequence: 4
  givenname: J.
  orcidid: 0000-0002-0932-6328
  surname: Rodina
  fullname: Rodina, J.
  organization: Institute of Robotics and Cybernetics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Bratislava, Slovakia
– sequence: 5
  givenname: V.H.
  surname: Oddy
  fullname: Oddy, V.H.
  email: hutton.oddy@dpi.nsw.gov.au
  organization: Federal University of Minas Gerais—UFMG, Animal Science Department, Belo Horizonte, Minas Gerais, Brazil
– sequence: 6
  givenname: R.C.
  surname: Dobos
  fullname: Dobos, R.C.
  organization: NSW Department of Primary Industries, Beef Industry Centre of Excellence, Armidale, NSW, Australia
BookMark eNqNkE1LAzEQhoNUsK3-BcnRy67JfmbBgyJ-QcFLew6zycSmbDdrkhb9926pXrzoaXiZ9xmGZ0YmveuRkEvOUs54db1JYRg66O02zcacsjJlWXVCplzUWdKwopyQ6bgQCS8bfkZmIWwYY2XO2ZQsV8H2bxRoXHvEBD5soKAUdujdFiN6Gh21GvtozSeFXlPVQQiHENaIA21xDXvrdp5CpAOEuPN4Tk4NdAEvvuecrB4flvfPyeL16eX-bpGovBYxqUsmsjYTJQotjC5UDo1RCLwGUeVKta1hVVFx1IZpRJPXWSGKph0Z1Sij8zm5Ot4dvHvfYYhya8P4-ygD3S5ILooqzzivi39UOReiFOJQrY5V5V0IHo0cvN2C_5ScyYNxuZE_xuXBuGSlHI2P4M0vUNkI0bo-erDd3_jtEcdR2d6il0FZ7BVq61FFqZ3968QXnlmlGg
CitedBy_id crossref_primary_10_1186_s40317_018_0158_y
crossref_primary_10_1038_s41598_022_06650_5
crossref_primary_10_1016_j_rama_2020_10_001
crossref_primary_10_1016_j_anbehav_2023_10_013
crossref_primary_10_1016_j_animal_2021_100429
crossref_primary_10_1002_ece3_11380
crossref_primary_10_3390_ani14243667
crossref_primary_10_7120_09627286_28_4_407
crossref_primary_10_1016_j_compag_2020_105857
crossref_primary_10_1098_rsos_171442
crossref_primary_10_7717_peerj_5489
crossref_primary_10_3390_app13169281
crossref_primary_10_1016_j_animal_2024_101377
crossref_primary_10_3389_fvets_2022_822621
crossref_primary_10_1016_j_compag_2018_04_018
crossref_primary_10_3389_fanim_2022_928514
crossref_primary_10_1016_j_compag_2018_04_017
crossref_primary_10_1016_j_applanim_2021_105296
crossref_primary_10_3390_agriculture13020288
crossref_primary_10_1016_j_applanim_2022_105630
crossref_primary_10_1016_j_biosystemseng_2019_04_021
crossref_primary_10_3390_ani13091500
crossref_primary_10_1016_j_animal_2021_100269
crossref_primary_10_1016_j_compag_2019_105051
crossref_primary_10_1016_j_compag_2023_108171
crossref_primary_10_1016_j_smallrumres_2021_106445
crossref_primary_10_3390_agriculture15050448
crossref_primary_10_3390_ani11020303
crossref_primary_10_1016_j_agee_2018_11_023
crossref_primary_10_1109_ACCESS_2024_3365552
crossref_primary_10_11595_jpnjsheepsci_2020_57_1
crossref_primary_10_1186_s40317_020_00225_9
crossref_primary_10_1016_j_jveb_2017_04_003
crossref_primary_10_1016_j_compag_2020_105444
crossref_primary_10_1016_j_compag_2020_105605
crossref_primary_10_1109_ACCESS_2022_3194507
crossref_primary_10_1016_j_atech_2022_100112
crossref_primary_10_1016_j_vetpar_2020_109188
crossref_primary_10_1016_j_livsci_2018_06_008
crossref_primary_10_1071_AN21464
crossref_primary_10_3390_ani10071137
crossref_primary_10_1071_AN21460
crossref_primary_10_3390_s23135831
crossref_primary_10_1016_j_compag_2019_104961
crossref_primary_10_1016_j_biosystemseng_2024_08_003
crossref_primary_10_3390_j5040030
crossref_primary_10_1016_j_compag_2021_105995
crossref_primary_10_1016_j_compag_2018_08_033
crossref_primary_10_1016_j_compag_2018_01_007
crossref_primary_10_1016_j_compag_2021_106610
crossref_primary_10_3390_ani14131957
crossref_primary_10_1016_j_rama_2021_02_013
crossref_primary_10_1016_j_compag_2019_05_021
crossref_primary_10_1016_j_compag_2019_105027
crossref_primary_10_3390_s19030603
crossref_primary_10_1016_j_compag_2020_105531
crossref_primary_10_1016_j_animal_2021_100234
crossref_primary_10_3390_ani12070885
crossref_primary_10_3390_ani14142080
crossref_primary_10_3390_ani11041153
crossref_primary_10_3389_fvets_2022_830450
crossref_primary_10_3390_ani11092625
crossref_primary_10_1186_s40317_023_00345_y
crossref_primary_10_1016_j_compag_2018_05_004
crossref_primary_10_1016_j_measurement_2020_107963
crossref_primary_10_1186_s40462_022_00339_0
crossref_primary_10_3390_ani14030416
crossref_primary_10_1016_j_livsci_2016_12_011
crossref_primary_10_1109_JIOT_2023_3267108
crossref_primary_10_1093_jas_skab062
crossref_primary_10_1098_rsos_190824
crossref_primary_10_3354_esr00779
crossref_primary_10_1016_j_atech_2024_100542
crossref_primary_10_3390_ani11123438
crossref_primary_10_3390_s18103532
crossref_primary_10_1016_j_inpa_2022_04_001
crossref_primary_10_1016_j_applanim_2021_105491
crossref_primary_10_1016_j_eswa_2022_117925
crossref_primary_10_3390_ani15030331
crossref_primary_10_3390_ani8010012
crossref_primary_10_1016_j_applanim_2023_105847
crossref_primary_10_1016_j_compag_2020_105392
crossref_primary_10_3390_app12199427
crossref_primary_10_1016_j_physbeh_2024_114525
crossref_primary_10_1016_j_compag_2018_09_002
crossref_primary_10_1049_iet_cvi_2017_0085
crossref_primary_10_1016_j_compag_2022_107010
crossref_primary_10_1016_j_ecoinf_2025_102996
crossref_primary_10_3390_ani12141744
crossref_primary_10_3390_ani11102972
crossref_primary_10_1016_j_compag_2019_105175
crossref_primary_10_1016_j_compag_2019_105179
crossref_primary_10_3390_s21206816
crossref_primary_10_1109_ACCESS_2021_3099212
crossref_primary_10_1016_j_smallrumres_2024_107224
crossref_primary_10_1016_j_atech_2022_100040
crossref_primary_10_1016_j_compag_2020_105957
crossref_primary_10_3390_s19040852
crossref_primary_10_1016_j_compag_2024_109635
crossref_primary_10_3390_s20133670
crossref_primary_10_1186_s40317_017_0123_1
crossref_primary_10_3390_ani11113333
crossref_primary_10_1590_1809_4430_eng_agric_v41n3p286_296_2021
crossref_primary_10_1016_j_neucom_2021_10_126
crossref_primary_10_1093_jas_skab206
crossref_primary_10_1071_AN18654
crossref_primary_10_12968_live_2023_28_4_180
crossref_primary_10_1016_j_compag_2019_04_020
crossref_primary_10_1186_s40317_020_00198_9
crossref_primary_10_1017_S1466252321000177
crossref_primary_10_3390_rs12040646
crossref_primary_10_1016_j_atech_2021_100031
crossref_primary_10_3390_ani13162636
crossref_primary_10_1016_j_compag_2024_108894
crossref_primary_10_1016_j_compag_2024_108657
crossref_primary_10_3390_ani11010091
crossref_primary_10_1016_j_compag_2023_107787
crossref_primary_10_1242_jeb_184085
crossref_primary_10_3390_dairy3010002
Cites_doi 10.1111/j.1365-2494.1983.tb01626.x
10.1071/AN13370
10.1016/j.compag.2008.05.004
10.3168/jds.S0022-0302(00)75087-9
10.1016/j.compag.2013.01.001
10.2307/2529310
10.1111/j.1744-697X.2008.00126.x
10.3758/BF03192796
10.2527/1990.68113871x
10.1186/s40317-015-0045-8
10.1109/MPRV.2007.47
10.3168/jds.2013-7560
10.1017/S0021859600045809
10.2527/jas.2014-8042
10.1242/jeb.089805
10.1016/S0168-1699(96)01301-4
10.1016/j.compag.2009.03.002
10.1016/j.compag.2014.10.018
10.1016/j.applanim.2005.08.011
10.1016/j.compag.2014.06.010
ContentType Journal Article
Copyright 2016 Elsevier B.V.
Copyright_xml – notice: 2016 Elsevier B.V.
DBID AAYXX
CITATION
7QG
7S9
L.6
DOI 10.1016/j.applanim.2016.05.026
DatabaseName CrossRef
Animal Behavior Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Animal Behavior Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Animal Behavior Abstracts

AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Veterinary Medicine
Zoology
Psychology
EISSN 1872-9045
EndPage 99
ExternalDocumentID 10_1016_j_applanim_2016_05_026
S0168159116301733
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABBQC
ABFNM
ABGRD
ABIVO
ABKYH
ABMAC
ABMZM
ABRWV
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACPRK
ACRLP
ADBBV
ADEZE
ADMUD
ADQTV
AEBSH
AEKER
AENEX
AEQOU
AEXOQ
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CBWCG
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HVGLF
HZ~
IHE
J1W
KOM
LCYCR
LW9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
QYZTP
R2-
RIG
ROL
RPZ
SAB
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPCBC
SSA
SSZ
SVS
T5K
VH1
WUQ
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7QG
7S9
L.6
ID FETCH-LOGICAL-c378t-75082b285e8d8fd4c3a9fcea17a863ccbbf06461edf0deef3724849b2b2c9cfd3
IEDL.DBID .~1
ISSN 0168-1591
IngestDate Fri Jul 11 07:55:38 EDT 2025
Fri Jul 11 12:28:57 EDT 2025
Tue Jul 01 03:24:42 EDT 2025
Thu Apr 24 22:57:11 EDT 2025
Fri Feb 23 02:21:55 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Decision-tree
Activity
Grazing
Ruminant
Sensor
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c378t-75082b285e8d8fd4c3a9fcea17a863ccbbf06461edf0deef3724849b2b2c9cfd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-0932-6328
PQID 1811885884
PQPubID 23462
PageCount 9
ParticipantIDs proquest_miscellaneous_1846321174
proquest_miscellaneous_1811885884
crossref_primary_10_1016_j_applanim_2016_05_026
crossref_citationtrail_10_1016_j_applanim_2016_05_026
elsevier_sciencedirect_doi_10_1016_j_applanim_2016_05_026
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2016
2016-08-00
20160801
PublicationDateYYYYMMDD 2016-08-01
PublicationDate_xml – month: 08
  year: 2016
  text: August 2016
PublicationDecade 2010
PublicationTitle Applied animal behaviour science
PublicationYear 2016
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Deswysen, Ellis (bib0035) 1990; 68
Bikker, van Laar, Rump, Doorenbos, van Meurs, Griffioen, Dijkstra (bib0015) 2014; 97
Robert, White, Renter, Larson (bib0100) 2009; 67
Scheibe, Gromann (bib0110) 2006; 38
Kuhn, M., 2015. caret: classification and regression training R package version 6 0-47.
Landis, Koch (bib0075) 1977; 33
Liaw, Wiener (bib0080) 2002; 2
Ungar, Rutter (bib0140) 2005; 98
Goopy, Robinson, Woodgate, Donaldson, Oddy, Vercoe, Hegarty (bib0055) 2016; 56
Robinson, Goopy, Hegarty, Oddy, Thompson, Toovey, Macleay, Briegal, Woodgate, Donaldson, Vercoe (bib0105) 2014; 92
Vázquez Diosdado, Barker, Hodges, Amory, Croft, Bell, Codling (bib0145) 2015; 3
Wark, Corke, Sikka, Klingbeil, Guo, Crossman, Valencia, Swain, Bishop-Hurley (bib0155) 2007; 6
Umstatter, Waterhouse, Holland (bib0135) 2008; 64
Watanabe, Sakanoue, Kawamura, Kozakai (bib0160) 2008; 54
González, Bishop-Hurley, Handcock, Crossman (bib0050) 2015; 110
Campbell, Gao, Bidder, Hunter, Franklin (bib0030) 2013; 216
Jones, Cowper (bib0065) 1975; 9
Therneau, Atkinson, Ripley (bib0125) 2015
Viera, Garrett (bib0150) 2005; 37
Tani, Yokota, Yayota, Ohtani (bib0120) 2013; 92
Penning, Rutter (bib0085) 2004
Tolkamp, Schweitzer, Kyriazakis (bib0130) 2000; 83
Baker (bib0010) 2004; 25
R Core Team (bib0095) 2014
.
Allden (bib0005) 1962; 4
Buchel, Sundrum (bib0025) 2014; 108
Diaz-Uriarte, R., 2014. varSelRF: Variable Selection using Random Forests R package version 0 7-5.
Frost, Schofield, Beaulah, Mottram, Lines, Wathes (bib0045) 1997; 17
Contributions from Wing, J., Weston, S., Williams, A., Keefer, C., Engelhardt, A., Cooper, T., Mayer, Z., Kenkel, B., the R Core Team, Benesty, M., Lescarbeau, R., Ziem, A., and Scrucca, L.
Penning (bib0090) 1983; 38
Breiman, Friedman, Olshen, Stone (bib0020) 1984
Stobbs, Cowper (bib0115) 1972; 2
Hancock (bib0060) 1954; 45
Umstatter (10.1016/j.applanim.2016.05.026_bib0135) 2008; 64
Tolkamp (10.1016/j.applanim.2016.05.026_bib0130) 2000; 83
Landis (10.1016/j.applanim.2016.05.026_bib0075) 1977; 33
Ungar (10.1016/j.applanim.2016.05.026_bib0140) 2005; 98
10.1016/j.applanim.2016.05.026_bib0070
Tani (10.1016/j.applanim.2016.05.026_bib0120) 2013; 92
Watanabe (10.1016/j.applanim.2016.05.026_bib0160) 2008; 54
Bikker (10.1016/j.applanim.2016.05.026_bib0015) 2014; 97
Therneau (10.1016/j.applanim.2016.05.026_bib0125) 2015
Campbell (10.1016/j.applanim.2016.05.026_bib0030) 2013; 216
Allden (10.1016/j.applanim.2016.05.026_bib0005) 1962; 4
Scheibe (10.1016/j.applanim.2016.05.026_bib0110) 2006; 38
Penning (10.1016/j.applanim.2016.05.026_bib0090) 1983; 38
Frost (10.1016/j.applanim.2016.05.026_bib0045) 1997; 17
Vázquez Diosdado (10.1016/j.applanim.2016.05.026_bib0145) 2015; 3
10.1016/j.applanim.2016.05.026_bib0040
Jones (10.1016/j.applanim.2016.05.026_bib0065) 1975; 9
Baker (10.1016/j.applanim.2016.05.026_bib0010) 2004; 25
R Core Team (10.1016/j.applanim.2016.05.026_bib0095) 2014
Breiman (10.1016/j.applanim.2016.05.026_bib0020) 1984
Buchel (10.1016/j.applanim.2016.05.026_bib0025) 2014; 108
Hancock (10.1016/j.applanim.2016.05.026_bib0060) 1954; 45
Wark (10.1016/j.applanim.2016.05.026_bib0155) 2007; 6
Deswysen (10.1016/j.applanim.2016.05.026_bib0035) 1990; 68
González (10.1016/j.applanim.2016.05.026_bib0050) 2015; 110
Goopy (10.1016/j.applanim.2016.05.026_bib0055) 2016; 56
Viera (10.1016/j.applanim.2016.05.026_bib0150) 2005; 37
Liaw (10.1016/j.applanim.2016.05.026_bib0080) 2002; 2
Robinson (10.1016/j.applanim.2016.05.026_bib0105) 2014; 92
Stobbs (10.1016/j.applanim.2016.05.026_bib0115) 1972; 2
Robert (10.1016/j.applanim.2016.05.026_bib0100) 2009; 67
Penning (10.1016/j.applanim.2016.05.026_bib0085) 2004
References_xml – volume: 64
  start-page: 19
  year: 2008
  end-page: 26
  ident: bib0135
  article-title: An automated sensor-based method of simple behavioural classification of sheep in extensive systems
  publication-title: Comp. Electr. Agric.
– volume: 37
  start-page: 360
  year: 2005
  end-page: 363
  ident: bib0150
  article-title: Understanding interobserver agreement: the kappa statistic
  publication-title: Fam. Med.
– volume: 33
  start-page: 159
  year: 1977
  end-page: 174
  ident: bib0075
  article-title: The measurement of observer agreement for categorical data
  publication-title: Biometrics
– volume: 38
  start-page: 427
  year: 2006
  end-page: 433
  ident: bib0110
  article-title: Application testing of a new three-dimensional acceleration measuring system with wireless data transfer (WAS) for behaviour analysis
  publication-title: Behav. Res. Methods
– reference: . Contributions from Wing, J., Weston, S., Williams, A., Keefer, C., Engelhardt, A., Cooper, T., Mayer, Z., Kenkel, B., the R Core Team, Benesty, M., Lescarbeau, R., Ziem, A., and Scrucca, L.
– volume: 45
  start-page: 80
  year: 1954
  end-page: 95
  ident: bib0060
  article-title: Studies in grazing behaviour of dairy cattle. II. Bloat in relation to grazing behaviour
  publication-title: J. Sci. Camb.
– volume: 110
  start-page: 91
  year: 2015
  end-page: 102
  ident: bib0050
  article-title: Behavioral classification of data from collars containing motion sensors in grazing cattle
  publication-title: Comp. Electr. Agric.
– reference: Diaz-Uriarte, R., 2014. varSelRF: Variable Selection using Random Forests R package version 0 7-5.
– volume: 108
  start-page: 12
  year: 2014
  end-page: 16
  ident: bib0025
  article-title: Technical note: evaluation of a new system for measuring feeding behaviour of dairy cows
  publication-title: Comp. Electr. Agri.
– start-page: 151
  year: 2004
  end-page: 173
  ident: bib0085
  article-title: Ingestive behaviour
  publication-title: Herbage Intake Handbook
– volume: 56
  start-page: 116
  year: 2016
  end-page: 122
  ident: bib0055
  article-title: Estimates of repeatability and heritability of methane production in sheep using portable accumulation chambers
  publication-title: Anim. Prod. Sci.
– volume: 4
  start-page: 163
  year: 1962
  end-page: 166
  ident: bib0005
  article-title: Rate of herbage intake and grazing time in relation to herbage availability
  publication-title: Anim. Prod. Australia
– volume: 2
  start-page: 107
  year: 1972
  end-page: 112
  ident: bib0115
  article-title: Automatic measurement of the jaw movements of dairy cows during grazing and rumination
  publication-title: Trop. Grass
– volume: 68
  start-page: 3871
  year: 1990
  end-page: 3879
  ident: bib0035
  article-title: Fragmentation and ruminal escape of particles as related to variations in voluntary intake, chewing behaviour and extent of digestion of potentially digestible NDF in heifers
  publication-title: J. Anim. Sci.
– volume: 38
  start-page: 89
  year: 1983
  end-page: 96
  ident: bib0090
  article-title: A technique to record automatically some aspects of grazing and ruminating behaviour in sheep
  publication-title: Grass Forage Sci.
– volume: 97
  start-page: 2974
  year: 2014
  end-page: 2979
  ident: bib0015
  article-title: Technical note: evaluation of an ear-attached movement sensor to record cow feeding behavior and activity
  publication-title: J. Dairy Sci.
– volume: 67
  start-page: 80
  year: 2009
  end-page: 84
  ident: bib0100
  article-title: Evaluation of three-dimensional accelerometers to monitor and classify behaviour patterns in cattle
  publication-title: Comp. Electr. Agric.
– volume: 216
  start-page: 4501
  year: 2013
  end-page: 4506
  ident: bib0030
  article-title: Creating a behavioural classification module for acceleration data: using a captive surrogate for difficult to observe species
  publication-title: J. Expt. Biol.
– volume: 9
  start-page: 235
  year: 1975
  end-page: 241
  ident: bib0065
  article-title: A lightweight, electronic device for measurement of grazing time in cattle
  publication-title: Trop. Grass
– reference: .
– volume: 92
  start-page: 54
  year: 2013
  end-page: 65
  ident: bib0120
  article-title: Automatic recognition and classification of cattle chewing activity by an acoustic monitoring method with a single-axis acceleration sensor
  publication-title: Comp. Electr. Agric.
– reference: Kuhn, M., 2015. caret: classification and regression training R package version 6 0-47.
– year: 1984
  ident: bib0020
  article-title: Classification and Regression Trees
– volume: 2
  start-page: 18
  year: 2002
  end-page: 22
  ident: bib0080
  article-title: Classification and Regression by randomForest
  publication-title: R News
– volume: 54
  start-page: 231
  year: 2008
  end-page: 237
  ident: bib0160
  article-title: Development of an automatic classification system for eating, ruminating and resting behavior of cattle using an accelerometer
  publication-title: Jap. Soc. Grass Sci.
– year: 2015
  ident: bib0125
  article-title: rpart: Recursive Partitioning and Regression Trees. R package version 4. 1-9
– volume: 92
  start-page: 4349
  year: 2014
  end-page: 4363
  ident: bib0105
  article-title: Genetic and environmental variation in methane emissions of sheep at pasture
  publication-title: J. Anim. Sci.
– volume: 6
  start-page: 50
  year: 2007
  end-page: 57
  ident: bib0155
  article-title: Transforming agriculture through pervasive wireless sensor networks
  publication-title: Perv. Comp.
– volume: 17
  start-page: 139
  year: 1997
  end-page: 159
  ident: bib0045
  article-title: A review of livestock monitoring and the need for integrated systems
  publication-title: Comp. Electr. Agric.
– volume: 3
  start-page: 15
  year: 2015
  ident: bib0145
  article-title: Classification of behaviour in housed dairy cows using an accelerometer-based activity monitoring system
  publication-title: Anim. Biotelem.
– volume: 98
  start-page: 11
  year: 2005
  end-page: 27
  ident: bib0140
  article-title: Classifying cattle jaw movements: comparing IGER Behaviour Recorder and acoustic techniques
  publication-title: Appl. Anim. Behav. Sci.
– volume: 25
  start-page: 213
  year: 2004
  ident: bib0010
  article-title: Patterns of methane production and feed intake in ruminants
  publication-title: Anim. Prod. Australia
– year: 2014
  ident: bib0095
  article-title: R: A Language and Environment for Statistical Computing
– volume: 83
  start-page: 2057
  year: 2000
  end-page: 2068
  ident: bib0130
  article-title: The biologically relevant unit for the analysis of short-term feeding behavior of dairy cows
  publication-title: J. Dairy Sci.
– volume: 38
  start-page: 89
  year: 1983
  ident: 10.1016/j.applanim.2016.05.026_bib0090
  article-title: A technique to record automatically some aspects of grazing and ruminating behaviour in sheep
  publication-title: Grass Forage Sci.
  doi: 10.1111/j.1365-2494.1983.tb01626.x
– year: 1984
  ident: 10.1016/j.applanim.2016.05.026_bib0020
– volume: 56
  start-page: 116
  year: 2016
  ident: 10.1016/j.applanim.2016.05.026_bib0055
  article-title: Estimates of repeatability and heritability of methane production in sheep using portable accumulation chambers
  publication-title: Anim. Prod. Sci.
  doi: 10.1071/AN13370
– volume: 64
  start-page: 19
  year: 2008
  ident: 10.1016/j.applanim.2016.05.026_bib0135
  article-title: An automated sensor-based method of simple behavioural classification of sheep in extensive systems
  publication-title: Comp. Electr. Agric.
  doi: 10.1016/j.compag.2008.05.004
– volume: 9
  start-page: 235
  year: 1975
  ident: 10.1016/j.applanim.2016.05.026_bib0065
  article-title: A lightweight, electronic device for measurement of grazing time in cattle
  publication-title: Trop. Grass
– volume: 83
  start-page: 2057
  year: 2000
  ident: 10.1016/j.applanim.2016.05.026_bib0130
  article-title: The biologically relevant unit for the analysis of short-term feeding behavior of dairy cows
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.S0022-0302(00)75087-9
– volume: 92
  start-page: 54
  year: 2013
  ident: 10.1016/j.applanim.2016.05.026_bib0120
  article-title: Automatic recognition and classification of cattle chewing activity by an acoustic monitoring method with a single-axis acceleration sensor
  publication-title: Comp. Electr. Agric.
  doi: 10.1016/j.compag.2013.01.001
– volume: 33
  start-page: 159
  year: 1977
  ident: 10.1016/j.applanim.2016.05.026_bib0075
  article-title: The measurement of observer agreement for categorical data
  publication-title: Biometrics
  doi: 10.2307/2529310
– volume: 54
  start-page: 231
  year: 2008
  ident: 10.1016/j.applanim.2016.05.026_bib0160
  article-title: Development of an automatic classification system for eating, ruminating and resting behavior of cattle using an accelerometer
  publication-title: Jap. Soc. Grass Sci.
  doi: 10.1111/j.1744-697X.2008.00126.x
– volume: 38
  start-page: 427
  year: 2006
  ident: 10.1016/j.applanim.2016.05.026_bib0110
  article-title: Application testing of a new three-dimensional acceleration measuring system with wireless data transfer (WAS) for behaviour analysis
  publication-title: Behav. Res. Methods
  doi: 10.3758/BF03192796
– volume: 68
  start-page: 3871
  year: 1990
  ident: 10.1016/j.applanim.2016.05.026_bib0035
  article-title: Fragmentation and ruminal escape of particles as related to variations in voluntary intake, chewing behaviour and extent of digestion of potentially digestible NDF in heifers
  publication-title: J. Anim. Sci.
  doi: 10.2527/1990.68113871x
– start-page: 151
  year: 2004
  ident: 10.1016/j.applanim.2016.05.026_bib0085
  article-title: Ingestive behaviour
– volume: 3
  start-page: 15
  year: 2015
  ident: 10.1016/j.applanim.2016.05.026_bib0145
  article-title: Classification of behaviour in housed dairy cows using an accelerometer-based activity monitoring system
  publication-title: Anim. Biotelem.
  doi: 10.1186/s40317-015-0045-8
– volume: 6
  start-page: 50
  year: 2007
  ident: 10.1016/j.applanim.2016.05.026_bib0155
  article-title: Transforming agriculture through pervasive wireless sensor networks
  publication-title: Perv. Comp.
  doi: 10.1109/MPRV.2007.47
– volume: 97
  start-page: 2974
  year: 2014
  ident: 10.1016/j.applanim.2016.05.026_bib0015
  article-title: Technical note: evaluation of an ear-attached movement sensor to record cow feeding behavior and activity
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.2013-7560
– volume: 25
  start-page: 213
  year: 2004
  ident: 10.1016/j.applanim.2016.05.026_bib0010
  article-title: Patterns of methane production and feed intake in ruminants
  publication-title: Anim. Prod. Australia
– volume: 45
  start-page: 80
  year: 1954
  ident: 10.1016/j.applanim.2016.05.026_bib0060
  article-title: Studies in grazing behaviour of dairy cattle. II. Bloat in relation to grazing behaviour
  publication-title: J. Sci. Camb.
  doi: 10.1017/S0021859600045809
– volume: 92
  start-page: 4349
  year: 2014
  ident: 10.1016/j.applanim.2016.05.026_bib0105
  article-title: Genetic and environmental variation in methane emissions of sheep at pasture
  publication-title: J. Anim. Sci.
  doi: 10.2527/jas.2014-8042
– volume: 216
  start-page: 4501
  year: 2013
  ident: 10.1016/j.applanim.2016.05.026_bib0030
  article-title: Creating a behavioural classification module for acceleration data: using a captive surrogate for difficult to observe species
  publication-title: J. Expt. Biol.
  doi: 10.1242/jeb.089805
– ident: 10.1016/j.applanim.2016.05.026_bib0040
– volume: 4
  start-page: 163
  year: 1962
  ident: 10.1016/j.applanim.2016.05.026_bib0005
  article-title: Rate of herbage intake and grazing time in relation to herbage availability
  publication-title: Anim. Prod. Australia
– volume: 17
  start-page: 139
  year: 1997
  ident: 10.1016/j.applanim.2016.05.026_bib0045
  article-title: A review of livestock monitoring and the need for integrated systems
  publication-title: Comp. Electr. Agric.
  doi: 10.1016/S0168-1699(96)01301-4
– volume: 2
  start-page: 107
  year: 1972
  ident: 10.1016/j.applanim.2016.05.026_bib0115
  article-title: Automatic measurement of the jaw movements of dairy cows during grazing and rumination
  publication-title: Trop. Grass
– volume: 67
  start-page: 80
  year: 2009
  ident: 10.1016/j.applanim.2016.05.026_bib0100
  article-title: Evaluation of three-dimensional accelerometers to monitor and classify behaviour patterns in cattle
  publication-title: Comp. Electr. Agric.
  doi: 10.1016/j.compag.2009.03.002
– ident: 10.1016/j.applanim.2016.05.026_bib0070
– volume: 110
  start-page: 91
  year: 2015
  ident: 10.1016/j.applanim.2016.05.026_bib0050
  article-title: Behavioral classification of data from collars containing motion sensors in grazing cattle
  publication-title: Comp. Electr. Agric.
  doi: 10.1016/j.compag.2014.10.018
– volume: 37
  start-page: 360
  year: 2005
  ident: 10.1016/j.applanim.2016.05.026_bib0150
  article-title: Understanding interobserver agreement: the kappa statistic
  publication-title: Fam. Med.
– year: 2015
  ident: 10.1016/j.applanim.2016.05.026_bib0125
– year: 2014
  ident: 10.1016/j.applanim.2016.05.026_bib0095
– volume: 98
  start-page: 11
  year: 2005
  ident: 10.1016/j.applanim.2016.05.026_bib0140
  article-title: Classifying cattle jaw movements: comparing IGER Behaviour Recorder and acoustic techniques
  publication-title: Appl. Anim. Behav. Sci.
  doi: 10.1016/j.applanim.2005.08.011
– volume: 108
  start-page: 12
  year: 2014
  ident: 10.1016/j.applanim.2016.05.026_bib0025
  article-title: Technical note: evaluation of a new system for measuring feeding behaviour of dairy cows
  publication-title: Comp. Electr. Agri.
  doi: 10.1016/j.compag.2014.06.010
– volume: 2
  start-page: 18
  year: 2002
  ident: 10.1016/j.applanim.2016.05.026_bib0080
  article-title: Classification and Regression by randomForest
  publication-title: R News
SSID ssj0005310
Score 2.5081515
Snippet •We used tri-axial accelerometers to discriminate sheep behaviours at pasture.•Three time epochs were tested: 3, 5 and 10s.•The 5s time epoch had the highest...
Identifying and classifying feeding behaviour in free-ranging ruminants will help improve efficiency of animal production. Another potential benefit would be...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 91
SubjectTerms Activity
algorithms
animal behavior
animal production
data collection
decision support systems
Decision-tree
ewes
Grazing
heritability
meat
methane
pastures
Ruminant
Ruminantia
Sensor
walking
Title Using a three-axis accelerometer to identify and classify sheep behaviour at pasture
URI https://dx.doi.org/10.1016/j.applanim.2016.05.026
https://www.proquest.com/docview/1811885884
https://www.proquest.com/docview/1846321174
Volume 181
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Na9wwEB1CQiGX0m5bmjYNKvSq7NqSZfkYQsOmS3Jokzb0ImR9UIfgXbJeaC757Z3R2iENoTn0ZGRpwGjGM0_MvBHAJylwAg9pvNZuwiUCUl650vNKhrzCmGPzdHXCyamanssvF8XFBhwOXBgqq-x9_9qnJ2_dvxn3uzleNM34G4IVjcE4Q0SBZiWo46eUJVn5_u29Mg-ROhLQYk6r77GEL_cpSWzbhhjpmUodPKnJwuMB6oGrTvHn6AU874EjO1h_20vYCO0Itu_8180IRt-ptCXxa9lJnzIfwbOf8zT_Cs5SeQCzrEP9BW5_N0tmncO4Qy0LUJR1c9Yk4m68Ybb1zBG0psHyVwgL1lP6V9fMdmxhl5R8eA3nR5_PDqe8v1SBO1HqjiNC0Hmd6yJor6OXTtgqumCz0molnKvriChFZcHHiQ8hijKXWlY1yrjKRS_ewGY7b8NbYC4vS4WSqo5aRos26Ssni9wrZTPh6h0ohp00ru84ThdfXJmhtOzSDBowpAEzKQxqYAfGd3KLdc-NJyWqQVHmL-sxGBielP04aNbgr0X5EtuG-WppEPxkWhOT919rpBJ4iC7lu__4hvewTaN1YeEubHbXq_ABwU5X7yVr3oOtg-PZ9JSes68_Zn8A428Dqg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB6VVIheUAkgSikYiatJdu31eo9V1SqlTS6kqOJief1Qt0KbqNlI9N937HgLRYgeOO7an2R5xjOfNQ8DfOIMB_CSRmtpxpQjIaWVKS2tuMsr9Dk6j08nTGdicsG_XBaXW3DU18KEtMpk-zc2PVrr9GeUdnO0bJrRVyQrEp1xhowC1YqxJ7AdulMVA9g-PD2bzH5lerDYlCDMpwHwW6Hw9ecQJ9ZtE4rSMxGbeIY-C3_3UX9Y6-iCTnbheeKO5HCzvBew5doh7NybsNshDL-F7JZYYkumKWo-hKffF3H8JcxjhgDRpEMROqp_NiuijUHXE7oWIJR0C9LE2l1_S3RriQnsOnysrpxbklTVv74huiNLvQrxh1dwcXI8P5rQ9K4CNayUHUWSIPM6l4WTVnrLDdOVN05npZaCGVPXHomKyJz1Y-ucZ2XOJa9qxJjKeMtew6BdtO4NEJOXpUCkqL3kXqNa2srwIrdC6IyZeg-KfieVSU3Hw9sXP1SfXXategmoIAE1LhRKYA9G97jlpu3Go4iqF5R6oEAKfcOj2I-9ZBWerhAy0a1brFcK-U8mZSjm_dccLhjeo0v-9j_W8AGeTebTc3V-Ojvbh50wsskzfAeD7mbtDpD7dPX7pNt3lf8EuA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+a+three-axis+accelerometer+to+identify+and+classify+sheep+behaviour+at+pasture&rft.jtitle=Applied+animal+behaviour+science&rft.au=Alvarenga%2C+F.A.P.&rft.au=Borges%2C+I&rft.au=Palkovi%C4%8D%2C+L&rft.au=Rodina%2C+J.&rft.date=2016-08-01&rft.issn=0168-1591&rft.volume=181+p.91-99&rft.spage=91&rft.epage=99&rft_id=info:doi/10.1016%2Fj.applanim.2016.05.026&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-1591&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-1591&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-1591&client=summon