Yield production, chemical composition, and functional properties of emulsifier H28 synthesized by Halomonas eurihalina strain H-28 in media containing various hydrocarbons

Halomonas eurihalina strain H-28 is a moderately halophilic bacterium that produces an extracellular polysaccharide not only in media with glucose but also in media supplemented with hydrocarbons (n-tetradecane, n-hexadecane, n-octane, xylene, mineral light oil, mineral heavy oil, petrol, or crude o...

Full description

Saved in:
Bibliographic Details
Published inApplied microbiology and biotechnology Vol. 58; no. 3; pp. 358 - 363
Main Authors Martinez-Checa, F, Toledo, F.L, Vilchez, R, Quesada, E, Calvo, C
Format Journal Article
LanguageEnglish
Published Berlin Springer 01.03.2002
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Halomonas eurihalina strain H-28 is a moderately halophilic bacterium that produces an extracellular polysaccharide not only in media with glucose but also in media supplemented with hydrocarbons (n-tetradecane, n-hexadecane, n-octane, xylene, mineral light oil, mineral heavy oil, petrol, or crude oil). In this study we investigated yield production, chemical composition, viscosity, and emulsifying activity of exopolysaccharides (EPS) extracted from the different media used. The largest amounts of biopolymer were synthesized in media with glucose and n-hexadecane. Chemical composition varied with culture conditions; thus EPS from cultures grown in the presence of hydrocarbons had lower contents of carbohydrates and proteins than EPS from media with glucose. However, the percentages of uronic acids, acetyls, and sulfates were always higher than glucose EPS. Crude oil was the substrate most effectively emulsified. All EPS were capable of emulsifying crude oil more efficiently than the three control surfactants tested (Tween 20, Tween 80, and Triton X-100). All polymers gave low viscosity solutions. EPS H28 could be attractive for application in the oil industry and/or in bioremediation processes, bearing in mind not only its functional properties, but also the capacity of producer strain H-28 to grow in the presence of high salt concentrations and oil substrates.
Bibliography:http://dx.doi.org/10.1007/s00253-001-0903-6
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0175-7598
1432-0614
DOI:10.1007/s00253-001-0903-6